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CHAPTER I

On Angles

10. The figure formed by two rays issuing from the same endpoint is called an
angle. The point is called the vertex of the angle, and the two rays are its sides.

Figure 7

We denote an angle by the letter of its vertex, placed between two other letters
which indicate the sides, often surmounted by a special symbol. If, however, the
figure contains only one angle with the vertex considered, that letter will suffice to
designate the angle. Thus, the angle formed by the two rays AB, AC (Fig. 7) will
be denoted by B̂AC or, more simply, by Â.

Two angles are said to be congruent , in agreement with the definition of con-
gruent figures (3) if they can be superimposed by a rigid motion.1

Figure 8
Figure 9

Two congruent angles, B̂AC, B̂′A′C ′, can be superimposed in two different
ways: namely, either AB takes the direction of A′B′ and AC the direction of A′C ′,
or the other way around. We pass from one to the other by turning the angle
around onto itself, for instance, by moving the angle B̂AC in such a way that AC
occupies the position previously occupied by AB, and vice-versa.

1But see the footnote to 3.–transl.
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10 I. ON ANGLES

11. We say that two angles are adjacent if they have the same vertex, a common
side, and so that they are located on opposite sides of this common side.

When angles ÂOB, B̂OC are adjacent (Fig. 8), angle ÂOC is called the sum
of the two angles.

The sum of two or more angles is independent of the order of the angles added.
To compare angles, we move them so they have a common vertex, and a com-

mon side, and lie on the same side of this common side. Assume that ÂOB, ÂOC
are placed in this manner. If, rotating around point O, we encounter the sides in
the order OA, OB, OC (Fig. 8), angle ÂOC is equal to the sum of ÂOB and
another angle B̂OC; in this case angle ÂOC is said to be larger than ÂOB, and
the latter is smaller than ÂOC; if, on the contrary (Fig. 9) the order is OA, OC,
OB, then angle ÂOC is smaller than ÂOB. The angle B̂OC which, added to the
smaller angle, yields the larger angle, is the difference of the two angles.

Finally, in the intermediate case in which OB coincides with OC, the two angles
are congruent (see 10).

In the interior of every angle B̂AC there is a ray AM which divides this angle
into two congruent parts; it is called the bisector of the angle. The rays contained
in the angle B̂AM make a smaller angle with AB than with AC; the opposite is
true for rays contained in the angle M̂AC.

An angle is said to be the double, triple, etc., of another if it is the sum of two,
three, etc., angles equal to this other angle. The smaller angle will then be called
a half, third, etc., of the larger one.

Remark. The size of an angle does not depend on the size of its sides, which
are rays (5), and which we must imagine as extending indefinitely.

12. As we have said, an angle is determined by two rays, such as OA, OB
(Fig. 10). If we extend OA past point O to form OA′, and in the same way extend
OB to form OB′, we obtain a new angle Â′OB′.

Two angles ÂOB, Â′OB′ such that the sides of one are extensions of the sides
of the other are called vertical angles.

Theorem. Two vertical angles are congruent.

Figure 10
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Indeed, let us turn (10) the angle B̂OA′ onto itself (Fig. 10). The side OB
will take the place of OA′, and, since 0A′ will take the former position of OB, this
means that ray OA, which is the extension of OA′, will coincide with OB′, the
extension of OB. Thus angle ÂOB is superimposed on angle Â′OB′, and therefore
these two angles are congruent.

13. Arcs and angles. Every ray issuing from the center of a circle meets this
circle in one and only one point.

Every angle ÂOB (Fig. 4) with its vertex at the center O of a circle determines

an arc AB having as endpoints the intersections of the sides of the angle with the
circle. In general, (see however 20b), we consider the arc which is less than a
semicircle.

Conversely, every arc less than a semicircle can be thought of as determined
by an angle with its vertex at the center of the circle, formed by the rays passing
through the endpoints of the arc.

Theorem. On the same circle, or on equal circles:
1◦. To equal arcs (smaller than a semicircle) there correspond equal central

angles;2

2◦. To unequal arcs (smaller than a semicircle) there correspond unequal central
angles, and the greater angle corresponds to the greater arc;

3◦. If an arc (smaller than a semicircle) is the sum of two others, the corre-
sponding central angle is the sum of the angles associated with the smaller arcs.

1◦, 2◦. Let AB, AC (Fig. 4) be the two arcs, drawn on the same circle, starting
from the same point A, in the same direction (8). The two angles ÂOB, ÂOC are
therefore placed as in 11. But then rays OA, OB, OC are placed in the same order
as points A, B, C on the circle. Moreover, if rays OB, OC coincide, then so do the
points B, C, and conversely.

3◦. Let us recall that the sum of two arcs (8b) is formed by placing them as

arcs AB, BC are placed (Fig. 4). Then the angle ÂOC corresponding to the sum
of these arcs will be the sum of ÂOB and B̂OC, because these angles are adjacent.

According to this result, in order to compare angles, one can draw circles with
the same radius, centered at the vertices of the angles, and compare the arcs inter-
cepted on these circles.

The division of angles into two or more equal parts corresponds to the division
into equal parts of the corresponding arc of a circle centered at the vertex of the
angle.

14. Perpendiculars. Right angles. We say that two lines are perpendicular
to each other if, among the four angles they form, two adjacent angles are equal
to each other. For example, line AOA′ (Fig. 11) is perpendicular to BOB′ if the
angles numbered 1 and 2 in the figure are equal. In such a case, the four angles at
O are equal to each other, since angles 3̂ and 4̂ (Fig. 11) are equal respectively to
1̂ and 2̂, because they are vertical angles.

An angle whose sides are perpendicular is called a right angle.

2This is the standard term in American texts. Hadamard uses the locution ‘angles with their
vertex at the center’ or ‘angles at the center’. –transl.
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Figure 11

Theorem. In a given plane, through a given point on a line, one can draw
one, and only one, perpendicular to this line.

Suppose we want to draw a perpendicular to line AA′ through point O (Fig.
11). It suffices to draw a circle with center O which cuts the line at A and A′, then
find point B which divides semicircle AA′ into two equal parts. Then OB will be
the required perpendicular; and conversely, a perpendicular to AA′ drawn through

point O must divide arc AA′ in half.

Corollary. We see that a right angle intercepts an arc equal to one fourth of
a circle centered at the vertex of the angle.

Figure 12

All right angles are equal, since two such angles will intercept equal arcs on
equal circles centered at their vertices.

15. If several rays are drawn issuing from the same point, the sum of the
successive angles thus formed (ÂOB, B̂OC, ĈOD, D̂OA, Fig. 12) is equal to four
right angles.

Indeed, the sum of the arcs intercepted by these angles on a circle centered at
their vertex is the entire circle.

If several rays are drawn issuing from a point on a line, in such a way that all
the rays are on one side of the line (Fig. 13), the sum of the successive angles thus
formed is equal to two right angles.
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O

Figure 13

Indeed, the sum of the intercepted arcs is a semicircle.
Conversely, if two or more angles with the same vertex, and each adjacent

to the next, (ÂOC, ĈOD, D̂OE, ÊOA′, Fig. 13) have a sum equal to two right
angles, then their outer sides form a straight line.

Indeed, these outer sides cut a circle centered at the common vertex of the
angles at two diametrically opposite points, since the arc they intercept is a semi-
circle.

Remark. The angle AOA′ (Fig. 13) whose sides form a straight line is called
a straight angle.

15b. Theorem. The bisectors of the four angles formed by two concurrent
lines form two straight lines, perpendicular to each other.

Let AA′, BB′ (Fig. 14) be two lines which intersect at O and form the angles
ÂOB, B̂OA′, Â′OB′, B̂′OA, whose bisectors are Om, On, Om′, On′. We claim:

1◦. That Om, Om′ are collinear, as are On, On′.
2◦. That the two lines thus formed are perpendicular.

O

Figure 14

First, Om is perpendicular to On because, since the sum of ÂOB and B̂OA′

is two right angles, half of each, m̂OB and B̂On, must add up to a right angle.
Applying the same reasoning to angles A′OB′ and B′OA, we see that Om′ and

On are perpendicular. Therefore Om′ is the extension of Om, and likewise On′ is
the extension of On.

16. An angle which is less than a right angle is called an acute angle; an angle
greater than a right angle is called an obtuse angle.
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Two angles are said to be complementary if their sum is a right angle; supple-
mentary if their sum is equal to two right angles.

17. Angle Measure. The ratio of two quantities of the same kind is3 the
number which expresses how many times one of the quantities is contained in the
other. For instance, if, in dividing the segment AB into five equal parts, one of
these parts is contained exactly three times in the segment BC, then the ratio of
BC to AB is said to be equal to 3/5. If, on the other hand, a fifth of AB is not
contained an exact number of times in BC, for example if it is contained in BC
more than three times, but less than four times, then 3/5 would be an approximate
value of the ratio BC

AB : it would be within one fifth less than the value of the ratio
(the value 4/5 would be within 1/5 more).

The ratio of two quantities a, b of the same kind is equal to the ratio of two
other quantities a′, b′ also of the same kind (but not necessarily of the same kind
as the first two) if, for every n, the approximation to within 1/n of the first ratio
is equal to the approximation within 1/n of the second ratio.

The measure of a quantity, relative to a quantity of the same kind chosen as
unit, is the ratio of the given quantity to the unit.

In addition we have the following properties (Leçons d’Arithmétique by J. Tan-
nery):

1◦. Two quantities of the same kind, which have the same measure relative to
the same unit, are equal;

2◦. The ratio of two quantities of the same kind is equal to the ratio of the
numbers which serve as their measures relative to the same unit;

3◦. The ratio of two numbers is the same as the quotient of the two numbers;
etc.

Theorem. In the same circle, or in equal circles, the ratio of two central angles
is equal to the ratio of their subtended arcs.

Figure 15

3See Leçons d’Arithmétique by J. Tannery, chapters X and XIII.



I. ON ANGLES 15

Consider4 (Fig. 15) two arcs AB, CD on circle O. Divide central angle ĈOD
into three equal parts (for example), and suppose that one of these thirds can fit
four, but not five times, into the angle ÂOB; the value (smaller by less than 1/3)
of the ratio ÂOB

ĈOD
is 4

3 .

But dividing the angle ĈOD into three equal parts, we have at the same time
divided arc CD into three equal parts (13). If a third of ĈOD fits four, but not

five times, into angle ÂOB, it follows the same way that a third of arc CD fits
four, but not five times, into arc AB. The values to within 1/3 of the two ratios are
therefore equal, and similarly the values to within 1/n will be equal for any integer
n. The theorem is therefore proved.

Corollary. If we take as the unit of angle measure the central angle which
intercepts a unit arc, then every central angle will have the same measure as the
arc contained between its sides.

This statement is exactly the same as the preceding one, since the measure of
a quantity is its ratio to the unit.

Supposing, as we will from now on, that on each circle we choose as unit arc an
arc intercepted by a unit central angle, the preceding corollary can be stated in the
abridged form: A central angle is measued by the arc contained between its sides .

18. The definitions reviewed above allow us to establish an important conven-
tion.

From now on, we will be able to suppose that all the quantities about which
we reason have been measured with an appropriate unit chosen for each kind of
quantity. Then, in all the equations we write, the quantities which appear on the
two sides of an equality will represent not the quantities themselves, but rather
their measures.

This will allow us to write a number of equations which otherwise would have
no meaning. For instance, we might equate quantities of different kinds, since we
will be dealing only with the numbers which measure them, the meaning of which is
perfectly clear. We will also be able to consider the product of any two quantities,
since we can talk about the product of two numbers, etc.

In fact, whenever we write the equality of two quantities of the same kind, this
equality will have the same meaning as before, since the equality of these quantities
is the same as the equality of their measures.

Following this convention we can write:

ÂOB = arc AB,

where AB is an arc of a circle and O is the center. It is important however to insist
on the fact that the preceding equality assumes that the unit of angle measure and
the unit of arc measure have been chosen in the manner specified above.

4This theorem becomes obvious if we consider the following proposition from arithmetic

(Tannery, Leçons d’Arithmétique: Two quantities are proportional if: 1◦ To any value of the
first, there corresponds an equal value of the second, and 2◦ the sum of two values of the first

corresponds to the sum of the corresponding values of the second. These two conditions hold here
(13).

The argument in the text does no more than reproduce, for this particular case, the proof of
this general theorem of arithmetic.
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18b. Traditionally, the circle has been divided into 360 equal parts called
degrees, each of which contains 60 minutes, which are themselves divided into 60
seconds . One can then measure arcs in degrees and, correspondingly, angles will
also be measured in degrees, and the number of degrees, minutes, and seconds of
the angle will be the same as the number of degrees, minutes, and seconds of the arc
intercepted by this angle on a circle centered at its vertex. A right angle corresponds
to one fourth of a circle; that is, to 90 degrees. It follows that the measure of an
angle at the center of a circle does not depend on the radius of the circle on which
one measure the arcs, since the chosen unit of angle measure (the degree) has a
value independent of this radius, namely one ninetieth of a right angle.

In writing angles (or arcs) in degrees, minutes, and seconds, we use an abridged
notation: an angle of 87 degrees, 34 minutes, and 25 seconds is written: 87◦34′25′′.

The introduction of decimal notation in all other kinds of measurements has
led to the use of another mode of division, in which the circle is divided into 400
equal parts called gradients (or grads). The grad, a little smaller than the degree,
is, as we see, one hundredth of a right angle. The grad is divided decimally, so
there is actually no need for special names for its parts, which are written using
the rules of decimal notation. Thus we can speak of the angle 3G.5417 (that is, 3
grads and 5417 ten-thousandths).

Nonetheless, a hundredth of a grad is often called a centesimal minute, and is
indicated by the symbol ` (to distinguish it from the hexagesimal minute, which
is a sixtieth of a degree). Likewise, one hundredth of a centesimal minute is called
a centesimal second , denoted by the symbol ``. The angle just considered could
then be written as 3G.54`17``.

A grad is equal to 360
400

◦, that is 9
10 of a degree, or 54′. A degree equals 400

360

G =
1G.11`11``1 . . . (in other words, 10

9 of a grad).

19. Theorem. Given a line, and a point not on the line, there is one, and
only one, perpendicular to the line passing through the given point.

1◦. There is one perpendicular. Consider point O and line xy (Fig. 16). Using
xy as a hinge, let us turn the half-plane containing O until it overlaps the other
half-plane. Supposing point O falls on O′, we join OO′. This line intersects xy
because it joins two points in different half-planes. If I is the point of intersection,
the angles Ô′Ix and ÔIx are equal because one of them can be superimposed on
the other by rotation around xy. Thus the lines xy and OO′ are perpendicular.

I M

Figure 16

2◦. There is only one perpendicular . Indeed, assume that OM is a perpendic-
ular to xy passing through O. Extend the segment OM by its own length to MO′′.
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Again turning the half-plane containing O around xy, the segment MO will fall on
MO′′ because the angles ÔMx and Ô′′Mx are right angles, and hence are equal.
Since MO′′ = MO, the point O falls on O′′, and therefore O′ and O′′ coincide, as
do the lines OO′ and OO′′. QED

19b. The reflection of a point O in a line xy is the endpoint of the perpendicular
from O to the line, extended by the length of a segment equal to itself. It follows
from the preceding considerations that this reflection is none other than the new
position occupied by O after a rotation around xy.

Given an arbitrary figure, we can take the reflection of each of its points. The
set of these reflections constitutes a new figure, called the reflection of the first. We
see that in order to obtain the reflection of a given figure in line xy, we can turn
the plane of the figure around xy, so that each half-plane determined by the line
falls on the other, then note the position taken by the original figure. It follows
that:

Theorem. A plane figure is congruent to its reflection.

Corollary. The reflection of a line is a line.

When a figure coincides with its reflection in line xy, we say that it is symmetric
in this line, or that this line is an axis of symmetry of the figure.

20. To make a figure F coincide with its reflection F ′, we had to use a motion
which took the figure out of its plane. We must note that this superposition is
not possible without such a movement; this holds because the sense of rotation is
reversed in the two figures. We will now explain what this means.

First, let us remark that the plane of the figure divides space into two regions.
For brevity, let us call one of these the region situated above the plane; the other,
the region below the plane.

Figure 17

Consider now an angle B̂AC in the figure F , which can be viewed as being
described by a ray moving inside this angle from the position AB to the position
AC (Fig. 17). Viewed from above this angle B̂AC will be said to have an inverse
sense of rotation or a direct sense, according as the moving ray turns clockwise or
counterclockwise.5 To be definite, let us consider the second situation. In this case,
an observer lying along AB, with his feet at A, his head in the direction of B, and
looking down, will see the side AC on his left; and therefore, if still lying on AB,
he faces AC, the region below the plane will be on his right.

It is clear that to describe the sense of rotation of an angle viewed from below ,
this discussion can be repeated, with the word above replaced by the word below ,
and vice-versa.

5We note that in order to define the sense of rotation, we must take into account the order

of the sides. Thus angle B̂AC has the opposite sense from ĈAB.
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Since an observer lying on AB and facing AC will necessarily have the region
above the plane on his left, if the region below is on his right, and vice-versa, we
see that the sense of rotation changes depending on whether we view the angle from
one side of the plane or from the other.6

Let us now suppose that an angle is moved in any way at all, without ever
leaving the plane. An observer moving along with the angle will not change his
position relative to the regions of space above and below the plane, and therefore
the sense of rotation is not altered by a motion which does not leave the plane.

To prove that such a motion cannot make a figure F coincide with its reflection
F ′, it suffices therefore to see that the senses of rotation of the two figures are
opposite. But we have seen that we can make F coincide with F ′ by turning the
plane around xy (19). As a result of this rotation, the points above the plane are
moved below it, and vice-versa. The sense of rotation of an angle in F , viewed from
above, is therefore the same as the sense of F ′ viewed from below, so that the two
angles, viewed from the same side, have opposite senses of rotation. QED

20b. Remarks. I. We say that a plane is oriented when a sense of rotation for
angles has been chosen as the direct sense. According to the preceding paragraph,
orienting a plane amounts to deciding which region of space will be said to be above
the plane.

II. It is convenient to regard an angle with vertex O as being described by a ray
starting from O which at first coincides with the first side, and then turns about O
in the plane (in the direct or inverse sense) until it coincides with the second side.
If the ray has made a quarter of a complete turn, the angle is a right angle. If it
has made one half of a complete turn, the angle is a straight angle, such as ÂOA′

(Figures 11 or 13).
Nothing prevents us, by the way, from considering angles greater than two right

angles, since our ray can make more than half a complete turn.
III. Clearly, an arc of a circle, like an angle, can have a direct or an inverse

sense, which depends, of course, on the order in which one gives its endpoints.
Two points A, B on a circle divide it into two different arcs of which (unless the

two points are diametrically opposite) one is a minor arc (less than a semicircle),
and the other a major arc. It must be noted that, since the endpoints A, B are
given in a certain order (for example if A is first and B is second), these two arcs
have opposite senses.

Exercises

Exercise 1. Given a segment AB and its midpoint M , show that the distance
CM is one half the difference between CA and CB if C is a point on the segment.
If C is on line AB, but not between A and B, then CM is one half the sum of CA
and CB.

Exercise 2. Given an angle ÂOB, and its bisector OM , show that angle ĈOM

is one half the difference of ĈOA and ĈOB if ray OC is inside angle ÂOB; it is the
supplement of half the difference if ray OC is inside angle Â′OB′ which is vertical
to ÂOB; it is one half the sum of ĈOA and ĈOB if OM is inside one of the other
angles ÂOA′ and B̂OB′ formed by these lines.

6For this reason, writing viewed through a transparent sheet of paper appears reversed.
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Exercise 3. Four rays OA, OB, OC, OD issue from O (in the order listed)
such that ÂOB = ĈOD and B̂OC = D̂OA. Show that OA and OC are collinear,
as are OB and OD.

Exercise 4. If four consecutive rays OA, OB, OC, OD are such that the
bisectors of angles ÂOB, ĈOD are collinear, as are the bisectors of B̂OC, ÂOD,
then these rays are collinear in pairs.





CHAPTER II

On Triangles

21. A plane region bounded by line segments is called a polygon (Fig 18).
The segments are called the sides of the polygon, and their endpoints are called its
vertices.

In fact, we will generally use the term polygon only for a portion of the plane
bounded by a single contour which can be drawn with a single continuous stroke.
The plane region which is shaded in Figure 19 will not be a polygon for us.

Figure 18
Figure 18b Figure 19

A polygon is said to be convex (Fig. 18) if, when we extend any side indefinitely,
none of the lines thus formed crosses the polygon. In the opposite case (Fig. 18b)
the polygon is said to be concave.

Polygons are classified according to the number of sides they have. Thus the
simplest polygons are: the polygon with three sides or triangle, the polygon with
4 sides or quadrilateral , the polygon with 5 sides, or pentagon, the polygon with
six sides or hexagon. We will also consider polygons with 8, 10, 12, and 15 sides,
called octagons, decagons, dodecagons, and pentadecagons .

Any segment joining two non-consecutive vertices of a polygon is called a di-
agonal .

Remark. More generally, an arbitrary broken line, even one whose sides cross
(as in Fig. 19b), will sometimes be called a polygon. In this case, when the broken
line does not bound a unique region, the polygon is said to be improper . However,
when we want to specify that the polygon is of the first type (Figures 18 and 18b),
and not like the one in Figure 19b, we will speak of a proper polygon.

22. Among triangles we distinguish in particular:
The isosceles triangle. This name is used for a triangle with two equal sides.

The common vertex of the equal sides is called the vertex of the isosceles triangle,
and the side opposite the vertex is called the base;

21



22 II. ON TRIANGLES

Figure 19b

The equilateral triangle, which has all three sides equal;
The right triangle, which has a right angle. The side opposite the right angle

is called the hypotenuse.1

A perpendicular dropped from a vertex of a triangle onto the opposite side is
called an altitude of the triangle; a median is a line which joins a vertex with the
midpoint of the opposite side.

23. Theorem. In an isosceles triangle, the angles opposite the equal sides are
equal.

Figure 20

Suppose ABC is an isosceles triangle (Fig. 20). Let us turn angle B̂AC onto
itself (10) so that AB lies along the line of AC and vice-versa. Since AB and AC

are equal, point B will fall on C, and C on B. Angle ÂBC will therefore fall on
ÂCB, so that these angles are equal. QED

Converse. If two angles of a triangle are equal, the triangle is isosceles.

In triangle ABC, suppose B̂ = Ĉ. Let us move this triangle so that side BC

is turned around, switching points B and C. Since ÂBC = ÂCB, side BA will
assume the direction of of CA, and conversely. Point A, which is the intersection
of BA and CA, will therefore retain its original position, so that segment AB falls
on segment AC. QED

Corollary. An equilateral triangle is also equiangular (that is, its three angles
are equal), and conversely.

1The original text does not use term “leg” for a side of a right triangle that is not the
hypotenuse. However, we will use this standard English term freely in the translation. –transl.
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Figure 21

Theorem. In an isosceles triangle, the bisector of the angle at the vertex is
perpendicular to the base, and divides it into two equal parts.

In isosceles triangle ABC (Fig. 21), let AD be the bisector of Â. In turning
angle B̂AC around on itself, this bisector does not move, and therefore neither does
the point D where this bisector cuts the base. Segment DB falls on DC and angle
ÂDB on ÂDC. Therefore DB = DC and ÂDB = ÂDC. QED

Remark. In triangle ABC we can consider:
1◦. The bisector of Â;
2◦. The altitude from A;
3◦. The median from the same point;
4◦. The perpendicular to the midpoint of BC.
In general, these four lines are distinct from each other (see Exercise 17). The

preceding theorem shows that, in an isosceles triangle, all of these are the same
line, which is a line of symmetry of the triangle (19b).

This theorem can thus be restated: the altitude of an isosceles triangle is also
an angle bisector and a median; or the median of an isosceles triangle is at the
same time an angle bisector and an altitude; the perpendicular bisector of the base
passes through the vertex and bisects the angle at the vertex.

Corollary. In an isosceles triangle, the altitudes dropped from the endpoints
of the base are equal; the same is true about the medians from the endpoints of the
base, about the bisectors of the angles at these points, etc., because these segments
are symmetric to each other.

24. The following propositions, known under the name of cases of congru-
ence of triangles, give necessary and sufficient conditions for two triangles to be
congruent.

Figure 22
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1st case: ASA. Two triangles are congruent if they have an equal side con-
tained between corresponding equal angles.

Suppose the triangles are ABC, A′B′C ′ (fig. 22) in which BC = B′C ′, B̂ = B̂′,
and Ĉ = Ĉ ′. Let us move angle B̂′ onto angle B̂ so that side B′A′ lies along the
line of BA and B′C ′ along the line of BC. Since BC = B′C ′, the point C ′ falls
on C. Now, since Ĉ ′ = Ĉ, side C ′A′ assumes the direction of CA, and therefore
point A′ falls on the intersection of BA and CA; that is, on A. This establishes the
congruence of the two figures.

2nd case: SAS. Two triangles are congruent if they have an equal angle con-
tained between corresponding equal sides.

Suppose the two triangles are ABC, A′B′C ′ (Fig. 22) in which Â = Â′, AB =
AC, and AC = A′C ′.

Let us move angle Â′ over angle Â so that A′B′ assumes the direction of AB and
A′C ′ assumes the direction of AC. Since A′B′ = AB, point B′ will fall on B, and
likewise C ′ on C. Therefore side B′C ′ coincides with BC, and the superposition of
the two figures is complete.

3rd case: SSS. Two triangles are congruent if they have three equal corre-
sponding sides.

Figure 23

Consider triangles ABC and A′B′C ′ such that AB = A′B′, AC = A′C ′, and
BC = B′C ′, and let us move the second triangle so that side B′C ′ coincides with
BC, and the two triangles are on the same side of line BC. Denote the new position
of A′ by A1. We claim that point A1 coincides with A. This is obvious if BA1 has
the same direction as BA or if CA1 has the same direction as CA. If this were
not the case, we would have formed isosceles triangles BAA1 and CAA1 (Fig. 23)
and the perpendicular bisector of AA1 would have to pass through B and C (23,
Corollary); in other words, this bisector would have to be line BC. This however
is not possible, because points A and A1 are on the same side of BC, so that BC
cannot pass through the midpoint of AA1. Thus the only possibility is that points
A and A1 must be the same point; in other words, the given triangles coincide.

Remarks. I. In order to establish that A = A1, we have investigated what
would happen if these two points were distinct. Arriving, in this case, at a conclu-
sion which is clearly false, we concluded that this possibility does not arise. This
is a very useful method of reasoning, called proof by contradiction.

II. In a triangle there are six main elements to consider; namely, the three
angles and the three sides. We have seen that if we establish the equality of three
of these elements (properly chosen) in two triangles, we can conclude that the two
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triangles are congruent and, in particular, that the remaining elements are equal
as well.

III. Two congruent triangles (or, more generally, polygons) may differ in their
sense of rotation (20). In this case, they can only be superimposed by a motion
outside the plane. On the other hand, if the sense of rotation is the same, the two
polygons can be superimposed by moving them within the plane, as we will have
occasion to see later on.

25. The angle formed by a side of a convex polygon and the extension of the
next side is called an exterior angle of the polygon.

Theorem. An exterior angle of a triangle is greater than either of the non-
adjacent interior angles.

Figure 24

Let the triangle be ABC, and construct the exterior angle B̂′AC (Fig. 24). We
claim that this angle is greater, for example, than the interior angle Ĉ. To show
this, we construct median BD, which we extend by its own length to a point E.
The point E being inside2 angle B̂′AC, this last must be greater than angle ÊAC.

But this last angle is precisely equal to Ĉ; indeed, triangles DAE, DBC are
congruent, having an equal angle between equal sides: the angles at D are equal
because they are vertical angles, and AD = DC, BD = DE by construction. Thus
exterior angle B̂′AC is greater than interior angle C. QED

Exterior angle B̂′AC is the supplement of interior angle Â. Since angle C is
smaller than the supplement of Â, the sum Â + Ĉ is less than two right angles.
Our theorem can thus be restated: The sum of any two angles of a triangle is less
than two right angles . In particular, a triangle cannot have more than one right or
obtuse angle.

Theorem. In any triangle, the greater angle lies opposite the greater side.

In triangle ABC, suppose AB > AC. we will show that Ĉ > B̂. To show
this, we take, on AB, a length AD = AC (Fig. 25). It follows from the hypothesis
that point D is between A and B, and therefore angle ÂCD is less than Ĉ. But in

2Point E is on the same side of line BAB′ as D (otherwise line DE, which has the common

point B with BAB′, would have to cut it again between D and E, and this is impossible), and
thus on the same side as C. But B and E are on different sides of AC, which BE crosses at D.



26 II. ON TRIANGLES

Figure 25

isosceles triangle ACD, ÂCD = ÂDC, which is greater than B̂ by the preceding
theorem applied to triangle DCB. The theorem is thus proved.

Conversely, the greater side corresponds3 to the greater angle.
This statement is obviously equivalent to the preceding one.

26. Theorem. Any side of a triangle is less than the sum of the other two.

Figure 26

In triangle ABC, we extend side AB to a point D such that AD = AC (Fig.
26). We must prove that4 BC < BD. Drawing CD, we see that angle D̂, which is
equal to angle ÂCD (23), is therefore less than B̂CD.

The desired inequality thus follows from the preceding theorem applied to the
triangle BCD.

Corollaries. I. Any side of a triangle is greater than the difference between
the other two.

Indeed, the inequality BC < AB + AC gives, after subtracting AC from both
sides:

BC − AC < AB.

3The side corresponding to an angle is the side opposite it.
4The theorem is obvious if BC is not the largest side of the triangle.
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II. For any three points A, B, C, each of the distances AB, BC, AB is at most
equal to the sum of the other two, and at least equal to the difference of the other
two, equality holding if the three points are collinear.

Theorem. A line segment is shorter than any broken line with the same end-
points.

Figure 27

If the broken line has only two sides, the theorem reduces to the preceding one.
Consider next a broken line with three sides ABCD (Fig. 27). Drawing BD, we
will have AD < AB + BD and, since BD < BC + CD, we have

AD < AB + BD < AB + BC + CD.

The theorem is thus proven for a broken line with three sides. The same reasoning
can be used successively for broken lines with 4 sides, 5 sides, etc. Therefore the
theorem is true no matter how large the number of sides.

27. The sum of the sides of a polygon, or of a broken line, is called its perimeter .

Theorem. The perimeter of a convex broken line is less than that of any broken
line with the same endpoints which surrounds it.

Figure 28

Consider the convex line ACDB and the surrounding line AC ′D′E′F ′B (Fig.
28). We extend sides AC, CD in the sense indicated by ACDB; that is, the side
AC past C and the side CD past D. These extensions do not intersect the interior
of polygon ACDB because of its convexity. Suppose they cut the surrounding line
in G and H respectively.
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The path ACDB is shorter than ACHB because they have a common portion
ACD, and the remainder BD of the first is less than the remainder DHB of
the second. In turn, the path ACHB is shorter than AGD′E′F ′B because, after
removing the common parts AC, HB, the segment CH which is left is smaller
than the broken line CGD′E′F ′H. In the same way, AGD′E′F ′B is less than
AC ′D′E′F ′B, because AG is less than AC ′G. Thus

ACDB < ACHB < ACGD′E′F ′B < AC ′D′E′F ′B.

QED

Corollary. The perimeter of a convex polygon is less than the perimeter of
any closed polygonal line surrounding it completely.

Figure 29

Consider (Fig. 29) convex polygon ABCDE, and polygonal line
A′B′C ′D′E′ F ′G′A′ which surrounds it completely. We extend side AB in both
directions until it intersects the surrounding polygon at M , N . By the preceding
result, the length of the path AEDCB is less than AMB′A′G′NB, and therefore
the perimeter of AEDCBA is less than the perimeter of the polygon NMB′A′G′N .
This perimeter, in turn, is less than the surrounding line because the part MB′A′G′N
is common to both, and MN < MC ′D′E′F ′N .

28. Theorem. If two triangles have a pair of unequal angles contained by two
sides equal in pairs, and the third sides of the triangles are unequal, then the greater
side is opposite the greater angle.

Figure 30
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Consider triangles ABC, A′B′C ′ such that AB = A′B′, AC = A′C ′, and
Â > Â′ (Fig. 30). We want to prove that BC > B′C ′. Let us move the second
triangle so that A′B′ coincides with AB. Since Â′ is less than A, side A′C ′ will
move to a position AD in the interior of angle B̂AC. We construct the bisector
AE of D̂AC. This segment is also inside B̂AC, and, as B and C lie on different
sides of this line, it must intersect side BC in some point E located between B and
C. If we draw DE, we see that triangles ACE and ADE are congruent, because
they have an equal angle (with vertex A) between two corresponding equal sides
(AE in common, AC = A′C ′ = AD). Therefore DE = EC. The inequality
BD < BE + ED provided by the triangle BDE then gives us

BD < BE + EC,

or
BD < BC.

QED
Conversely. If, in two triangles, two pairs of sides are equal, but the third

sides are unequal, then the angles opposite the unequal sides are unequal, and the
greater angle is opposite the greater side.

This statement is equivalent to the preceding one.

Remark. The preceding theorem does not require the third case of congruence
for triangles (SSS). It therefore provides another proof of that case.

Indeed, if we have AB = A′B′, AC = A′C ′ and, in addition BC = B′C ′,
the angles Â and Â′ would have to be equal, or else BC and B′C ′ could not be
equal. Knowing now that Â = Â′ the two triangles are congruent by the second
case (SAS).

Exercises

Exercise 5. Prove that a triangle is isosceles:
1◦. if an angle bisector is also an altitude;
2◦. if a median is also an altitude;
3◦. if an angle bisector is also a median.

Exercise 6. On side Ox of some angle, we take two lengths OA, OB, and on
side Ox′ we take two lengths OA′, OB′, equal respectively to the first two lengths.
We draw AB′, BA′, which cross each other. Show that point I, where these two
segments intersect, lies on the bisector of the given angle.

Exercise 7. If two sides of a triangle are unequal, then the median between
these two sides makes the greater angle with the smaller side. (Imitate the con-
struction in 25.)

Exercise 8. If a point in the plane of a triangle is joined to the three vertices
of a triangle, then the sum of these segments is greater than the semi-perimeter
of the triangle; if the point is inside the triangle, the sum is less than the whole
perimeter.

Exercise 8b. If a point in the plane of a polygon is joined to the vertices of
the polygon, then the sum of these segments is greater than the semi-perimeter of
the polygon.
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Exercise 9. The sum of the diagonals of a [convex5] quadrilateral is between
the semi-perimeter and the whole perimeter.

Exercise 10. The intersection point of the diagonals of a [convex6] quadrilat-
eral is the point in the plane such that the sum of its distances to the four vertices
is as small as possible.

Exercise 11. A median of a triangle is smaller than half the sum of the sides
surrounding it, and greater than the difference between this sum and half of the
third side.

Exercise 12. The sum of the medians of a triangle is greater than its semi-
perimeter and less than its whole perimeter.

Exercise 13. On a given line, find a point such that the sum of its distances
to two given points is as small as possible. Distinguish two cases, according to
whether the points are on the same side of the line or not. The second case can be
reduced to the first (by reflecting part of the figure in the given line).

Exercise 14. (Billiard problem.) Given a line xy and two points A, B on the
same side of the line, find a point M on this line such that ÂMx = B̂My.

We obtain the same point as in the preceding problem.

Exercise 15. On a given line, find a point with the property that the difference
of its distances to two given points is as large as possible. Distinguish two cases,
according to whether the points are on the same side of the line or not.

5This condition is not in the original text. See solution. –transl.
6See the previous footnote. –transl.
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Perpendiculars and Oblique Line Segments

29. Theorem. If, from a given point outside a line, we draw a perpendicular
and several oblique line segments:

1◦. The perpendicular is shorter than any oblique segment ;
2◦. Two oblique segments whose feet are equally distant from the foot of the

perpendicular are equal ;
3◦. Of two oblique segments, the longer is the one whose foot is further from

the foot of the perpendicular.

x y

Figure 31

1◦. Consider perpendicular OH and oblique segment OA from point O to line
xy (Fig. 31). If we extend OH by a length HO′ equal to itself, then O′ is symmetric
to O with respect to line xy. Therefore O′A is the symmetric image of OA, and
the two are equal. Now in triangle OO′A we have

OO′ < OA + O′A,

and we can replace OO′ with 2OH and OA+OA′ with 2OA. Thus we find 2OH <
2OA, or OH < OA.

2◦. Consider next the oblique segments OA, OB such that HA = HB. These
two oblique segments will be equal by symmetry with respect to line OH.

3◦. Finally, let OA and OC be oblique segments such that HC > HA (Fig.
31). Suppose first that points A and C are on the same side of H. Then point A
is inside triangle OO′C. By (27) we have

OA + O′A < OC + O′C

and, as we saw before, OA = O′A and OC = O′C. Dividing by two, we have, as
before,

OA < OC.

31



32 III. PERPENDICULARS AND OBLIQUE LINE SEGMENTS

If we had started with an oblique segment OB less distant than OC, but on the
other side of H, it would suffice to construct a length HA = HB in the direction of
HC. The oblique segment OB then would be equal to OA (2◦), and hence smaller
than OC as we have seen above.

30. Conversely. If two oblique segments are equal, their feet are equally
distant from the foot of the perpendicular, otherwise they are unequal; if they are
unequal, the longer is the more distant from the perpendicular.

Corollary. There are no more than two oblique segments of the same length
from the same point O to a line xy.

This is true because the feet of these oblique segments are equally distant from
H, and there are only two points on xy at a given distance from H.

31. The length of the perpendicular dropped from a point to a line is called
the distance from the point to the line. The preceding theorem shows that this
perpendicular is in fact the shortest path from the point to the line.

32. Theorem.

1◦. Every point on the perpendicular bisector of a segment is equally distant
from the endpoints of the segment ;

2◦. A point not on the perpendicular bisector is not equally distant from the
endpoints of the segment.

Figure 32

1◦. If M is on the perpendicular bisector of AB (Fig. 32), the segments MA,
MB are equal, because they are oblique lines which are equally distant from the
foot of the perpendicular MO.

2◦. Let M ′ be a point not on the perpendicular bisector, and suppose it is
on the same side of the bisector as point B. The foot O′ of the perpendicular
dropped from M onto line AB will be on the same side of the bisector (otherwise
this perpendicular would meet the bisector and, from their intersection, there would
be two lines perpendicular to AB).

We will then have O′A > O′B and therefore (29)

M ′A > M ′B.

QED

Remark I. We could have proved the second part in a different way by estab-
lishing the following equivalent proposition: Any point which is equidistant from
A and B is on the perpendicular bisector of AB. This follows from the converse
of 30 (the feet of two equal oblique segments are equidistant from the foot of the
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perpendicular). One could also use the properties of isosceles triangles (23, Re-
mark). However, one must observe that our way of proceeding has the advantage
of showing which of the two distances is the greater when they are unequal.

Remark II. The proposition which we just stated: Any point which is equidis-
tant from A and B is on the perpendicular bisector of AB, is the converse of the
first part of the preceding theorem. We have here two different ways of proving a
converse. The first consists in following the original reasoning in reverse. This is
what we did in the preceding remark. The original reasoning (1◦ in the previous
theorem) started from the hypothesis that point M is on the perpendicular bisector;
in other words, that the feet of MA, MB were equally distant from the perpendic-
ular from M , and deduced from this that MA and MB are equal. This time, we
started from the hypothesis that MA and MB are equal, and we concluded that
their feet are equally distant.

The second method of proving the converse consists in proving what we call
the inverse statement. This name is given to the statement whose hypothesis is
the negation of the original hypothesis, and whose conclusion is the negation of the
original conclusion. Thus the second part of the preceding theorem is the inverse
of the first, and is equivalent to its converse.

We will find later on (see, for example, 41) a third method of proving a converse.

33. Let us now make use of the definition of 1b.
Using this definition, the preceding theorem can be restated as follows:

Theorem. The locus of points equidistant from two given points is the perpen-
dicular bisector of the segment joining these two points.

This is true because the figure formed by the points equidistant from A and B
is in fact the perpendicular bisector of AB.

We remark that, to establish this fact, one must prove, as we have, that:
1◦. every point on the perpendicular bisector satisfies the given condition;
2◦. every point satisfying this condition is on the perpendicular bisector; or,

equivalently, that no point outside the bisector satisfies the condition. This kind of
double argument is necessary in all problems about geometric loci.

Exercises

Exercise 16. If the legs of a first right triangle are respectively smaller than
the legs of a second, then the hypotenuse of the first is smaller than the hypotenuse
of the second.

Exercise 17. If the angles B̂ and Ĉ of a triangle ABC are acute, and the
sides AB, AC unequal, then the lines starting from A are, in decreasing order of
length, as follows: larger side, median (see Exercise 7 in Chapter II), angle bisector,
smaller side, altitude.

Exercise 18. The median of a non-isosceles triangle is greater than the bisector
from the same vertex, bounded by the third side.
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Cases of Congruence for Right Triangles.
A Property of the Bisector of an Angle

34. Cases of congruence for right triangles. The general cases of congru-
ence for triangles apply, of course, to right triangles as well. For instance, two right
triangles are congruent if their legs are respectively equal (2nd case of congruence
for any triangles).

Aside from these general cases, right triangles present two special cases of
congruence.

First case of congruence. Two right triangles are congruent if they have
equal hypotenuses, and an equal acute angle.

Figure 33

Consider two right triangles ABC, A′B′C ′ (Fig. 33) in which BC = B′C ′,
B̂ = B̂′. We move the second triangle over the first so that the angles B and B′

coincide. Then B′C ′ will assume the direction of BC, and, since these two segments
are equal, C ′ will fall on C. B′A′ will assume the direction of BA, and therefore
C ′A′ will coincide with the perpendicular dropped from C on BA; that is, with
CA.

Second case of congruence. Two right triangles are congruent if they have
equal hypotenuses and one pair of corresponding legs equal.

Suppose the two triangles are ABC, A′B′C ′, and that BC = B′C ′, AB = A′B′.
We move the second triangle onto the first so that A′B′ coincides with AB. The
side AC will assume the direction of A′C ′. We then have two oblique lines from
point B to line AC; namely, BC and the new position of B′C ′. These oblique
lines are equal by hypothesis and therefore (30), equidistant from the foot of the
perpendicular. This gives A′C ′ = AC, from which the congruence of the triangles
follows.

35
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35. Theorem. If two right triangles have equal hypotenuses and an unequal
acute angle, then the sides opposite the unequal angles are unequal, and the larger
side is opposite the larger angle.

Figure 34

Let the two triangles be ABC, A′B′C ′ (Fig. 34), for which BC = B′C ′,
B̂ > B̂′. We claim that AC > A′C ′.

To see this, we extend AC by its own length to get AD, and similarly extend
A′C ′ to get A′D′. We immediately have (29) BD = BC = B′C ′ = B′D′. More-
over, in isosceles triangle BDC median BA is also an angle bisector, so that angle
D̂BC is twice the original angle B̂. Likewise, angle D̂′B′C ′ is twice the original
angle B̂′, from which we have D̂BC > D̂′B′C ′.

The two triangles DBC, D′B′C ′ therefore have an unequal angle between equal
sides, from which it follows that DC > D′C ′, and therefore AC > A′C ′.

36. Theorem. The bisector of an angle is the locus of points in the interior
of the angle which are equidistant from the two sides.

Figure 35

As explained earlier (33), the proof consists of two parts:
1◦. Every point on the bisector is equidistant from the two sides.
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Suppose the angle is ÂBC, and M is a point on its bisector. If we drop perpen-
diculars MD, ME to the sides of the angle, then right triangles AMD and AME
are congruent, because they have a common hypotenuse, and an equal acute angle
(at A) by hypothesis. Therefore the perpendiculars MD, ME are equal.

2◦. The distances from any point inside the angle, but not on its bisector, to
the two sides are unequal.

Suppose point M ′ lies, for instance, between the bisector and side AC. Then
angle B̂AM ′ will be greater than M̂ ′AC. If we drop perpendiculars M ′D′, M ′E′

onto sides AB, AC, then right triangles AM ′D′, AM ′E′ will have a common hy-
potenuse and an unequal angle at A. Therefore M ′D′ will (35) be greater than
M ′E′.

As in the case of the theorem of 32, we could have proved, in place of the
inverse proposition in 2◦ above, the converse proposition: Any point inside an
angle, and equidistant from its two sides, is on its bisector . To do this, following
the original reasoning in reverse, we would have considered a point M equidistant
from the two sides, and would have applied the second case of congruence (34)
to the two right triangles AMD, AME, which have a common hypotenuse and in
which MD = ME. We would have concluded that the angles at A are equal, so
that AM is the angle bisector. However, we would not have established which is
the larger distance when they are unequal.

Corollaries. I. This theorem allows us to give a second definition of the
bisector of an angle, namely: The bisector of an angle is the locus of the points
inside the angle which are equidistant from the sides.

We observe that this second definition is exactly equivalent to the one given in
11.

II. The locus of all points equidistant from two intersecting lines is composed
of the two bisectors (16) of the angles formed by these two lines.

Exercises

Exercise 19. Show that a triangle is isosceles if it has two equal altitudes.

Exercise 20. More generally, in any triangle, the smaller altitude corresponds
to the larger side.





CHAPTER V

Parallel Lines

37. When two lines (Fig. 36) are intersected by a third (called a transversal),
this last line forms eight angles with the first two, which are numbered in the figure.
The relative positions of these angles are described as follows.

Figure 36

Two angles such as 3̂ and 5̂, situated between the two lines, and on different
sides of the transversal, are called alternate interior angles.

Two angles such as 3̂ and 6̂ situated between the two lines, but on the same
side of the transversal, are said to be interior on the same side.

Two angles such as 6̂ and 2̂ on the same side of the transversal, one between
the two lines, one outside, are said to be corresponding.

38. Definition. Two lines in the same plane are said to be parallel if they do
not intersect, no matter how far extended in either direction.

Theorem. Two lines intersected by the same transversal are parallel :
1◦. If the interior angles on the same side are supplementary ;1

2◦. If alternate interior angles are equal ;
3◦. If corresponding angles are equal.

1◦. If the two lines were to intersect, on either side of the transversal, they
would form a triangle in which (25) the sum of two interior angles on the same side
would have to be less than two right angles.

1If the angles 3̂ and 6̂ are supplementary, then so are 4̂ and 5̂, since the sum of these four
angles is four right angles.

39
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The other two cases can be reduced to the first:
2◦. If 3̂ = 5̂, this is equivalent to saying that 3̂ is the supplement of 6̂, or that

the interior angles on the same side are supplementary.
3◦. If 6̂ = 2̂, then again 3̂ and 6̂ are supplementary, because 3̂ is the supplement

of 2̂.
This theorem can be used to prove that two lines are parallel.

Corollary. In particular, two lines perpendicular to a third line are parallel.

39. Theorem. Through any point not on a given line, a parallel to the given
line can be drawn.

Consider point O and line xy (Fig. 36). If we join point O to any point A of
xy, then line OO′, which makes an angle with OA such that ÂOO′ + ÔAy is equal
to two right angles, will be parallel to xy.

40. Because the preceding construction can be made in infinitely many ways
(since point A can be chosen anywhere on line xy), it would seem that there are
infinitely many different parallels.

This is not true, however, if we adopt the following axiom:

Axiom. Through any point not on a given line, only one parallel to the given
line can be drawn.2

Corollaries. I. Two distinct lines parallel to a third line are themselves par-
allel; since if the two lines had a point in common, two lines would pass through it,
each parallel to the third line.

II. If two lines are parallel, any third line which intersects one of them must
intersect the other, otherwise two parallels to the second line would intersect each
other.3

41. The most important proposition in the theory of parallels is the following
converse of the theorem in 38.

Converse. When two parallel lines are intersected by the same transversal :
1◦. The interior angles on the same side are supplementary ;
2◦. The alternate interior angles are equal ;
3◦. The corresponding angles are equal.
The proof is the same in all three cases. Consider the parallel lines AB, CD

intersected by the transversal EFx (Fig. 37). We claim, for example, that the
corresponding angles x̂EB and x̂FD are equal. Indeed, we can construct, at point
E, an angle x̂EB′ equal to angle x̂FD. Line EB′ will then be parallel to CD, and
therefore it will coincide with EB.

Corollaries. I. If two lines determine, with a common transversal, two in-
terior angles on the same side which are not supplementary, then the two lines are
not parallel, and they intersect on the side of the transversal where the sum of the
interior angles is less than two right angles.

II. When two lines are parallel, any line perpendicular to one of them is per-
pendicular to the other.

2This axiom is known as Euclid’s Postulate. In fact it should be viewed as part of the

definition in fundamental notions. (See Note B at the end of this volume.)
3We have here another example of a proof by contradiction (see 24, Remark I.)
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Figure 37

This is true because the perpendicular must intersect the other line (40, Corol-
lary II) and the angle it forms will be a right angle, because of the theorem we have
just proved.

Remarks. I. The corresponding equal angles x̂EB and x̂FD have the same
direction of rotation.

The two parallel directions EB, FD, both situated on the same side of a
common transversal, are called parallel and in the same direction.

II. We have used a new method of proof of a converse, different from the ones
used in 32, and which consists in establishing the converse with the help of the
original theorem. It should be noted here that the argument basically depends on
the fact that the parallel through E to CD is unique.

42. According to the theorem of 38 and its converse, the definition of parallels
amounts to the following: Two lines are parallel if they form, with an arbitrary
transversal, equal corresponding angles (or equal alternate interior angles, or sup-
plementary interior angles on the same side of the transversal).

This definition, equivalent to the first, is usually more convenient to use.
In place of the phrase parallel lines we often substitutes lines with the same

direction, whose meaning is clear from the preceding propositions.

Remark. Because of what we have just noted, two lines which coincide must
be viewed as a particular case of two parallel lines.

43. Theorem. Two angles with two pairs of parallel sides are either equal or
supplementary. They are equal if the sides both lie in the same direction or both
in opposite directions; they are supplementary if a pair of sides lie in the same
direction, and the other pair opposite.

First, two angles with a common side, and whose second sides are parallel in
the same direction (Fig. 38) are equal because they are corresponding angles. Two
angles whose sides are parallel and in the same direction are then equal because
one side of the first angle and one side of the second angle will form a third angle
equal to the first two. If one of the sides is in the same direction, with the other
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Figure 38

opposite, then extending the side which is in the opposite direction we obtain an
angle supplementary to the first angle, and equal to the second.

If both sides are in opposite directions, we extend both sides of the first angle.
Thus we form an angle equal to the first because they are vertical angles, and also
equal to the second.

Remark. Two corresponding angles and, therefore, two angles with sides par-
allel and in the same direction, have the same sense of rotation. We can therefore
say: Two angles with parallel sides are equal or supplementary, according as whether
they have the same sense of rotation or not.

Theorem. Two angles whose sides are perpendicular in pairs are equal or
supplementary, according as whether they have the same sense of rotation or not.

Figure 39

Consider angles B̂AC, B̂′A′C ′ (Fig. 39) such that A′B′ and A′C ′ are perpen-
dicular respectively to AB and AC. We draw AB1 perpendicular to AB, and turn
angle B̂1AC around on itself: side AB1 falls on AC, and hence line AB, perpen-
dicular to AB1, will occupy a position AC1 perpendicular to AC. We now have
an angle B̂1AC1 which is equal to B̂AC and has the same sense (because it was
constructed by reflection of angle ĈAB, whose sense is opposite to that of B̂AC)
and whose sides, perpendicular respectively to those of the first angle, are therefore
parallel to those of B̂′A′C ′. Since the angles B̂AC, B̂′A′C ′ are equal or supple-
mentary, according as their sides have the same or opposite senses of rotation, the
same is true of the given angles.
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Figure 40

44. Theorem. The sum of the angles of a triangle is equal to two right angles.
In triangle ABC (Fig. 40), we extend BC in the direction Cx, and draw CE

parallel to AB. We form three angles at C (numbered 1 to 3 in the figure), whose
sum is equal to two right angles. These angles are equal to the three angles of the
triangle; namely: 1̂ is the angle Ĉ of the triangle; 2̂ = Â (these are alternate interior
angle formed by transversal AC with the parallel lines AB, CE); 3̂ = B̂ (these are
corresponding angles formed by transversal BC with the same parallels).

Corollaries. I. An exterior angle of a triangle is equal to the sum of the
non-adjacent interior angles.

II. The acute angles of a right triangles are complementary.
III. If two triangles have two pairs of equal angles, then the third pair of angles

is equal as well.

44b. Theorem. The sum of the interior angles of a convex polygon4 is equal
to two less than the number of sides times two right angles.

Figure 41

Let the polygon be ABCDE (Fig. 41). Joining A to the other vertices, we
decompose the polygon into triangles. The number of triangles is equal to the

4The theorem remains true if one takes, as the interior angle at any vertex pointing inwards

(Fig. 19b), the one which is directed towards the interior of the polygon, an angle which in this
case is greater than two right angles. In the case of Fig. 19b the proof would proceed as in

the text, drawing the diagonals starting from the vertex pointing inwards. If there are several
inward-pointing vertices, the theorem would still be true, but the proof would be more difficult.
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number of sides minus two because if A is taken as the common vertex of these
triangles, all the other sides of the polygon are the sides opposite A, except the two
sides which end at A. The sum of the angles of these triangles gives us the sum of
the angles of the polygon. The theorem is proved.

If n is the number of sides of the polygon, the sum of the angles is 2(n − 2) or
2n − 4 right angles.

Corollary. The sum of the exterior angles of a convex polygon, formed by
extending the sides in the same sense, is equal to four right angles.

Indeed, an interior angle plus the adjacent exterior angle gives us two right
angles. Adding the results for all the n vertices we obtain 2n right angles, of which
2n− 4 are given by the sum of the interior angle. The sum of the exterior angles is
equal to the four missing right angles.

Exercises

Exercise 21. In a triangle ABC, we draw a parallel to BC through the in-
tersection point of the bisectors of B̂ and Ĉ. This parallel intersects AB in M and
BC in N . Show that MN = BM + CN .

What happens to this statement if the parallel is drawn through the intersection
point of the bisectors of the exterior angles at B and C? Or through the intersection
of the bisector of B̂ with the bisector of the exterior angle at C?

Sum of the angles of a polygon.

Exercise 22. Prove the theorem in 44b by decomposing the polygon into
triangles using segments starting from an interior point of the polygon.

Exercise 23. In triangle ABC we draw lines AD, AE from point A to side
BC, such that the first makes an angle equal to Ĉ with AB, while the second makes
an angle equal to B̂ with AC. Show that triangle ADE is isosceles.

Exercise 24. In any triangle ABC:
1◦. The bisector of Â and the altitude from A make an angle equal to half the

difference between B̂ and Ĉ.
2◦. The bisectors of B̂ and Ĉ form an angle equal to 1

2 Â + one right angle.
3◦. The bisectors of the exterior angles of B̂ and Ĉ form an angle equal to one

right angle − 1
2 Â.

25. In a convex quadrilateral:
1◦. The bisectors of two consecutive angles form an angle equal to one half the

sum of the other two angles.
2◦. The bisectors of two opposite angles form a supplementary angle to the

half the difference of the other two angles.



CHAPTER VI

On Parallelograms. — On Translations

45. Among quadrilaterals, we consider in particular trapezoids and parallelo-
grams. A quadrilateral is called a trapezoid (Fig. 42) if it has two parallel sides.
These parallel sides are called the bases of the trapezoid. A quadrilateral with two
pairs of parallel sides is called a parallelogram. (Fig. 43).

Figure 42
Figure 43

Theorem. In a parallelogram, opposite angles are equal, and angles adjacent
to the same side are supplementary.

Indeed, in parallelogram ABCD (Fig. 43), angles Â and Ĉ, adjacent to side
AB, are interior angles on the same side formed by parallels AD, BC cut by
transversal AB; therefore they are supplementary. The opposite angles A, C are
equal because they have parallel sides in opposite directions.

Remark. We see that it suffices to know one angle of a parallelogram in order
to know all of them.

Converse. If, in a quadrilateral, the opposite angles are equal, then the quadri-
lateral is a parallelogram.

Indeed, the sum of the four angles of a quadrilateral equals four right angles
(44b). Since Â = Ĉ, B̂ = D̂, the sum of the four angles Â + B̂ + Ĉ + D̂ can be
writen as 2Â + 2B̂. We then have Â + B̂ = two right angles, so the lines AD, BC
are parallel, since they form two supplementary interior angles on the same side of
transversal AB. Similarly, we can show that AB is parallel to CD.

46. Theorem. In any parallelogram, the opposite sides are equal.
In parallelogram ABCD (Fig. 44), we draw diagonal AC. This diagonal divides

the parallelogram into two triangles ABC, CDA, which are congruent because they
have the common side AC between equal angles: Â1 = Ĉ1 are alternate interior
angles formed by parallels AB, CD, and Â2 = Ĉ2 are alternate interior angles
formed by parallels AD, BC.

These congruent triangles yield AB = CD, AD = BC.

45
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Figure 44

In this theorem, the hypothesis consists of two parts:
1◦. two sides are parallel;
2◦. the other two sides are also parallel.
The conclusion also has two parts:
1◦. two opposite sides are equal;
2◦. the other two sides are also equal.
Since we can form a converse by using either the whole or a part of the original

conclusion, and vice versa, this theorem has two converses.
Converses. A quadrilateral is a parallelogram:
1◦. If the opposite sides are equal ;
2◦. If two opposite sides are parallel and equal.
1◦. Suppose that AB = CD and AD = BC in quadrilateral ABCD (Fig. 44).

We again draw diagonal AC. Triangles ABC, CDA will be congruent, since they
have three sides equal in pairs. Thus angles Â1 and Ĉ1 are equal, and since these
are alternate interior angles with respect to transversal AC, lines AB, CD must be
parallel. Likewise, the equality of Â2, Ĉ2 proves that AD and BC are parallel.

2◦. Assume now that AB = CD and AB is parallel to CD. Triangles ABC,
CDA are again congruent, because they have an equal angle (Â1 = Ĉ1 are alternate
interior angles) between two pairs of equal sides: AC is a common side and AB =
CD. From this congruence we again find that Â2 = Ĉ2, and that sides AD, BC
are parallel.

46b. Remark I. A quadrilateral can have two sides AB, CD equal, and the
other two BC, AD parallel, without being a parallelogram (it is then called an
isosceles trapezoid).

Choosing an arbitrary side AB, it suffices to take the line symmetric to AB
(D1C, Fig. 45) with respect to any line xy in the plane, provided that the line xy is
not parallel to AB, and that xy intersects the line AB in a point I on the extension
of AB (and not on segment AB itself). Then quadrilateral ABCD1 will have two
parallel sides (both perpendicular to xy) and the other two equal (because they
are symmetric to each other). These last two sides are not parallel because they
intersect at point I.

Conversely, every quadrilateral with two sides BC, AD parallel, and the other
two equal is either a parallelogram, or (in the case of an isosceles trapezoid) a
figure with a line of symmetry. Indeed, let xy be the perpendicular bisector of BC.
We have already found two oblique lines from C to the line AD, both equal to
AB, namely: CD1 which is symmetric to AB with respect to xy, and CD2 which,
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Figure 45

together with A, B, and C forms a parallelogram. These oblique lines certainly
have endpoints on AD, since that line is parallel to BC. It follows that D must be
either D1 or D2, since there are only two oblique lines equal to AB from C to AD.

The reasoning above may seem to be incorrect if D2 coincides with D1; that
is, when CD1 is parallel to AB. This requires, as we have just seen, that AB also
be parallel to xy, and therefore perpendicular to AD, and indeed in this case there
is only one oblique line from C with length equal to AB (the perpendicular).

Remark II. In the first part of the preceding converse it is essential that the
quadrilateral be proper (21, Remark): it is only if the triangles ABC, ADC of
Fig. 44 are on different sides of the common side AC that the angles Â1, Ĉ1 are
alternate interior.

It is easy to construct an improper quadrilateral (called a anti-parallelogram)
whose opposite sides are equal. It suffices, in parallelogram ABCD (Fig. 45b), to
replace the point D by point E symmetric to it with respect to the diagonal AC.

Figure 45b

We can also obtain an anti-parallelogram ABCE1 by taking E1 to be symmetric
to B with respect to the perpendicular bisector of AC, so that ABE1C is an isosceles
trapezoid. But this point E1 is none other than E, because (24, case 3◦) there is,
on any one side of AC, only one point E which is both at a distance AE = BC
from A and also at a distance CE = AB from C. Every improper quadrilateral
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with equal opposite sides is thus formed by the non-parallel sides and the diagonals
of an isosceles trapezoid.

Remark III. Two quadrilaterals with four pairs of equal sides need not be
congruent. In other words, we can deform a quadrilateral ABCD (proper or not)
without changing the lengths of its sides.

Indeed, let AB = a, BC = b, CD = c, DA = d be the constant lengths of the
four sides. With sides a, b and an arbitrary included angle B, we can construct a
triangle ABC, whose construction will determine the length of AC (a diagonal of
the quadrilateral). To each value of this diagonal (under the conditions for existence
given in 86, Book II) there corresponds a triangle ACD with this base AC and
with the other two sides CD, DA having length c, d. The angle B̂ can therefore
be arbitrary (at least within certain limits).

A quadrilateral which can be deformed under these conditions is called an artic-
ulated quadrilateral. This notion is important in practical applications of geometry.

According to the preceding results, a parallelogram remains a parallelogram
when it is articulated and, likewise, an anti-parallelogram remains an anti-parallelo-
gram under these conditions.1

47. Theorem. In a parallelogram, the two diagonals divide each other into
equal parts.

In parallelogram ABCD (Fig. 46), we draw diagonals AC, BD, which intersect
at O. Triangles ABO, CDO are congruent because they have equal angles, and
an equal side AB = CD (by the preceding theorem). Therefore AO = CO, BO =
DO. QED

Converse. A quadrilateral is a parallelogram if its diagonals divide each other
into equal parts.

Figure 46

Indeed, assume (Fig. 46) that AO = CO, BO = DO. Triangles ABO, CDO
are again congruent because they have an equal angle (the angles at O are vertical)
included between pairs of equal sides. Therefore their angles at A and C will be
equal, so that AB is parallel to CD. The congruence of triangles ADO, BCO also
shows that AD is parallel to BC.

1This reasoning fails only if a parallelogram is transformed into an anti-parallelogram, or

inversely (since a parallelogram and an anti-parallelogram are the only quadrilaterals with opposite
sides equal). If the deformation occurs continuously, this requires that the quadrilateral first flatten

into a line, so that one pair of adjacent sides ends up as extensions of each other, as does the other
pair.
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Remark. We have proved the converses in 46 and 47 by retracing the original
reasoning in the opposite direction, as explained in 32, Remark II.

48. A quadrilateral whose angles are all equal, and are therefore are all right
angles, is called a rectangle. A rectangle is a parallelogram, since its opposite angles
are equal.

A quadrilateral whose sides are all equal is called a rhombus. A rhombus is a
parallelogram since it has equal opposite sides.

Thus, in a rectangle, as in a rhombus, the diagonals intersect at their common
midpoint.

Theorem. The diagonals of a rectangle are equal.

In rectangle ABCD (Fig. 47), the diagonals are equal because triangles ACD,

BCD are congruent: they have side DC in common, ÂDC = D̂CB since they are
both right angles, and AD = BC since they are opposite sides of a parallelogram.

Corollary. In a right triangle, the median from the vertex of the right angle
equals half the hypotenuse.

This is true because if we draw parallels to the sides of the right angle through
the endpoints of the hypotenuse, we form a rectangle, in which the median in
question is half the diagonal.

Converse. A parallelogram with equal diagonals is a rectangle.

Figure 47

Suppose (Fig. 47) that AD = BC in parallelogram ABCD. We know that
AD = BC: consequently, triangles ADC, BCD are congruent, since their three
sides are equal in pairs. Angles ÂDC, B̂CD are therefore equal and, since they
are supplementary, they must be right angles, which shows that the parallelogram
is a rectangle.

Corollary. A triangle in which a median is one half the corresponding side
is a right triangle.

Corollary. In a rhombus, the diagonals are perpendicular, and bisect the
vertex angles.

If ABCD (Fig. 48) is a rhombus, then triangle ABD is isosceles. Diagonal
AC, being a median of this triangle, is also an altitude and an angle bisector.

Converse. A parallelogram with perpendicular diagonals is a rhombus.
Indeed, each vertex is equidistant from the adjacent vertices, since it lies on

the perpendicular bisector of the diagonal joining these vertices.
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Figure 48

49. A square is a quadrilateral in which all sides are equal, and all the angles
right angles.

Thus a square is both a rhombus and a rectangle, so that the diagonals are
equal, perpendicular, and intersect each other at their common midpoint.

Conversely, any quadrilateral whose diagonals are equal, perpendicular, and
bisect each other is a square.

Two squares with the same side are congruent.

50. Translations.

Lemma. Two figures F , F ′ are congruent, with the same sense of rotation, if
their points correspond in such a way that, if we take points A, B, C from one
figure, and the corresponding points A′, B′, C ′ from the other, then the triangles
thus formed are always congruent, with the same sense of rotation, no matter which
point we take for C.

Indeed, take two points A, B in figure F , and the homologous2 points A′, B′.
Segment AB is then clearly equal to A′B′. Let us move the second figure onto the
first in such a way that these two equal segments coincide. We claim that then
the two figures coincide completely. Indeed, let C be a third point of the first
figure, and let C ′ be its homologous point. Since the two triangles ABC, A′B′C ′

are congruent, angle B̂′A′C ′ is equal to B̂AC, and has the same sense of rotation.
Therefore, when A′B′ is made to coincide with AB, the line A′C ′ will assume the
direction of AC. Since A′C ′ = AC as well, we conclude that C ′ coincides with
C. This argument applies to all the points of the figure, so the two figures must
coincide completely.

Remarks. I. We have just provided a sufficient condition for two figures to be
congruent; this conditions is also clearly necessary.

From the preceding reasoning it also follows that:
II. In order to superimpose two equal figures with the same orientation, it

suffices to superimpose two points of one of the figures onto their homologous
points.

2This is the name given to pairs of corresponding points in the two figures.



EXERCISES 51

51. Theorem. If, starting at each point of a figure, we draw equal parallel
segments in the same direction, then their endpoints will form a figure congruent
to the first.

First consider two points A, B of the first figure, and the corresponding points
A′, B′ of the second. Since the segments AA′ and BB′ are parallel and equal,
ABA′B′ is a parallelogram. Therefore A′B′ is equal and parallel to AB, with the
same orientation. Thus segments joining homologous pairs of points are equal,
parallel, and have the same direction.

It follows that any three points of the first figure correspond to three points
forming a congruent triangle, and since the angles of these triangles have their sides
parallel and in the same sense, their sense of rotation is the same. The figures are
therefore congruent.

The operation by which we pass from the first figure to the second is called a
translation. We note that a translation is determined if we are given the length,
direction, and sense of a segment, such as AA′, joining a point to its homologue. We
can therefore designate a translation by the letters of such a segment: for example,
we speak of the translation AA′.

Corollaries. I. If, through each point on a line, we draw equal parallel seg-
ments in the same sense, the locus of their endpoints is a line parallel to the first.

In particular, the locus of points on the same side of a line, and a at a given
distance from the line, is a parallel line.

II. Two parallel lines are everywhere equidistant.
We can therefore speak of the distance between two parallel lines.

III. The locus of points equidistant from two parallel lines is a third line, parallel
to the first two.

Exercises

Parallelograms.

Exercise 26. The angle bisectors of a parallelogram form a rectangle. The
bisectors of the exterior angles also form a rectangle.

Exercise 27. Any line passing through the intersection of the diagonals of a
parallelogram is divided by this point, and by two opposite sides, into two equal
segments.

For this reason, the point of intersection of the diagonals of a parallelogram is
called the center of this polygon.

Exercise 28. Two parallelograms, one of which is inscribed in the other (that
is, the vertices of the second are on the sides of the first) must have the same center.

Exercise 29. An angle of a triangle is acute, right, or obtuse, according as
whether its opposite side is less than, equal to, or greater than double the corre-
sponding median.

Exercise 30. If, in a right triangle, one of the acute angles is double the other,
then one of the sides of the right angle is half the hypotenuse.
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Translations.

Exercise 31. Find the locus of the points such that the sum or difference of
its distances to two given lines is equal to a given length.

Exercise 32. Given two parallel lines, and two points A, B outside these two
parallels, and on different sides, what is the shortest broken line joining the two
points, so that the portion contained between the two parallels has a given direction?
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Congruent Lines in a Triangle

52. Theorem. In any triangle, the perpendicular bisectors of the three sides
are concurrent.

Figure 49

Suppose the triangle is ABC (Fig. 49). The perpendicular bisectors of sides
AB, AC are not parallel (otherwise lines AB, AC would coincide), so they intersect
at some point O. We must show that point O is also on the perpendicular bisector
of BC.

Because point O, is on the perpendicular bisector of AB, it is equidistant from A
and B; likewise, because it is on the perpendicular bisector of AC, it is equidistant
from A and C. It is therefore equidistant from B and C and thus it is on the
perpendicular bisector of BC.

53. Theorem. In any triangle, the three altitudes are concurrent.
Suppose the triangle is ABC (Fig. 50). We draw a parallel to BC through

A, a parallel to AC through B, and a parallel to AB through C. This forms a
new triangle A′B′C ′. We will show that the altitudes of ABC are the perpendic-
ular bisectors of the sides of the new triangle, from which it follows that they are
concurrent.

Parallelogram ABCB′ gives us BC = AB′, and parallelogram ACBC ′ gives
BC = AC ′, so that A is indeed the midpoint of B′C ′. Altitude AD of ABC
thus passes through the midpoint of B′C ′, and is perpendicular to it because it is
perpendicular to the parallel line BC.

Since this reasoning can be repeated for the other altitudes, the proof is com-
plete.

54. Theorem. In any triangle:
1◦. the three angle bisectors are concurrent;
2◦. the bisector of an angle, and the bisectors of the two non-adjacent exterior

angles, are concurrent.

53
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Figure 50

1◦. In triangle ABC (Fig.51), we draw the bisectors of angles B̂ and Ĉ; they
intersect at a point O inside the triangle. This point, being on the bisector of angle
B̂, is equidistant from the sides AB and BC. Likewise, being on the bisector of
angle Ĉ, the point O is equidistant from AC and BC. It is therefore equidistant
from AB and AC and, being interior to angle Â, is on the bisector of this angle.

2◦. Since the exterior angles ĈBx, B̂Cy have a sum less than four right angles,
halves of each have a sum less than two right angles. The bisectors of these angles
will therefore meet (41, Corollary) at a point O′ inside angle Â. This point O′, like
point O, will be equidistant from the three sides of the triangle. Therefore it will
belong to the bisector of Â.

55. Theorem. The segment joining the midpoints of two sides of a triangle
is parallel to the third side, and equal to half of it.

In triangle ABC (Fig. 52), let D be the midpoint of AB and let E be the
midpoint of AC. We extend line DE past E by its own length, to a point F .
Quadrilateral ADCF will be a parallelogram (47), and therefore CF will be equal
and parallel to DA, or, equivalently, to BD. Thus quadrilateral BDCF is also a
parallelogram. Therefore:

1◦. DE is parallel to BC;
2◦. DE, which is equal to half of DF , is also half of BC.

56. Theorem. The three medians of a triangle are concurrent at a point
situated on each of them one third of its length from the corresponding side.

First, let BE, CF be two medians of triangle ABC (Fig. 53). We claim that
their intersection G lies at one third the length of each of them. To see this, let M
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x

y

Figure 51

Figure 52

and N be the midpoints of BG and CG. Segment MN , which joins the midpoints
of two sides of triangle BCG, is parallel to BC and equal to half of it. But EF is
parallel to BC and equal to half of it. This means that EFMN is a parallelogram,
whose diagonals divide each other in half. Therefore EG = GM = MB and
FG = GN = NC.

Thus median BE passes through the point situated at one third the length of
CF . But the same reasoning can also be applied to show that the median AD
passes through the same point. The thereom is proved.

Remark. The point where the medians meet is also called the center of mass
of the triangle. The reason for this name is given in the study of mechanics.
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Figure 53

Exercises

Exercise 33. Join a given point to the intersection of two lines, which intersect
outside the limits of the diagram (53).

Exercise 34. In a trapezoid, the midpoints of the non-parallel sides and the
midpoints of the two diagonals are on the same line, parallel to the bases. The
distance between the midpoints of the non-parallel sides equals half the sum of the
bases; the distance between the midpoints of the diagonals is equal to half their
difference.

Exercise 35. If, from two points A, B and the midpoint C of AB, we drop
perpendiculars onto an arbitrary line, the perpendicular from C is equal to half
the sum of the other two perpendiculars, or to half their difference, according as
whether these two perpendiculars have the same or opposite sense.

Exercise 36. The midpoints of the sides of any quadrilateral are the vertices
of a parallelogram. The sides of this parallelogram are parallel to the diagonals
of the given quadrilateral, and equal to halves of these diagonals. The center of
the parallelogram is also the midpoint of the segment joining the midpoints of the
diagonals of the given quadrilateral.

Exercise 37. Prove that the medians of a triangle ABC are concurrent by
extending the median CF (Fig. 53) beyond F by a length equal to FG.

Exercise 38. Given three lines passing through the same point O (all three
distinct), and a point A on one of them, show that there exists:

1◦. A triangle with a vertex at A and having the three lines as its altitudes
(one exception);

2◦. A triangle with a vertex at A and having the three lines as its medians;
3◦. A triangle with a vertex at A and having the three lines as bisectors of its

interior or exterior angles (one exception);
4◦. A triangle with a midpoint of one of its sides at point A and having the

three lines as perpendicular bisectors of the sides (reduce this to 1◦).
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Problems for Book 1

Exercise 39. In a triangle, the larger side corresponds to the smaller median1.
(Consider the angle made by the third median with the third side.) A triangle with
two equal median is isosceles.

Exercise 40. Let us assume that a billiard ball which strikes a flat wall will
bounce off in such a way that the two lines of the path followed by the ball (be-
fore and after the collision) make equal angles with the wall. Consider n lines
D1, D2, . . . , Dn in the plane, and points A, B on the same side of all of these lines.
In what direction should a billiard ball be shot from A in order that it arrive at B
after having bounced off each of the given lines successively? Show that the path
followed by the ball in this case is the shortest broken line going from A to B and
having successive vertices on the given lines.2

Special Case. The given lines are the four sides of rectangle, taken in their
natural order; the point B coincides with A and is inside the rectangle. Show that,
in this case, the path traveled by the ball is equal to the sum of the diagonals of
the rectangle.

Exercise 41. The diagonals of the two rectangles of exercise 26 are situated
on the same two lines, parallel to the sides of the given parallelogram (analogous
to 54). One of these diagonals is half the difference, and the other half the sum, of
the sides of the parallelogram.

Exercise 42. In an isosceles triangle, the sum of the distances from a point
on the base to the other sides is constant.— What happens if the point is taken on
the extension of the base?

In an equilateral triangle, the sum of the distances from a point inside the
triangle to the three sides is constant. What happens when the point is outside the
triangle?

Exercise 43. In triangle ABC, we draw a perpendicular through the midpoint
D of BC to the bisector of angle A. This line cuts off segments on the sides AB,
AC equal to, respectively, 1

2 (AB + AC) and 1
2 (AB − AC).

Exercise 44. Let ABCD, DEFG be two squares placed side by side, so that
sides DC, DE have the same direction, and sides AD, DG are extensions of each
other. On AD and on the extension of DC, we take two segments AH, CK equal
to DG. Show that quadrilateral HBKF is also a square.

Exercise 45. On the sides AB, AC of a triangle, and outside the triangle, we
construct squares ABDE, ACGF , with D and F being the vertices opposite A.
Show that:

1◦. EG is perpendicular to the median from A, and equal to twice this median;
2◦. The fourth vertex I of the parallelogram with vertices EAG (with E and

G opposite vertices) lies on the altitude from A in the original triangle;

1For similar statements concerning the altitudes of a triangle, see Exercises 19, 20, and for

angle bisectors see exercises 362, 362b at the end of this volume.
2In the case where there is only one line, the problem reduces to the subject of Exercises

13–14. Once these exercises are solved, one tries to find a way to use the solution for the case of
one line to treat the case for two lines; then to extend it to three lines, and so on.
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3◦. CD, BF are equal to and perpendicular to BI, CI respectively, and their
intersection point is also on the altitude from A.

Exercise 46. We are given a right angle ÂOB, and two perpendicular lines
through a point P , the first intersecting the sides of the angle in A, B, and the
second intersecting the same sides in C, D. Show that the perpendiculars from
the points D, O, C to the line OP intercept on AB segments equal to AP , PB,
respectively, but having the opposite sense.


