
Those Fascinating Numbers

1

• the only number which divides all the others.

2

• the only even prime number.

3

• the prime number which appears the most often as the second prime factor of

an integer, and actually with a frequency of 1
6 (see the number 199 for the list

of those prime numbers which appear the most often as the kth prime factor of

an integer, for any fixed k ≥ 1).

• the smallest Mersenne prime (3 = 22−1): a prime number is called a Mersenne
prime if it is of the form 2p − 1, where p is prime (see the number 131 071 for

the list of all Mersenne primes known as of May 2009);

• the prime number which appears the most often as the second largest prime

factor of an integer, that is approximately (1 + log 2 + 3
2 log 3)x/ log x times

amongst the positive integers n ≤ x (see J.M. DeKoninck [44]);

• the smallest triangular number > 1: a number n is said to be triangular if there

exists a number k such that

n = 1 + 2 + 3 + . . . + k =
k(k + 1)

2
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4

• the smallest number r which has the property that each number can be written

in the form x2
1 + x2

2 + . . . + x2
r, where the xi’s are non negative integers; the

problem consisting in determining if, for a given integer k ≥ 2, there exists a

number r (depending only on k) such that equation

(∗) n = xk
1 + xk

2 + . . . + xk
r

has solutions for each number n, is due to the English mathematician E.Waring

who, in 1770, stated without proof that “each number is the sum of 4 squares,

of 9 cubes, of 19 fourth powers, and so on”; if we denote by g(k) the smallest

number r such that equation (∗) has solutions for each number n, Lagrange

proved in 1770 that g(2) = 4, Wieferich and Kempner proved around 1910

that g(3) = 9, while R. Balasubramanian, J.M. Deshouillers & F. Dress [12]

proved in 1986 that g(4) = 19; it is conjectured that g(k) = 2k + [(3/2)k] − 2

(where [x] stands for the largest integer ≤ x) for each integer k ≥ 2; see L.E.

Dickson [65])1; hence by using this formula, we find that the values of g(k),

for k = 1, 2, . . . , 20, are respectively 1, 4, 9, 19, 37, 73, 143, 279, 548, 1079,

2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899 (see

the book of Eric Weisstein [201], p. 1917).

5

• the smallest Wilson prime: a prime number p is called a Wilson prime if it

satisfies the congruence (p − 1)! ≡ −1 (mod p2): the only known Wilson

primes are 5, 13 and 563; K. Dilcher & C. Pomerance [68] have shown that

there are no other Wilson primes up to 5 · 108.

6

• the smallest perfect number: a number n is said to be perfect if it is equal to

the sum of its proper divisors, that is if σ(n) = 2n; the sequence of perfect

numbers starts as follows: 6, 28, 496, 8 128, 33 550 336, . . . ; a number n is

said to be k-perfect if σ(n) = kn: if we let nk stand for the smallest k-perfect

number, then n2 = 6, n3 = 120, n4 = 30 240, n5 = 14 182 439 040 and n6 =

154 345 556 085 770 649 600;

• the smallest unitary perfect number: a number n is said to be a unitary perfect
number if

∑
d|n

(d,n/d)=1

d = 2n, where (d, n/d) stands for the greatest common divisor

of d and n/d; only five unitary perfect numbers are known, namely 6, 60, 90,

87 360 and 146 361 946 186 458 562 560 000 = 218 · 3 · 54 · 7 · 11 · 13 · 19 · 37 · 79 ·
109 · 157 · 313: this last number was discovered by C.R. Wall [198] (see also

R.K. Guy [101], B3);

1In 1936, S. Pillai [161] proved that if one writes 3k = q2k + r with 0 < r < 2k, then g(k) =
2k + [(3/2)k] − 2 provided r + q ≤ 2k.
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• the only triangular number > 1 whose square is also a triangular number

(W.Ljunggren, 1946): here 62 = 36 = 1 + 2 + 3 + . . . + 8.

7

• one of the two prime numbers (the other one is 5) which appears most often as

the third prime factor of an integer (1 time in 30);

• the second Mersenne prime: 7 = 23 − 1.

8

• the third number n such that τ (n) = φ(n): the only numbers satisfying this

equation are 1, 3, 8, 10, 18, 24 and 30;

• the number of twin prime pairs < 100 (see the number 1 224).

9

• the only square which follows2 a power of 2: 23 + 1 = 32;

• the only perfect square which cannot be written as the sum of four squares

(Sierpinski [185], p. 405);

• the smallest number r which has the property that each number can be written

as x3
1+x3

2+. . .+x3
r, where the xi’s are non negative integers (see the number 4).

10

• one of the five numbers (the others are 1, 120, 1 540 and 7 140) which are both

triangular and tetrahedral (see E.T. Avanesov [8]): a number n is said to be

tetrahedral if it can be written as n = 1
6m(m + 1)(m + 2) for some number m:

it corresponds to the number of spheres with same radius which can be piled

up in a tetrahedron;

• the fourth number n such that τ (n) = φ(n) (see the number 8).

2Much more is known. Indeed, according to the Catalan Conjecture (first stated
by Catalan [31] in 1844), the only consecutive numbers in the sequence of powers
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, . . . are 8 and 9; this conjecture was recently proved
by Preda Mihailescu [135].
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11

• the smallest prime number p such that 3p−1 ≡ 1 (mod p2): the only other

prime number p < 232 satisfying this congruence is p = 1 006 003 (see Riben-

boim [169], p. 347)3;

• the smallest number n which allows the sum
∑
i≤n

1

i
to exceed 3 (see the number

83).

12

• the smallest pseudo-perfect number: we say that a number is pseudo-perfect if

it can be written as the sum of some of its proper divisors: here 12 = 6+4+2;

in 1976, Erdős proved that the set of pseudo-perfect numbers is of positive

density (see R.K. Guy [101], B2);

• the smallest number m for which equation σ(x) = m has exactly two solutions,

namely 6 and 11;

• the only number n > 1 such that σ(γ(n)) = n;

• the smallest sublime number: we say that a number n is sublime if τ (n) and

σ(n) are both perfect numbers: here τ (12) = 6 and σ(12) = 28; this concept was

introduced by Kevin Ford; the only other known sublime number is 2126(261 −
1)(231 − 1)(219 − 1)(27 − 1)(25 − 1)(23 − 1).

13

• the second Wilson prime (see the number 5);

• the prime number which appears the most often as the fourth prime factor of

an integer, namely 31 times in 5005 (see the number 199);

• the smallest prime number p such that 23p−1 ≡ 1 (mod p2): the only prime

numbers p < 232 satisfying this congruence are 13, 2 481 757 and 13 703 077 (see

Ribenboim [169], p. 347);

• the third horse number: we say that n is a horse number if it represents the

number of possible results accounting for ties, in a race in which k horses

participate; thus, if Hk is the kth horse number, one can prove4 that

Hk =

k∑
i=1

ik

⎛
⎝k−i∑

j=0

(−1)j

(
j + i

j

)⎞⎠ ;

the first 20 terms of the sequence (Hk)k≥1 are 1, 3, 13, 75, 541, 4683, 47293,

545835, 7087261, 102247563, 1622632573, 28091567595, 526858348381,

10641342970443, 230283190977853, 5315654681981355, 130370767029135901,

3385534663256845323, 92801587319328411133 and 2677687796244384203115.

3As is the case for the Wieferich primes (see the number 1 093), it is not known if this sequence
of numbers is infinite.

4A formula established by Charles Cassidy (Université Laval).
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14

• the smallest solution5 of σ(n) = σ(n + 1); the sequence of numbers satisfying

this equation begins as follows: 14, 206, 957, 1334, 1364, 1634, 2685, 2974,

4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665,

74918, 79826, 79833, 84134, 92685, . . . ;

• the fourth Catalan number: Catalan numbers6 are the numbers of the form
1

n + 1

(
2n

n

)
.

15

• the third smallest solution of φ(n) = φ(n + 1); the sequence of numbers satis-

fying this equation begins as follows: 1, 3, 15, 104, 164, 194, 255, 495, 584, 975,

2204, 2625, 2834, 3255, 3705, 5186, 5187, 10604, 11715, 13365, 18315, 22935,

25545, 32864, 38804, 39524, 46215, 48704, 49215, 49335, 56864, 57584, 57645,

64004, 65535, 73124, . . . : R. Baillie [10] found 391 solutions n < 2 · 108 ;7

• one of the three numbers n such that the polynomial x5−x±n can be factored:

the other two are n = 22 440 and n = 2 759 640: here we have x5 − x ± 15 =

(x2 ± x + 3)(x3 ∓ x2 − 2x ± 5); see the number 22 440;

• the value of the sum of the elements of a diagonal, a row or a column of a

3 × 3 magic square: for a k × k magic square with k ≥ 3, the common value

is k(k2 + 1)/2, which gives place to the sequence whose first terms are 15, 34,

65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, . . . (see Sierpinski [185],

p. 434).

16

• the only number n for which there exist two distinct integers a and b such that

n = ab = ba: here a = 2, b = 4;

• the smallest perfect square for which there exists another perfect square with

the same sum of divisors: σ(16) = σ(25) = 31.

5This sequence of numbers is probably infinite, but no one has yet proved it.
6Catalan numbers appear when one wants to find in how many ways it is possible to partition a

convex polygon in triangles by drawing some of its diagonals.
7P. Erdős, C. Pomerance & A. Sárközy [79] provide a heuristic argument which suggests that, for

each fixed ε > 0, equation φ(n) = φ(n + 1) has at least x1−ε solutions n ≤ x. However, A. Schinzel
[180] believes that it may be possible that equation φ(n) = φ(n + 1) has only a finite number of
solutions, but he conjectures that for each even integer k ≥ 2, equation φ(n) = φ(n+k) has infinitely
many solutions. Let us add that equation φ(n) = φ(n + k) has very few solutions when k is odd
and divisible by 3; thus by letting Ek be the set of solutions n < 108 of φ(n) = φ(n + k), we have
E3 = {3, 5}, E9 = {9, 15}, E15 = {13, 15, 17, 21}, E21 = {21, 35} and E27 = {27, 45, 55}, while the
cardinality of each of the other sets Ek, 1 ≤ k ≤ 32, is at least 12.
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17

• the third Fermat prime (17 = 222
+1), the first two being 3 and 5: a number of

the form 22k

+ 1, where k is a non negative integer, is called a Fermat number
and is often denoted by Fk (see the number 70 525 124 609); if such a number

is prime, we say that it is a Fermat prime;

• the only prime number which is the sum of four consecutive prime numbers:

17 = 2 + 3 + 5 + 7;

• the exponent of the sixth Mersenne prime (131 071 = 217 − 1) (Cataldi, 1588);

• the smallest Stern number (see the number 137).

18

• the largest known number x for which there exist numbers n ≥ 3, y and q ≥ 2

such that (xn − 1)/(x− 1) = yq; the only known solutions of this last equation

are given by

35 − 1

3 − 1
= 112,

74 − 1

7 − 1
= 202,

183 − 1

18 − 1
= 73

(see Y. Bugeaud, M. Mignotte & Y.Roy [26]);

• the fifth number n such that τ (n) = φ(n) (see the number 8).

19

• the smallest number r which has the property that each number can be written

as x4
1+x4

2+. . .+x4
r, where the xi’s are non negative integers (see the number 4);

• one of the nine known numbers k such that 11 . . . 1︸ ︷︷ ︸
k

is prime: the others8 are 2,

23, 317, 1 031, 49 081, 86 453, 109 297 and 270 343;

• the largest known prime pk such that ν(pk) :=
∏

p≤pk

p + 1

p − 1
is an integer: here,

ν(p8) = ν(19) = 21;

• the exponent of the seventh Mersenne prime (524 287 = 219−1) (Cataldi, 1588).

20

• the smallest solution of σ(n) = σ(n + 6); the sequence of numbers satisfying

this equation begins as follows: 20, 155, 182, 184, 203, 264, 621, 650, 702, 852,

893, 944, 1343, 1357, 2024, 2544, 2990, 4130, 4183, 4450, 5428, 5835, 6149,

6313, 6572, 8177, 8695, . . .

8Such a number k must be a prime, for if it was not, then we would have k = ab with 1 < a ≤
b < k, in which case 10ab−1

9
= 10ab−1

10b−1
· 10b−1

9
, the product of two numbers > 1.
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21

• the smallest integer > 1 whose sum of divisors is a fifth power: here σ(21) = 25;

• the smallest 2-hyperperfect number: a number n is said to be 2-hyperperfect
if it can be written as n = 1 + 2

∑
d|n

1<d<n

d, which is equivalent to the condition

2σ(n) = 3n + 1; the sequence of numbers satisfying this property begins as

follows: 21, 2 133, 19 521, 176 661, 129 127 041, . . . ; more generally, a number

n is said to be hyperperfect if there exists a positive integer k such that

n = 1 + k
∑
d|n

1<d<n

d, (1)

in which case we also say that n is k-hyperperfect 9; the following table contains

some k-hyperperfect numbers along with their factorization:

9A 1-hyperperfect number is simply a perfect number. lt is easy to show that relation (1) is
equivalent to

kσ(n) = (k + 1)n + (k − 1). (2)

Also, it is clear that a prime power pα, with α ≥ 1, cannot be hyperperfect. Furthermore, it follows
immediately from (1) that if n is k-hyperperfect, then n ≡ 1 (mod k) and moreover that

σ(n) = n + 1 +
n − 1

k
. (3)

This last relation proves to be an excellent tool to determine if a given integer n is a hyperperfect
number and also to construct, using a computer, a list of hyperperfect numbers. Indeed, it follows
from (3) that

n is a hyperperfect number ⇐⇒ n − 1

σ(n) − n − 1
is an integer.

It also follows from (3) that the smallest prime factor of such an integer n is larger than k. Indeed,
assume that p|n with p ≤ k. We would then have that n/p is a proper divisor of n, in which case

σ(n) > n + 1 +
n

p
≥ n + 1 +

n

k
> n + 1 +

n − 1

k
= σ(n),

a contradiction. It follows from this that a hyperperfect number which is not perfect is odd.
On the other hand, if n is a square-free k-hyperperfect number, then k must be even. Assume the

contrary, that is that k is odd. As we just saw, n must be odd, unless k = 1, in which case n would
be perfect and even. But then we would have that n = 2p−1(2p − 1) for a certain prime number
p ≥ 3, in which case n would not be square-free. We therefore have that n is odd. Now, because of
(2), we have

kσ(n) = 2

(
k + 1

2
n +

k − 1

2

)
. (4)

If k ≡ 1 (mod 4), then it follows from (4) that

kσ(n) = 2 (odd + even) = 2 × odd,

while if k ≡ 3 (mod 4), then

kσ(n) = 2 (even + odd) = 2 × odd,

which means that 2‖σ(n), in which case n is prime, since n is square-free.
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2-hyperperfect 21 = 3 · 7
2 133 = 33 · 79

19 521 = 34 · 241

176 661 = 35 · 727

129 127 041 = 38 · 19 681

328 256 967 373 616 371 221 = 321 · 31381059607

3-hyperperfect 325 = 52 · 13

4-hyperperfect 1 950 625 = 54 · 3 121

1 220 640 625 = 56 · 78 121

186 264 514 898 681 640 625 = 514 · 30 517 578 121

6-hyperperfect 301 = 7 · 43

16 513 = 72 · 337

60 110 701 = 72 · 383 · 3203

1 977 225 901 = 75 · 117 643

2 733 834 545 701 = 74 · 30893 · 36857

232 630 479 398 401 = 78 · 40353601

10-hyperperfect 159 841 = 112 · 1 321

11-hyperperfect 10 693 = 172 · 37

12-hyperperfect 697 = 17 · 41

2 041 = 13 · 157

1 570 153 = 13 · 269 · 449

62 722 153 = 133 · 28 549

10 604 156 641 = 134 · 371 281

13 544 168 521 = 132 · 2347 · 34147

1 792 155 938 521 = 135 · 4 826 797

• the number of two digit prime numbers; if we let C(k) stand for the num-

ber of k digit prime numbers, then C(1) = 4, C(2) = 21, C(3) = 143,

C(4) = 1 061, C(5) = 8 363, C(6) = 68 906, C(7) = 586 081, C(8) = 5 096 876,

C(9) = 45 086 079, C(10) = 404 204 977, C(11) = 3 663 002 302 and C(12) =

33 489 857 205.

22

• the smallest Smith number: a composite number is said to be a Smith number
if the sum of its digits is equal to the sum of the digits of its distinct prime

factors: here 22 = 2 · 11 and 2 + 2 = 4 = 2 + 1 + 1 (see U.Dudley [72]).

23

• the prime number which appears the most often as the fifth prime factor of an

integer (see the number 199);

• one of the two numbers (the other one being 239) which cannot be written as

the sum of less than nine cubes (of non negative integers): here 23 = 2·23+7·13

(L.E. Dickson [66]);
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• the second number n (and possibly the largest) such that n3 + 1 is a powerful

number (a number is said to be powerful (or squarefull) if p|n implies that p2|n);

the smallest number satisfying this property10 is n = 2;

• one of the nine known numbers k such that 11 . . . 1︸ ︷︷ ︸
k

is prime (see the number 19);

• the largest number which cannot be written as the sum of two non square-free

numbers (see the number 933 for a more general problem).

24

• the only number n > 1 such that 12+22+ . . .+n2 is a perfect square (E. Lucas,

1873) (see the number 70);

• the smallest number m such that equation σ(x) = m has11 exactly three solu-

tions, namely 14, 15 and 23;

• the sixth number n such that τ (n) = φ(n) (see the number 8);

• the smallest solution of σ2(n) = σ2(n + 2) (see the number 1 079);

• the smallest number with at least two digits, having all its digits different from

1 and 0, and whose sum of digits, as well as the product of its digits, divides

n: the sequence of numbers satisfying this property begins as follows: 24, 36,

224, 432, 624, 735, 2232, 3276, 4224, 6624, 23328, 32832, 33264, 34272, 34992,

42336, 42624, 43632, 73332, 82944, 83232, 92232, 93744, . . .

25

• the only odd perfect square �= 1 which is not the sum of three perfect squares

�= 0 (see E. Grosswald [99], Chapter 3);

• the only perfect square which when increased by 2 yields a cube: 52 + 2 = 33;

• the number of prime numbers < 100.

10One can easily prove that if the abc Conjecture is true, then there is only a finite number of
numbers satisfying this property.

11K.Ford & S. Konyagin [82] proved a conjecture of Sierpinski according to which, for each k ≥ 2,
there exists a number m such that equation σ(x) = m has exactly k solutions x. Later, K. Ford
[83] proved that this result is also valid for the Euler φ function; moreover, this time, the proof
also reveals that for each k ≥ 2, there exist infinitely many m’s such that φ(x) = m has exactly k
solutions in x.



10 Jean-Marie De Koninck

26

• the smallest number which is not a palindrome, but whose square is a palin-

drome; a palindrome is a number which reads the same way from the left as

from the right; the first ten numbers n satisfying this property are listed below:

n n2

26 676

264 69696

307 94249

836 698896

2285 5221225

n n2

2636 6948496

22865 522808225

24846 617323716

30693 942060249

798644 637832238736

• the smallest solution of σ(n) = σ(n + 15); it is mentioned in R.K. Guy [101],

B13, that Mientka & Vogt could only find two solutions to this equation,

namely 26 and 62: there are at least seven others, namely 20 840 574, 25 741 470,

60 765 690, 102 435 795, 277 471 467, 361 466 454 and 464 465 910.

27

• the smallest number n such that n and n + 1 each have exactly three prime

factors counting their multiplicity: 27 = 33 and 28 = 22 ·7 (see the number 135

for the general problem with k prime factors instead of only three).

28

• the only even perfect number of the form an + bn, with n ≥ 2 and (a, b) = 1:

in fact, 28 = 13 + 33 (T.N. Sinha [187]).

29

• the smallest prime number p > 2 such that 41p−1 ≡ 1 (mod p2): the only

prime numbers p < 232 satisfying this congruence are 2, 29, 1 025 273 and

138 200 401 (see Ribenboim [169], p. 347).

30

• the smallest Giuga number: we say that a composite number n is a Giuga

number if
∑
p|n

1

p
−
∏
p|n

1

p
is a positive integer: if we could find a number n which

is both a Giuga number and a Carmichael number (which is most unlikely!),

we would then have found a composite number n satisfying the congruence

1n−1 + 2n−1 + . . . + (n − 1)n−1 ≡ −1 (mod n)
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dihedral-perfect, 130
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Erdős-Nicolas, 2016

Euclid, 211

Euler, 272
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Fibonacci, 55
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Hamilton, 923

happy, 1880
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ideal, 390
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Keith, 197
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k-hyperperfect, 21
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Lucas-Carmichael, 399

Markoff, 433

multi-perfect, 140
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Niven, 110
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perfect, 6
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Perrin, 271 441

persistence k, 679

Phibonacci, 1 037

powerful, 23

prime, 2

pseudo-perfect, 12
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Ramanujan, 1 729

Ruth-Aaron, 714

Sastry, 183

self contained, 293

self described, 6 210 001 000

self replicating, 954

Sierpinski, 78 557

Smith, 22

S-perfect, 126

squarefull, 23

square pyramidal, 208 335

star, 121

Stern, 137

sublime, 12

superabundant, 110 880

super-prime, 73 939 133

symmetric, 35853

tetrahedral, 10

triangular, 3

trimorphic, 491

tri-perfect, 120

vampire, 1260

voracious, 1807

unitary hyperperfect, 288

unitary perfect, 6

Wieferich, 16 547 533 489 305

Wilson, 5 971

Woodall, 115

Palindrome (see palindrome number)

Prime

Euler pseudoprime, 1905

Fermat, 17

Fibonacci pseudoprime, 323

irregular, 59

Lucas, 613

Mersenne, 3

regular (see irregular prime)

twin, 35

Wieferich, 1093

Wilson, 5

Wolstenholme, 16 843

Prime Number Theorem, page xvii

Pseudoprime in base a, 91

Riemann Hypothesis, 5041

Riemann Zeta Function, 177

Schinzel Hypothesis (see Hypothesis H)

Strong pseudoprime, 2047

Sub-factorial function, 148 349

Syracuse Conjecture, 41

von Sterneck Conjecture, 7 725 038 629

Waring Problem, 4

Wieferich prime pair, 2903
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