Those Fascinating Numbers

1

- the only number which divides all the others.

2

- the only even prime number.

3

- the prime number which appears the most often as the second prime factor of an integer, and actually with a frequency of $\frac{1}{6}$ (see the number 199 for the list of those prime numbers which appear the most often as the $k^{\text {th }}$ prime factor of an integer, for any fixed $k \geq 1$).
- the smallest Mersenne prime $\left(3=2^{2}-1\right)$: a prime number is called a Mersenne prime if it is of the form $2^{p}-1$, where p is prime (see the number 131071 for the list of all Mersenne primes known as of May 2009);
- the prime number which appears the most often as the second largest prime factor of an integer, that is approximately $\left(1+\log 2+\frac{3}{2} \log 3\right) x / \log x$ times amongst the positive integers $n \leq x$ (see J.M. De Koninck [44]);
- the smallest triangular number >1 : a number n is said to be triangular if there exists a number k such that

$$
n=1+2+3+\ldots+k=\frac{k(k+1)}{2} \quad \bullet \bullet \bullet \bullet
$$

- the smallest number r which has the property that each number can be written in the form $x_{1}^{2}+x_{2}^{2}+\ldots+x_{r}^{2}$, where the x_{i} 's are non negative integers; the problem consisting in determining if, for a given integer $k \geq 2$, there exists a number r (depending only on k) such that equation

$$
\begin{equation*}
n=x_{1}^{k}+x_{2}^{k}+\ldots+x_{r}^{k} \tag{*}
\end{equation*}
$$

has solutions for each number n, is due to the English mathematician E. Waring who, in 1770 , stated without proof that "each number is the sum of 4 squares, of 9 cubes, of 19 fourth powers, and so on"; if we denote by $g(k)$ the smallest number r such that equation $(*)$ has solutions for each number n, Lagrange proved in 1770 that $g(2)=4$, Wieferich and Kempner proved around 1910 that $g(3)=9$, while R. Balasubramanian, J.M. Deshouillers \& F. Dress [12] proved in 1986 that $g(4)=19$; it is conjectured that $g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$ (where $[x]$ stands for the largest integer $\leq x$) for each integer $k \geq 2$; see L.E. Dickson [65] $)^{1}$; hence by using this formula, we find that the values of $g(k)$, for $k=1,2, \ldots, 20$, are respectively $1,4,9,19,37,73,143,279,548,1079$, $2132,4223,8384,16673,33203,66190,132055,263619,526502,1051899$ (see the book of Eric Weisstein [201], p. 1917).

- the smallest Wilson prime: a prime number p is called a Wilson prime if it satisfies the congruence $(p-1)!\equiv-1 \quad\left(\bmod p^{2}\right)$: the only known Wilson primes are 5,13 and 563 ; K. Dilcher \& C. Pomerance [68] have shown that there are no other Wilson primes up to $5 \cdot 10^{8}$.
- the smallest perfect number: a number n is said to be perfect if it is equal to the sum of its proper divisors, that is if $\sigma(n)=2 n$; the sequence of perfect numbers starts as follows: 6, 28, 496, $8128,33550336, \ldots$; a number n is said to be k-perfect if $\sigma(n)=k n$: if we let n_{k} stand for the smallest k-perfect number, then $n_{2}=6, n_{3}=120, n_{4}=30240, n_{5}=14182439040$ and $n_{6}=$ 154345556085770649600 ;
- the smallest unitary perfect number: a number n is said to be a unitary perfect number if $\sum_{\substack{d \mid n \\(d, n / d)=1}} d=2 n$, where $(d, n / d)$ stands for the greatest common divisor of d and n / d; only five unitary perfect numbers are known, namely $6,60,90$, 87360 and $146361946186458562560000=2^{18} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 37 \cdot 79$. $109 \cdot 157 \cdot 313$: this last number was discovered by C.R. Wall [198] (see also R.K. Guy [101], B3);
${ }^{1}$ In 1936, S. Pillai [161] proved that if one writes $3^{k}=q 2^{k}+r$ with $0<r<2^{k}$, then $g(k)=$ $2^{k}+\left[(3 / 2)^{k}\right]-2$ provided $r+q \leq 2^{k}$.
- the only triangular number >1 whose square is also a triangular number (W. Ljunggren, 1946): here $6^{2}=36=1+2+3+\ldots+8$.
- one of the two prime numbers (the other one is 5) which appears most often as the third prime factor of an integer (1 time in 30);
- the second Mersenne prime: $7=2^{3}-1$.

8

- the third number n such that $\tau(n)=\phi(n)$: the only numbers satisfying this equation are $1,3,8,10,18,24$ and 30 ;
- the number of twin prime pairs <100 (see the number 1224).

9

- the only square which follows ${ }^{2}$ a power of $2: 2^{3}+1=3^{2}$;
- the only perfect square which cannot be written as the sum of four squares (Sierpinski [185], p. 405);
- the smallest number r which has the property that each number can be written as $x_{1}^{3}+x_{2}^{3}+\ldots+x_{r}^{3}$, where the x_{i} 's are non negative integers (see the number 4).
- one of the five numbers (the others are $1,120,1540$ and 7140) which are both triangular and tetrahedral (see E.T. Avanesov [8]): a number n is said to be tetrahedral if it can be written as $n=\frac{1}{6} m(m+1)(m+2)$ for some number m : it corresponds to the number of spheres with same radius which can be piled up in a tetrahedron;
- the fourth number n such that $\tau(n)=\phi(n)$ (see the number 8).

[^0]- the smallest prime number p such that $3^{p-1} \equiv 1\left(\bmod p^{2}\right)$: the only other prime number $p<2^{32}$ satisfying this congruence is $p=1006003$ (see Ribenboim [169], p. 347) ${ }^{3}$;
- the smallest number n which allows the sum $\sum_{i \leq n} \frac{1}{i}$ to exceed 3 (see the number 83).
- the smallest pseudo-perfect number: we say that a number is pseudo-perfect if it can be written as the sum of some of its proper divisors: here $12=6+4+2$; in 1976, Erdős proved that the set of pseudo-perfect numbers is of positive density (see R.K. Guy [101], B2);
- the smallest number m for which equation $\sigma(x)=m$ has exactly two solutions, namely 6 and 11 ;
- the only number $n>1$ such that $\sigma(\gamma(n))=n$;
- the smallest sublime number: we say that a number n is sublime if $\tau(n)$ and $\sigma(n)$ are both perfect numbers: here $\tau(12)=6$ and $\sigma(12)=28$; this concept was introduced by Kevin Ford; the only other known sublime number is $2^{126}\left(2^{61}-\right.$ 1) $\left(2^{31}-1\right)\left(2^{19}-1\right)\left(2^{7}-1\right)\left(2^{5}-1\right)\left(2^{3}-1\right)$.

13

- the second Wilson prime (see the number 5);
- the prime number which appears the most often as the fourth prime factor of an integer, namely 31 times in 5005 (see the number 199);
- the smallest prime number p such that $23^{p-1} \equiv 1\left(\bmod p^{2}\right)$: the only prime numbers $p<2^{32}$ satisfying this congruence are 13, 2481757 and 13703077 (see Ribenboim [169], p. 347);
- the third horse number: we say that n is a horse number if it represents the number of possible results accounting for ties, in a race in which k horses participate; thus, if H_{k} is the $k^{t h}$ horse number, one can prove ${ }^{4}$ that

$$
H_{k}=\sum_{i=1}^{k} i^{k}\left(\sum_{j=0}^{k-i}(-1)^{j}\binom{j+i}{j}\right)
$$

the first 20 terms of the sequence $\left(H_{k}\right)_{k \geq 1}$ are $1,3,13,75,541,4683,47293$, 545835, 7087261, 102247563, 1622632573, 28091567595, 526858348381, 10641342970443, 230283190977853, 5315654681981355, 130370767029135901, 3385534663256845323,92801587319328411133 and 2677687796244384203115.

[^1]- the smallest solution ${ }^{5}$ of $\sigma(n)=\sigma(n+1)$; the sequence of numbers satisfying this equation begins as follows: 14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, $74918,79826,79833,84134,92685, \ldots$;
- the fourth Catalan number: Catalan numbers ${ }^{6}$ are the numbers of the form $\frac{1}{n+1}\binom{2 n}{n}$.
- the third smallest solution of $\phi(n)=\phi(n+1)$; the sequence of numbers satisfying this equation begins as follows: $1,3,15,104,164,194,255,495,584,975$, 2204, 2625, 2834, 3255, 3705, 5186, 5187, 10604, 11715, 13365, 18315, 22935, $25545,32864,38804,39524,46215,48704,49215,49335,56864,57584,57645$, $64004,65535,73124, \ldots$ R. Baillie [10] found 391 solutions $n<2 \cdot 10^{8} ; 7$
- one of the three numbers n such that the polynomial $x^{5}-x \pm n$ can be factored: the other two are $n=22440$ and $n=2759640$: here we have $x^{5}-x \pm 15=$ $\left(x^{2} \pm x+3\right)\left(x^{3} \mp x^{2}-2 x \pm 5\right)$; see the number 22440 ;
- the value of the sum of the elements of a diagonal, a row or a column of a 3×3 magic square: for a $k \times k$ magic square with $k \geq 3$, the common value is $k\left(k^{2}+1\right) / 2$, which gives place to the sequence whose first terms are 15,34 , $65,111,175,260,369,505,671,870,1105,1379,1695, \ldots$ (see Sierpinski [185], p. 434).
- the only number n for which there exist two distinct integers a and b such that $n=a^{b}=b^{a}$: here $a=2, b=4 ;$
- the smallest perfect square for which there exists another perfect square with the same sum of divisors: $\sigma(16)=\sigma(25)=31$.

[^2]
17

- the third Fermat prime $\left(17=2^{2^{2}}+1\right)$, the first two being 3 and 5 : a number of the form $2^{2^{k}}+1$, where k is a non negative integer, is called a Fermat number and is often denoted by F_{k} (see the number 70525124609); if such a number is prime, we say that it is a Fermat prime;
- the only prime number which is the sum of four consecutive prime numbers: $17=2+3+5+7 ;$
- the exponent of the sixth Mersenne prime (131071 $=2^{17}-1$) (Cataldi, 1588);
- the smallest Stern number (see the number 137).

18

- the largest known number x for which there exist numbers $n \geq 3, y$ and $q \geq 2$ such that $\left(x^{n}-1\right) /(x-1)=y^{q}$; the only known solutions of this last equation are given by

$$
\frac{3^{5}-1}{3-1}=11^{2}, \quad \frac{7^{4}-1}{7-1}=20^{2}, \quad \frac{18^{3}-1}{18-1}=7^{3}
$$

(see Y. Bugeaud, M. Mignotte \& Y. Roy [26]);

- the fifth number n such that $\tau(n)=\phi(n)$ (see the number 8).
- the smallest number r which has the property that each number can be written as $x_{1}^{4}+x_{2}^{4}+\ldots+x_{r}^{4}$, where the x_{i} 's are non negative integers (see the number 4);
- one of the nine known numbers k such that $\underbrace{11 \ldots 1}_{k}$ is prime: the others ${ }^{8}$ are 2 , 23, 317, 1031, $49081,86453,109297$ and 270343 ;
- the largest known prime p_{k} such that $\nu\left(p_{k}\right):=\prod_{p \leq p_{k}} \frac{p+1}{p-1}$ is an integer: here, $\nu\left(p_{8}\right)=\nu(19)=21 ;$
- the exponent of the seventh Mersenne prime (524287 $=2^{19}-1$) (Cataldi, 1588).

20

- the smallest solution of $\sigma(n)=\sigma(n+6)$; the sequence of numbers satisfying this equation begins as follows: $20,155,182,184,203,264,621,650,702,852$, 893, 944, 1343, 1357, 2024, 2544, 2990, 4130, 4183, 4450, 5428, 5835, 6149, 6313, 6572, 8177, 8695, \ldots

[^3]- the smallest integer >1 whose sum of divisors is a fifth power: here $\sigma(21)=2^{5}$;
- the smallest 2-hyperperfect number: a number n is said to be 2-hyperperfect if it can be written as $n=1+2 \sum_{\substack{d \mid n \\ 1<d<n}} d$, which is equivalent to the condition $2 \sigma(n)=3 n+1$; the sequence of numbers satisfying this property begins as follows: 21, $2133,19521,176661,129127041, \ldots$; more generally, a number n is said to be hyperperfect if there exists a positive integer k such that

$$
\begin{equation*}
n=1+k \sum_{\substack{d \mid n \\ 1<d<n}} d \tag{1}
\end{equation*}
$$

in which case we also say that n is k-hyperperfect ${ }^{9}$; the following table contains some k-hyperperfect numbers along with their factorization:

[^4]Also, it is clear that a prime power p^{α}, with $\alpha \geq 1$, cannot be hyperperfect. Furthermore, it follows immediately from (1) that if n is k-hyperperfect, then $n \equiv 1(\bmod k)$ and moreover that

$$
\begin{equation*}
\sigma(n)=n+1+\frac{n-1}{k} . \tag{3}
\end{equation*}
$$

This last relation proves to be an excellent tool to determine if a given integer n is a hyperperfect number and also to construct, using a computer, a list of hyperperfect numbers. Indeed, it follows from (3) that

$$
n \text { is a hyperperfect number } \Longleftrightarrow \frac{n-1}{\sigma(n)-n-1} \text { is an integer. }
$$

It also follows from (3) that the smallest prime factor of such an integer n is larger than k. Indeed, assume that $p \mid n$ with $p \leq k$. We would then have that n / p is a proper divisor of n, in which case

$$
\sigma(n)>n+1+\frac{n}{p} \geq n+1+\frac{n}{k}>n+1+\frac{n-1}{k}=\sigma(n),
$$

a contradiction. It follows from this that a hyperperfect number which is not perfect is odd.
On the other hand, if n is a square-free k-hyperperfect number, then k must be even. Assume the contrary, that is that k is odd. As we just saw, n must be odd, unless $k=1$, in which case n would be perfect and even. But then we would have that $n=2^{p-1}\left(2^{p}-1\right)$ for a certain prime number $p \geq 3$, in which case n would not be square-free. We therefore have that n is odd. Now, because of (2), we have

$$
\begin{equation*}
k \sigma(n)=2\left(\frac{k+1}{2} n+\frac{k-1}{2}\right) . \tag{4}
\end{equation*}
$$

If $k \equiv 1 \quad(\bmod 4)$, then it follows from (4) that

$$
k \sigma(n)=2(\text { odd }+ \text { even })=2 \times \text { odd }
$$

while if $k \equiv 3 \quad(\bmod 4)$, then

$$
k \sigma(n)=2(\text { even }+ \text { odd })=2 \times \text { odd },
$$

which means that $2 \| \sigma(n)$, in which case n is prime, since n is square-free.

2-hyperperfect	$=31$	$=3 \cdot 7$
2133	$=3^{3} \cdot 79$	
19521	$=3^{4} \cdot 241$	
176661	$=3^{5} \cdot 727$	
129127041	$=3^{8} \cdot 19681$	
	328256967373616371221	$=3^{21} \cdot 31381059607$
325	$=5^{2} \cdot 13$	
3-hyperperfect	1950625	$=5^{4} \cdot 3121$
-hyperperfect	1220640625	$=5^{6} \cdot 78121$
	186264514898681640625	$=5^{14} \cdot 30517578121$
301	$=7 \cdot 43$	
6-hyperperfect	16513	$=7^{2} \cdot 337$
	60110701	$=7^{2} \cdot 383 \cdot 3203$
197225901	$=7^{5} \cdot 117643$	
	2733834545701	$=7^{4} \cdot 30893 \cdot 36857$
232630479398401	$=7^{8} \cdot 40353601$	
1049841	$=11^{2} \cdot 1321$	
11-hyperperfect	10693	$=17^{2} \cdot 37$
697	$=17 \cdot 41$	
12-hyperperfect	2041	$=13 \cdot 157$
	1570153	$=13 \cdot 269 \cdot 449$
62722153	$=13^{3} \cdot 28549$	
	10604156641	$=13^{4} \cdot 371281$
13544168521	$=13^{2} \cdot 2347 \cdot 34147$	
1792155938521	$=13^{5} \cdot 4826797$	

- the number of two digit prime numbers; if we let $C(k)$ stand for the number of k digit prime numbers, then $C(1)=4, C(2)=21, C(3)=143$, $C(4)=1061, C(5)=8363, C(6)=68906, C(7)=586081, C(8)=5096876$, $C(9)=45086079, C(10)=404204977, C(11)=3663002302$ and $C(12)=$ 33489857205.
- the smallest Smith number: a composite number is said to be a Smith number if the sum of its digits is equal to the sum of the digits of its distinct prime factors: here $22=2 \cdot 11$ and $2+2=4=2+1+1$ (see U. Dudley [72]).
- the prime number which appears the most often as the fifth prime factor of an integer (see the number 199);
- one of the two numbers (the other one being 239) which cannot be written as the sum of less than nine cubes (of non negative integers): here $23=2 \cdot 2^{3}+7 \cdot 1^{3}$ (L.E. Dickson [66]);
- the second number n (and possibly the largest) such that $n^{3}+1$ is a powerful number (a number is said to be powerful (or squarefull) if $p \mid n$ implies that $p^{2} \mid n$); the smallest number satisfying this property ${ }^{10}$ is $n=2$;
- one of the nine known numbers k such that $\underbrace{11 \ldots 1}_{k}$ is prime (see the number 19);
- the largest number which cannot be written as the sum of two non square-free numbers (see the number 933 for a more general problem).

24

- the only number $n>1$ such that $1^{2}+2^{2}+\ldots+n^{2}$ is a perfect square (E. Lucas, 1873) (see the number 70);
- the smallest number m such that equation $\sigma(x)=m$ has ${ }^{11}$ exactly three solutions, namely 14,15 and 23 ;
- the sixth number n such that $\tau(n)=\phi(n)$ (see the number 8);
- the smallest solution of $\sigma_{2}(n)=\sigma_{2}(n+2)$ (see the number 1079);
- the smallest number with at least two digits, having all its digits different from 1 and 0 , and whose sum of digits, as well as the product of its digits, divides n : the sequence of numbers satisfying this property begins as follows: 24,36 , $224,432,624,735,2232,3276,4224,6624,23328,32832,33264,34272,34992$, 42336, 42624, 43632, 73332, 82944, 83232, 92232, 93744, ...
- the only odd perfect square $\neq 1$ which is not the sum of three perfect squares $\neq 0$ (see E. Grosswald [99], Chapter 3);
- the only perfect square which when increased by 2 yields a cube: $5^{2}+2=3^{3}$;
- the number of prime numbers <100.

[^5]- the smallest number which is not a palindrome, but whose square is a palindrome; a palindrome is a number which reads the same way from the left as from the right; the first ten numbers n satisfying this property are listed below:

n	n^{2}			
26	676			
264	69696			
307	94249			
836	698896			
2285	5221225	\quad	n	n^{2}
:---	:---			
2636	6948496			
22865	522808225			
24846	617323716			
30693	942060249			
798644	637832238736			

- the smallest solution of $\sigma(n)=\sigma(n+15)$; it is mentioned in R.K. Guy [101], B13, that Mientka \& Vogt could only find two solutions to this equation, namely 26 and 62: there are at least seven others, namely 20840574,25741470 , 60765 690, $102435795,277471467,361466454$ and 464465910.

27

- the smallest number n such that n and $n+1$ each have exactly three prime factors counting their multiplicity: $27=3^{3}$ and $28=2^{2} \cdot 7$ (see the number 135 for the general problem with k prime factors instead of only three).
- the only even perfect number of the form $a^{n}+b^{n}$, with $n \geq 2$ and $(a, b)=1$: in fact, $28=1^{3}+3^{3}$ (T.N. Sinha [187]).
- the smallest prime number $p>2$ such that $41^{p-1} \equiv 1\left(\bmod p^{2}\right)$: the only prime numbers $p<2^{32}$ satisfying this congruence are 2, 29, 1025273 and 138200401 (see Ribenboim [169], p. 347).
- the smallest Giuga number: we say that a composite number n is a Giuga number if $\sum_{p \mid n} \frac{1}{p}-\prod_{p \mid n} \frac{1}{p}$ is a positive integer: if we could find a number n which is both a Giuga number and a Carmichael number (which is most unlikely!), we would then have found a composite number n satisfying the congruence

$$
1^{n-1}+2^{n-1}+\ldots+(n-1)^{n-1} \equiv-1 \quad(\bmod n)
$$

Index

(Unless indicated otherwise, the number at the end of each line is the one where the definition can be found in the text.)

196-algorithm, 196
$a b c$ Conjecture, page xvii
Bachet Equation, 225
Beal Conjecture, 122
Catalan Conjecture, 9
Chain
Cunningham, 1122659
$p^{2}+1,271$
Chinese Remainder Theorem, page xvii

Euler Constant, page xiii
Euler pseudoprime, 1905
Fermat's Last Theorem, page 55
Fermat's Little Theorem, page xvii
Height of a prime number, 283
Hypothesis H, page xvii
Index of composition, 629693
Index of isolation, 2737
Kaprechar Constant, 495
Median value, 37
Mirimanoff Congruence, 1006003
Number
abundant, 348
Amicable, 220
Apéry, 1445
automorphic, 76
Bell, 52
Bernoulli, 30
bizarre, 70
Canada perfect, 125
Carmichael, 561
Catalan, 14
champion, 77
colossally abundant, 55440
convenient, 37
Cullen, 141
deficient, 90
dihedral-perfect, 130
dihedral 3-perfect, 5472
Erdős-Nicolas, 2016
Euclid, 211
Euler, 272
Fermat, 17
Fibonacci, 55
Giuga, 30
Goodstein, $3 \cdot 2^{402653211}-3$
Granville, 126
Hamilton, 923
happy, 1880
harmonic, 140
Heegner, 163
highly composite, 180
horse, 13
ideal, 390
insolite, 111
Keith, 197
k-composite, 1428
k-hyperperfect, 21
k-perfect, 6
k-powerful, 841
Lucas, 613
Lucas-Carmichael, 399
Markoff, 433
multi-perfect, 140
narcissistic, 88
Niven, 110
non deficient primitive, 945
palindrome, 26
pentagonal, 210
perfect, 6
perfect Canada, 125
Perrin, 271441
persistence $k, 679$
Phibonacci, 1037
powerful, 23
prime, 2
pseudo-perfect, 12

Ramanujan, 1729
Ruth-Aaron, 714
Sastry, 183
self contained, 293
self described, 6210001000
self replicating, 954
Sierpinski, 78557
Smith, 22
S-perfect, 126
squarefull, 23
square pyramidal, 208335
star, 121
Stern, 137
sublime, 12
superabundant, 110880
super-prime, 73939133
symmetric, 35853
tetrahedral, 10
triangular, 3
trimorphic, 491
tri-perfect, 120
vampire, 1260
voracious, 1807
unitary hyperperfect, 288
unitary perfect, 6
Wieferich, 16547533489305
Wilson, 5971
Woodall, 115
Palindrome (see palindrome number)
Prime
Euler pseudoprime, 1905
Fermat, 17
Fibonacci pseudoprime, 323
irregular, 59
Lucas, 613
Mersenne, 3
regular (see irregular prime)
twin, 35
Wieferich, 1093
Wilson, 5
Wolstenholme, 16843
Prime Number Theorem, page xvii
Pseudoprime in base $a, 91$
Riemann Hypothesis, 5041
Riemann Zeta Function, 177
Schinzel Hypothesis (see Hypothesis H)

Strong pseudoprime, 2047
Sub-factorial function, 148349
Syracuse Conjecture, 41
von Sterneck Conjecture, 7725038629
Waring Problem, 4
Wieferich prime pair, 2903

[^0]: ${ }^{2}$ Much more is known. Indeed, according to the Catalan Conjecture (first stated by Catalan [31] in 1844), the only consecutive numbers in the sequence of powers $1,4,8,9,16,25,27,32,36,49,64,81,100,121,125, \ldots$ are 8 and 9 ; this conjecture was recently proved by Preda Mihailescu [135].

[^1]: ${ }^{3}$ As is the case for the Wieferich primes (see the number 1093), it is not known if this sequence of numbers is infinite.
 ${ }^{4}$ A formula established by Charles Cassidy (Université Laval).

[^2]: ${ }^{5}$ This sequence of numbers is probably infinite, but no one has yet proved it.
 ${ }^{6}$ Catalan numbers appear when one wants to find in how many ways it is possible to partition a convex polygon in triangles by drawing some of its diagonals.
 ${ }^{7}$ P. Erdős, C. Pomerance \& A. Sárközy [79] provide a heuristic argument which suggests that, for each fixed $\varepsilon>0$, equation $\phi(n)=\phi(n+1)$ has at least $x^{1-\varepsilon}$ solutions $n \leq x$. However, A. Schinzel [180] believes that it may be possible that equation $\phi(n)=\phi(n+1)$ has only a finite number of solutions, but he conjectures that for each even integer $k \geq 2$, equation $\phi(n)=\phi(n+k)$ has infinitely many solutions. Let us add that equation $\phi(n)=\phi(n+k)$ has very few solutions when k is odd and divisible by 3 ; thus by letting E_{k} be the set of solutions $n<10^{8}$ of $\phi(n)=\phi(n+k)$, we have $E_{3}=\{3,5\}, E_{9}=\{9,15\}, E_{15}=\{13,15,17,21\}, E_{21}=\{21,35\}$ and $E_{27}=\{27,45,55\}$, while the cardinality of each of the other sets $E_{k}, 1 \leq k \leq 32$, is at least 12 .

[^3]: ${ }^{8}$ Such a number k must be a prime, for if it was not, then we would have $k=a b$ with $1<a \leq$ $b<k$, in which case $\frac{10^{a b}-1}{9}=\frac{10^{a b}-1}{10^{b}-1} \cdot \frac{10^{b}-1}{9}$, the product of two numbers >1.

[^4]: ${ }^{9}$ A 1-hyperperfect number is simply a perfect number. It is easy to show that relation (1) is equivalent to

 $$
 \begin{equation*}
 k \sigma(n)=(k+1) n+(k-1) . \tag{2}
 \end{equation*}
 $$

[^5]: ${ }^{10}$ One can easily prove that if the $a b c$ Conjecture is true, then there is only a finite number of numbers satisfying this property.
 ${ }^{11} \mathrm{~K}$. Ford \& S. Konyagin [82] proved a conjecture of Sierpinski according to which, for each $k \geq 2$, there exists a number m such that equation $\sigma(x)=m$ has exactly k solutions x. Later, K. Ford [83] proved that this result is also valid for the Euler ϕ function; moreover, this time, the proof also reveals that for each $k \geq 2$, there exist infinitely many m 's such that $\phi(x)=m$ has exactly k solutions in x.

