
Chapter 1

Divisibility

The parts of this chapter used in the rest of the book are: the Euclidean

algorithm and its applications (problems 1.5.7 and 1.5.9), the language of

congruences (section 4, “Division with a remainder and congruences”), and

some simple facts (e.g., problem 1.1.3 and 1.3.2).

In this chapter all variables are integers. Many solutions are based on

M.A.Prasolov’s texts.

1. Divisibility (1)

1.1.1. (a) State and prove the rules of divisibility by 2, 4, 5, 10, 3, 9, 11.

(b) Is the number 11 . . . 1 consisting of 1993 ones divisible by 111111?

(c) Prove that the number 1 . . . 1 consisting of 2001 ones is divisible by

37.

1.1.2. If a is divisible by 2 and not divisible by 4, then the number of even

divisors of a is equal to the number of its odd divisors.

1.1.3. Which of the following statements are correct for any a and b? (Recall

the notation a|b defined on p. xx.)

(a) 2|(a2 − a).
(b) 4|(a4 − a).
(c) 6|(a3 − a).
(d) 30|(a5 − a).
(e) If c|a and c|b, then c|(a+ b).
(f) If b|a, then bc|ac.
(g) If bc|ac for some c �= 0, then b|a.
To solve problem 1.1.3 (c), we used 1.1.4 (a). Prove it using the defini-

tion of divisibility, but not using the Unique Factorization Theorem (prob-

lem 1.2.8 (d))! The use of this theorem might lead to a circular argument

since a result similar to 1.1.4 (a) is usually used in a proof of uniqueness of

factorization.
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1.1.4. (a) If a is divisible by 2 and 3, then it is also divisible by 6;

(b) If a is divisible by 2, 3, and 5, then it is also divisible by 30;

(c) If a is divisible by 17 and 19, then it is also divisible by 323.

1.1.5. (a) If k is not divisible by 2, 3, or 5, then k4 − 1 is divisible by 240.

(b) If a+ b+ c is divisible by 6, then a3 + b3 + c3 is also divisible by 6.

(c) If a+ b+ c is divisible by 30, then a5+ b5+ c5 is also divisible by 30.

(d) If n ≥ 0 then 202n + 162n − 32n − 1 is divisible by 323.

Suggestions, solutions, and answers

1.1.1. In the proofs of divisibility rules below, we denote the number in

the statements by n = ±(10mam + 10m−1am−1 + . . . + 10a1 + a0) for some

0 ≤ ai ≤ 9.

Rule of divisibility by 2: An integer is divisible by 2 if and only if the

last digit of the integer is divisible by 2.

Proof. Clearly, the number n − a0 is even. Suppose a0 is also even. If a

number divides each term of the sum, it divides the sum. Therefore n is

even. Conversely, if a number n is even, then a0 is even. �

Rule of divisibility by 4: An integer n is divisible by 4 if and only if the

number formed by its last two digits is divisible by 4.

Proof. Clearly, the number (n− 10a1 − a0) is divisible by 4. Suppose that

the number a0 + 10a1 formed by the last two digits of n is divisible by 4.

Then n is divisible by 4. Conversely, if 4|n then 4|(a0 + 10a1). �

Rule of divisibility by 5: An integer is divisible by 5 if and only if its

last digit is 5 or 0.

Prove this similarly to proving the rule of divisibility by 2.

Rule of divisibility by 10: An integer is divisible by 10 if and only if its

last digit is 0.

Prove this similarly to proving the rule of divisibility by 2.

Rule of divisibility by 3: An integer n is divisible by 3 if and only if the

sum of its digits is divisible by 3.
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Proof. Subtract the sum of digits from the number and group the sum-

mands as follows:

n− am − am−1 − . . .− a1 − a0

= (10m − 1)am + (10m−1 − 1)am−1 + · · ·+ (10− 1)a1 + (1− 1)a0.

The number 10k − 1 = (10− 1)(10k−1 +10k−2 + . . .+10+1) is divisible

by 3. The rule of divisibility by 3 follows from this observation. �

Rule of divisibility by 9: An integer n is divisible by 9 if and only if the

sum of its digits is divisible by 9.

Prove this similarly to proving of the rule of divisibility by 3.

Rule of divisibility by 11: Subtract the sum of all digits of n at odd

positions from the sum of all digits at even positions. The number n is

divisible by 11 if and only if the resulting number f(n) is divisible by 11.

Proof. First, we will prove that for any m ≥ 0 the number 10m − (−1)m is

divisible by 11. For odd m, the number 10m+1 = (10+1)(10m−1−10m−2+

10m−3 − . . .− 10 + 1) is divisible by 11. For even m, the number 10m − 1 is

divisible by 102 − 1 and hence divisible by 11. Now we have

n− f(n) = (10m − (−1)m)am + (10m−1 − (−1)m−1)am−1

+ . . .+ (10 + 1)a1 + (1− 1)a0.

Since every term of the sum on the right-hand side of the equation is divisible

by 11, n is divisible by 11 if and only if f(n) is divisible by 11. �

1.1.3. Answers: (a, c, d, e, f) true; (b) false.
(a) We have a2 − a = a(a− 1). Taken in the natural order, every other

integer is even; thus one of the numbers a or a− 1 is even, so their product

a2 − a is also even.

(b) 4 does not divide (24 − 2) = 14.
(c) We have a3 − a = a(a− 1)(a+ 1). The number a(a− 1) is divisible

by 2 while (a− 1)a(a+1) is divisible by 3. Thus a3− a is divisible by 2 and

3, and, as follows from 1.1.4 (a), it is divisible by 6.

(d) We have a5 − a = a(a− 1)(a+ 1)(a2 + 1). Now, a(a− 1) is divisible

by 2 while (a− 1)a(a+ 1) is divisible by 3. If none of the numbers a− 1, a,
and a+1 is divisible by 5, then the remainder from dividing a by 5 is equal

to 2 or 3. Thus a2 + 1 is divisible by 5. Then, as follows from 1.1.4 (b),

a5 − a is divisible by 30.

(e) If a = kc and b = mc, then a+ b = (k +m)c.
(f) If a = kb then ac = k(bc).
(g) If ac = kbc then c(a− kb) = 0. Since bc �= 0 we have c �= 0; therefore

a = kb.
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1.1.4. (a) Hint. We have 3a− 2a = a.
Solution. Since 2|a we have 6|3a, and since 3|a we have 6|2a; therefore

6|(3a− 2a) = a.
(b) Hint. 6a− 5a = a.
Solution. From the given conditions and part (a) above we have 6|a and

5|a. Therefore 30|6a and 30|5a, so 30|(6a− 5a) = a.
(c) Hint. 19a− 17a = 2a, 17a− 8 · 2a = a.
Solution. From the given conditions we have 17|a and 19|a. Therefore

17 · 19|17a and 19 · 17|19a. So 17 · 19|(19a− 17a) = 2a. Then 17 · 19|(17a−
8 · 2a) = a.

1.1.5. (d) The number (an − bn) = (a − b)(an−1 + an−2b + . . . + bn−1) is

divisible by (a−b). Therefore 202n+162n−32n−1 = (202n−32n)+((162)n−
(12)n) is divisible by 17. Similarly, 202n + 162n − 32n − 1 = (202n − 1) +

((162)n−(32)n) is divisible by 19. Then, according to 1.1.4 (c), 202n+162n−
32n − 1 is divisible by 323.

2. Prime numbers (1)

An integer p > 1 is said to be a prime if it does not have positive divisors

other than p and 1. An integer q is a composite if it has at least one positive

divisor different from 1 and |q|. (Thus 1 is neither a prime nor a composite

number.)

1.2.1. (a) Lemma. If a¿1 is not divisible by any prime p ≤ √
a, then a is

a prime.

(b) Sieve of Eratosthenes. Let p1, . . . , pk all be primes between 1 and

n. For each i = 1, . . . , k we will cross out all numbers between 1 and n2

which are divisible by pi. Numbers which are left are all primes between n
and n2.

(c) Write down all primes between 1 and 200.

1.2.2. (a) Find all p such that p, p+ 2, and p+ 4 are primes.

(b) Prove that if the number 11. . . 1 consisting of n ones is a prime, then

n is a prime.

(c) Prove that the converse of (b) is not true.

Theorem 1.2.3 (Euclid). (a) There are infinitely many primes.

(b) There are infinitely many primes of the form 4k + 3.

Compare to problem 2.3.3 (f). Using advanced techniques it’s possible

to prove the following statement.
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Theorem 1.2.4 (Dirichlet). If the integers a, b > 0 have no common divisors

other than ±1, then there are infinitely many primes of the form ak + b.

1.2.5. Let pn denote the nth prime number (in ascending order).

(a) Prove that pn+1 ≤ p1 · . . . · pn + 1

(b) Prove that pn+1 ≤ p1 · . . . · pn − 1 for n ≥ 2.

(c)∗ Prove that there is a perfect square between p1 + . . . + pn and

p1 + . . .+ pn+1.

1.2.6. (a) Is it true that for any n, the number n2 + n+ 41 is a prime?

(b) Prove that for any non-constant quadratic function f with integer

coefficients, there exists an integer n such that the number |f(n)| is com-

posite.

(c) Prove that for any non-constant polynomial f with integer coeffi-

cients, there exists an integer n such that the number |f(n)| is composite.

1.2.7. There exist 1000 consecutive numbers, none of which is

(a) a prime;

(b) a power of a prime.

1.2.8. (a) Any positive integer may be decomposed into a product of prime

numbers.

(b) An even number is called primish if it is not a product of two smaller

positive even numbers. Is the decomposition of an even number into a

product of primish numbers necessarily unique? (See a more meaningful

example in problem 3.7.3 (b).)

(c)∗ If a number is equal to the product of two primes, this decomposition

is unique up to the order of the factors.

(d) Fundamental Theorem of Arithmetic. The decomposition of

any positive integer into a product of primes is unique up to the order of

the factors. (This theorem is often referred to as the Unique Factorization

Theorem or the Canonical Decomposition Theorem.)

For the (usual) solution of (b) and (c) you will need the lemmas in

problem 1.5.7. See also problem 3.4.5.

Suggestions, solutions, and answers

1.2.2. (a)Answer : p = 3.

Solution. The numbers p, p + 2, and p + 4 have different remainders

upon division by 3. Therefore one of them is divisible by 3. This number

is a prime, so it is equal to 3. Since all primes by definition are positive
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integers, then p+4 �= 3. Since 1 is not a prime, p+2 �= 3. Thus p = 3. This

is indeed our solution, because 3, 5, and 7 are primes.

(b) Assume to the contrary that n is composite, i.e., n = ab, where

a, b > 1. We have xb − 1 = (x− 1)(xb−1 + xb−2 + . . .+ x+ 1). Substituting

x = 10a we see that 11 . . . 1 = 10n−1
9 is divisible by 10a−1

9 .

(c) The converse statement is false: 111 = 37 · 3.

1.2.7. (a) For example, 1000!+2, 1000!+3, . . . , 1000!+1001. The problem

can also be solved similarly to part (b).

(b) Take different primes p1, p2, . . . , p2000. The Chinese Remainder The-
orem 1.5.10 (d) implies that there exists n such that n + i is divisible by

p2i−1p2i for any i = 1, 2, . . . , 1000.

1.2.8. (a) Suppose that not every integer is a product of primes. Consider

the smallest positive integer n which is not a product of primes. If it is not a

prime, then it is a composite number, so n = ab for some a, b > 1. Therefore

n > a and n > b. But n is the smallest integer not equal to a product of

primes, so a and b are both products of primes. Hence n is also a product

of primes. This contradicts our assumption.

(d) Suppose the assertion is false. Consider the smallest number n having

two different canonical decompositions: n = pa11 ·pa22 ·. . .·pamm = qb11 ·qb22 ·. . .·qbkk .

Since n is minimal, none of the numbers pi is equal to any qj , for otherwise
we could divide both sides of the equality by this number and get a smaller

number with two different canonical decompositions. On the other hand, q1
divides pa11 · pa22 · . . . · pamm and therefore, as follows from 1.5.7 (c), q1 divides

one of numbers pi. Since pi is a prime, we have q1 = pi. This contradicts

our assumption.

3. Greatest common divisor (GCD) and least common multi-
ple (LCM) (1)

The integers a and b are said to be relatively prime if they don’t have

common divisors other than ±1.
An integer is said to be the greatest common divisor (GCD) of two

positive integers a and b if it is the greatest number that divides both a and

b. We denote the GCD of a and b by (a, b) or GCD(a, b) or gcd(a, b).

1.3.1. Find all possible values:

(a) (n, 12); (b) (n, n+1); (c) (n, n+6); (d) (2n+3, 7n+6); (e) (n2, n+1).

Lemma 1.3.2. For a �= b the following equality is valid: (a, b) = (|a− b|, b).

1.3.3. (a) (a, b) = b if and only if a is divisible by b.
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(b) The numbers a
(a,b) and b

(a,b) are relatively prime.

(c)∗ The number (a, b) is divisible by any common divisor of a and b.
(d)∗ We have (ca, cb) = c(a, b) for any c > 0.

To solve problems marked with an asterisk, you will need the lemmas

in 1.5.7.

1.3.4. (a) For all positive m and n we have

(2m, 2n) = 2(m,n), (2m+ 1, 2n) = (2m+ 1, n),

(2m+ 1, 2n+ 1) = (2m+ 1,m− n) for m > n.

(b) Binary algorithm. Using the equalities from (a) construct an algorithm

for finding the GCD.

1.3.5.* If a fraction a
b is irreducible, then the fraction a+b

ab is also irreducible.

An integer is said to be the least common multiple (LCM) of two positive

integers a and b if it is the smallest number that is divisible by a and b. We

denote the LCM of a and b by [a, b] or LCM(a, b) or lcm(a, b).

1.3.6. Find [192, 270].

1.3.7. (a) [a, b] = a if and only if a is divisible by b.

(b) The numbers
[a,b]
a and

[a,b]
b are relatively prime.

(c)∗ Any common multiple of a and b is divisible by [a, b].
(d)∗ [ca, cb] = c[a, b] for any c > 0.

Suggestions, solutions, and answers

1.3.1. Answers: (a) 1,2,3,4,6,12. (b) 1. (c) 1,2,3,6. (d) 1,3,9. (e) 1.
Solutions.
(a) The number (12, n) is a positive divisor of 12. Let d|12. The number

d does not have divisors greater than itself, so (12, d) = d. Thus, all positive
divisors of 12 satisfy the condition of the problem.

(b) Let d|n, d|(n+ 1), and d > 0. Then d|(n+ 1− n) = 1, so d = 1.

(c) By Lemma 1.3.2 above, (n, n + 6) = (6, n). Similarly to (a), all

positive divisors of 6 satisfy the condition of the problem.

(d) By Lemma 1.3.2, (2n+3, 7n+6) = (2n+3, 5n+3) = (2n+3, 3n) =
(2n+ 3, n− 3) = (n+ 6, n− 3) = (n+ 6, 9).

Thus, all positive divisors of 9 satisfy the condition of the problem.

(e) Let d > 0 be a common divisor of the numbers n+ 1 and n2. Thus

d|(n + 1)(n − 1) = n2 − 1 by Lemma 1.3.2. So d|(n2 − (n2 − 1)) = 1, and

hence d = ±1.
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1.3.2. The statement follows from the fact that the set of common divisors

of a and b coincides with the set of common divisors of a and a±b. Indeed, if
d|a and d|b then d|(a±b). Conversely, if d|(a±b) and d|a then d|(a±b−a) =
±b.

1.3.3. (a) Let b|a. Since any positive divisor of a nonzero integer n does

not exceed |n|, we have (a, b) = |b|. Conversely, let (a, b) = |b|. Then b|a by

definition.

(b) If d > 0 is a common divisor of a
(a,b) and b

(a,b) , then d · (a, b) is a

common divisor of a and b. If d > 1 this is a contradiction.

(c) Let a > b ≥ 0. In the proof of Lemma 1.3.2 we showed that the set

of common divisors of a and b coincides with the set of common divisors of

a and a± b. Apply the Euclidean algorithm to the pair of numbers a0 = a
and b0 = b (see problem 1.5.9 (b)). The numbers ak and bk obtained in

the kth step are positive. The common divisors of ak and bk coincide with

common divisors of ak − bk and bk. Therefore all common divisors (and, in

particular, the GCD) of all intermediate pairs are the same. At the final step

of the Euclidean algorithm, we see that divisors of the number d = gcd(a, b)
coincide with common divisors of the numbers a and b.

(d) The number c(a, b) is a common divisor of the numbers ca and cb.
To prove this we show that (ca, cb)|c(a, b). Obviously c|ca and c|cb. From

(c) above we conclude that c|(ca, cb), so (ca, cb) = ck for some integer k. The
GCD of two numbers divides each of them, so (ck)|(ca) and (ck)|(cb). Thus
k|a and k|b. From (c) it follows that k|(a, b). Multiplying both sides by c,
we see that (ca, cb)|c(a, b).

4. Division with remainder and congruences (1)

Theorem 1.4.1 (Division with a remainder). (a) For any a and b �= 0 there

exists q such that q|b| ≤ a < (q + 1)|b|.
(b) For any a and b �= 0 there exist unique q and r such that a = bq + r

and 0 ≤ r < |b|. The number q is said to be the quotient and the number r
is said to be the remainder of division of a by b.

1.4.2. (a, b, c) Find the quotients and remainders for

(a) 1996 divided by −17;
(b) −17 divided by 4;

(c) n2 + n+ 1 divided by n+ 1, for any n.
(d) Find all possible quotients and all possible remainders when dividing

57 by some number. (More precisely, assume that 57 = bq + r is division

with remainder. Find the list of all possible q’s and the list of all possible

r’s.)
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Hint. There is a quicker way to do this than dividing 57 by 1, 2, 3, . . . ,
listing all resulting pairs (q, r), and removing identical entries.

1.4.3. Find

(a) the remainder upon dividing 316 by 23;

(b) the last digit of the number 19971997
1997

.

To solve the problem above (among others), it’s useful to be familiar

with the following notion: The integers a and b are said to be congruent
modulo m �= 0 if a − b is divisible by m (or, equivalently, if a and b have

equal remainders upon division by m). This is denoted by a ≡ b (mod m),

or a ≡ b mod m, or a ≡ b (m), or a ≡
m
b.

1.4.4. Properties of congruences: For any a, b,m �= 0 the following

statements are true:

(a) Transitivity: If a ≡ b (m) and b ≡ c (m), then a ≡ c (m).

(b) Addition: If a ≡ b (m) and c ≡ d (m), then a+ c ≡ b+ d (m).

(c) Multiplication: If a ≡ b (m) and c ≡ d (m), then ac ≡ bd (m).

(d) Multiplication by an integer: If a ≡ b (m), then ac ≡ bc (mc) for

any c �= 0.

(e)∗ Division by an integer: If ac ≡ bc (m) and (m, c) = 1, then a ≡
b (m).

1.4.5. (a) Any number is congruent mod 9 and mod 3 to the sum of its

digits.

(b) Formulate and prove similar rules of divisibility for 2, 4, and 11.

1.4.6. The sequence of remainders of an (n = 0, 1, . . .) upon division by

b �= 0 becomes periodic starting from some n.

Hints

1.4.1. (a) Use induction on a going “up” and “down.” The base case when

0 ≤ a ≤ |b| is obvious. If a ≥ |b|, then the inductive step reduces the

assertion to the statement about a− b. If a < 0, then the next step reduces

the assertion to the statement for a+ |b|.
(b) This statement is equivalent to (a).

1.4.3. We have

316 = (32)8 = 98 = (92)4 = 814 ≡ 124 = (122)2 ≡ 62 ≡ 13 mod 23.
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5. Linear Diophantine equations (2)

1.5.1. (a) A grasshopper moves along a line jumping 6 cm or 10 cm in either

direction. What points can it get to?

(b) On the island of Utopia, each week consists of 7 days, and each

month has 31 days. Sir Thomas Moore lived there for 365 days. Was one of

the days necessarily Friday the 13th?

(c) Mike added together the day of his birth multiplied by 12 and the

number of the month of his birth multiplied by 31 and got 670. What is his

birthday? Find all possible solutions!

(d) Solve the equation nx + (2n − 1)y = 3, where n is a given number

(from here on we mean to find a solution in integers).

1.5.2. (a) One can make change for any amount of money greater than 23

yuan using just 5- and 7-yuan coins.

(b)∗ Find the smallest number m such that one can make change for any

amount of money greater than m yuan using 12-, 21-, and 28-yuan coins.

1.5.3. A cue ball is launched from the corner of a billiard table at angle

45◦. Will the ball hit the pin standing at the point (2, 1), if the table is a

rectangle with one of its vertices at the origin of the coordinate plane and

another one at the point

(a) (12, 18); (b) (13, 18)?

1.5.4. The equation 19x+ 17y = 1 has a solution in integers.

1.5.5. Let a and b be integers that are not both equal to 0 and let c ∈ Z.

(a) Theorem. Let both a and b be nonzero. If a pair (x0, y0) is a

solution of ax+ by = c, then the set of all solutions of the equation is{(
x0 +

b

(|a|, |b|) t, y0 −
a

(|a|, |b|) t
)∣∣∣ t ∈ Z

}
.

(b) The equation ax + by = c has a solution if and only if the equation

(a− b)u+ bv = c has a solution.

(c) Theorem. The equation ax+ by = c has a solution if and only if c
is divisible by (a, b).

(d) Construct an algorithm that either finds at least one solution of the

equation ax+ by = c or reports that there are no solutions.

1.5.6. For any a and b not equal to 0 simultaneously, let M = {ax +

by | x, y ∈ Z}.
(a) Any element of M is divisible by the smallest positive element of M .

(b) The smallest positive element of M is equal to (a, b).
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1.5.7. Let a and b be integers that are not both equal to 0 and let c ∈ Z.

(a) GCD representation lemma. There exist x and y such that

ax+ by = (a, b).
(b) Lemma. If (b, c) = 1 and c|ab, then c|a.
(c) Euclid’s lemma. If p is a prime and p|ab, then p|a or p|b.
(d) Lemma. If (b, c) = 1, b|a, and c|a, then bc|a.

1.5.8. (a) Find (291 − 1, 263 − 1).

(b) Find (22
k
+ 1, 22

l
+ 1).

(c) For which a, b, and n is na + 1 divisible by nb − 1?

1.5.9. (a) For any a and b �= 0 we have the equality gcd(a, b) = gcd(b, r),
where r is the remainder on division of a by b.

(b) For a pair of numbers (a0, b0) �= (0, 0), the Euclidean algorithm
constructs the sequence of pairs (ak, bk) by the following rules:

• If bk = 0, set d := ak and halt the algorithm.

• If bk �= 0, set ak+1 := bk and let bk+1 be equal to the remainder when

ak is divided by bk.

Prove that for any pair of numbers (a0, b0) �= (0, 0), the Euclidian algo-

rithm will come to an end and return d = gcd(a0, b0).

1.5.10. Solve the following systems of congruences:

(a)

{
x ≡ −1 (7),

x ≡ 15 (5);
(b)

{
x ≡ 6 (12),

x ≡ 8 (20);
(c)

⎧⎪⎨
⎪⎩

x ≡ 7 (8),

x ≡ 18 (25),

6x ≡ 2 (7).

(d) The Chinese Remainder Theorem. If nonzero integers m1, . . . ,
ms are pairwise relatively prime, then for any integers a1, . . . , as, there exists
x such that x ≡ ai (mi) for all i = 1, . . . , s.

(e) Construct an algorithm for finding x.

Suggestions, solutions, and answers

1.5.1. (a) Answer : The grasshopper can get to all points whose distances

from the starting point are even.

Solution. The grasshopper jumps even distances, so it can move away

from the starting point only by an even distance. To show that it can get to

the point located at a distance 2n to the right of the starting point, make 2n
jumps by 6 to the right and n jumps by 10 to the left, since 6(2n)−10n = 2n.
An analogous argument works for points located to the left of the starting

point.

(b) Consider 7 consecutive months during which Sir Thomas Moore was

on the island, numbered 1 to 7 in the same way as we number days of the
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week. The number of days in a month has the remainder 3 upon division

by 7. This means that if the 13th day of the ith month is the kth day of

the week, then the 13th day of the (i + 1)th month will be the (k + 3)th

day of the week modulo 7. Therefore, the days of the week of 13th days

of the seven months are k, k + 3, k + 6, k + 2, k + 5, k + 1, k + 4 modulo 7.

This contains all 7 days of the week among them. Thus, one of them will

be Friday.

1.5.2. (a) If 24 ≤ n < 29, we can make change for n yuan as follows:

24 = 2 · 5 + 2 · 7, 25 = 5 · 5, 26 = 5 + 3 · 7, 27 = 4 · 5 + 7, 28 = 4 · 7.
We will prove the problem’s assertion by induction on n. We just proved

it for 24 ≤ n < 29. If n ≥ 29, by the induction hypothesis, we can make

change for n− 5 yuan using 5- and 7-yuan coins.

1.5.5. (c) Assume that a ≥ b > 0 and use induction on a+ b.

1.5.7. (a) The statement follows from 1.5.5 (c), or from 1.5.6 (b) (or can be

proved similarly).

(b) Use part (a).

(c) Use part (b).

Another hint. For fixed numbers p and a ≥ 0, find the smallest positive

number b satisfying the following conditions: p|ab and b is not divisible

by p. It’s clear that if p|ab, then p|a(b − p). Therefore the minimality

of b implies that b ≤ p. Since p|ab, we have ab ≥ p. Consider integers

b, 2b, . . . , (a− 1)b, ab. Among them there is an integer i satisfying (i− 1)b <
p ≤ ib. If p = ib, then b = 1, so p|ab. Now let p ≤ ib. Note that 0 ≤ ib−p ≤ b
and p|a(ib− p). This contradicts the minimality of b.

1.5.8. (a) Prove that (na − 1, nb − 1) = n(a,b) − 1.

1.5.9. (b) If bk �= 0, then for any two consecutive steps, the largest numbers

in a pair will decrease. So at some step the largest number in the pair will

reach its minimal value and the algorithm will halt. Therefore at some step

we will obtain the pair (ak, 0). Consequently, ak = gcd(ak, 0) = gcd(a0, b0).

1.5.10. Answers: (a) x≡ 20 (35); (b) ∅ (empty set); (c) x≡ 943 (1400).

6. Canonical decomposition (2*)

The existence of prime factorization (problem 1.2.8 (a)) implies that for any

number n ≥ 2, there are distinct primes p1, . . . , pm and positive integers

α1, . . . , αm such that n = pα1
1 · . . . · pαm

m . This representation is said to be

the canonical decomposition of the number n. It is uniquely determined up

to the order of the factors (problem 1.2.8 (d)).
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1.6.1. Find the canonical decomposition of the following numbers:

(a) 1995; (b) 17!; (c)
(
22
11

)
.

1.6.2. (a) Lemma. The exponent of a prime p in the canonical decompo-

sition of n! is equal to
∞∑
i=1

[
n
pi

]
.

(b) n! is not divisible by 2n for any n ≥ 1.

(c) How many zeros are there at the end of 1000!?

1.6.3. Let n = pα1
1 · . . . · pαn

n be the canonical decomposition. Find

(a) the number α(n) of all positive divisors of the number n;
(b) the sum s(n) of all positive divisors of the number n;
(c)
∑
d|n
α(d), where the sum is taken over all positive divisors of the

number n.

1.6.4. (a) Suppose that (a, b) = 15 and [a, b] = 840. Find a and b.
(b) Prove that (a, b) · [a, b] = ab.
(c) Express [a, b, c] in terms of a, b, c, (a, b), (b, c), (c, a), and (a, b, c).
(d) Express (a, b, c) in terms of a, b, c, [a, b], [b, c], [c, a], and [a, b, c].
(e)∗ Find expressions similar to the ones above for n integers.

1.6.5. A positive number is said to be perfect if it is equal to the sum of

all of its positive divisors other than itself. Prove that n is an even perfect

number if and only if n = 2p−1(2p − 1), where p and 2p − 1 are primes.

1.6.6. (a) If (a, b) = 1 and ab = m2, then there exist k and l such that

a = k2 and b = l2.
(b) Find n > m > 100 such that 1 + 2 + . . .+ n = m2.

(c) Find all m > n > 1 such that 12 + 22 + . . .+ n2 = m2.

(d) If n > 2, ab = cn, and (a, b) = 1, then a = xn and b = yn for some x
and y.

(e) The integer m(m + 1) is not a power of a prime number for any

m > 1.

1.6.7. (a) If ab = cd, then there exist k, l, m, and n such that a = kl,
b = mn, c = km, and d = ln.

(b) Find all integers a, b, c, d, k, and m such that ab = cd, a+ d = 2k,

and b+ c = 2m.

1.6.8. Find the smallest integer n such that for any set of n numbers between

1 and 200, there are a and b in the set with a|b.



14 1. DIVISIBILITY

1.6.9. (a) Let p be a prime and let n < p < 2n. Then
(
2n
n

)
is divisible by p.

(b) The following inequality holds: 22pn+1 > p1 · . . . · pn, where pn is the

nth prime.

(c) Bertrand’s postulate. For any n > 1 there exists a prime between

n and 2n.

Suggestions, solutions, and answers

1.6.1. (a) We have 1995 = 5 · 399 = 5 · 3 · 133 = 5 · 3 · 7 · 19 (= 5 · 7 · 57).
(b) Calculate the exponent of 2 in the canonical decomposition of 17! =

1 · 2 · 3 · . . . · 17. Every second number in this product is divisible by 2, so

we can factor out 28. Then, each fourth number is divisible by 4, providing

an additional factor of 24. Similarly we find two more 2’s in factors of 8 and

one more 2 in factors of 16. Applying this to the other primes yields

17! = 215 · 3
[
17
3

]
+
[
17
9

]
· 5
[
17
5

]
· 7
[
17
7

]
· 11 · 13 · 17 = 215 · 36 · 53 · 72 · 11 · 13 · 17.

(c) Similarly to part (b) we have

11! = 2

[
11
2

]
+
[
11
4

]
+
[
11
8

]
· 3
[
11
3

]
+
[
11
9

]
· 5
[
11
5

]
· 7 · 11 and

22! = 2

[
22
2

]
+
[
22
4

]
+
[
22
8

]
+
[
22
16

]
· 3
[
22
3

]
+
[
22
9

]
· 5
[
22
5

]
· 7
[
22
7

]
· 11
[
22
11

]
· 13 · 17 · 19.

Therefore(
22

11

)
=

22!

11! · 11! = 219−16 ·39−8 ·54−4 ·73−2 ·13 ·17 ·19 = 23 ·3 ·7 ·13 ·17 ·19.

1.6.3. Solve this problem for a prime n, then for n = pα, then for n = p1p2,
and finally for the general case.

1.6.4. Hint. Use the inclusion-exclusion principle and canonical decompo-

sition.

(c) Answer :

[a, b, c] =
a · b · c · (a, b, c)

(a, b) · (b, c) · (c, a) .

1.6.9. A proof can be found in [Tik94]. Most of the technical details there

are not needed if we just want to prove Bertrand’s postulate, rather than

Chebyshev’s theorem. See also [AZ04].

7. Integer points under a line (2*)

The problems in this section investigate the sum

fα(n) =
n∑

k=1

[αk],
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which gives the number of integer points with positive y-coordinate and x-
coordinate between 1 and n that lie under the line y = αx, where α is a

positive real number. An algorithm for rational α is developed in problems

1.7.3 (a, b, c), while problems 1.7.1 and 1.7.2 are useful as warm-ups.

1.7.1. (a) Find f√2(4).

(b) Do there exist numbers α �= β such that fα(n) = fβ(n) for any n?

1.7.2. Find fα(n)
(a) if α is an integer; (b) if 2α is an integer; (c) if 3α is an integer;

(d) if α = u/n for given integers u and n.

(e) Prove that lim
n→∞

fα(n)
n2 exists, and find it. (See the definition of limits

in problem 6.4.2; skip this problem if you are unfamiliar with this concept.)

1.7.3. (a) Prove the equality fα(n) = f{α}(n) +
1
2 [α]n(n + 1) for arbitrary

α and n.
(b) Prove the equality fα(n)+ f1/α([nα])− [n/q] = n[nα], where q is the

denominator of the irreducible fraction representing α if α is rational, and

q =∞ (i.e., [n/q] = 0) if α is irrational.

(c) Construct an algorithm for calculating fα(n) for rational α, using
(a) and (b).

(d) Find the complexity of that algorithm, that is, the number of oper-

ations of addition and multiplication in the algorithm, and compare it with

the complexity of the straightforward calculation of fα(n).

(e) Find an algorithm for calculating the sum
n∑

k=1

{αk} for a rational α.

Remark 1.7.4. The special case of the equality in 1.7.3 (b) for odd positive

relatively prime numbers p < q, α = p/q, and n = (q − 1)/2 (then [nα] =
(p − 1)/2) appears in the proof of the quadratic reciprocity law (see the

solution of problem 2.4.5 (d)). The proof in the general case is similar.

The sum from 1.7.3 (e) was calculated (in a more cumbersome way than

proposed here) in [Dob04].

Suggestions, solutions, and answers

1.7.2. (a) We have
n∑

k=1

[αk] = α
n∑

k=1

k = α · n(n+1)
2 .

(b) For integer α see (a). For half-integers (α = q/2 where q is odd) we

have

[α] + [2α] + [3α] + . . .+ [nα]

=
(
α− 1

2

)
+ 2α+

(
3α− 1

2

)
+ . . . = α · n(n+ 1)

2
−
[n+ 1

2

]
.
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There are other ways to write this sum, for example

[α]
n(n+ 1)

2
+ {α}n

2 + (−1)n
2

.

(c) For integer α see (a). If α is not an integer we have

fα(n) =

⎧⎨
⎩α ·

n(n+1)
2 −

[
n+1
3

]
, n �= 3k + 1;

α · n(n+1)
2 −

[
n
3

]
− {α}, n = 3k + 1.

Hint. If α is not an integer, we have

[α] + [2α] + [3α] = α+ 2α+ 3α− 1

3
− 2

3
= (1 + 2 + 3)α− 1.

Solutions to (a), (b), (c), and (d) can be obtained using Pick’s formula.

See [Sop].

(e) Answer : α/2.

1.7.3. (a) We have

fα(n) =
n∑

k=1

[αk] =
n∑

k=1

[([α] + {α}) · k] =
n∑

k=1

[[α]k + {α}k]

=

n∑
k=1

([α]k + [{α}k]) =
n∑

k=1

[α]k +
n∑

k=1

[{α}k]

= [α]

n∑
k=1

k + f{α}(n) = [α]
n(n+ 1)

2
+ f{α}(n).

(b) Calculate the number of integer points in the rectangular region

1 ≤ x ≤ n, 1 ≤ y ≤ [nα]. The details are similar to the solution of problem

2.4.5 (d).

(c) For example,

f2/3(n) = n
[2n
3

]
+
[n
3

]
− f3/2

([2n
3

])
;

f3/2

([2n
3

])
=

1

2

[2n
3

]([2n
3

]
+ 1
)
+ f1/2

([2n
3

])
;

f1/2

([2n
3

])
=
[2n
3

][n
3

]
+
[n
3

]
− f2

([n
3

])
,

since [[x]/n] = [x/n] for an integer n > 0 and so

[[
2n
3

]
2

]
=
[
n
3

]
;

f2

([n
3

])
=
[n
3

]([n
3

]
+ 1
)
.


