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What You See Is What You Get

2.1 The starting point: mirrors and reflections

I use, as one of the principal running themes of this book, a com-
parison between two approaches to the concept of symmetry as it is
understood and used in modern algebra. The corresponding math-
ematical discipline is well established and is called the theory of
finite reflection groups. The reader should not worry if he or she
has never encountered this name; as will soon be seen, the subject

has many elementary facets.

To start with, the principal objects of the theory can be defined

in the most intuitive way. First I give an informal description:

Imagine a few (semi-transparent) mirrors in ordinary three-
dimensional space. Mirrors (more precisely, their images)
multiply by reflecting in each other, as in a kaleidoscope or
a gallery of mirrors. Of special interest are mirror systems
of which generate only finitely many reflected images. Such
finite systems of mirrors happen to be one of the corner-
stones of modern mathematics and lie at the heart of many
mathematical theories.

As usual, the full theory is concerned with the more general
case of n-dimensional Euclidean space, with 2-dimensional mirrors
replaced by (n — 1)-dimensional Ayperplanes. To that end, we give

a formal definition:

A system of hyperplanes (mirrors or images of mirrors) M
in the Euclidean space R" is called closed if, for any two
mirrors M; and Ms in M, the mirror image of the mirror M,
in the mirror M; also belongs to M (Figure 2.1).
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Thus, the principal objects of the theory are finite closed
systems of mirrors. In more evocative terms, the theory can
be described as the geometry of multiple mirror images. This
approach to symmetry is well known and is found, for exam-
ple, in Chapter 5, §3 of Bourbaki’s classical text [323]', or in
Vinberg’s paper [415]; I have recently used it in my textbook
Mirrors and Reflections [294].

However, closed systems of mirrors are usually known in
mathematics under a different name, and in a completely
different dress, as finite reflection groups. They make up a

Anna Borovik, classical chapter of mathematics, which originated in the
née Vvedenskaya, seminal works of H. S. M. Coxeter [336, 337] (hence yet an-
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other name: finite Coxeter groups). The theory can be based
on the concept of a group of transformations (as is done in many
excellent books; see, for example, [360, 367]) and can be developed
in group-theoretic terms.

The system M of all mirrors of
symmetry of a geometric body A
is closed: the reflection of a mirror
in another mirror is yet another
mirror. Notice that if A is com-
pact (i.e., closed and bounded),
then all mirrors have a point in
common.

Fig. 2.1. A closed system of mirrors. Drawing by Anna Borovik.

So we have two treatments, in two different mathematical lan-
guages, of the same mathematical theory (which I will call Cox-
eter theory). This is by no means an unusual thing in mathematics.
What makes mirror systems/Coxeter groups interesting is that a
closer look at the corresponding mathematical languages reveals
their cognitive (and even neurophysiological!) aspects, much more
obviously than in the rest of mathematics. In particular, as we shall
soon see, the mirror system/Coxeter group alternative precisely
matches the great visual /verbal divide of mathematical cognition.

It is worthwhile to pause for a second over the question of why
we pay special attention to visual and speech processing. The an-
swer is obvious: of all our senses, sight and hearing have the high-
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est information processing rate and are used for communication.
One can only speculate what mathematics would look like if we had
an echolocating capacity (see a discussion of the way bats perceive
the world in a paper by Kathleen Akins [146]). This is even more
mind-boggling: try to imagine that humans have electric sensing
and communicating facilities of the kind that Nile elephant fish
Gymnarchus niloticus have and therefore that we live in a land-
scape made not of shapes and volumes (sight is of no use in the
murky waters of the Nile) but of electromagnetic capacities and
conductivities.? Would the concepts and results of vector calculus
be self-evident to us? And a further question can be asked: which
immediately intuitive mathematical concepts would become less
intuitive? In Section 4.4 I attempt to suggest a partial answer to
this question.

I wish to stress that, although the theory of Coxeter groups for-
mally belongs to “higher” mathematics, the issues raised in the
next two chapters are relevant to the teaching and understanding
of mathematics at all levels, from elementary school to graduate
studies. Indeed, I will be talking about such matters as geomet-
ric intuition. I will also touch on the role of pictorial proofs and
self-explanatory diagrams; some of these may seem naive, but, as
I hope to demonstrate, they frequently lead deep into the heart of
mathematics (see Section 2.6 for one of the more striking cases).

2.2 Image processing in humans

The mirror is one of the most powerful and evocative sym-
bols of our culture; seeing oneself in a mirror is equated to
self-awareness. But the reason why the language of mirrors
and reflections happens to be so useful in the exposition of
mathematical theories lies not so much at a cultural as at a
psychophysiological level.

How do people recognize mirror images? Tarr and Pinker
[235] showed that recognition of mirror images of planar
shapes is done by subconscious mental rotation of 180°
about an appropriately chosen axis. Remarkably, the brain
computes the position of this axis!

This is how Pinker describes the effect of their simple
experiment.

So we showed ourselves [on a computer screen] the Erich Ellers,

standard upright shape alternating with one of its
mirror images, back and forth once a second. The
perception of flipping was so obvious that we didn’t bother
to recruit volunteers to confirm it. When the shape alter-
nated with its upright reflection, it seemed to pivot like
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a washing machine agitator. When it alternated with its
upside-down reflection, it did backflips. When it alternated
with its sideways reflection, it swooped back and forth
around the diagonal axis, and so on. The brain finds the
axis every time. [218, pp. 282—283]

Interestingly, the brain does exactly the same with randomly
positioned three-dimensional shapes, provided they have the same
chirality (that is, both are of left-hand or right-hand type, as gloves,
say) and can be identified by a rotation [233]. The interested reader
may wish to take any computer graphics package which allows an-
imation and see it for himself or herself.3

In view of these experiments, it is difficult to avoid the conclu-
sion that Euler’s classical theorem is hardwired into our brains:

If an orientation-preserving isometry of the affine Euclidean
space AR® has a fixed point, then it is a rotation around
some axis.

This illusion of rotation disappears when the brain faces the
problem of the identification of three-dimensional mirror images of
opposite chirality; indeed, they can still be identified by an appro-
priate rotation, but, this time, in four-dimensional space. The envi-
ronment which directed the evolution of our brain never provided
our ancestors with four-dimensional experiences.

Human vision is a solution of
an ill-posed inverse problem of re-

It is dlifficult fo avoid the conclusion that
Euler’s Theorem is hardwired into our

brdins.

covering information about three-
dimensional objects from two-dim-
ensional projections on the retinas of
the eyes. Pinker stresses that this

problem is solvable only because of
the multitude of assumptions about
the nature of the objects and the world in general built into the
human brain or acquired from previous experiences.*

The algorithm of the identification of three-dimensional shapes
is only one of many modules in the immensely complex system of vi-
sual processing in humans. It is likely that various modules are im-
plemented as particular patterns of connections between neurons.
It is natural to assume that different modules developed at differ-
ent stages of evolution [234]. The older ones are likely to be simpler
and involve relatively simple wiring diagrams. But since they had
adaptive value, they were inherited and they acted as constraints
in the evolution of later additions to the system, in particular any
new modules which happened to process the outputs of, and inter-
act with, the pre-existent modules. At every stage, evolution led
to the development of an algorithm for solving a very special and
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narrow problem. Of course, the evolution is guided by the univer-
sal and basic principle of the survival of the fittest. But, translated
into selection criteria for the gradual improvement of light-sensing
organs, the general principle became highly specialized and chang-
ing over time. First it favored higher sensitivity to diffuse light of
a few cells which previously had quite different functions; at the
next step of evolution it favored individuals with light-sensitive
cells positioned in a more efficient way and, most probably, only
after that, started to favor individuals who had some mechanism
for discriminating between light stimuli applied to different groups
of cells. Therefore we should expect that the image processing al-
gorithms of our brain have a multilayered structure which reflects
their ontogenesis—and, not unlike many modern software systems,
are full of outdated “legacy code”.

The “flipping” algorithm for the recognition of mirror images of
a flat object and the closely related (and possibly identical) “rota-
tion” algorithm for making randomly orientated three-dimensional
objects coincide provide rare cases where we can glimpse the in-
ner workings of our mind. Observe, however, that the algorithms
are solutions of relatively simple mathematical problems with a
very rigid underlying mathematical structure, namely, the group of
isometries of three-dimensional Euclidean space. There is no ana-
logue of Euler’s Theorem for four-dimensional space!®

The reader has possibly noticed that I prefer to use
the term “algorithm” rather than “circuit”, emphasizing
the strong possibility that a given algorithm can be imple-
mented by different circuit arrangements if some of the ar-
rangements become impossible as the result of trauma, es-
pecially during the early stages of a child’s development.

Studies of compensatory developments are abundant in
the literature. When I was looking for some recent studies,
my colleague David Broomhead directed me to the paper
[182], a case study of a young woman who has been un-
able to make eye movements since birth but has surpris-
ingly normal visual perception. This is astonishing because

the so-called saccadic movements of the eyes are crucial for .4 Broomhead

tracing the contours and the key features of objects. Try to
experiment with a mirror: you will not see your eyes moving.
During each saccade, the eye is in effect blind. We see the world
frame-by-frame, as in the cinema. The continuity of the moving
world is the result of the work of sophisticated interpolating rou-
tines integrated into the visual processing modules of our brain.
Not surprisingly, continuity is one of the most intuitive (although
hard to formalize) concepts of mathematics.

The woman in the study reported in [182] compensates for her
lack of eye movement by quick movements of her head which follow
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Erich Ellers,
aged 15

the usual highly regular patterns of saccadic movements. I quote
from the paper: “Her case suggests that saccadic movements, of the
head or the eye, form the optimal sampling method for the brain”.
The italics are mine, since I find the choice of words very sugges-
tive: mathematics is encroaching on the inner working of the brain,
raising some really interesting metamathematical questions.

2.3 A small triumph of visualization: Coxeter’s
proof of Euler’s Theorem

If you need convincing that visualization is a purposeful tool in
learning, teaching, and doing mathematics, there is no better ex-
ample than the proof of Euler’s Theorem as given by Coxeter [338,
p. 36]; I quote it verbatim. Remember that Coxeter’s book was first
published in 1948, so it was written for readers who were likely to
have taken a standard course of Euclidean geometry and therefore
had developed their geometric imagination.

In three dimensions, a congruent transformation that
leaves a point O invariant is the product of at most three
reflections: one to bring together the two x-axes, another
for the y-axes, and a third (if necessary) for the z-axes.

Since the product of three reflections is opposite, a di-
rect transformation with an invariant point O can only be
the product of reflections in fwo planes through O, i.e., a
rotation.

I add just a few comments to facilitate the translation
into modern mathematical language: a congruent transfor-
mation is an isometry; a direct transformation preserves
the orientation (chirality), while an opposite transformation
changes it. Coxeter refers to the fact that the product of two
mirror reflections is a rotation about the line of intersection
of the mirrors. This is something that everyone has seen in
a tri-fold dressing table mirror; the easiest way to prove the
fact is to notice that the product of two reflections leaves
invariant every point on the line of intersection of the mir-
rors.%

We humans are blessed with a remarkable piece of math-
ematical software for image processing directly hardwired
into our brains. Coxeter made full use of it and expected the
reader to use it, in his lightning proof of Euler’s Theorem.
(See a further discussion of Coxeter’s proof in Section 6.3.)
The perverse state of modern mathematics teaching is that “geo-
metric intuition”, the skill of solving geometric problems by looking
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at (simplified) two- and three-dimensional models, has been largely

expelled from the classroom practice.”
However, our geometric intuition

involves at least two quite different

(although closely related) cognitive
components: visual processing and
motor control. The latter is paradox-
ical; our hands can move and act
with extreme precision, but we re-

The perverse state of modern mathemat-
ics teaching is that “geometric intuition”
hus been largely expelled from class-
room practice.

ceive much less information feedback
from the feeling of the motion itself or
from the position of our body and hands.

To illustrate mathematical implications of this difference, I offer
a small problem directly related to Euler’s Theorem. I quote it from
the book by David Henderson and Daina Taimina [272], where it is
discussed in a slightly different context:

When grinding a precision flat mirror, the following method
is sometimes used: Take three approximately flat pieces of
glass and put pumice between the first and second pieces
and grind them together. Then do the same for the second
and the third pieces and then for the third and first pieces.
Repeat many times and all three pieces of glass will become
very accurately flat.

€

£ (N
N

Fig. 2.2. Grinding a plane mirror (after David Henderson and Daina
Taimina [272]).

See Figure 2.2. Now close your eyes and try to imagine your
hands gently sliding one piece of glass all over the other. Do you
see why this works?

Now I separate the question into two sub-questions, which, I
believe, refer to two different levels of our intuition.
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(A)Why do we need three pieces of glass to achieve perfect flat-
Indeed, why? ness?| [?]

(B)Here is a trickier question: if only two pieces of glass are used,
and the resulting surface is not plane, then (assuming that the

H Answer it! H grinding was thorough and even) what is this surface?| [?]

The reader may wish to ponder these
questions for a while; I give the an-
swers in Section 4.5.

I am writing this book because
I believe it is futile to talk about
mathematical practice without first
acknowledging that mathematics is
an activity of the human mind and,
in particular, the human brain. But
our mind—or our cognitive system—is not homogeneous: its dif-
ferent parts developed at different stages of evolution, they have
different levels of sophistication, an interaction between different
modules is frequently awkward. We will not get much understand-
ing of how mathematics lives in our minds without taking into ac-
count all the complexities and limitations of its constituent parts.

It is futile to taulk ubout muthematical
practice without first acknowledging that
it can only be uhderstood dlohgside its
interaction with the human brain.

2.4 Mathematics: interiorization and
reproduction

What is Mathematics, Really?
Reuben Hersh [48]
But Didactylos posed the famous philosophical conundrum:

“Yes, But What'’s It Really All About, Then,
When You Get Right Down To It,
I Mean Really?”

Terry Pratchett [434, p. 167]

I have already quoted Davis and Hersh [21, p. 399], to say that
mathematics is

the study of mental objects with reproducible properties.

A famous mathematician, David Mumford, uses this formula-
tion in his paper [72, p. 199] and further comments on it:

I love this definition because it doesn’t try to limit math-
ematics to what has been called mathematics in the past
but really attempts to say why certain communications are
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classified as math, others as science, others as art, others as
gossip. Thus reproducible properties of the physical world
are science whereas reproducible mental objects are math.
Art lives on the mental plane (the real painting is not the
set of dry pigments on the canvas nor is a symphony the se-
quence of sound waves that convey it to our ear) but, as the
post-modernists insist, is reinterpreted in new contexts by
each appreciator. As for gossip, which includes the vast ma-
jority of our thoughts, its essence is its relation to a unique
local part of time and space.

If we accept this definition of mathematics, then we have to ad-
dress two intertwined aspects of learning and mastering mathe-
matics:

e the development of reproduction techniques for our own mental
objects,
e interiorization of other people’s mental objects.

There is a natural hierarchy of the methods of reproduction. A
partial list in roughly descending order includes: proof; axiomati-
zation; algorithm; symbolic and graphic expression. I wish to make
it clear that reproduction is more than communication: you have to
be able to reproduce your own mental work for yourself. Maybe it
even makes sense to view recovery procedures for lost or forgotten
mathematical facts as a distinct group of reproduction methods, as
they have very specific features; see Chapter 9 for a more detailed
discussion of recovery procedures.

Interiorization is less frequently
discussed. For our purposes, we men-
tion only that it includes visualiza-
tion of abstract concepts; transfor-

Interiorization is more than uhderstand-
mation of formal conventions into ing; T © handle mufhe‘muf‘l'CUI objects er-

. « fectively, one hus to imprint ut leust some
psychologically acceptable “rules of of their fuhctions ut the subconscious

the game”; development of subcon- o/ of one’s mind.
scious “parsing rules” for process-
ing strings of symbols (most impor-
tantly, for reading mathematical ex-
pressions). At a more mundane level, one cannot learn an advanced
technique of symbolic manipulation without first polishing one’s
skills in more routine computations to the level of almost automatic
perfection. Interiorization is more than understanding; to handle
mathematical objects effectively, one has to imprint at least some
of their functions at the subconscious level of one’s mind.

My use of the term “interiorization” is slightly different from
the understanding of this word, say, by Weller et al. [142]. I put em-
phasis on the subconscious, neurophysiological components of the
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process. Meanwhile, I am happy to borrow from [142] the terms en-
capsulation (and the reverse procedure, de-encapsulation) to stand
for the conversion of a mathematical procedure, a learned sequence
of action, into an object. The processes of encapsulation and de-
encapsulation are one of the principal themes of the book; see Sec-
tion 6.1 for a more detailed discussion.

It has to be clarified that re-
production does not mean repetition.

It is a populdar misconception that muthe-
muatics is a dull repetitive activity.

It is a popular misconception that
mathematics is a dull repetitive ac-
tivity. Actually, mathematicians are

easily bored by repetition. Perhaps
this could create some difficulty in
neurological studies of mathematics.
Certain techniques for study of patterns of activation of the brain
are easier to implement when the subject is engaged in an activ-
ity which is relatively simple and can be repeated again and again,
so that the data can be averaged and errors of measurements sup-
pressed. This works in studies like [203] which compared activation
of the brains of amateur and professional musicians during actual
or imagined performance of a short piece of violin music. Indeed,
you can ask a musician to play the same several bars of music 10,
20, perhaps even 100 times—this is what they do in rehearsals.
But it is impossible to repeat the same calculation 20 times: very
soon the subject will remember the final and intermediate results.
Moreover, most mathematicians will treat as an insult a request to
repeat a similar calculation 20 times with varying data.

Some mathematical activities are
of a compound nature and can be

Proof is the key ingredient of the emo-
tiondl side of mathemdatics.

used as means of both interiorization
and reproduction. A really remark-
able one is the generation of exam-

ples, especially very simple (ideally,
the simplest possible) examples—as
discussed in Section 1.1. Really useful examples can be loosely di-
vided into two groups: “typical”, generic examples of the theory; or
“simplest possible”, almost degenerate examples, which emphasize
the limitations and the logical structure of the theory. Of course,
one of the attractive features of Coxeter Theory is that it is satu-
rated by beautiful examples of both kinds; I discuss some “simplest”
cases in Section 2.6.

Proof, being the highest level of reproduction activity, has an im-
portant interiorization aspect: as Yuri Manin stresses in his book
Provable and Unprovable, a proof becomes such only after it is ac-
cepted (as the result of a highly rigorous process) [383, pp. 53-54].
Manin describes the act of acceptance as a social act; however, the
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importance of its personal, psychological component can hardly be
overestimated. One also should note that proof is the key ingre-
dient of the emotional side of mathematics; proof is the ultimate
explanation of why something is true, and a good proof often has
a powerful emotional impact, boosting confidence and encouraging
further questions “why?”.

Visualization is one of the most powerful techniques for
interiorization. It anchors mathematical concepts and ideas
firmly into one of the most powerful parts of our brain, the
visual processing module. Returning to the principal exam-
ple of this book, mirrors and reflections, I want to point
out that finite reflection groups allow an approach to their
study based on a systematic reduction of this whole range of
complex geometric configurations to simple two- and three-
dimensional special cases. Mathematically this is expressed
by a theorem:

a finite reflection group is a Coxeter group.

Satyan L. Devadoss,

Avoiding a technical discussion, this means, in particu-

aged 3.
lar, that all relations between elements in a reflection group ® Sityan L.
are consequences of relations between pairs of generating Devadoss

reflections. But a pair of mirrors in the n-dimensional Eu-
clidean space is no more sophisticated a configuration than a pair
of lines on the plane, and all the properties of the former can be
deduced from that of the latter. This provides a mathematical ex-
planation of why visualization is such an effective tool in the theory
of finite reflection groups.

2.5 How to draw an icosahedron on a blackboard

My understanding of visualization as an interiorization technique
leads me to believe that drawing pictures, and devising new kinds
of pictures to draw, is an important way of facilitating mathemat-
ical work. This means that pictures have to be treated as mathe-
matical objects and, consequently, must be reproducible. Students
in the classroom should be able to draw right away the figures we
put on the blackboard.

I have to emphasize the difference between drawings or sketches
which are supposed to be reproduced by the reader or student
and more technically sophisticated illustrative material (I will call
these illustrations), especially computer-generated images designed
for the visualization of complex mathematical objects (see a book by
Bill Casselman [327] for an introduction into the art of illustrating
mathematical texts). It would be foolish to impose any restrictions
on the technical perfection of illustrations. However, one should be
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Fig. 2.3. What different nations eat and drink. A statistical diagram
from a calendar published in Austro-Hungaria in 1901. Source: Marija
Dalbello [19], reproduced with permission. See [20] for a discussion of the
historical context.

This style of graphical representation of quantitative information strikes
us now as patronizing and non-mathematical. It would be interesting

to trace the cultural change over the 20th century: why do we expect a
much more slim and abstract mode of presentation of information? Is
this a result of the visual information overload created by TV and the
Internet? It is worth mentioning that the level of basic numeracy in the
middle classes of the Austro-Hungarian Empire, the target readership of
the Sareni sujetski koledar, was almost definitely higher than in modern
society.

aware of the danger of excessive details; as William Thurston—one
of the leading geometers of our time—stresses,

words, logic and detailed pictures rattling around can in-
hibit intuition and associations. [94, p. 165]

For that reason I believe that drawings should be intentionally very
simple, even primitive. Mathematical pictures represent mental ob-
jects, not the real world! In the words of William Thurston,

[people] do not have a very good built-in facility for inverse
vision, that is, turning an internal spatial understanding
back into a two-dimensional image. Consequently, mathe-
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maticians usually have fewer and poorer figures in their
papers and books than in their heads. [94, p. 164]

We have to be careful with our drawings and make sure that they
correctly represent our “internal spatial understanding”.

Fig. 2.4. Vision vs. “inverse vision”: (a) a picture by Nadia (Drawing
3 from Selfe [228], © 1977 Elsevier, reproduced with permission) as
opposed to (b) a picture by a normal child (Snyder and Mitchell [231],
reproduced with permission). See [231] for a detailed discussion.

The pictures in Figure 2.4, taken from Selfe [228] and Snyder
and Mitchell [231], illustrate the concept of “inverse vision” as in-
troduced by Thurston. The picture (a) on the left is drawn from
memory by Nadia, a three-and-a-half year old autistic child who at
the time of making the picture has not yet developed speech [228].
Picture (b) is a representative drawing of a normal child, at age
four years and two months. It is obvious that a normal child draws
not a horse, but a concept of a horse.

Fig. 2.5. Horses by Nadia, at age of 3 years 5 months (Drawing 13 from
Selfe [228], © 1977 Elsevier, reproduced with permission).
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Fig. 2.6. Horses from Chauvet Cave (Ardeche). Document elaborated
with the support of the French Ministry of Culture and Communication,
Regional Direction for Cultural Affairs—Rhone-Alpes, Regional Depart-
ment of Archaeology.

Nicholas Humphrey [195] drew even bolder conclusions from
Nadia’s miraculous drawings. He observed that Nadia’s pictures
have a most suggestive resemblance to cave paintings of 30,000—
20,000 years ago—compare Figures 2.5 and 2.6. Humphrey conjec-
tured that human language developed in two stages. At the first
stage it referred only to people and relations between people; the
natural world (including animals) had no symbolic representations
in the language and therefore early people had no symbols for the
external world. Cave paintings such as the one in Figure 2.6, are
symbolically unprocessed images on the retina of the painter’s eye,
placed one over another without much coordination or a coherent
plan. At the same time, people could already have words and sym-
bols which referred to other people—which is consistent with the
simultaneous presence, in some cave paintings, of strikingly real-
istic animals and highly schematic human figures; see Figure 2.7.

Mathematical pictures are sym-
bolic images, not representations of
reality. Like a matchstick human in
Figure 2.7, they are produced by “in-
verse vision”. I dare to say that they
do not belong to art. I propose that
image processing which leads to the
creation of paintings and drawings in
the visual arts is different from that of mathematics.® Mathemati-
cal pictures therefore should not provoke an inferiority complex in
readers who have not tried to draw anything since their days in ele-

Mathemdaticdl pictures dre symbolic im-
ages, hot representations of redility.
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Fig. 2.7. A symbolic human and a naturalistic bull. Rock painting of a
hunting scene, c. 17000 BC/ Caves of Lascaux, Dordogne, France. Source:
Wikipedia Commons. Public domain.

mentary school; they should instead act as an invitation to readers
to express their own mental images.

Figure 2.8 illustrates the most effective way of drawing an icosa-
hedron, so simple that it is accessible to the reader with very mod-
est drawing skills. First we mark symmetrically positioned seg-
ments in an alternating fashion on the faces of the cube (left) and
then connect the endpoints (right). The drawing actually provides
a proof of the existence of the icosahedron: varying the lengths of
segments on the left cube, it is easy to see from continuity prin-
ciples that, at a certain length of the segments, all edges of the
inscribed polyhedron on the right become equal.| [?] | Moreover,
this construction helps to prove that the group of symmetries of
the resulting icosahedron is as big as one would expect it to be; see
[294] for more details.

Figure 2.8 works as a proof because it is produced by “inverse
vision”. To draw it, you have to run, in your head, the procedure
for the construction of the icosahedron. And, of course, the conti-
nuity principles used are self-evident—they are part of the same
mechanisms of perception of motion which glue, in our minds, the
cinema’s 24 frames per second into continuous motion.

I hope that now you will agree that Figure 2.8 deserves to be
treated as a mathematical statement. It is useful to place it in a
wider context. Notice that construction of the icosahedron is the
same thing as construction of the finite reflection group Hs; this
can be done by means of linear algebra—which leads to rather
nasty calculations—or by means of representation theory—which

In a unit cube,
find the length
of the segments
which makes
all triangle
faces equi-
lateral; Fig-
ure 2.8.




38

2 What You See Is What You Get

Fig. 2.8. A self-evident construction of an icosahedron. Drawing by Anna
Borovik.

This construction of the icosahedron is adapted from the method of H. M.
Taylor [47, pp. 491-492]. John Stillwell has kindly pointed out that it
goes back to Piero della Francesca and can be found in his unpublished
manuscript Libellus de quinque corporibus regolaribus from around 1480.

requires some knowledge of representation theory. It also can be
done by quaternions—which is nice and beautiful but requires
knowledge of quaternions. The graphical construction is the sim-
plest; using computer jargon, it is a WYSIWYG (“What You See Is
What You Get”) mode of doing mathematics, which deserves to be
used at every opportunity.

2.6 Self-explanatory diagrams

This section is more technical and can be skipped.

Self-explanatory diagrams have been virtually expunged from
modern mathematics. I believe they can be useful, not only in
proofs, etc., but also as the means of a metamathematical discus-
sion of the structure and interrelations of mathematical theories.

Figure 2.9 is one example, taken from Mirrors and Reflections
[294]: the isomorphism of the root systems D3 (shown on the left,
inscribed into the unit cube [—1,1]®) and A3 is not immediately
obvious, but the corresponding mirror systems coincide most obvi-
ously. The mirror system D3 (the system of mirrors of symmetry
of the cube) is shown in the middle by tracing the intersections of
mirrors with the surface of the cube and, on the right, by inter-
sections with the surface of the tetrahedron inscribed in the cube.
Comparing the last two pictures, we see that the mirror system of
type Dj3 is isomorphic to the mirror system of the regular tetrahe-
dron, that is, to the system of type As.
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As we shall soon see, this isomorphism has far-reaching impli-
cations.

Fig. 2.9. An example of a self-explanatory diagram. Drawing by Anna
Borovik.

Indeed, at the level of complex Lie groups the isomorphism
D3 ~ As becomes a rather mysterious isomorphism between the
six-dimensional orthogonal group SOg(C) and 1SL4(C), the factor
group of the four-dimensional special linear group SL4(C) by the
group of scalar matrices with diagonal entries +1 (or, if you prefer
to work with spinor groups, between Sping(C) and SL4(C)).

This is not yet the end of the story. The compact form of SL4(C)
is SU4, and hence the embedding

SU4 < Sping(C)

features prominently in the representation theory of SU,, and
hence in the SU4-symmetry formalism of theoretical physics.

But the underlying reason for the isomorphisms retains all the
audacity of Keplerian reductionism: the tetrahedron can be in-
scribed into the cube. Compare with Figure 2.10.

Because of their truly fundamental role in mathematics, even
the simplest diagrams concerning finite reflection groups (or finite
mirror systems, or root systems—the languages are equivalent)
have interpretations of cosmological proportions. Figure 2.11 is
even more instructive. It is a classical case of the simplest possible
example as discussed in Chapter 1. For example, it is the simplest
rank 2 root system, or the simplest root system with a non-trivial
graph automorphism; the latter, as we shall see in a minute, has
really significant implications.

Figure 2.11 also demonstrates that the root system D, =
{+e1 £ e } is isomorphic to A1 & Ay = {+e1, Les }. At the level
of Lie groups, this isomorphism plays an important role in the de-
scription of the structure of four-dimensional space-time of special
relativity; namely, it yields the structure of the Minkowski group
(the group of isometries of the four-dimensional space-time of spe-
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Fig. 2.10. A fragment of a famous engraving from Kepler’s Mysterium
Cosmographicum. Public domain.

cial relativity theory with the metric given by the quadratic form
z? %+ 2% —t?).

—€1 + €2 €2 €1 + €2

—€] — €3 —€n €1 — €2

Fig. 2.11. This diagram demonstrates the isomorphism of the root sys-
tems Dy = {£e1 £ 62} and A1 @ A1 = {%e1, £es }. Drawing by Anna
Borovik.

Indeed, the isomorphism of root systems Dy ~ A; & A; leads to
the isomorphisms

Spin, (C) ~ SLy(C) x SL2(C)

and
S04(C) =~ SL2(C) ® SL2(C)
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(the tensor product of two copies of SL2(C), each acting on its
canonical two-dimensional space C?). The connected component
of the Minkowski group is a real form of SO4(C). Hence it is the
group of fixed points of some involutory automorphism 7 of the
group SO4(C). What is this automorphism 7? Let us look again at
the quadratic form z? +y% + 22 — t2; it is a real form of the complex
quadratic form 27 + 22 + 22 + 2% but has lost the symmetric pattern
of coefficients. One can see that this means that 7 swaps the two
copies of SLy(C) in SL2(C) ® SL2(C) and therefore has to be the
symmetry between the two diagonals of the square in Figure 2.11.
Being an involution, 7 fixes pointwise the “diagonal” subgroup in
SL2(C) ®SL2(C) isomorphic to PSL2(C). (It is PSLy(C) rather than
SL2(C) because its center (—Id ® —Id) is killed in the tensor prod-
uct.) Hence the connected component of the Minkowski group is
isomorphic to PSLy(C).
Three cheers for Kepler!

Notes

LGroupes et Algebras de Lie, Chap 4, 5, et 6 is one of the better books by
Bourbaki; it even contains a drawing, in an unexpected deviation from his
usual aesthetics. See an instructive discussion of the history of this volume
by its main contributor, Pierre Cartier [87].

2See discussion of electromagnetic imaging in fish in Nelson [209], Ras-
now and Bower [221].

3To reproduce Tarr’s experiments, I was using PAINTSHOP PRO, with
three-dimensional images produced by XARA, two software packages
picked up from the cover CD of a computer magazine.

*PICTORIAL PROOFS. Jody Azzouni [5, p. 125] commented on pictorial
proofs that they work only because we impose many assumptions on dia-
grams admissible as part of such proofs. As he put it:

We can conveniently stipulate the properties of circles and take
them as mechanically recognizable because there are no ellipses
(for example) in the system. Introduce (arbitrary) ellipses and it
becomes impossible to tell whether what we have drawn in front
of us is a circle or an ellipse.

It is likely that his remark would not surprise cognitive psychologists; they
believe that this is what our brains are doing anyway.

SFOUR-DIMENSIONAL INTUITION. Here is an interesting question: can
one be habituated in a four-dimensional space (say, with a flight simu-
lator). Of course, a three-dimensional image, stereo or holographic, could
help. To put the point more radically, do we learn the number of dimen-
sions?

SEULER’S THEOREM. I accept that the reader has every right to insist,
if so inclined, that the “best” way to prove Euler’s Theorem is by reduction
to algebra: the characteristic polynomial of a “generic” three-dimensional
orthogonal matrix is a cubic with real coefficients, hence has a real root and
a pair of conjugate complex roots; the orthogonality means that the eigen-
values have magnitude 1, hence should be equal to +1 and cosf + isin 6.
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If the matrix has determinant +1, then the real eigenvalue is +1, and the
corresponding eigenvector gives the direction of the axis of rotation, while
0 is the angle of rotation. But is that really better than Coxeter’s proof?

7VVHY WAS GEOMETRIC INTUITION EXPELLED FROM CLASSROOM? One
of the reasons is the predominance of written examinations. There are no
intrinsic pedagogical reasons why oral examinations are inferior to writ-
ten examinations: written assessment dominates the modern teaching be-
cause it creates a convenient audit trail. In a written examination, purely
“algebraic” solutions are easier to write down and easier to mark. In an
oral exam, a candidate’s awkward sketch on a blackboard may be worth a
thousand words.

As a result of the degradation of academic practice under the pressure
of the audit culture, I have seen courses in linear programming taught
without any reference to the geometric interpretation of its principal con-
cepts.

8The situation could be different in ornamental art, especially when
images of other people and of the natural world are prohibited by cultural
conventions or religion. The creators of the Islamic mosaics in the Alham-
bra had in fact discovered most of the planar crystallographic groups—an
intellectual achievement which firmly places their work in the realm of
mathematics. See Branko Grinbaum [42] for one of the most up-to-date
discussion of symmetry groups present in the Alhambra. Also, Lu and
Steinhardt [66] discuss an even more striking discovery of medieval Is-
lamic architecture: quasi-periodic tilings.
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The Wing of the Hummingbird

3.1 Parsing

So far I have emphasized the role of visualization in mathematics
and its power of persuasion. Here I will try to unite the visual and
symbolic aspects of mathematics and touch upon the limitations of
visualization.

Indeed, visualization works perfectly well in the geometric the-
ory of finite reflection groups, but it needs to be refined for the more
general theory of infinite Coxeter groups. We take a brief look at
this more general theory, which is of special interest to us at this
point. As truly fundamental mathematical objects, Coxeter groups
provide an example of a theory where the links between mathemat-
ical teaching and learning and cognitive psychology lie exposed.
Besides the power of geometric interpretation and visualization,
the theory of Coxeter groups relies on manipulation of words in
canonical generators (chains of consecutive reflections, in the case
of reflection groups) and provides one of the best examples of the
effectiveness of the language metaphor in mathematics.

It is tempting to try to link the psychology of symbolic manip-
ulation in mathematics with the Chomskian conjecture that hu-
mans have an innate facility for parsing human language. Basi-
cally, parsing is the recognition/identification of the structure of a
string of symbols (phonemes, letters, etc.). We parse everything we
read or hear. Here is an example from Steven Pinker’s book [219,
pp. 203—205] where this thesis is vigorously promoted:

Remarkable is the rapidity of the motion of the wing of the
hummingbird.

To make sense of the phrase, we have to mentally bracket sub-
phrases, resulting in something like the following:

43
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Gregory Cher-
lin kindly of-
fered a brain-
teaser from his
childhood:
Punctuate:
Smith where
Jones had had
had had had
had had had
had had had
the professor’s
approval.

[Remarkable is
[the rapidity of
[the motion of
[the wing of
[the hummingbird]]]]].

A sentence might have a different bracket pattern. Just compare
[Remarkable is [the rapidity of [the motion]]]

and
[[The rapidity [that [the motion] has]] is remarkable].

Some patterns are harder to deal with than others: for example,

[[The rapidity that [the motion that [the wing] has] has] is re-
markable].

Some bracketings are close to incomprehensible, even though the
sentence conveys the same message:

[[The rapidity that [the motion that [the wing that [the hum-
mingbird] has] has] has] is remarkable].| [?] | !

Different human languages have different grammars, resulting
in different parsing patterns. The grammar is not innate; Pinker
emphasizes that what is innate is the human capacity to generate
parsing rules. The generation of parsing patterns is a part of lan-
guage learning (and young children are extremely efficient at it).
It is also a part of the interiorization of mental objects of mathe-
matics, especially when these objects are represented by strings of
symbols.?

Cognitive scientists are very much attracted to case studies of
“savants”, autistic persons with an ability to handle arithmetic or
calendrical calculations disproportionate to their low general 1Q.
As Snyder and Mitchell formulated it [231],

...savant skills for integer arithmetic . .. arise from an abil-
ity to access some mental process which is common to us all,
but which is not readily accessible to normal individuals.

What are these “hidden” pro-
cesses? In one of the extreme cases

The pdursing mechanisms of the human
brdin dre the key to the uhderstanding of
low-level arithmetic and formuld process-

ing.

(mentioned by Butterworth [160]), a
severely autistic young man was un-
able to understand speech, but he
could handle factors and primes in
numbers. This suggests that certain

mathematical actions are related not
so much to language itself, but to the
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parsing facility, one of the components of the language system. An
autistic person may have difficulty in handling language for rea-
sons unrelated to his parsing ability; for example he may fail to
recognize the source of speech communication as another person (or
to understand the difference between what he knows and what the
other person knows). But, in order to achieve such feats as “dou-
bling 8 388 628 up to 24 times to obtain 140 737 488 355 328 in
several seconds” [231, p. 589], an autistic person still has to be able
to input into his brain the numbers given, inevitably, as strings of
phonemes or digits.

I propose a conjecture that the parsing mechanisms of
the human brain are the key to the understanding of low-
level arithmetic and formula processing.

Moving several levels up the hierarchy of mathematical
processes, we have a fascinating idea in the theory of auto-
matic theorem proving: rippling, a formalization of a com-
mon way of mathematical reasoning where “formulae are
manipulated in a way that increases their similarities by in-
crementally decreasing their differences” [325, p. 13]. This is
facilitated by subdividing the formula into parts which have
to be preserved and parts which have to be changed. Again,
we see that in order to understand how humans use rip-
pling in mathematical thinking (and whether they actually
use it), we have to understand how our brains parse mathe-
matical formulae.

To be on the cautious side, I am prepared to accept that pars-
ing might be much more prominent in the input/output functions of
the brain than in the internal processing of information. In a rare
case of a savant with higher than normal general intellectual abili-
ties, Daniel Tammet is able to vividly describe the way he perceives
the world, language, and numbers. It is obvious from his words
that number processing happens to be directly wired into the vi-
sual module of his brain. For him, many numbers have a unique
visual form.

“Different numbers have different colours, shapes and tex-
tures ... [The number] one is very bright and shining, like
someone flashing a light into my face. Two is like a move-
ment from right to left. Five is a clap of thunder or the
sound of a wave against a rock. Six I find more difficult:
it’s more like a hole or a chasm. When I multiply numbers,
I see two shapes in a landscape. The space between the im-
ages makes a third shape, like a jigsaw piece. And that third
shape gradually crystallises: I see a fuzziness that becomes
clearer and clearer.” [430]

David Pierce,
aged 6
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He adds that the whole process takes place in a flash, “like sparks
flying off”.

Although Daniel Tammet suffers from Asperger’s syndrome (a
form of autism) which to some degree inhibits his social skills—
he has to remind himself that other people have thoughts entirely
separate from his own and not to assume that they automatically
know everything he knows—he has outstanding linguistic skills,
speaks seven languages, and learned Icelandic in a week. He can
also recite 7 to 22,514 decimal places. His case appears to confirm
the thesis by Snyder and Mitchell; indeed, he has “an ability to

access some mental process ... which is not readily accessible to
normal individuals”. This very access, however, requires parsing of
the input.

3.2 Number sense and grammar

I turn to another remarkable insight from cognitive psychology,
which links mechanisms of language processing to mastering arith-
metic.

When infants learn to speak (in English) and count, there is a
distinctive period, lasting five to six months, in their development,
when they know the words one, two, three, four but can correctly
apply only the numeral “one”, when talking about a single object;
they apply the words “two, three, four”, apparently at random, to
any collection of more than one object. Susan Carey [162] calls the
children at this stage one-knowers. The most natural explanation is
that they react to the formal grammatical structures of the adults’
speech: one doll, but two dollS, three dollS. At the next stage of de-
velopment, they suddenly start using the numerals two, three, four,
five correctly. Chinese and Japanese children become one-knowers
a few months later—because the grammar of their languages has
no specific markers for singular or plural in nouns, verbs, and ad-
jectives.

When the native language is Rus-
sian, the “one-knower” stage is re-
placed by the “one-(two-three-four)
knower” stage, where children differ-
entiate between three categories of
quantities: single object sets, the sets
of two, three, or four objects (without
further differentiation between, say,
two or three objects), and sets with five or more objects. This hap-
pens because morphological differentiation of plural forms goes fur-
ther in Russian than in English.

When I heard about special plural forms of two, three, or four
nouns in a lecture by Susan Carey at the Mathematical Knowl-

In learning busic arithmetic, grammar
frecedes the words!
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edge 2004 conference in Cambridge, I was mildly amused because
it made no sense to me, as a native Russian speaker. Still, I started
to write on note paper:

one doll OIHA KyKJIA
two dollS nBe Kyka bl
three dollS Tpu Kykabl
four dollS ueTnipe Kykabl
five dollS mats KykOJI
ten dollS necsat, kKyr OJI

I was startled: yes, Susan Carey was right! I had been using, all my
life, the morphological rules for forming plurals—but using them
subconsciously, without ever paying attention to them. But, appar-
ently, an infant’s brain is tuned exactly to picking up the rules: it
is easier for the child to associate the number of objects with the
morphological marker in the noun signifying the object than with
the words one or two. The interested reader will find a detailed dis-
cussion of plurality marking in Sarnecka et al. [225]. Meanwhile,
one of the readers of my blog brought my attention to an even more
striking example: in Russian, in some rare cases, the whole noun
changes, not just the plurality marker. For example, one year, two
yearsS, three, four, five yearS are translated into Russian as onun
ron, nsa, Tpu, yersipe rogA, st JIET. Notice the same thresh-
olds: one/two, four/five. In learning basic arithmetic, grammar pre-
cedes the words!

We shall return to the discussion of the four/five thresh-
old in the context of subitizing and short-term memory, in
Section 4.1. However, in the particular case of the Russian
language, there is the possibility of a historic explanation
for the peculiar behavior of plurality markers: they are rem-
nants from the times when an Indo-European predecessor
of the Russian language used a system of numerals based
on the number 4 [438]. It might happen, however, that the
historic explanation is only intermediate, since it does not
answer the crucial question of why a base 4 system had ap-
peared in the first instance and why, apparently, its subse-
quent evolution led to a bifurcation into a base 9 system of  Barhara Sarnecka,
numerals (now extinct, but still traceable in formulae from aged 3
Russian fairy tales: B TpunesaTom mapctse, in a three times ninth
kingdom) and the decimal one, now predominant.?
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3.3 What about music?

It would be interesting to see to what extent the parsing mecha-
nisms of language processing are at work in wider auditory percep-
tion; for example, are they relevant for the perception of music? Do
we parse notes by the same neurological mechanism which we use
for parsing phonemes? Unfortunately, I cannot regard myself as an
expert in music and therefore restrict myself to a few quotations.

My first quotation comes from a review, written by composer
Dorothy Kerr, of the recent book Music and Mathematics [32]
(strongly recommended!). Kerr, in effect, links music with the pre-
dictive nature of auditory processing.

For a composer, some of the moments of greatest excitement
lie in achieving a successful integration of ‘mathematical’
and ‘musical’ processes, though we may not think about it
in these terms. Take the canon (a musical device that is es-
sentially a translational symmetry) as an example: a very
simple experiment that anyone can do is to set up a time
delay between two copies of the same sound source (such
as that produced when listening to digital radio simulta-
neously with an analogue receiver).* At first—provided the
time interval allows it to be readily perceived—this simple
geometrical effect can be very engaging to the ear (given
how easy it is to create a satisfying effect in this way it is
perhaps not surprising that canon is one of the earliest and
most prevalent devices of musical composition). After the
canon we have made has been going for a while, the novelty
wears off and we develop the need for some kind of change
or a new layer of interest. The nature and precise timing of
such alterations, a calculation we usually make using our
intuition, is one of the most basic aspects of the art of com-
position. [...] A process that is too obvious trails far behind
the listener’s ability to predict its outcomes. (Such music—
to borrow the words of Harrison Birtwistle—‘finishes before
it stops’.)

The second quotation is from Thomas Mann’s Der Zauberberg,
a book famous for—among other things—a detailed study of the
phenomenology of time. It describes music as parsing in its purest
form:

“I am far from being particularly musical, and then the
pieces they play are not exactly elevating, neither classic
nor modern, but just the ordinary band-music. Still, it is a
pleasant change. It takes up a couple of hours very decently;
I mean it breaks them up and fills them in, so there is some-
thing to them, by comparison with the other days, hours
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and weeks that whisk by like nothing at all. You see an un-
pretentious concert-number lasts perhaps seven minutes,
and those seven minutes amount to something; they have
a beginning and an end, they stand out, they don’t easily
slip into the regular humdrum round and get lost. Besides
they are again divided up by the figures of the piece that
is being played, and these again into beats, so there is al-
ways something going on, and every moment has a certain
meaning, something you can take hold of ...” (Translation
by H. T. Lowe-Porter)

Of course, this gives only one dimension of music, essentially
ignoring the harmony. In the words of Daniel Barenboim,

The music can only be of interest if the different strands of
the polyphonic texture are played so distinctly that they can
all be heard and create a three-dimensional effect—just as
in painting, where something is moved into the foreground
and something else into background, making one appear
closer to the viewer than the other, although the painting
is flat and one-dimensional.

I would not dare to venture further and I leave it to someone
else to develop this wonderful theme.

3.4 Palindromes and mirrors

To illustrate the role of parsing and other word processing mecha-
nisms in doing mathematics, let us briefly describe Coxeter groups
in terms of words.

We work with an alphabet A consisting of finitely many letters,
which we denote a, b, etc. A word is any finite sequence of let-
ters, possibly empty (we denote the empty word ¢). Notice that we
have infinitely many words. To impose an algebraic structure onto
the amorphous mass of words, we proclaim that some of them are
equivalent to (or synonymous with) other words; we shall denote
the equivalence of words V and W by writing V = W. We demand
that concatenation of words preserve equivalence: if U = V, then
UW = VW and WU = WV if mail is the same as post, then mail-
room is the same as postroom. We denote the language defined by
the equivalence relation = by £—.

So far all that was just the proverbial “general nonsense” which
we frequently find in the formal exposition of mathematical theo-
ries. Mathematicians treat such formalities with great respect but
frequently ignore them in actual work; formal definitions play the
same role as fine print in insurance policies. Beware the fine print
when you make a claim!
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It is remarkable how little we have to add in order to create
the extremely rigid, crystalline structure of a Coxeter group. To
that end, we say that a word is reduced if it is not equivalent to
any shorter word. Now we introduce just two axioms which define
Coxeter languages:

DELETION PROPERTY. If a word is not reduced, then it is equiva-
lent to a word obtained from it by deleting some two letters.
(Of course, it may happen that the new word is still not reduced,
in which case the process continues in the same fashion, two
letters at a time.)

REFLEXIVITY. Words like aa obtained by doubling a letter are not
reduced (hence are equivalent to the empty word, by the Dele-
tion Property); aardvark is not a reduced word.

Actually, a Coxeter language is exactly a Coxeter group,
but I intentionally ignore this crucial (for a mathematician)
fact and formulate everything in terms of words and lan-
guages.

I will now give a (straightforward) reformulation of a
classical theorem of 20th-century algebra, due to Coxeter
and Tits. My formulation is a bit of a caricature devised
specifically for the purposes of the present book.

To emphasize the language aspects, let us make palin-
dromes, that is, non-empty reduced words such as “level”
that read the same backwards as forwards, the central ob-
ject of the theory. ®

Now the Coxeter—Tits Theorem becomes a theorem about

Michel Las Vergnas, representation of palindromes by mirrors.

aged 9

The Palindrome Representation Theorem. Assume
that a Coxeter language L— contains, up to equivalence, only
finitely many palindromes.® Then:

e There exists a finite closed system M of mirrors in a finite-
dimensional Euclidean space R" such that the mirrors in M are
in one-to-one correspondence with the equivalence classes of the
palindromes.

e Moreover, if M; and M, are mirrors and P;, P, their palin-
dromes, then the palindrome associated with the reflected im-
age of the mirror M; in the mirror My is Py P P, if the latter
is reduced, or a palindrome obtained from the word PP, P, by
reduction.

e Finally, every closed finite system of mirrors in the Euclidean
space R™ can be obtained in this way from the system of palin-
dromes in an appropriate Coxeter language.

The interested reader will find the ingredients of a proof of this
result in Chapters 5 and 7 of [320]. It involves, at some point, the
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aba = bab @

Fig. 3.1. The Palindrome Representation Theorem: The three mirrors of
symmetry of the equilateral triangle correspond to the palindromes a, b,
and aba. Together with the equivalences aa = bb = ¢ (the empty word),

the equivalence aba = bab warrants that the corresponding Coxeter lan-
guage does not contain any other palindromes.

following equivalence [294, Exercise 11.8]:

— ap—1---ai ap—2--ay al
al...al:al .a’l—l ...a2 .

where b%+ "1 is an abbreviation of a palindromic word
al...ak.b.ak...al;

the foregoing identity expresses an arbitrary word as the concate-
nation of palindromic words; its proof consists of the rearrange-
ment of brackets and the cancelation of doubled letters a;a; when-
ever they appear. Proofs like that are one of the many reasons why,
in order to master the theory of Coxeter groups expressed in a
“linguistic” manner, the novice reader has to develop an ability to
manipulate imaginary mental brackets with a rapidity comparable
with only the remarkable rapidity of the motion of the wing of the
hummingbird.

I reiterate that I devised the
palindrome formulation of the Rep-

resentation Theorem specifically for

the needs of the present book. When We cun reuse spuce, but, unforfundtely,

d 1 ,
afterwards I made a standard search €€ nnot reuse fime

on GOOGLE and MathSciNet [446], I
was pleased to discover that my for-
mulation appeared to be new.
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I was also pleasantly surprised to find more than a hundred pa-
pers on palindromes produced by computer scientists. The set of
all palindromic words in a given alphabet is one of the simplest
examples of a language which can be generated only by a device
with some kind of memory, say, with a stack or push-down stor-
age which works on the principle “last in—first out”, like bullets in
a handgun clip. It makes palindromes a very attractive test prob-
lem in the study of the complexity of word processing, for exam-
ple, for comparing two fundamental concepts of algorithmic com-
plexity: space-complexity, measured by the amount of memory re-
quired, and time-complexity. The difference between the two com-
plexities is deeply philosophical: we can reuse space, but, unfor-
tunately, we cannot reuse time. I was particularly fascinated to
learn that palindromes are recognizable by Turing machines work-
ing within sublogarithmic space constraints [409]. Hence, in this
particular problem, it is possible to overwrite and reuse the mem-
ory.

Perhaps it is exactly the necessity to engage—and reuse—one’s
low-level memory that turns palindromes into such popular and
addictive brainteasers.

3.5 Parsing, continued: do brackets matter?

Understanding the role of interiorization and reproduction is cru-
cial for any serious discussion of what is actually happening in
teaching and learning mathematics, and it is very worrisome that
this cognitive core is so frequently absent from the professional dis-
course on mathematical education. This is especially true for the
discussion of the merits of computer-assisted learning of mathe-
matics, where the use of technology has changed the cognitive con-
tent of standard elementary routines which for centuries served as
building blocks for learning mathematics.

And here is a small case study.
For some years I had been teaching
courses in mathematical logic based
on two well-known software pack-
ages: SYMLOG [305] and TARSKI’S
WORLD [293] (reviews: [107, 115,
118]). SYMLOG used a DOS command
line interface which was extremely
weak even by the standards of its time, while TARSKI’S WORLD
very successfully exploited the graphical user interfaces of Apple
and Windows for the visualization of one of the key concepts of
logic, a model for a set of formulae (see [8] for the discussion of the
underlying philosophy and [403] for underlying mathematics—it

Typihg a commaund is like saying d seh-
tence, while clicking a mouse is equiva-
lent to pointing a finger in conversation.
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is highly non-trivial). Also, TARSKI’S WORLD made a very clever
use of games to explain another key concept, the validity of a for-
mula in an interpretation (although the range of interpretations
was limited [118]). However, when it came to a written test, stu-
dents taught with SYMLOG made virtually no errors in the com-
position of logical formulae, while those taught with TARSKI’S
WORLD very obviously struggled with this basic task. The reason
was easy to find: SYMLOG’s very unforgiving interface required re-
typing the whole formula if its syntax had not been recognized,
while TARSKI’S WORLD’s user-friendly formula editor automati-
cally inserted matching brackets. Although TARSKI’S WORLD’s stu-
dents had no difficulty with rather tricky logic problems when they
used a computer, their inability to handle formulae without a com-
puter was alarming. Indeed, in mathematics, the ability to repro-
duce your mental work has to be media-independent. Relieving the
students of a repetitive and seemingly mindless task led them to
lose a chance to develop an essential skill.

It is appropriate to mention that,
in parallel with visualization, there

is another mode of interiorization,
namely verbalization. Indeed, we un-
derstand and handle much better

those processes and actions which result of its use. Ih pharmaceuticdl re-

we can describe in words. In naive sourop, u similur practice would consti-
terms, typing a command is like say- tute u criminal offence.
ing a sentence, while clicking a mouse

Sadly, it appedrs to be ucceptuble to
promote educdutiondl software without
spellihng out what students will lose ds a

is equivalent to pointing a finger in

conversation. The reader would no

doubt agree that, when teaching mathematics, we have to incite
our students to speak. The tasks of opening and closing matching
pairs of brackets, however dull and mundane they may be, acti-
vate deeply rooted neural mechanisms for the generation of parsing
rules and are crucial for the interiorization of symbolic mathemat-
ical techniques.

I understand that my claims will inevitably provoke the stock
response from the promoters of computer-assisted learning: com-
puters are a valuable tool and they help students to save time
wasted on routine calculations, allow them to concentrate on deeper
conceptual understanding of mathematics, etc. I agree with all
that. But I am concerned that the discourse on computer-assisted
learning is anti-scientifically skewed and suffers from a cavalier
approach to the assessment of the implications for the learner. In
medical sciences, promotion of a new medicine without a careful
study of its side effects is an academic, regulatory (and, frequently,
criminal) offence. In educational circles, it appears to be acceptable
to promote a new piece of software for learning a particular chap-
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ter of mathematics without spelling out what students will lose as
a result of its use. Educational software has to be judged on the
balance of gains and losses.

3.6 The mathematics of bracketing and Catalan
numbers

We have not begun to understand the relationship
between combinatorics and conceptual mathematics.
Jean Dieudonné [24]

The parsing examples we have considered so far have been of a
special kind, binary parenthesizing; I do not want to venture into
anything more sophisticated because even placing parentheses in
an expression made by repeated use of a binary operation, such as

a+b+c+d,

is already an immensely rich mathematical procedure. In various
disguises, it appears throughout all of mathematics. There is no
better example than Richard Stanley’s famous collection of 66 prob-
lems on Catalan numbers [406, Exercise 6.19, pp. 219-229] (solu-
tions can be found in [407]). I mention a couple of examples.

The number of different ways to completely parenthesize the
formal sum

ap+ay+---+apn_1+a, (n+1numbers)

is called the n-th Catalan number and is denoted C,,; it can be

shown that
c - 1 (271) '
n+1\n

For example, when n = 3, we have 5 ways to place the brackets in
a+ b+ c+ d, namely:

at (b+(ct+d), a+t((b+c)+d), (a+(+c))+d,

(a+b)+ (c+d), ((a+b)+c)+d

(following the usual convention, I skip the outermost pair of brack-
ets).

Remarkably, when you count ways to triangulate a convex
(n + 2)-gon by n — 1 diagonals without crossing, you come to ex-
actly the same result:
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A=A,

This mysterious coincidence is resolved as soon as we treat
drawing diagonals as taking the sums of vectors

G+b+c+d

going along the n + 1 sides of the (n + 2)-gon, with the last side (the
base of the polygon) representing the sum:

Now the one-to-one correspondence between parenthesizing the
vector sum and drawing the diagonals becomes self-evident:

WESAC AP,

i+ G+@+d) a+((G+D+d) @+GE+)+d @+b)+E+d) (@+b)+d)+d

I do not remember the exact formulation of the problem which
led me, as a schoolboy, to the discovery of this correspondence be-
tween parenthesizing and triangulations, but I remember my feel-
ing of elation—it was awesome.

As a teaser to the reader I give another class of combinatorial
objects which are also counted by Catalan numbers. Take graph pa-
per with a square grid, and assume that the unit (smallest) squares
have length 1. A Dyck path is a path in the grid with steps (1, 1) and
(1,—1). I claim that the number of Dyck paths from (0,0) to (2n,0)
which never fall below the coordinate z-axis y = 0 is, again, the
Catalan number C,,. I give here the list of such paths for n = 3,
arranged in a natural one-to-one correspondence with the patterns
of parentheses in a + b + ¢ + d:
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Find a one-to-
one correspon-
dence between
the 5 chord di-
agrams and
the 5 ways

to parenthe-
size the sum
a+b+c+d
Hint: there are
3 chords and 3
“+” symbols.

AN AN N

(a+ (b4 (c+4d))) (a4 ((b+c)+4d)) ((a+ (b+c¢)) +4d)
((a+b)+ (c+d)) (((a+b)+c)+d)

Can you describe the rule? Notice that I added, for your con-
venience, the exterior all-embracing pairs of parentheses; they are
usually omitted in algebraic expressions. (Notice also that this cor-
respondence gives, after some massaging, an algorithm for check-
ing the formal correctness of bracketing—so that the algorithm
says that the bracketing (a + (b + ¢)) is correct while (a + b) + ¢) +
((d + e) are not.)

One more example is concerned with n non-intersecting chords
joining 2n points on the circle:

NN
Again, there are
Cn =13 Jlr 1 (2: )

different ways to draw the chords.

Richard Stanley makes a wry comment on his list of Catalan
number problems [406, pp. 219-229] that, ideally, the best way to
solve all 66 problems is to construct directly the one-to-one corre-
spondences between the 66 sets involved, 66 - 65 = 4,290 bijections
in all! It is likely, however, that all 66 sets could be shown to be bi-
jective to one specific set; the set of all rooted trivalent trees with n
internal nodes is the most likely candidate for the special role since
all 66 sets have a very distinctive hierarchical structure.

This is still not the end of the story: the striking influence of a
seemingly mundane structure, grammatically correct parenthesiz-
ing, can be traced all the way back to the most sophisticated and
advanced areas of modern mathematics research. A brief glance at
one of Stasheff’s associahedra (Figure 3.2) suggests that they live
in the immediate vicinity of Coxeter Theory.” Actually, generalized
associahedra can be defined for any finite Coxeter group (Stasheff’s
associahedra being associated, of course, with the symmetric group
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((a(be))d)e (a((bc)d))e

(a(b(cd)))e

(a(bc))(de) a(((bc)d)e)
. a((bc)(de))

((ab)(cd))e

a(b(c(de)))

((ab)c)(de)

a(b((cd)e))
(ab)((cd)e)

Fig. 3.2. Stasheff’s associahedron: the binary parenthesizings of n sym-
bols can be arranged as vertices of a convex (n — 2)-gon, with two vertices
connected by an edge if the corresponding parenthesizings differ by the

position of just one pair of brackets.

Sym,, viewed as the Coxeter group of type A, _1); for some recent

results see, for example, Fomin and Zelevinsky [351].

3.7 The mystery of Hipparchus

It appears that the importance of parsing has been ap-
preciated by mathematicians and philosophers since an-
cient times. The following fragment from Plutarch, a famous
Greek biographer of the 2nd century A.D., remained a mys-
tery for centuries:

Chrysippus says that the number of compound
propositions that can be made from only ten sim-
ple propositions exceeds a million. (Hipparchus, to be
sure, refuted this by showing that on the affirmative
side there are 103,049 compound statements, and on
the negative side 310,952.)

Here Plutarch refers to two prominent thinkers of Clas-
sical Greece: the philosopher Chrysippus (c. 280 B.C.-207
B.C.) and the astronomer Hipparchus (c. 190 B.C.—after 127
B.C.). Only in 1994 did David Hough notice that 103,049 is
the number of arbitrary (non-binary) parenthesizings of 10
symbols, that is, the number of all possible expressions like

Andrei Zelevinsky,
aged 16
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This numerical observation suggests that, for Chrysippus and
Plutarch, “compound” propositions were built from “simple” propo-
sitions simply by bracketing.

The mathematics and history of Hipparchus’ number is dis-
cussed in detail in a paper by Richard Stanley [289]. The number
of parenthesizings of n symbols is known as the Schroder number
s(n); the first 11 values of the Schroder numbers are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859.

In 1998, Laurent Habsieger, Maxim Kazarian, and Sergei Lando
[269] suggested a very plausible explanation of the second Hip-
parchus number, of compound statements on the “negative side”.
They observe that

s(10) + s(11)

= 310,954
5 310,95

and, assuming a slight arithmetic or copying error in Plutarch’s
text, suggest we interpret the compound statements on the “nega-
tive side” as parenthesizings of expressions

NOT 2122219

under the following convention: the negation NOT is applied to all
the simple propositions included in the first pair of brackets that
includes NOT. This means that the parenthesizings

[NOT [P] - - [Py]]

and
[NOT [[P1] - - - [Px]]]

give the same result, and most of the negative compound proposi-
tions can be obtained in two different ways. The only case which
is obtained in a unique way is when one only takes the negation
of 1. Therefore twice the number of negative compound proposi-
tions equals the total number of parenthesizings on a string of 11
elements

NOT 2122219

plus the total number of parenthesizings on a string of 10 elements
(NOT .%'1)272 s 210-

This, indeed, provides the value (s(10) + s(11))/2 = 310, 954.
Nowadays, the thinkers of Classic Antiquity do not enjoy the

same authority and revered status that they had up to the 19th

century. Armed with the machinery of enumerative combinatorics,
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we may look condescendingly at the fantastic technical achieve-
ment of Hipparchus (which became possible perhaps only because
he was an astronomer and could handle sophisticated arithmetic
calculations, possibly using Babylonian base-60 arithmetic). But I
find it highly significant that ancient Greek philosophers, in their
quest for understanding of the logical structure of human thought,
identified the problem of parsing and attempted to treat it mathe-
matically.

Notes

!ONE MORE TEASER. Punctuate:

Where a previous sentence had had had had had had had had had
had had had had this sentence contains more.

Continue this inductively to give an arbitrarily large number of perfectly
grammatically correct consecutive “hads” in the sentence. (Offered by a
commentator on my blog who called himself Ben.)

2PARSING RULES. David Pierce has drawn my attention to an interest-
ing question related to parsing rules for mathematical formulae. To what
extent is the “infix” notation for binary operations and relations, when the
symbol for operation or relation is placed between the symbols for objects,
like a + b and a < b, made more natural for humans by the nature of their
innate grammar generating rules? Or is the predominance of infix notation
more of a cultural phenomenon, a fossilized tradition? Why does “reverse
Polish notation” (or “suffix” notation) puzzle most people when they first
encounter it? In reverse Polish notation, the expression

(a+b) x (c+4d)

is written as
ab +cd + X.

It has serious advantages in computing: when using a hand-held calcula-
tor designed and programmed for the use of reverse Polish notation, one
is not troubled with saving the intermediate results into the memory; this
is done automatically. On an ordinary calculator, one has to save the in-
termediate result a + b when calculating (a + b) x (¢ + d). Notice that
infix notation does not generalize from binary to ternary operations, and
ternary operations and relations are not frequently found in mathematics.
Is that because our writing is linear, reflecting the linear nature of speech?
Words denoting ternary or higher arity relations are infrequent in human
languages. The predicate “a is between ¢ and d” is a noticeable exception
in English. Interestingly, the “betweenness” relation among points on a
line was famously absent from Euclid’s axiomatization of geometry (see
Section 11.4).

3SINGULAR, DUAL, TRIAL, PAUCAL. ... In general, languages tend to
treat numbers from 1 to 4 differently; see [196]. Owl remarked that traces
of the dual category still can be found in Russian (and it is still present in
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Slovenian. Apparently, dual was mostly purged from Russian in the lan-
guage reform of Peter the Great.
Barbara Sarnecka wrote to me:

...usually the options are

(a) Singular (1)/Plural (2+),

(b) Singular (1)/Dual (2)/Plural (3+),

(¢) Singular (1)/Dual (2)/Trial (3)/Plural (4+),

(d) Singular (1)/Dual (2)/Paucal (approximately 3—4)/Plural (ap-
proximately 5+).

Anyway, Russian is the only language I know of where the dual

and paucal categories have been merged into one, so that is quite

interesting. Is it possible that there was, earlier, a singular/dual/

paucal/plural system, and that Peter [the Great] tried to simplify

it by combining the dual and paucal categories?

I would be happy to learn more about pluralities—although this theme
leads well beyond the scope of my book. In particular, I was intrigued by a
comment from my Hungarian colleague that, in the Hungarian language,
a plurality marker is present in nouns when no specific numeral is used
with the noun.

As I have already mentioned in the main text, I shall return to the
discussion of thresholds for pluralities in Section 4.1.

*CANON IN POETRY. My dear old friend Owl reminded me that canon
can be found in poetry, where it is sometimes used with a totally mesmer-
izing effect:

B mocane, kyma Hu omma HoOra

He crymnasna, mumb BOposkKen Oa BLIOTHU
Crynasna HOra, B 6€CHOBATON OKpyTe,
I'me u To Kak ybuTnie cuaT cHera, —

ITocToii, B mocame KyJa HU OOHA
Hora me crynasa, Juimb BOpOsKeU

Jla BBIOTU CcTyIaJja HOTA, 10 OKHA
HoxmecTHyacsa OOPLIBOK MAILHON IIIEH.
(Boris Pasternak)

5 PALINDROMES AND COXETER GROUPS. My “palindrome” formulation
of the Coxeter-Tits Theorem is one of many manifestations of a crypto-
morphism, the remarkable capacity of mathematical concepts and facts
for translation from one mathematical language to another; see more on
that in Section 4.2. I recall again that, in this book, I have adopted a “lo-
cal”, “microscopic” viewpoint. Although the “palindrome theory” is of little
“global” value for mathematics, it demonstrates some interesting “local”
features of mathematics.

5Without the assumption about the finiteness of the number of palin-
dromes, the Palindrome Representation Theorem is still true if we accept
mirrors in non-Euclidean spaces. Section 5.1 contains some examples of
mirror systems in the hyperbolic plane.

"An elementary construction of associahedra can be found in Loday
[381].
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