Contents

Chapter 1. The Four Numbers Problem	1
1. Introduction	1
2. The Four Numbers Game Rule	2
3. Symmetry and the Four Numbers Game	5
4. Does Every Four Numbers Game Have Finite Length?	11
5. Games With Length Independent of the Size of the Numbers	15
6. Long Games6.1. Some Formal Notation6.2. Constructing Long Games	17 18 19
7. The Tribonacci Games 7.1. Computation of $L(T_n)$ 7.2. Upper Bounds for Lengths of Games	22 22 23
 8. The Length of the Four Real Numbers Game 8.1. Linear Algebra Comes Into Play 8.2. Construction of a Four Numbers Game of Infinite Length 8.3. Construction of All Four Numbers Games of Infinite Length 	26 26 27 28
9. The Probability that a Four Numbers Game Ends in n Steps	32
10. The k -Numbers Game	41
Bibliography	45
Chapter 2. Rational Right Triangles and the Congruent Number Problem	47
1. Introduction	47
2. Right Triangles	48
	vii

3. Pythagorean Triples	63
4. Sums of Squares	69
4.1. The Two Squares Theorem	69
4.2. Characterization of the Length of the Hypotenuse of an Integer	
Right Triangle	75
4.3. The Number of Representations of n as a Sum of Two Squares	76
5. Rational Right Triangles	84
6. Congruent Numbers	90
7. Equivalent Definitions of Congruent Number	94
8. 1, 2, and 3 Are Not Congruent Numbers	96
9. Rational Right Triangles and Certain Cubic Curves	101
10. Elliptic Curves	104
11. The Abelian Group of Rational Points on an Elliptic Curve	109
12. $E_n(\mathbb{Q})$ and Congruent Numbers	112
Bibliography	121
Chapter 3. Lattice Point Geometry	123
1. Introduction	123
2. Geometric Shapes as Lattice Polygons	126
2.1. Properties of Lattice Polygons in the Plane	126
3. Embedding Regular Polygons in a Lattice	130
3.1. Regular Lattice <i>n</i> -gons	130
3.2. Which Positive Integers Are Areas of Lattice Squares?	134
4. Basic Algebraic and Geometric Tools	137
4.1. Dissection of a Lattice Polygon Into Lattice Triangles	137
4.2. The Algebraic Structure of the Lattice \mathbb{Z}^2	140
4.3. The Isometry Group of a Lattice	143
5. Pick's Theorem	145
5.1. First Proof	145
5.3. Visible Lattice Points	149 153
5.4. Pick's Theorem for nP	156
6. Applications of Pick's Theorem	157
6.1. Lattice Triangles T with $I(T) = 0$ and 1	157
6.2. Farey Sequences	159
7. Lattice Points In and On a Circle	162
8. Integer Points in Bounded Convex Regions in \mathbb{R}^2	166
8.1. Convex Plane Regions and Integer Points	167

8.2. An Application of Pick's Theorem to Bounded Convex	
Regions	168
9. Minkowski's Theorem in \mathbb{R}^2	169
10. Embedding Regular Plane Polygons as Lattice Polygons in \mathbb{R}^k	172
11. Lattice Hypercubes	176
12. Minkowski's Theorem in \mathbb{R}^k	183
13. Ehrhart's Theorem	185
13.1. Convex Polytopes	186
13.2. Ehrhart's Theorem for a k -Simplex	188
13.3. The Coefficients of the Ehrhart Polynomial	191
Bibliography	193
Chapter 4. Rational Approximation	195
1. Introduction	195
2. Introduction to Approximation Theory	197
3. Properties of Rational Numbers Close to a Real Number	201
4. An Interesting Example, Part I	204
5. Dirichlet's Theorem	205
6. An Interesting Example, Part II	208
7. Hurwitz's Theorem	210
8. Liouville's Theorem	215
8.1. Statement and Proofs of Liouville's Theorem	216
8.2. Liouville's Theorem and Transcendental Numbers	219
9. The Thue-Siegel-Roth Theorem	221
9.1. Introduction	221
9.2. Thue's Theorem	224
9.5. Roth's Theorem	221
10. The Approximation Exponent 11 An Interesting Example Part III	200 222
12. An Application to Diophanting Equations	202
12. What About Transcondental Numbers?	200
13. What About Transcendental Numbers:	200
Bibliography	241
Chapter 5. Dissection	243
1. Introduction	243
2. Dissection and Area	245
3. Basic Properties of Dissection	251

4. Polygons of Equal Area	257
5. Dissection in Three Dimensions	259
6. The Angles of a Polyhedron	266
7. The Dehn Invariant	269
8. A Solution of Hilbert's Third Problem	277
9. Congruence by Finite Decomposition and Equidecomposability	280
10. Hausdorff's Paradox	283
11. The Banach-Tarski Paradox	290
12. Equidissectability and Equidecomposability	295
13. Squaring the Circle	297
14. Borsuk's Problem	298
14.1. Borsuk's Conjecture in the Plane	301
14.2. Borsuk's Conjecture in \mathbb{R}^3	305
14.3. Closed Convex Sets with Smooth Boundary	307
Bibliography	311
Appendix A. Volume	315
Appendix. Bibliography	323
Appendix B. Convexity	325
Appendix. Bibliography	333
Index	335

х