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Level A

Problem 1. Denote by S(x) the sum of the digits of a positive integer x.
Solve:

(a) x+ S(x) + S(S(x)) = 1993.
(b) x+ S(x) + S(S(x)) + S(S(S(x))) = 1993.

Problem 2*. Suppose n is the sum of the squares of three positive integers.
Prove that n2 is also the sum of the squares of three positive integers.

Problem 3. A red and a blue poker chip are stacked, the red one on top.
Suppose one can carry out only the following operations: (a) adding two
chips of the same color to the stack together, in any position; and (b) re-
moving any two neighboring chips of the same color. After finitely many
operations, is it possible to end up with only two chips left, the blue one on
top of the red one?

Problem 4. At the court of Tsar Gorokh, the royal astrologer built a clock
remarkably similar to modern (analog) ones, with hands for hours, minutes,
and seconds, all moving smoothly around the same point. He calls a moment
of time lucky if the three hands of his clock, counting clockwise from the
hour hand, appear in the order hours/minutes/seconds, and unlucky if they
appear in the order hours/seconds/minutes. Is the amount of lucky time in
a 24-hour day more or less than the amount of unlucky time?

Remark. Tsar Gorokh (King Pea) is a character from Russian folklore. “In the
time of Tsar Gorokh” is a Russian idiom meaning “a very long time ago”.

Problem 5. Prove or disprove: There is a finite string of letters of the
alphabet such that there are no two identical adjacent substrings, yet a pair
of identical adjacent substrings appears as soon as one adds any letter of
the alphabet at the beginning or at the end of the string.

Problem 6. A circle centered at D passes through points A, B, and the
excenter O of the triangle ABC relative to side BC (that is, O is the center
of the circle tangent to BC and to the extensions of sides AB and AC).
Prove that A, B, C, and D lie on a circle.
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Level B

Problem 1. For two distinct points A and B in the plane, find the locus of
points C such that the triangle ABC is acute and the value of its angle at A
is intermediate among the triangle’s angles (meaning that ∠B ≤ ∠A ≤ ∠C
or ∠C ≤ ∠A ≤ ∠B).

Problem 2. Let x1 = 4, x2 = 6, and define xn for n ≥ 3 to be the least
nonprime greater than 2xn−1 − xn−2. Find x1000.

Problem 3. A paper triangle with angles of 20◦, 20◦, and 140◦ is cut along
one of its bisectors into two triangles; one of these triangles is also cut along
one of its bisectors, and so on. Can we obtain a triangle similar to the initial
one after several cuts?

Problem 4. In Pete’s class, there are 28 students besides him. Each of the
28 has a different number of friends in the class. How many friends does
Pete have in this class?

Problem 5. To every pair of numbers x and y we assign a number x ∗ y.
Find 1993 ∗ 1935 if it is known that

x ∗ x = 0 and x ∗ (y ∗ z) = (x ∗ y) + z for any x, y, z.

Problem 6. Given a convex quadrilateral ABMC with ∠BAM = 30◦,
∠ACM = 150◦, and AB = BC, prove that AM is the bisector of ∠BMC.

Level C

Problem 1. In the decimal representation of two numbers A and B, the
minimal periods have lengths 6 and 12, respectively. What are the possibil-
ities for the length of the minimal period of A+B?

Problem 2. The grandfather of Baron von Münchhausen built a castle
with a square floor plan. He divided the castle into 9 equal square areas,
and placed the arsenal in the center square. The Baron’s father divided each
of the remaining 8 areas into 9 equal square halls and built a greenhouse in
each central hall. The Baron himself divided each of the 64 empty halls into
9 equal square rooms and placed a swimming pool in each of the central
rooms. He then furnished the other rooms lavishly and connected each pair
of adjacent furnished rooms by a door, locking all other doors.

The Baron boasts that he can tour all his furnished rooms, visiting each
exactly once and returning to the starting point. Can this be true?

Problem 3. From any point on either bank of a river one can reach the
other bank by swimming a distance of no more than 1 km.

(a) Is it always possible to pilot a boat along the whole length of the river
while remaining within 700m of both banks?

(b) * Same question with 800m.
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Remark. Both the answer and the degree of difficulty of the problem depend on
what additional assumptions are made. Naturally the boat is to be considered a
point. The original problem had a note saying so, and also that “the river joins
two round lakes, each 10 km in radius, and the river banks consist of straight line
segments and arcs of circle.” But in spite of this precision, ambiguities remain.
Can there be islands in the river? And does “within 700m”
refer to the straight-line distance or the swimming distance?
(See figure.) Warning: Part (b) is surprisingly difficult, unless
islands are allowed, in which case both parts are easy.

Problem 4. Given real numbers a and b, define pn = [2{an+b}], where {x}
denotes the fractional part of x and [x] the integer part.

(a) Can all possible quadruples of 0s and 1s occur as substrings of the
sequence p0, p1, p2, . . . , if we are allowed to vary a and b?

(b) Can all possible quintuples of 0s and 1s occur?

Problem 5. In a botanical classifier, a plant is identified by 100 features.
Each feature can either be present or absent. A classifier is considered to
be good if any two plants have less than half of their features in common.
Prove that a good classifier cannot describe more than 50 plants.

Problem 6. On the side AB of a triangle ABC, a square is constructed
outwards; let its center be O. Let M and N be the midpoints of AC and
BC, and let the lengths of these sides be a and b. Find the maximum of the
sum OM +ON as the angle ACB varies.

Level D

Problem 1. Knowing that tanα + tanβ = p and cotα + cotβ = q, find
tan(α+ β).

Problem 2. The unit square is divided into finitely many smaller squares,
not necessarily of the same size. Consider the small squares that overlap
(possibly at a corner) with the main diagonal. Is it possible for the sum of
their perimeters to exceed 1993?

Problem 3. We are given n points in the plane, no three of which lie on a
line. Through each pair of points a line is drawn. What is the least possible
number of pairwise nonparallel lines among these lines?

Problem 4. We start with a number of boxes, each with some marbles in
them. At each step, we select a number k and divide the marbles in each
box into groups of size k with a remainder of less than k; we then remove
all but one marble from each group, leaving the remainders intact.

Is it possible to ensure that in 5 steps each box is left with a single
marble, if initially each box has at most (a) 460 marbles, (b) 461 marbles?

Problem 5. (a) It is known that the domain of a function f is the segment
[−1, 1], and f(f(x)) = −x for all x; also, the graph of f is the union of
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finitely many points and straight line segments (with or without endpoints).
Draw a possible graph for f .

(b) Is it possible to draw the graph of f if the domain of f is (−1, 1)?
the whole real line?

Problem 6*. A fly lives inside a regular tetrahedron with edge a. What
is the shortest length of a flight the fly could make to visit every face and
return to the initial spot?



Hints



1993 Olympiad

Level A

1. (a) Use divisibility by 3. (b) Estimate x from below and find the remain-
der after division of x by 9.
2. Rewrite the expression (a2 + b2 + c2)2 in a different form.
3. Consider all pairs of chips with a red chip above a blue chip.
4. Favorable and unfavorable times are interchanged by reflection.
5. Use induction on the number of letters in the alphabet.
6. Prove that ∠ADB = ∠ACB.

Level B

2. Write down xn − xn−1 for n small.
3. From what triangles can a triangle with the initial angles be obtained?
4. Consider the most friendly and the least friendly of Pete’s classmates.
6. Consider the points symmetric to B with respect to AM .

Level C

1. The digits of A+B must repeat in blocks of 12.
4. Draw the points {an+ b} on the circle of unit circumference.
5. Estimate the total number of distinctions between all possible pairs of
plants with respect to all features.

Level D

4. Let there be 1, 2, . . . , n stones in the boxes. Express the maximal number
of stones after one move in terms of n and k. Investigate for which k this
number is minimal.
5. The graph of such a function would be left unchanged by a 90◦ rotation
around the origin.
6. Let P and Q be the midpoints of the sides KL and MN of a space
quadrilateral KLMN . Then

PQ ≤ 1
2(KN + LM).
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Level A

1. (a) No solutions. (b) x = 1963. 3. No. 4. The amounts of lucky
and unlucky time are the same. 5. There is always such a string.

Level B

1. The locus is given by the shaded domains and solid
A Bcurves in the figure. (The points on the dotted curves do not

belong to the locus.) 2. x1000 =
1
2 · 1000 · 1003 = 501500.

3. No. 4. Pete has 14 friends. 5. 58.

Level C

1. 4 or 12. 2. Yes. 3. 700m is not always possible, but 800m is
(if islands are not allowed). Here we’re considering the swimming distance
rather than the straight-line distance. 4. (a) Yes. (b) No. 6. The
maximum equals 1

2(1 +
√
2)(a+ b) and is attained when ∠ACB = 135◦.

Level D

1. pq/(q−p), unless p = q, in which case the answer is
either 0 (if p = 0) or undefined (if p �= 0). 2. Yes.
3. n lines if n > 2; one line if n = 2. 4. (a) Yes.
(b) No. 5. (a) One solution is shown in the figure.
(b) No. 6. 4√
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Problem 1. (a) Since x, S(x) and S(S(x)) have the same remainder upon
division by 3 (by Fact 7), the sum x+S(x)+S(S(x)) is divisible by 3. Since
1993 is not divisible by 3, there is no solution.

(b) Clearly x < 1993. It is easy to see that 1899, 1989 and 999 have the
largest sum of digits among the numbers from 1 to 1993. Thus S(x) ≤ 27.
Further, S(S(x)) ≤ S(19) = 10 and S(S(S(x))) ≤ 9. The equation to be
solved implies that

x = 1993− S(x)− S(S(x))− S(S(S(x))) ≥ 1993− 27− 10− 9 = 1947.

As in part (a), we know that x, S(x), S(S(x)) and S(S(S(x))) leave the
same remainders when divided by 9; let’s call this remainder r. Then 4r has
remainder 4 when divided by 9 (because that’s the remainder of 1993). In
other words, 4r− 4 is divisible by 9, which implies that r− 1 is divisible by
9 (since 4 and 9 are coprime; see Fact 9). So r = 1.

Now list the numbers from 1947 through 1993 that have remainder 1
upon division by 9: they are 1954, 1963, 1972, 1981 and 1990. We can
verify directly that only 1963 satisfies the equation.

Problem 2. Let n = a2 + b2 + c2. Expand the square and rearrange:

(a2+b2+c2)2 = a4+b4+c4+2a2b2+2a2c2+2b2c2

= (a4+b4+c4+2a2b2−2a2c2−2b2c2)+(2ac)2+(2bc)2

= (a2+b2−c2)2+(2ac)2+(2bc)2.

We can assume that a ≥ b ≥ c > 0, so a2 + b2 − c2 > 0. Thus we have
expressed n2 as the sum of squares of three positive integers.

Remarks. 1. Try to prove a similar statement for the sum of four and more squares.

2. For the sum of two squares the analogous statement is not true: (12 + 12)2 = 4
cannot be represented as the sum of two squares of positive integers, although
an analogous identity is true:

(a2 + b2)2 = (a2 − b2)2 + (2ab)2.
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For more on sums of two squares, see the solution to Problem 96.D.4 on page 134
and Remark 2 thereto.

3. A famous theorem of Lagrange says that any positive integer can be represented
as the sum of four integer squares. (An integer square, or simply a square, means
the same as the square of an integer. This includes 0 as well as the squares of
positive integers.)

4. The number 7 is not a sum of three squares. It turns out that a positive integer
is not representable as a sum of three squares if and only if it is of the form
(8k + 7) · 4m.

5. Suppose that instead of specific numbers we consider sums of squares of ar-
bitrary variables. An identity going back at least to the third-century Greek
mathematician Diophantus of Alexandria says that

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2,

which of course can also be written as

(a21 + a22)(b
2
1 + b22) = (a1b1 + a2b2) + (a1b2 − a2b1)

2.

This elegant equality was extended by Euler in the eighteenth century to the
case of four pairs of variables:

(a21+a22+a23+a24)(b
2
1+b22+b23+b24)

= (a1b1−a2b2−a3b3−a4b4)
2+(a1b2+a2b1+a3b4−a4b3)

2

+(a1b3+a3b1+a4b2−a2b4)
2+(a1b4+a4b1+a2b3−a3b2)

2.

A similar identity also exists representing

(a21 + a22 + · · ·+ a2k)(b
2
1 + b22 + · · ·+ b2k) (1)

as a sum of squares of polynomials when k = 8. However, for no other k—
apart from the already discussed k = 2, 4, 8 and the trivial case k = 1— is the
product (1) writable as a sum of squares of polynomials! The proof of this fact
is far from elementary; to intrigue the reader, we mention only that the identity
for k = 2 is related to complex numbers, for k = 4 to quaternions, and for k = 8
to Cayley numbers, also called octonions. More about this in the book [413].

Problem 3. First solution. Consider all pairs of chips in the stack, not
necessarily adjacent. There are four possibilities for such pairs, in terms of
the ordering of colors: RR, RB (meaning a red chip above a blue
chip), BR and BB. For instance, in the stack RBRB of the figure,
there are three RB pairs (first and second chips from the top, first
and last, third and last).

B
R
B
R

The reader can check that the parity (see Fact 23) of the number of RB
pairs cannot change under our operations. For example, suppose we insert
two red chips at a spot that has k blue chips below it. It is easy to see that
this adds exactly 2k new RB pairs, so the parity remains the same. The
other operations— insertion of two blue chips and removal of two blue or
two red chips—can be analyzed similarly.
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Now, in the initial position, there is exactly one RB pair. In the desired
final position, there are none. Since 1 and 0 have different parities, it’s not
possible to reach one state from the other.

Remark. The parity of the number of RB pairs in this solution is an invariant
(see Fact 2), since it remains unchanged no matter what happens to the stack,
under the rules of the problem. One could alternatively consider the number
of red chips below which there is an odd number of blue chips; the parity of
this number is also invariant. (Check it!)

The next solution also relies on an invariant, but of a different type: a
transformation of the real line into itself. (A transformation is a map that is
one-to-one and onto, and therefore has an inverse.)

Recall that two maps from a set to itself can be composed, that is, applied
successively, producing a third map. If f : R → R and g : R → R are maps of
the real line, the composition fg (also written f ◦ g) is the map obtained by
applying g, then f :

(fg)(x) = f(g(x)).

The composition of any map f with the identity (the map Id such that Id(x) = x
for all x) is of course f again. The composition of several maps depends on
the order in which they are applied, but not on the grouping: in symbols,
(fg)h = f(gh), because both of these maps take x to f(g(h(x))).

Second solution. Consider two transformations of the real line, r and b,
defined by r(x) = 1 − x (this is a reflection in the point 1

2 of the line) and
b(x) = −1− x (a reflection in the point −1

2).
Obviously, composing r with r brings each point of the line back to itself,

and so gives the identity map; in algebraic notation (see preceding remark),
rr = Id. Similarly, bb = Id.

The composition of two reflections of the line is, in general, a translation.
For instance, applying b, then r, has the overall effect of a translation to the
right by 2:

(rb)(x) = r(b(x)) = 1− (−1− x) = x+ 2. (1)

Now let’s associate to red chips R the reflection r, and to blue chips B
the reflection b. For any stack of chips, imagine reading off the colors from
the bottom of the stack up and applying consecutively the reflection corre-
sponding to each color. The overall effect of all these reflections r and b, in
the given order, is again a map of the real line.

The initial stack in the problem, RB, corresponds to applying b then r;
this, according to equation (1), is the translation by 2. But if we consider
the reverse stack BR, the composition gives a different result altogether:

b(r(x)) = −1− (1− x) = x− 2.

The composition of transformations is not, in general, commutative!
Now the key observation is this: two adjacent chips of the same color

cancel each other out from the point of view of composition: their combined
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effect, as we have seen, is the identity. This means that inserting or remov-
ing two adjacent chips of the same color has no effect on the overall map
represented by the stack of chips; for example, rb = bbrb = brrbrb. There-
fore no sequence of such insertions of removals can lead from the stack RB
to the stack BR, as they represent different overall maps.

Remarks. 1. (Follow-up on the second solution, for more advanced readers familiar
with group theory language.) The set of compositions is the group of transfor-
mations of the real line generated by r and b, and these generators satisfy the
relations r2 = 1 and b2 = 1.

One can also define an abstract group with generators r and b—these letters
now being regarded just as symbols—subject to the relations r2 = 1 and b2 = 1,
meaning that whenever bb or rr appear in a product of generators, they can be
erased. By interpreting multiplication as composition we obtain a map from the
abstract group to the group of transformations; it can be checked that this is an
isomorphism (that is, the group of transformations has no additional relations
beyond those in the abstract group). Mathematicians call such an isomorphism
a faithful representation of the abstract group in R. This abstract group can be
shown to be isomorphic to Z � Z/2, the semidirect product of Z and Z/2.

2. The problem we’ve solved (twice!) comes up in a proof of an amusing and
geometrically intuitive fact: Two continuous paths inside a square, each of which
joins a pair of opposite vertices, must intersect. We sketch the proof in the case
where the paths are polygonal. (The reader acquainted with continuity might
try to prove that this implies the general case, using two facts from topology:
the image of a continuous path [0, 1] → R

2 is compact; and if two compact sets
don’t intersect, there is some minimum positive distance between points in one
set and points in the other.)

So let’s consider two nonintersecting polygonal paths as described, one blue
and one red, inside a square. We make the square’s sides vertical and horizontal.
Now move a vertical line continuously from the left edge of the square to the
right edge, keeping track of the intersections of this line with the red and blue
paths. The pattern of red and blue intersection points corresponds to the stack
of chips in the problem. (Since the paths don’t intersect we can assume that
none of the polygonal segments is vertical: just jiggle a vertex a tiny bit if it is.
Therefore the intersection of either path with a vertical line is a finite set.)

The intersection points always appear and disappear in pairs
of a single color, as in the problem. (See the diagram on the right
for an appearing pair and a disappearing one.) Therefore if on the
left edge of the square we have the red dot above the blue dot, we
cannot have the inverse situation on the right edge, contradicting
the assumption that the paths join opposite corners.

3. The geometric result just proved is closely related to the Jordan curve theorem,
which states that every closed plane curve without self-intersections divides the
plane into two parts, an inside and an outside. This intuitively clear statement
is difficult to prove, since the curve may have no smooth pieces. But in the case
of polygonal closed curves an argument very similar to the one above provides
a proof.
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Problem 4. The key idea is that the mirror image of a lucky pattern of
hands is unlucky, and vice versa.

Consider the position of the hands at two distinct times: T seconds be-
fore noon and T seconds after noon. The patterns formed by the hands of
the clock at those moments are mirror images of each other, with respect
to the axis of symmetry formed by a vertical diameter. (Why?) For exam-
ple, here is a clock showing 1 hour, 15 minutes, and 22 seconds after noon
(01:15:22 PM) and another showing the same amount of time before noon
(10:44:38 AM):

12

9

6

12

3

6

Now, a moment’s thought shows that reflection interchanges lucky and
unlucky patterns of hands. Thus, to each lucky moment before noon there
corresponds an unlucky moment after noon. An interval of lucky moments in
the morning is matched by an interval of unlucky moments in the afternoon
or evening, and both intervals have the same length. Similarly, an interval
of unlucky moments before noon is matched by an equal interval of lucky
moments after noon. Hence the total amount of lucky time in the day equals
the total amount of unlucky time.

Remarks. 1. It’s not enough to establish a one-to-one correspondence between
lucky and unlucky moments; we need to consider the length of the intervals.
This question is discussed further in Remark 2 after the solution to Problem
94.A.5, which deals with a similar situtation (see page 85).

2. It is also not enough to argue that each lucky pattern of hands has a mirror
image that is an unlucky pattern of hands, because the mirror image might
conceivably not correspond to an actual moment in time. Some combinations
of hand positions simply cannot occur on a properly functioning clock. (Find
examples!) So one must establish a correspondence between actual intervals of
time.

Problem 5. Consider the sequence of strings

A, ABA, ABACABA, ABACABADABACABA, . . .

each string being obtained from the previous one by writing it twice and
inserting the first unused letter between the two copies.

When we run out of letters, the last string will provide an affirmative
answer to the problem. We will prove this by complete induction (Fact 24).
For convenience, we will denote the n-th string of the sequence by Zn, so
Z1 = A, Z2 = ABA, etc. We also denote the n-th letter of the alphabet by
xn, so x1 = A, x2 = B, . . . , x26 = Z. Then the sequence of strings is defined
by the properties

Z1 = x1 and Zn+1 = Znxn+1Zn.
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The “multiplication” on the right-hand side simply means that we are con-
catenating (writing one after the other) the string denoted by Zn, the letter
xn+1, and again the string Zn, is this order.

Obviously this process stops when we run out of letters, that is, after
n = 26. We claim that for any n ≤ 26, (a) the string Zn doesn’t have
identical adjacent substrings, but (b) a pair of identical adjacent substrings
appears as soon as one writes any one of the first n letters of the alphabet
either at the beginning or at the end of Zn.

Base of the induction. For n = 1, the statement is obvious.

Induction step. Suppose (a) and (b) are true for Z1, . . . , Zn−1, and
consider the n-th string, Zn = Zn−1xnZn−1.

Suppose Zn has two identical adjacent substrings. They cannot contain
the central letter xn, since there is only one copy of it. Therefore they lie
both to the left or both to the right of the central letter; that is, they’re
identical adjacent substrings of Zn−1. But such substrings cannot exist, by
the induction assumption. This proves statement (a) for Zn.

To prove (b), again we proceed by cases. Suppose we write after Zn one
of the first n letters of the alphabet. If the letter we wrote is the central letter
xn, the result is two copies of Zn−1xn. If we wrote any other letter xk, the
string now ends with Zn−1xk, with k < n. But the induction hypothesis says
that Zn−1xk contains two identical adjacent substrings somewhere. Either
way, we’ve found the desired identical substrings. The argument also applies
if we write a letter to the left of Zn instead of to the right.

Having proved the induction, we now just take n = 26, so all the letters
of the alphabet are allowed. (The word Zn thus constructed has 226 − 1
letters, or more than 50 million!)

Remark. This construction is important in combinatorics and the theory of semi-
groups. Try to prove that in any infinite sequence of letters of the alphabet,
there must be somewhere a string in the pattern of Zn, for any n. By a string
in the pattern of Zn we mean one that is obtained from Zn by replacing each
letter xi by a fixed nonempty string Xi; for instance “abracadabra” is a string
in the pattern of Z2 (take X1 = abra and X2 = cad).

Problem 6. The circle tangent to BC and to the extensions of sides AB
and AC is an excircle of the triangle ABC. Its center O is the intersection of
the bisectors of the angle A and the exterior angle at vertex B; see Fact 16.

A

B

C

D

O

α/2
α/2

γ

β

Let α, β, γ be the angles of 
ABC. Then ∠BAO = α/2
and ∠CBO = (180◦ − β)/2, and

∠ABO = β + ∠CBO = 90◦ + β/2.

From 
AOB we see that
∠AOB = 180◦ − α/2−

(
90◦ + β/2

)
= 90◦ − α/2− β/2 = γ/2,

since α + β + γ = 180◦. On the other hand,
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we have ∠AOB = 1
2∠ADB, because this is the angle inscribed in the circle

centered at D. Hence ∠ADB = γ.
Thus, ∠ADB = ∠ACB. By the converse of the theorem on inscribed

angles, the points A, B, C and D lie on one circle.

Remarks. 1. The points O, C, D lie on a straight line since ∠AOC = β/2 and
∠AOD = β/2 (prove it).

2. The statement is true for the inscribed circle as well (prove it).

Level B

Problem 1. We first draw the perpendicular to AB
through the endpoint A. Clearly, ∠A < 90◦ if and
only if B and C lie on the same side of this line.
Applying the same argument to B, we see that the
locus of points C such that ∠A < 90◦ and ∠B < 90◦

is the strip bounded by the perpendiculars to AB at
both A and B. (See figure on the right.)

A B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A B

Next we construct the circle with diameter AB.
From Fact 14 we know that a point C is outside this
circle if and only if it satisfies ∠ACB < 90◦. Taking
the intersection with the strip already found, we see
that the locus of points C such that the ABC is acute
is the shaded set to the left.

Finally we study the condition that the angle A
is intermediate between the others, that is, either

∠B ≤ ∠A ≤ ∠C or ∠C ≤ ∠A ≤ ∠B. (1)

Since the greater angle of a triangle subtends the longer side, the condition
∠B ≤ ∠A ≤ ∠C is equivalent to

AC ≤ BC ≤ AB.

The points equidistant from A and B are those on the perpendicular bisector
L of the segment AB; therefore AC ≤ BC if and only if C is in the half-plane
determined by L and containing A.

At the same time, BC ≤ AB if and only if C lies in the circle of center
in B and radius AB. Thus, the locus of points satisfying AC ≤ BC ≤ AB
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is the shaded set in diagram (a) below:

A B

(a)

A B

(b)

A B

(c)

Similarly, the condition ∠C ≤ ∠A ≤ ∠B is equivalent to AB ≤ BC ≤
AC, and the corresponding locus is depicted in diagram (b) of the previous
page. The union of the sets in (a) and (b), shown in diagram (c), is therefore
the locus of points C satisfying (1). There remains to draw the intersection
of this locus and the one calculated immediately before (1).

Problem 2. We look at the first several terms of the sequence, in search
of patterns. We find x3 = 9, the least nonprime greater than 2x2 − x1 = 8;
then x4 = 14 is the least nonprime greater than 2x3−x2 = 12 (because 13 is
prime). Continuing we obtain x5 = 20, x6 = 27, and so on, where each time
—after that exceptional 13—the least nonprime greater than 2xn−1−xn−2

appears to be just 2xn−1 − xn−2 + 1, a composite number already.
So we will conjecture that, for n > 4, the number 2xn−1 − xn−2 + 1 is

composite and so equals xn. If this is so, we can write, for n > 4,

xn − xn−1 = xn−1 − xn−2 + 1.

That is, the differences between successive elements of the series increase
by one each time, forming an arithmetic progression: x4 = 14 = x3 + 5,
x5 = 20 = x4 + 6, x6 = 27 = x5 + 7, . . . , or, in compact form,

xn = xn−1 + n+ 1 for n ≥ 4.

If the differences form an arithmetic progression, the numbers xn themselves
can be calculated by summing up the progression. This would give

xn = x3+5+6+7+ · · ·+(n+1)

= 2+3+4+5+6+7+ · · ·+(n+1)︸ ︷︷ ︸
n terms

= 1
2n

(
2+(n+1)

)
= 1

2n(n+3).

(Here we broke x3 down as 2 + 3 + 4 to make the calculation less messy.)
Conjecturally, then, we conclude that

xn = 1
2n(n+ 3) for n ≥ 4. (1)

There remains to prove that this is really the answer. We do it by complete
induction.

Base of the induction. For n = 4, the equality (1) is true.
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Induction step. Let (1) be true for x4, . . . , xn. We need to prove that
xn+1 =

1
2(n+1)(n+4). We have

2xn − xn−1 = 2 · 1
2n(n+ 3)− 1

2(n− 1)(n+ 2) = 1
2(n+ 1)(n+ 4)− 1.

Thus, xn+1 will be equal to 1
2(n+1)(n+4) if this number is composite. This

is indeed so: if n is even, 1
2(n+1)(n+4) has a factor 1

2(n+4) > 1, and if n is
odd, it has a factor 1

2(n+1) > 1.

Now we just have to apply formula (1) to n = 1000, obtaining x1000 =
501500.

Problem 3. Assume that at some step we get a triangle similar to the
initial one. All its angles are multiples of 20◦.

Lemma. All angles of the preceding triangle, and, more generally, of all
preceding triangles are multiples of 20◦.

Proof. Let the triangle with angles α, β, γ be a child of the
triangle with angles α1, β1, γ1, obtained by cutting along
an angle bisector. Arrange the labeling so that α1 = 2α
and β = β1, as in the figure. Since the sum of the
angles of any triangle is 180◦, we deduce that

α α

γ1γβ=β1

γ1 = 180◦ − α1 − β1 = (α+ β + γ)− 2α− β = γ − α.

Clearly, then, if α, β, γ are multiples of 20◦, so are α1, β1, γ1, the angles
of the parent triangle (see Fact 5). But then the angles of the grandparent
triangle are also multiples of 20◦, and so on. �

This, however, cannot be true even after the first cut of the initial trian-
gle: if we start with an angle of 20◦, we get an angle of 10◦, and if we start
with the angle of 140◦ we get an angle of 70◦. The contradiction shows that
it is impossible to get a triangle similar to the initial one.

Remarks. 1. For any positive integer n, it is possible to find an initial triangle so
the construction leads to a similar triangle after n appropriate bisector cuts,
and no sooner.

2. For a similar situation, see Problem 01.B.4.

Problem 4. A classmate of Pete’s can have between 0 and 28 friends.
Of these 29 possibilities, we know that 28 occur. Thus, either there is a
classmate who has 28 friends, or there is a classmate who has no friends.
But if a classmate is friends with everyone, then everyone has at least one
friend. So it’s not possible for both 0 and 28 to occur: either the tally of
friends is 1, . . . , 28 for the various classmates, or it is 0, . . . , 27.

Denote the classmate of Pete’s with the most friends by A and the one
with the least friends by B. In the first case just considered, A is everybody’s
friend, while B has only one friend, A. In the second case B has no friends,
while A is friends with everyone except B. In either case, A is a friend of
Pete’s, and B is not.
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Now let’s send A and B to another class. Then Pete is left with 26
classmates and everybody has one fewer friend in this class than before.
Thus each classmate still has a different number of friends in this class.

We again send the classmate with most friends and the one with least
friends to another class. We can keep doing this until we have sent away 14
pairs of classmates. Each pair included exactly one friend of Pete’s, so Pete
had 14 friends in his class.

Remarks. 1. Several ideas work together toward the solution: friendship is assumed
to be a symmetric relation; it’s useful to look at extreme cases; and we are able
to apply inductive descent.

2. There is one very short, but wrong solution: Let x be the number of Pete’s
friends. Now replace all friendships by nonfriendships, and all nonfriendships
by friendships. Then Pete’s classmates will again each have a different number
of friends, so the conditions of the problem are still satisfied, meaning that Pete
will again have x friends. But at the same time, we know that Pete now has
28− x friends (his nonfriends in the original situation). Therefore

x = 28− x.

Where is the mistake? (Hint: Have we shown that the problem has a unique
solution?) Although wrong, this argument can point the way to the answer.

3. Solve the same problem if Pete has 27 classmates.

4. This is an extension of a problem you may have heard before: Prove that in
any group of more than one person, there are two people with the same number
of friends within the group (the number can be zero).

Problem 5. In the second identity set y = z. Then we get

(x ∗ y) + y = x ∗ (y ∗ y) = x ∗ 0.

Thus, x ∗ y = x ∗ 0− y. It remains to compute x ∗ 0. For this, set x = y = z
in the second identity; we get

x ∗ 0 = x ∗ (x ∗ x) = (x ∗ x) + x = 0 + x = x.

Thus, x ∗ y = x ∗ 0− y = x− y, so 1993 ∗ 1935 = 1993− 1935 = 58.

Remark. Check that with x ∗ y = x− y, both identities are indeed verified.

Problem 6. First solution. (See figure.) Let B′ be the
reflection of B in the line AM . Since AB = AB′ and
∠BAB′ = 2∠BAM = 60◦, the triangle ABB′ is
equilateral. Hence, the points A, C, B′ lie on
a circle of center B. Since the inscribed angle is
half the central angle, it follows that ∠ACB′ = 30◦. Then,
since ∠MCA = 150◦, the points C, B′, M lie on the same line. Now, by
construction, AM is the bisector of ∠BMB′, and so also of ∠BMC.

A

B

M

C

B′

60◦

30◦
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Second solution. Through the points A, C andM , draw a
circle with center O (see figure). Since ∠ACM = 150◦,
the arc AM has measure 60◦, so the triangle MAO
is equilateral. Point B lies on a symmetry axis of

MAO, since ∠BAM = 30◦. It follows that

∠AMB = ∠AOB = 1
2∠AOC = ∠AMC,

where the second equality is a corollary of the
congruence 
ABO = 
CBO. A

B

M

C

O

Level C

Problem 1. The least period length of a decimal divides any other period
length of that decimal; see Fact 4. (We regard any terminating decimal as
having minimal period length 1).

Lemma. If k is a (not necessarily minimal) period length for each of two
decimals P and Q, then k is also a period length for P +Q and P −Q.

Proof. Recall (Fact 13) that a recurring decimal P with period k can be
written in the form

P =
X

10l(10k − 1)
,

where X is an integer. Similarly, we can write

Q =
Y

10m(10k − 1)
,

where Y is an integer. Without loss of generality we may assume that l ≥ m.
We obtain

P ±Q =
X ± 10l−mY

10l(10k − 1)
,

where again the numerator is an integer, so the decimals corresponding to
P +Q and P −Q are recur with periods of length k. �

Now we can solve the problem. We know that A has least period 6 and
B has least period 12. The lemma implies that 12 is a period length of
A+B, so the divisors of 12 are the candidates for the least period of A+B.
But 6 cannot be a period length of A+B, otherwise B = (A+B)−A would
have a period of length 6, contradicting the assumption. Hence the least
period of A+B cannot be a divisor of 6.

Two possibilities remain for the least period of A+ B: 12 and 4. Both
options are possible:

A = 0.(000001), B = 0.(000000000001), A+B = 0.(000001000002);

A = 0.(000001), B = 0.(011100110110), A+B = 0.(0111).
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Remarks. 1. How would someone come up with this last example? By working
backwards! Take any decimal of least period 4 and call it A+B. Now subtract
any decimal B of least period 6. The result has least period 12. (Why?)

2. We can find all possible least periods of a sum of two decimals. Let m, n, k be
the least periods of the decimals P , Q and P +Q, respectively. Then k divides
the least common multiple lcm(m,n) of m and n, by the lemma; but at the
same time m divides lcm(n, k), and n divides lcm(m, k). Let p1, . . . , ps be all
the prime divisors of lcm(m,n), and write

m = pα1
1 . . . pαs

s , n = pβ1

1 . . . pβs
s ,

where the exponent are allowed to be 0; see Fact 10. The preceding arguments
imply that k = pγ1

1 . . . pγs
s , where

γi =

{
max(αi, βi) if αi �= βi,

any number from 0 through αi if αi = βi.

It can be shown that the opposite is also true: any such k can be a least period
of a sum of two decimals whose least periods are m and n, respectively.

Problem 2. We can certainly tour the eight rooms in any
hall, going clockwise, say. We can also combine tours of
two adjacent halls (top diagram) by using two of the three
doors that separate the two halls (middle diagram).

Now the key observation is that we can always add a
hall to our tour, so long as it is shares a wall with a hall
already on the tour. For example, the bottom diagram adds
a third hall to the first two. We can continue adding one
hall at a time, until the tour includes all the halls of the
castle.

Problem 3. The answer to (a) is that it is not
always possible; see figure on the right for a

counterexample. In it, AC = 1000m, AB > 1400m,
CD = 1m. The segment AB divides the river into
two parts, and boat going down the river end to end
must cross this segment at some point. The distance from any
point of AB to one of the banks exceeds 700m.

A

B

C

D

Part (b) turned out to be unexpectedly difficult, unless
islands are allowed, in which case a counterexample is not
hard to find (see figure on the right; the river has width just
under 1 km).

The intention of the authors of the problem was to not allow islands,
and we, the authors of the book, were at first unable to solve it under this
constraint. A contest was announced, and a solution was found through the
joint efforts of A. Akopyan, V. Kleptsyn, M. Prokhorova, and the authors.
It turned out to be more of a research-level mathematics problem than an
Olympiad problem!

Before presenting a solution in the next 6 pages, we list its key ideas:
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• Show that no disc of radius 750m and center in the river lies entirely
on water.

• Deduce that if the swimming distance from a point in the river to one
bank is at least 750m, the point lies within 750m of the other bank.

• Use the (possibly very complicated) boundary of the set of points that
lie within 750m of the left bank to prove that there is a path that
remains within 800m of both banks. (The previous statement shows
that every point on the boundary is within 750m from each bank.)

Detailed solution. Consider an arbitrary disk lying entirely on the water and
points A1, A2, B1, and B2 on its boundary. Suppose that the points B1 and
B2 separate A1 and A2: that is, moving around the circle, we cannot get
from A1 to A2 without encountering B1 or B2.

Denote by O the center of the circle and by A′
1 the first intersection of

the ray OA1 with the bank. Points A′
2, B

′
1, and B′

2 are defined similarly.
Consider the water boundary, which is the union of the river’s left bank, the
right bank, and the edges of the lakes. This is a simple closed curve made of
line segments and arcs of circles. (A simple curve is one that does not have
self-intersections.) We will use repeatedly the topological statement below:

Lemma 0. The points B′
1 and B′

2 separate the points A′
1 and A′

2, i.e., it is
impossible to get from A′

1 to A′
2 moving along the water boundary and not

encountering B′
1 or B′

2.

Proof. Suppose that the statement of the lemma is false. Denote by Γ a
portion of the water boundary joining A′

1 and A′
2 but avoiding B′

1 and B′
2

A1

A′
1

A2

A′
2

B1

B′
1

B2
B′

2

O

Γ (see figure). Clearly, the curve Γ must cross one
of the rays OB′

1 or OB′
2—let it be OB′

1—at a
point further from the center than B′

1. Consider
the contour consisting of Γ and the segments OA′

1

and OA′
2. This contour separates the points B′

1

andB′
2, and therefore, the water boundary between

B′
1 and B′

2 must cross it. But this is impossible,
because A′

1 and A′
2 were the first points of the bank

on their respective rays. The proof is complete. �
Remark. We have used the famous Jordan curve theorem: every closed plane curve

without self-intersections divides the plane into two parts, an inside and an
outside. For curves consisting of segments and circle arcs, its proof is not very
difficult. For the general case, see for example [615, pp. 100–109].

Lemma 1. Under the assumptions of the problem, there is no disk of radius
750m with center in the river that lies entirely on water.

Proof. Suppose that such a disk exists and denote its center by O. We
prove there is a point on one of the banks such that the distance from this
point to the other bank exceeds 1000m.

Let’s color the water boundary as follows: blue for the right bank of the
river, green for the left bank, yellow for the edge of one lake, and white for
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the edge of the other. We agree that lakes take priority over river banks
where the two meet. Blue and green points will be called dark, while yellow
and white points are light.

Each point of the circle also gets a color, according to where the ray
from O to that point first hits the water boundary. This divides the circle
into colored arcs—possibly only one, equal to the whole circle. (Each arc
can be open, half-open, or closed; a single point, which might a priori occur,
is considered a closed arc.)

Step 1. There is at most one arc of each color. Indeed, suppose you can
take two points A1 and A2 on different green arcs, say. These points split
the circle into two pieces, on each of which we take a point of a color other
than green. Denote these points by B1 and B2. Now Lemma 0 says that the
points on the water boundary corresponding to B1 and B2 separate those
corresponding to A1 and A2; but this is impossible since each color on the
water boundary occupies a connected set.

Remark. An experienced reader may argue that the sets of points of each color
are not necessarily finite unions of arcs. However it follows from the reasoning
above that these sets are connected, and a connected set on a circle is an arc.

Step 2. If a blue and a green arc are present, the white and yellow arcs
cannot be contiguous.

Proof. Suppose the arcs are arranged, for instance, in the order white,
yellow, green, and blue. To obtain a contradiction, we take four points A1,
A2, B1, and B2 colored white, green, yellow, and blue, respectively, and
apply Lemma 0 to them. Other possibilities are treated analogously. �

Step 3. Each light-colored arc is less than 180◦, because the center of the
circle is outside the lake by assumption, and so it can be separated from the
lake by a line. It follows that there is at least one dark arc.

Step 4. Either each of the dark arcs measures 180◦ (this case will be called
exceptional) or there are points A1, A2, and B on the circle with the follow-
ing properties:

(1) A1 and A2 are diametrically opposite points.
(2) B is the midpoint of one of the arcs A1A2.
(3) B is dark.
(4) A1 and A2 are either light or the same color as B. (This case will be

called general.)

Proof. We can assume that both blue and green arcs do exist and each
of them measures less than 180◦; all the other cases are trivial. First, let
us suppose that both light arcs exist. Using Step 2, we see that there is
a diameter d1 joining white and yellow points. Consider the perpendicular
diameter d2. If one of the endpoints of this diameter is dark, then we can
take it as the point B, and the endpoints of d1 as the points A1 and A2.
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If both endpoints of d2 are light, the diameters d1 and d2 divide the
circle into four parts, each of the dark arcs lying entirely in one part. The
parts that contain dark arcs are opposite, because otherwise one of the light
arcs would be at least 180◦. Now we can take any dark point as B.

The case of one light and two dark arcs is left to the reader. �

Step 5. Consider the general case first. We’ll assume that the point B is

blue. Define the points A′
1, A

′
2, and B′ on the water boundary as before.

Denote by Γ the portion of the water boundary between A′
1 and A′

2 that
contains B′. By choosing if necessary new points A1, A2 and B satisfying
conditions (1)–(4) above, we may assume that Γ contains no point from the
left bank.

Proof. The points A′
1 and A′

2 do not lie on the left bank; therefore, either
there are no points of the left bank on Γ or Γ contains the entire left bank.
In the first case the statement is true; in the second case Γ contains the
entire edge of one of the lakes. Assume this lake is yellow. There are two
possibilities: either both points A1 and A2 are blue or one of them is blue
and the other is white. If A1 and A2 are blue, then, by Lemma 0, the entire
circle is blue. By using Lemma 0 again, it is not difficult to check that it
will suffice to replace the point B by the diametrically opposite one. If B
is white, then the circle consists only of the yellow and blue arcs, so the
blue arc measures more than 180◦. But then we can choose new points Ai

and B, all of them blue, and reduce the consideration to the previous case,
completing the proof. �

Now construct the closed curve consisting of the
water boundary Γ, the segments A1A

′
1 and A2A

′
2,

and the semicircle joining A1 and A2 that does
not contain B (see figure).

B

B′

A1

A′
1

A2

A′
2

O
Since Γ is disjoint from the left bank, the

shortest path from B′ to the left bank crosses
the portion A′

1A1A2A
′
2 of Γ at a certain point X. In

any case, we have ∠B′OX ≥ 90◦, B′O ≥ 750m, and
XO ≥ 750m. Hence, by the law of cosines, we have

B′X ≥
√

B′O2 +XO2 ≥ 750
√
2 > 1000m,

contrary to the assumption.
It remains to consider the exceptional case. In this case, we cannot

choose two blue diametrically opposite points, but we can take them to be
almost so. More exactly, we’ll choose the points A1 and A2 so as to ensure
the inequality cosα < 1/9, where 2α is the smaller of the arcs A1A2. Then
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the previous inequalities will be replaced by

B′X ≥
√

B′O2 +XO2 − 2B′O ·XO

9
≥

√
B′O2 +XO2 − B′O2 +XO2

9

≥
√

8
9

√
7502 + 7502 = 1000 m.

This completes the proof of Lemma 1. �

Lemma 2. Suppose the (swimming) distance from a point O on the river
to the left bank is at least 750m. Then the distance to the right bank is at
most 750m.

Proof. Let B be a point of the water boundary closest to O. (If there is
more than one such point, any of them can be chosen.) The open segment
OB contains no land, so the swimming distance from O to B is just the
length of OB. By Lemma 1, this is less than 750m, which means, by our
lemma’s assumption, that B cannot be on the left bank. If B is on the right
bank, the statement is proved. It remains to consider the case in which B is
a point on a lake bank. This lake is a disk; denote it by K1. Let the lakes
meet the left bank at points P and Q, and the right bank at R and S.

Let K2 be the disk of radius OB with center O. There are no points
of the bank inside this disk. Therefore, either the disks K1 and K2 touch
each other or B is one of the points P , Q, R, or S (see figure).

O

B
In the second case, B is a point of the bank, and this case
has already been considered. In the first case, it is not
difficult to see that B is one of the points P , Q, R, and
S as well (otherwise we would reach the lake bank from
outside). This completes the proof of the lemma. �

All this was preparation. We now give an outline of the solution of the
problem proper.

Let X be the set of points lying on water and whose swimming distance
to the left bank is less than 800m. This set is connected: it is possible
to swim from any point in X to the left bank along a path that remains
within X, and therefore it’s possible to swim between any two points of X
while remaining in X.

Let Γ be the exterior boundary of X, defined as
the component of the boundary consisting of the points
from which we can move “to infinity”—that is, arbi-
trarily far away—along a path outside X. (For exam-
ple, the exterior boundary of the gray set on the right
is the thick curve.)

Γ

Then Γ is a closed simple curve (see Remark 1). It
consists of points of two types: points whose distance to the left bank equals
800m, and points on the water boundary.

The entire left bank, which we denote by Γ1, is contained in Γ. Indeed,
let A be a point of the left bank; if we move a little distance from it into
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the river, we obtain a point inside X, and if do so into the land, we obtain a
point outsideX. Therefore, A belongs to the boundary of X. And it belongs
to the exterior boundary, because we can walk from A to infinity by land.

Thus, Γ is representable as the union of the curve Γ1 and its complement
Γ\Γ1. Notice that Γ\Γ1 joins the endpoints of the left bank, i.e., it joins the
lakes. Let us prove that the pilot can steer the boat along this complement.
It will suffice to prove that the distance from any point Γ \Γ1 to each of the
banks is at most 800m, if only this point does not belong to the lakes.

Consider an arbitrary point of Γ \ Γ1. Its distance to the left bank is at
most 800m. If it is a point of the right bank, the distance to the right bank
is less than 800m. If it is a point in the river, then the statement follows
from Lemma 2. This solves the problem.

Remarks. 1. Why was this only an outline? Because we have not proved that Γ
is a simple closed curve. A priori, the boundary of a set X—even one assumed
to be open—can be very complicated. (In the example known as the “lakes of
Wada”, given by K. Yoneyama in 1917, three connected open sets have each the
same boundary, and their boundary equals the intersection of the complements
of the three! See [615, p. 100–101].) The boundary is only guaranteed to be a
simple closed curve if X satisfies certain properties. Our X does satisfy them,
but this is not so easy to prove. In any case, Γ is not necessarily the union of
straight line segments and arcs, as one might naively assume! (See Remark 2
on the next page.)

A simpler approach requires approximating the banks—which, by assump-
tion, do consist of segments and arcs—by polygonal lines. A detailed presen-
tation of this argument would take many pages, so we split it into a series of
relatively simple assertions (called Problems below) to be proved by the reader.

Denote by ε0 > 0 the minimum swimming distance between the points A
and B, where A is on the left bank of the river and B is on the right bank. (If
you understand compactness and continuity, think about why ε0 exists and is
positive.) Let ε = min(ε0/3, 50 m).

Problem. It is possible to sail from P to Q along a polygonal line L1 so that
the swimming distance to the left bank never exceeds ε.

Let us fill up the area of water between the path L1 and the left bank with
sand. In the same way, we draw a polygonal path L2 along the right bank and
fill up with sand the corresponding area of water. Let X ′ be the set of points
on the water whose swimming distance from the polygonal path L1 is less than
d = 750 meters.

We’ll say that an open bounded domain X is nice if its boundary is the
union of finitely many segments and arcs of circle.

Problem. The exterior boundary of a nice and connected open set can be

represented as
⋃M

i=1 Γi, where

• each Γi is either a segment or an arc, and
• there are pairwise distinct points Fi, i = 1, . . . ,M , such that

– Γi joins Fi to Fi+1,
– ΓM joins FM to F1, and
– each Γi is disjoint from the interior of Γj for i �= j.
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(Hint. Consider the boundary of the domain as a graph on the plane whose
edges are segments and arcs. Then the exterior boundary is a subgraph of
this graph— for this notion, see Fact 3 on page 194. Consider a cycle in this
subgraph.)

Problem. Deduce the statement of the problem from the fact that X ′ is a nice
domain.

It remains to prove that X ′ is a nice domain.
Define a basic path to be any polygonal line A1A2 . . . AkC such that

(1) the Ai are nodes of L2,
(2) all edges of the path lie on water, and
(3) C is either a vertex of L1 or the base of the perpendicular dropped from

Ak onto one of the edges of L1.

Clearly, the number of basic paths is finite.

Problem. The shortest swimming path from any point B to the left bank
is either a straight line segment or the union of a segment and a basic path.
(Hint. Fix a point B and consider a shortest path of the specified form. As-
sume that there exists a shorter swimming path; apply descending induction on
the number of vertices visited by this path.)

Denote by γ1, . . . , γN all basic paths, by d1, . . . , dN their lengths, and by
E1, . . . , EN their initial points.

Problem. The shortest swimming distance from a point B to the left bank is
either the distance along a line or the smallest of the quantities

BEi + di,

where the minimum is taken over the i for which BEi lies entirely on water.

Let Xi be the set of points for which the segment BEi lies on water and
BEi < d−di. Let Yi the set of points from which it is possible to sail along a line
to the i-th vertex of the path L1 having covered a distance of at most d. Finally,
let Zi be the set of points from which it is possible to drop a perpendicular onto
the i-th edge of the path L1 lying entirely on water, its length being at most d.

Problem. X ′ is the union of the sets Xi, Yi, and Zi.

Problem. Each of the sets Xi and Yi is the intersection of a polygon and a
disk and each of the sets Zi is a polygon.

Problem. X ′ is a nice domain. (Hint. Prove that the union of two nice
domains is a nice domain.)

And now. . . Congratulations!

2. The set Γ is not necessarily the union of segments and arcs. For instance,
suppose that the right bank is a segment and the left bank contains a circle
of radius 200m. Let A be a point of the circle such that
the tangent at this point is perpendicular to the right bank.
Suppose that the distance from A to the right bank is 400m.
Draw a tangent from each point X of the upper semicircle
and mark off the distance of 400m without the length of the
arc AX. The curve thus obtained is called the involute of a
circle. The distance from the points of the involute shown in
the figure to the right bank is equal to 800m, and so a part
of this involute is contained in Γ.

A
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3. A. Akopyan has proposed the following elegant argument for the overall proof:
Let us color white the points on the water at most 800m away from both banks
and black, all the other points. If we can sail from one lake to the other along
a white path, we’re done; otherwise the black points form a bridge between the
right and left banks. One can show that there is a point in the bridge at least
800m away from each of the banks, and then apply Lemma 2. Unfortunately,
the statement about the bridge is not elementary either.

4. The idea of another solution, based on the consideration of points at which the
banks subtend equal angles, was proposed by D. Piontkovsky.

Problem 4. Since we’re taking fractional parts of numbers, it’s a good idea
to visualize the real line “rolled up” into a circle of unit length, so numbers
with the same fractional part correspond to the same point

0

b
a+b

2a+b

1
2

on the circle. (See figure on the right, and compare the
remark after the solution of Problem 97.C.6.) It is clear that
pn = 0 if xn = {an+ b} lies on the upper semicircle [0, 12),
and pn = 1 if xn lies on the lower semicircle. Furthermore,
xn = {an+ b} is the point on the circle obtained from {b} by n consecutive
rotations through the arc {a}.
(a) A rational value of a leads to a periodic pattern for the sequence pn.
(Why?) Trying out b = 0 and the simplest possible fractions for a, we see
that all 4-tuples of 0s and 1s can occur:

• The “bigon” with a = 1
2 gives the sequence 010101. . . , so 0101 can

occur. (We only list 4-tuples starting with 0, since we know the com-
plementary ones can be obtained by choosing b = 1

2 instead of b = 0,
leading to the replacement of pn by 1− pn.)

• The equilateral triangle with a = 1
3 gives the sequence 001001. . . , so

we get 0010 and 0100.
• The square with a = 1

4 gives 0011 and 0110.

• The octagon with a = 1
8 gives 0000, 0001, 0011 again, and 0111.

(b) First solution. We will prove that the string 00010 cannot be realized
for any a and b. (In the second solution below we give a general condition
necessary for a string to be realizable.)

Consider three consecutive terms of the sequence: xn, xn+1 and xn+2.
If the points xn and xn+2 are diametrically opposed, each point is obtained
from the previous one by a 90◦ rotation, and we’re in the situation of the
square in part (a); the sequence pn cannot contain three zeros in a row.

If the points xn and xn+2 are not diametrically opposed, they divide the
circle into two distinct arcs, and either xn+1 lies on the longer arc, as in
diagram (a), or xn+1 lies on the shorter arc, as in (b).

(a)

xn

xn+1

xn+2 (b)

xn

xn+1
xn+2
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Suppose xn+1 lies on the longer arc. Then any other three consecutive
points xm, xm+1 and xm+2 are similarly situated, being obtained from the
points xn, xn+1 and xn+2 by the same rotation. This means that three
such points cannot appear in the upper half-circle; that is, the substring 000
cannot appear in the sequence pn.

Now suppose instead that xn+1 lies on the shorter arc xnxn+2. Then any
other three consecutive points xm, xm+1 and xm+2 are similarly situated.
In particular, if xm and xm+2 belong to the upper half-circle, so does xm+1;
that is, the substring 010 cannot appear in the sequence pn.

We have considered all the scenarios and proved that the string 00010
cannot be encountered.

Second solution. Let’s look at runs of consecutive 0s and 1s in the sequence
p0, p1, p2, . . . . We claim that all such runs have either the same length or
lengths differing by 1, except that the first run may be short (it can start in
the middle, so to speak). In particular, the string 00010 can never occur for
any a and b, because it would mean the sequence has a run of 0s of length
at least 3, but also a run of 1s of length 1.

The reason the runs have almost uniform length is that the spacing
between xn and xn+1 around the circle is the same for all n. Indeed, suppose
first that 0 < a ≤ 1

2 and let i ≥ 1 be the integer uniquely defined by

i ≤ 1

2a
< i+1, or equivalently, ia ≤ 1

2 < (i+1)a. (1)

We now show that a change from 0 to 1 must be followed by a change
from 1 to 0 after exactly i or i+1 entries. More formally, suppose pn = 0
and pn+1 = 1; that is, xn belongs to the upper semicircle [0, 12), while

xn+1 = xn+ a belongs to the lower semicircle [12 , 1). The third inequality in
(1) gives

a < 2a < · · · < ia ≤ 1
2 .

It follows that xn+1, xn+2, . . . , xn+i all lie in [12 , 1), giving i consecutive 1s.
If we had pn+i+1 = pn+i+2 = 1, there would be i + 1 consecutive intervals
of length a inside the lower semicircle: from xn to xn+1, then to xn+2, and
so on up to xn+i+2. But this is impossible by the last inequality in (1).
Therefore the run of 1s stops at length i or i+ 1.

A completely analogous argument shows that a change from l to 0 must
be followed by a change from 0 to 1 after exactly i or i+1 entries. This proves
our claim for a ∈ (0, 12 ]. If a ∈ (12 , 1) we replace a by 1−a, which corresponds
to a rotation through the same angle but in the opposite direction. We
needn’t consider values of a outside [0, 1) because only the fractional part
of a matters. Finally, for a = 0, there is only one run, of infinite length. So
our claim is proved in all cases.

Remarks. 1. This problem is relevant in symbolic dynamics; see [701].

2. The original Olympiad problem said “. . . the sequence determined by some a
and b”, which is perhaps ambiguous: the question might be whether all possible
quadruples of 0s and 1s can occur for some fixed choice of a and b. The second
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solution to part (b) shows that the answer is no: any values of a and b that
allow the string 0000 cannot allow the string 0100.

Problem 5. Let m be the number of plants in a certain good classifier. Let
us estimate the total number S of distinctions between all pairs of plants
with respect to all features. There are 1

2m(m−1) pairs of plants, and each
pair differs in at least 51 features, so

S ≥ 51 · 1
2m(m−1).

There is another way to look at S. Let mi be the number of plants
having feature i. The number of pairs of plants that can be distinguished by
means of feature i is (m−mi)mi. Summing over all the features, we obtain
the total number S of distinctions:

S =
100∑
i=1

(m−mi)mi.

Now, the arithmetic mean of m−mi and mi is
1
2m, so the inequality between

the arithmetic and geometric means (Fact 26) gives (m − mi)mi ≤ 1
4m

2.
Therefore S ≤ 100 · 1

4m
2 = 25m2. Combining this with the earlier bound,

we obtain
51 · 1

2m(m−1) ≤ S ≤ 25m2. (1)

Subtracting 25m2 from the first and last expressions and simplifying we get
1
2m(m−51) ≤ 0. Hence m ≤ 51.

It remains to prove that m �= 51. If m = 51, we have a strict inequality

mi(m−mi) <
1
4m

2

(since we have an integer on the left and a fraction on the right). That means
the second inequality in (1) is strict, implying m < 51. This contradiction
implies that a good classifier cannot describe more than 50 plants.

Remarks. 1. One might be tempted to guess that a good classifier can describe 50
plants, but with a bit more work one can show that this is far from true. What
we do is extend the classifier with one extra feature, which we declare present
if and only if an even number of the original 100 features were present. This
new classifier has 101 features and any pair differs by at least 52 of them: if a
pair differs in 51 of the original features, it must also differ in the new feature.
(Why?)

Now the same arguments as above yield

52 · 1
2m(m−1) ≤ S ≤ 101 · 1

4m
2,

which leads to m ≤ 34. Thus, the new classifier (and hence the initial one) can
describe at most 34 plants.

2. This problem is related to error correcting codes. Replace plants by messages
and descriptions of features by length-n strings of bits (0s and 1s). The classi-
fier—which is now a collection of m strings— is said to be a code of length n.
The minimum number d of differences between two sequences in the code is the
code distance; in our problem d = 51.
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If we take a message in the code and distort it arbitrarily by flipping no
more than 1

2 (d− 1) positions, we are still able to recover the original message,
simply by selecting the message that shares the most bits with the distorted
one. (There will be at most 1

2 (d−1) differences, whereas the comparison with

any other string will give at least d − 1
2 (d−1) > 1

2 (d−1) differences.) This is
why the code is said to be error-correcting.

One important open problem of code theory is finding the maximal size
(number of different messages) of a length-n error-correcting code with code
distance d, for arbitrary n and d. A famous result in this direction is the
Plotkin–Levenshtein theorem, which establishes an upper bound (called the
Plotkin bound) in the case d > 1

2n, and provides certain natural conditions that
guarantee the bound can be achieved. In our problem we have n = 100 and
d = 51, so Plotkin’s bound applies, and its value is 34. This bound is achievable:
there does exist a code with 34 messages.

Problem 6. Let the remaining vertices of the square on
side AB be D and E, so the square is ABDE, and set γ =
∠ACB. (See figure on the right.) Applying the intercept
theorem to the triangle ADC we see that CD = 2OM ;
similarly, CE = 2ON . Therefore it suffices to find the
maximum of CD + CE = 2(OM +ON).

First solution. On side BC of 
ABC, construct a
square CBD′E′ outwards. (See figure below.) Triangles
ABD′ and DBC have two sides and the included angle equal, so CD = AD′.

γ

A B

C

DE

NM

O

A B

C

DE

D′

E′

c

c

a

a
√
2

b

In the triangle ACD′, two sides are known: AC = b and CD′ = a
√
2.

Moreover, ∠ACD′ = γ + 45◦. The side AD′ attains
its maximal value when the triangle degenerates into
a segment, so

max(CD) = max(AD′) = b+ a
√
2

for γ = 135◦. Similarly, we have max(CE) = a+b
√
2,

again for γ = 135◦. Thus, each of OM and ON
attains its maximum when γ = 135◦, and so does
their sum:

max(OM +ON) =
1 +

√
2

2
(a+ b).

Second solution. Let ∠CAB = α, ∠ABC = β, c = AB, d = CD, e = CE.
The law of cosines for 
ABC gives

c2 = a2 + b2 − 2ab cos γ.

Next we apply the law of cosines to 
AEC:

e2 = b2 + c2 − 2bc cos(90◦ + α) = b2 + c2 + 2bc sinα,

since cos(90◦ +α) = − sinα. Substituting c2 from the first formula into the
second, we get

e2 = 2b2 + a2 − 2ab cos γ + 2bc sinα.
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The law of sines for 
ABC implies that sinα = (a/c) sin γ. Therefore

e2 = 2b2 + a2 + 2ab (sin γ − cos γ).

Similarly,

d2 = 2a2 + b2 + 2ab (sin γ − cos γ).

Hence both e and d attain their maximum values when sin γ−cos γ does,
which is to say, when γ = 135◦. Hence the maximum of e+d is also attained
for γ = 135◦, and it equals 1

2(1 +
√
2)(a+ b).

Level D

Problem 1. If tan(α+ β) is defined, then

tan (α+ β) =
tanα+ tanβ

1− tanα · tanβ =
p

1− tanα · tanβ . (1)

The product of tangents is related with p and q as follows:

q =
1

tanα
+

1

tanβ
=

tanα+ tanβ

tanα · tanβ =
p

tanα · tanβ . (2)

We deduce from (2) that either p and q are both zero or they are both
nonzero; therefore we have only these cases to consider:

1. If p = 0 = q, then (1) implies tan(α + β) = 0. We have to verify here
that the denominator of (1) does not vanish. Indeed, since p = 0, we
have

tanα = − tanβ, so 1− tanα · tanβ = 1 + tan2 α > 0.

2. If p �= 0, q �= 0 and p �= q, then (2) implies tanα · tanβ = p/q, so (1)
implies

tan(α+ β) =
pq
q−p

.

3. If p �= 0, q �= 0 but p = q, then tan(α+ β) is not defined.

Problem 2. We will construct a subdivision into squares satisfying the
condition of the problem. We first divide the unit square into four equal
squares. The little squares that intersect the main di-
agonal only at a vertex will be called level-1 squares.
We subdivide each of the remaining squares into four
equal squares of side 1

4 . The little squares of side 1
4

that intersect the main diagonal only at a vertex will
be called level-2 squares. We continue in this way (see
figure) until we have 500 levels of squares.

1
2

2

3

3

3

3

1
2

1
4

1
8 1

2

2

3

3

3

3

There are 2k squares at level k, each with side 2−k. Hence the total
perimeter of all level-k squares is 4, and the total perimeter of all squares
intersecting the diagonal is 4 · 500 > 1993.
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Remarks. 1. A stronger result is in fact true: The unit square
can be partitioned into squares in such a way that the sum
of perimeters of squares intersecting the main diagonal in
a segment exceeds any given number. The construction is
a modification of the previous one; we make the under-the-
diagonal level-1 square have side 3

5 , say, instead of 1
2 , while

the complement is subdivided into two squares of side 2
5 along the diagonal,

plus an irregular area that we leave aside, knowing that it can be subdivided
into tiny squares (since 3

5 is a rational number).
We then repeat the procedure on the two new squares along the diagonal to

get level-2 squares, and so on. All level-k squares now have side ( 25 )
k, instead

of ( 12 )
k as before, and there are 2k−1 of them, instead of 2k. So now the total

perimeter of level-k squares is 2 · ( 45 )k; that is, it decreases in a geometric pro-
gression instead of being the same for all levels. But the ratio of the progression
can be made arbitrarily close to 1, by replacing the number 3

5 by some rational
number very close to 1

2 . So the sum of perimeters can be made as large as
desired.

2. This problem arose during a lecture of the illustrious mathematician N. N. Luzin,
when he wanted to shorten the proof of a theorem of Cauchy (Luzin loved to
improvise). Luzin conjectured: Fix a curve of a bounded length in the unit square
and consider a partition of the square into little squares. The total perimeter
of the little squares that intersect the curve is bounded by a constant depending
on the curve only. A. N. Kolmogorov, who was to become just as famous a
mathematician, was at the lecture and soon constructed a counterexample.

Problem 3. For n = 2 the answer is obviously 1. So assume n ≥ 3.

The desired number is at most n, because we can exhibit an arrangement
of points generating only n pairwise nonparallel lines: the vertices of a
regular n-gon,

We prove this by showing that there are as many nonparallel lines as
there are axes of symmetry of the polygon. To each side and each diagonal,
we assign an axis of symmetry: the perpendicular bisector of this side or
diagonal. Two sides or diagonals have the same perpendicular bisector if
and only if they are parallel. Therefore we just need to count the axes of
symmetry of a regular n-gon.

For n odd, each axis of symmetry passes through a unique vertex. Hence,
the total number of axes of symmetry is n.

For n even, an axis of symmetry passes either through a pair of opposite
vertices or through the midpoints of opposite sides. There are n/2 axes of
either type. Hence, the total number of axes of symmetry is again n.

Now we prove the converse: The desired number is at least n. That is,
for any arrangement of n points, no three of which lie on a line, we can
always find n pairwise nonparallel lines.

It is easy to find n− 1 lines: just take a point and consider all the lines
from it to the other points. It is a bit harder to construct the n-th line.

One method is to introduce cartesian coordinates on the plane. Among
the n points, take one, say O, having highest y-coordinate, and move the
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origin there. Among the other n−1 points, choose A such that the ray OA
makes the biggest possible angle with the positive x-axis, and
B such that the ray OB makes the least possible angle with
the positive x-axis. All the rays connecting O with the
other points lie inside the angle AOB, by our choice
of A and B (see figure). Thus they must intersect the
segment AB and hence cannot be parallel to it. Now
we just take AB as the n-th line.

A B

O

Remarks. 1. The points A, O and B are adjacent vertices of the convex hull of the
n points, that is to say, the smallest convex set containing all the
points. (It can be shown that the convex hull of a finite set
is a polygon whose vertices are contained in the set. The
convex hull of the seven points in the preceding figure
has five vertices; see figure on the right.)

2. The given noncollinearity condition cannot be replaced by the weaker one that
the points do not all lie on a single line. For example, for the set consisting
of the vertices of a regular 2k-gon and its center, there are only 2k nonparallel
lines.

Problem 4. Clearly, the worst-case scenario is when all marble populations
occur at the start; that is, we have n boxes—where n = 460 in part (a)
and n = 461 in part (b)—and there is a box with j marbles for every
j = 1, 2, . . . , n. So from now on we assume this is the situation.

We start with the observation that a box having m = qk + r marbles
(0 ≤ r < k) before a step with group size k with be left with q + r marbles
after that step; see Fact 6.

Lemma 1. After the first step, with group size k, there is a number f(n, k)
such that the marble populations are exactly all the numbers in the range
1, 2, . . . , f(n,k), and no others.

Proof. Let f(n, k) be the highest marble population in a box at the end of
the step. We show by reverse induction on j (Fact 24) that there is a box
with exactly j marbles, for all j = 1, . . . , f(n, k).

Suppose this is true for some j. Then there exist numbers m (starting
population), q (quotient) and r (remainder) such that 1 ≤ m ≤ n, 0 ≤ r < k,
m = qk + r, and j = q + r.

If r > 0, we look at the box that started off with m−1 marbles. If r = 0,
we take the one that had m− k marbles. Either way, we have found a box
holding exactly j − 1 marbles at the end of the step. This completes the
induction step and proves the lemma. �

This lemma effectively reduces the situation at the end of the first step
to the original situation, with a smaller number of boxes (we just ignore
boxes with duplicate populations). There remains to select k so the new
largest population f(n, k) is as low as possible.
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Lemma 2. The largest population f(n, k) after the first step is given by

f(n, k) =
[
n+1
k

]
+ k − 2. (1)

Proof. The function “population of a box at the end

k Qk n

of the first step” grows by 1 when its first argument
(the initial population) grows by 1, except when the
argument is 1 less than a multiple of k, in which case
the function drops by k−2 (see figure, where k = 5).
Thus the maximum of the function is always achieved for an argument value
that is 1 less than a multiple of k, and that is as large as possible under this
condition. So let Q = [(n+1)/k] be the quotient of the division of n+1 by k.
The box that started off with Qk − 1 = (Q−1)k + (k−1) marbles achieves
the maximum, and its new population is Q + k − 2 = [(n+1)/k] + k − 2
marbles. This proves (1). �

Lemma 3. For a given value of n, the function f(n, k) achieves its mini-
mum when k =

[√
n+1

]
+ 1.

Proof. To find the value of k that minimizes f(n, k), we first write

f(n, k) =
[
n+1
k

+ k
]
− 2.

The function inside the brackets decreases in the interval (0,
√
n+1 ) and

increases in the interval (
√
n+1, n]. Since [x] does not decrease, the function

f(n, k) attains its maximum either at k =
[√

n+1
]
or at k =

[√
n+1

]
+ 1.

It remains to show that we always have

f(n, [
√
n+1 ] + 1) ≤ f(n, [

√
n+1 ]).

Let [
√
n+1 ] = s. Then

s2 ≤ n+1 < (s+1)2. (2)

Thanks to (1) it suffices to prove that[
n+1
s+1

]
<

[
n+1
s

]
.

Equation (2) implies that[
n+1
s+1

]
≤ s and

[
n+1
s

]
≥ s.

Therefore, it suffices to prove it is not possible for both sides to equal s. But[
n+1
s

]
= s =⇒ n+1

s
< s+1 =⇒ n+1

s+1
< s =⇒

[
n+1
s+1

]
< s.

The lemma is proved. �

We are now ready to find the minimum number of steps required for any
starting value of n. We simply apply repeatedly the function

g(n) = f(n, [
√
n+1 ] + 1),
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which represents the maximum population after one step, with an optimal
choice of k. We verify by direct computation that, after five applications,

g(g(g(g(g(460))))) = 1 but g(g(g(g(g(461))))) = 2.

The sequences of steps for n = 460 and n = 461 are as follows:

n step k n

460 1 22 461

40 2 7 41

10 3 4 11

4 4 3 5

2 5 2 3

1 2

To recapitulate, we spell out the details of the argument for n = 461.
The three lemmas say that if the boxes start with all populations from 1
through 461, then after step 1 there remain all populations from 1 through
g(461) = f(461, 22) = 41; after step 2 there remain all populations from 1
through g(41) = 11; after step 3, all populations from 1 through 5; after step
4, all populations from 1 through 3; and after step 5, populations 1 and 2.
Thus, for n = 461 it is not always possible to be left with a single marble in
each box.

Remarks. 1. Instead of proving that

f(n, [
√
n+1 ] + 1) ≤ f(n, [

√
n+1 ]),

one could just check case by case.

2. This problem originated in computer programming. A text containing one or
more blank spaces between words had to be processed so as to leave precisely
one blank between words. The programmers solved the problem by recursively
applying the operation of selecting a positive integer k and replacing every group
of k consecutive blanks by a single blank.

Problem 5. (a) A possible solution is shown in the figure. The function is
defined by

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1
2 − x for − 1 ≤ x < −1

2 ,

x− 1
2 for − 1

2 ≤ x < 0,

0 for x = 0,

x+ 1
2 for 0 < x ≤ 1

2 ,
1
2 − x for 1

2 < x ≤ 1.

1

2

− 1

2

1

2

− 1

2

−1

1

−1

1

0

(b) We will show that a function satisfying the conditions of the problem
cannot exist on the interval (−1, 1). The case of the function defined on the
whole real axis is analogous.

Step 1. Suppose, to the contrary, that such a function f(x) exists. Its
graph is mapped to itself under a clockwise 90◦ rotation: if (x, y) is a point
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on the graph, we have y = f(x), so f(y) = −x by assumption, and the point
(y,−x) also belongs to the graph; but this is precisely the image of (x, y)
under the specified rotation.

By applying the 90◦ rotation repeatedly we see that the graph maps to
itself also under 180◦ and 270◦ rotations.

Step 2. This implies that the coordinate axes cannot intercept the graph
except at the origin: any other intersection would imply three more inter-
sections (obtained by 90◦, 180◦ and 270◦ rotations), and in particular there
would be two distinct intersections of the graph with the y-axis, which is
impossible.

Step 3. Now consider the portion of the graph that lies within the open
first quadrant {(x, y) : x > 0, y > 0}. Recalling the assumption that the
graph is a union of finitely many points and line segments, we can write this
intersection as L1 ∪L2 ∪ · · · ∪Ln ∪P1 ∪P2 ∪ · · · ∪Pm, where the Lk are line
segments and the Pj are points. We may assume that the line segments Lk

are pairwise disjoint and open (meaning the endpoints are excluded) and
that the points Pj are distinct and do not belong to any of the line segments
Lk.

For each k, let Jk be the line segment obtained from Lk by a clockwise
90◦ rotation. Next, for each j, let Qj be the point obtained from Pj by
the same rotation. All these points and segments lie on the open fourth
quadrant, and in fact J1 ∪ J2 ∪ · · · ∪ Jn ∪Q1 ∪Q2 ∪ · · · ∪Qm is precisely the
intersection of the graph with the fourth quadrant. (Why?)

Since we already know the graph does not intersect the positive x-axis,
we conclude that the intersection of the graph with the half-plane x > 0
consists of 2n line segments (the Lk and Jk) and 2m points (the Pj and Qj).
None of the line segments can be vertical. Thus the projections of all these
line segments and points on the x-axis partition the interval (0, 1) into 2n
open intervals and 2m points. But it is impossible to divide an open interval
into an even number of subintervals using an even number of points! We
have reached a contradiction.

Problem 6. Clearly a shortest flight touches each face
of the tetrahedron exactly once. Let the tetrahedron
have vertices ABCD, and let the shortest flight be
the space quadrilateralEFGH, where E ∈ 
ABC,
F ∈ 
BCD, G ∈ 
ABD, and H ∈ 
ACD
(see figure). Our job is to find the smallest possible
perimeter for the quadrilateral EFGH.

A

B

C

D

E

F
G

H

Draw the symmetry plane of the tetrahedron containing CD; note that
it is perpendicular to AB. Let E1F1G1H1 be the reflection of EFGH in
this plane (so E1 and G1 lie on the same faces as E and G, respectively,
while F1 lies on the same face as H, and H1 lies on the same face as F ).
The quadrilaterals EFGH and E1F1G1H1 have the same perimeter.
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Lemma. In any space quadrilateral, the distance between the midpoints of
two opposite edges is less than or equal to the mean of the
lengths of the remaining edges.

Proof. Let KLMN be the quadrilateral and let P and
Q be the midpoints of KL and MN , respectively (see
figure). Denote by R the midpoint of the diagonal
LN . We have PR = 1

2KN and RQ = 1
2LM . Hence

PQ ≤ PR+RQ = 1
2(KN + LM). �

K

L

M

N

P

Q

R

Denote the midpoints of the segments EE1, FH1, GG1, and HF1 by
E2, F2, G2, and H2, respectively. These points also lie on the faces of the
tetrahedron. By the lemma, the perimeter of E2F2G2H2 is no greater than
that of EFGH. Moreover, E2 and G2 lie on the symmetry plane of the
tetrahedron containing CD; that is, they lie respectively on the medians
CT and DT of the faces ABC and ABD, where T is the midpoint of AB.

Next we repeat this symmetrization operation for another symmetry
plane. That is, we reflect E2F2G2H2 in the symmetry plane of ABCD
that contains AB, obtaining a quadrilateral E3F3G3H3, and then we take
the midpoints of the segments E2G3, F2F3, G2E3, and H2H3,
obtaining a quadrilateral E4F4G4H4, whose vertices all belong
to one of the two planes of symmetry of ABCD considered
so far (one through AB and the other through CD).

Specifically, the vertices E4 and G4 lie on CT and DT ,
while F4 and H4 lie on the medians AS and BS of the
faces BCD and ACD, where S is the midpoint of CD.
(See figure on the right.)
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Again, the perimeter of E4F4G4H4 is no longer than that of E2F2G2H2,
which as we know is no longer than that of EFGH. Hence, the perimeter
of EFGH is at least 4d, where d is the distance between CT and BS.

It remains to construct a path of length 4d and find d. Let the common
perpendicular to CT and BS intersect CT at E0 and BS at F0. Let G0 be
the reflection of E0 in the plane ABS. It follows from symmetry that F0G0 is
the common perpendicular to BS and DT . Similarly we construct the point
H0 such that G0H0 is the common perpendicular to DT and AS and H0E0

is the common perpendiculars to AS and CT . The perimeter of E0F0G0H0

is 4d. We also have to prove that the bases of our common perpendiculars
lie on the faces of the tetrahedron, rather than on their extensions. This
will be checked below (we still have to calculate d).

Draw the plane through AB perpendicular to CT and take
the projection of the tetrahedron on this plane. We obtain
triangle ABD′, in which AB = a and D′T = a

√
2/3, by

the formula for the length of the altitude of the regular
tetrahedron. (See figure on the right.) A B

D′

S′

T

The projection sends S to S′, the midpoint of D′T . Hence, d equals the
distance between T and the line BS′, because the common perpendicular is
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parallel to the plane of projection. It is also obvious that the base of the
perpendicular dropped from T onto the line BS′ lies on the segment BS′

and not on its extension; hence F0 lies on the segment BS. We similarly
prove that the remaining vertices of the quadrilateral lie on the medians,
not on their extensions.

In the right triangle BTS′, the legs BT = 1
2a and TS′ = 1

2a
√

2
3 are

known. Hence

BS′ = 1
2a

√
5
3 , d =

BT · TS′

BS′ =
a√
10

.

Remarks. 1. The solution implies that there are three suitable paths. (Why?)

2. An analogous problem on the plane is known: A beetle crawls inside a triangle
with sides a, b, c. What is the shortest length of a path that visits each side
and returns to the initial point?

It the case of an acute triangle the answer is the path joining the bases of
the altitudes; this is known as Fagnano’s problem. (See [306], Chapter 4, § 5.)
For a right or obtuse triangle the path degenerates into an altitude traveled
twice; see Problem 70 in [305].
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