
Chapter 5

Gale Diagrams

In the last chapter we saw techniques for visualizing four-dimensional
polytopes via their Schlegel diagrams. In this chapter, we will see
that we can actually visualize even higher-dimensional polytopes as
long as they do not have too many vertices. We do this via a tool
called the Gale diagram of the polytope.

Consider n points v1, . . . ,vn in Rd−1 whose affine hull has di-
mension d − 1 and the matrix

A :=
(

1 1 · · · 1
v1 v2 · · · vn

)
∈ Rd×n.

A basic fact of affine linear algebra is that the vectors v1, . . . ,vn are
affinely independent (see below) if and only if the vectors

(1,v1), . . . , (1,vn)

are linearly independent. If the dimension of aff(v1, . . . ,vn) is d − 1,
then there are d affinely independent vectors in this collection, which
in turn implies that the rank of A is d. Hence the dimension of the
kernel of A is n−d. Recall that the kernel of A is the linear subspace

kerR(A) := {x ∈ Rn : Ax = 0}.

Note that x ∈ kerR(A) if and only if (1)
∑n

i=1 vixi = 0 and (2)∑n
i=1 xi = 0.
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38 5. Gale Diagrams

Definition 5.1. (1) Any vector x with properties (1) and (2)
is called an affine dependence relation on v1, . . . ,vn.

(2) If x satisfies only (1), then it would be a linear depen-
dence relation on v1, . . . ,vn.

(3) If x = 0 is the only solution to (1) and (2), then v1, . . . ,vn

are said to be affinely independent.

Let B1, . . . , Bn−d ∈ Rn be a basis for the vector space kerR(A).
If we organize these vectors as the columns of an n × (n − d) matrix

B :=
(

B1 B2 · · · Bn−d

)
,

we see that AB = 0.

Definition 5.2. Let B = {b1, . . . ,bn} ⊂ Rn−d be the n ordered
rows of B. Then B is called a Gale transform of {v1, . . . ,vn}. The
associated Gale diagram of {v1, . . . ,vn} is the vector configuration
B drawn in Rn−d.

Later, we will see a more general definition of Gale diagrams.
Since the columns of B can be any basis of kerR(A), Gale transforms
are not unique. However all choices of B differ by multiplication by
a non-singular matrix and we will be happy to choose one basis of
kerR(A) and call the resulting B, the Gale transform of {v1, . . . ,vn}.

Example 5.3. Let {vi} be the vertices of the triangular prism shown
in Figure 1. Then

A =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

⎞
⎟⎟⎠ .

Computing a basis for the kernel of A, we get

Bt =
(

0 1 −1 0 −1 1
1 0 −1 −1 0 1

)

where Bt is the transpose of B. The Gale transform B is the vector
configuration consisting of the columns of Bt (or the rows of B). In
our example, B = {b1 = (0, 1),b2 = (1, 0),b3 = (−1,−1),b4 =
(0,−1),b5 = (−1, 0),b6 = (1, 1)}. The Gale diagram is shown in
Figure 2.
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Figure 1. Triangular prism.

b2

b6

b4

b1
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b3

Figure 2. Gale diagram of the vertices of the triangular prism
in Figure 1.

The labeling is very important in the construction of a Gale trans-
form. We label column i of Bt as bi.

The main goal of this chapter will be to understand how to read
off the face lattice of the (d − 1)-polytope P = conv({v1, . . . ,vn})
from the Gale diagram of {v1, . . . ,vn}. If {vj : j ∈ J} are all the
vertices on a face of P for some J ⊆ [n], it is convenient to simply
label this face by J . Here is a very important characterization of
faces.

Lemma 5.4. Let P = conv({v1, . . . ,vn}). Then J ⊆ [n] is a face of
P if and only if

conv({vj : j ∈ [n]\J}) ∩ aff({vj : j ∈ J}) = ∅.
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Let us illustrate this condition on an example first. In Figure 3(a),
note that 15 is a face of the pentagon and that conv({v2,v3,v4}) does
not intersect the affine hull of the face 15. On the other hand, 14 is not
a face of the pentagon and indeed conv({v2,v3,v5}) does intersect
the affine hull of the non-face 14. See Figure 3(b).
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Figure 3. Condition in Lemma 5.4.

Proof. We may assume that P is a full-dimensional polytope. If J

is a face of P , then by definition of a face, both J and aff(J) lie on a
supporting hyperplane H of P . Choose a supporting hyperplane H

that contains J but does not contain any higher-dimensional face of P .
One way to do this would be to let the normal vector of H be the sum
of the normal vectors of the affine spans of the facets containing J .
We may assume without loss of generality that P lies in the halfspace
H−. Since no vj , j �∈ J , lies on the face conv({vj : j ∈ J}) of
P , conv({vj : j ∈ [n]\J}) lies in the interior of H−, which proves
one direction of the lemma. Conversely, if conv({vj : j ∈ [n]\J}) ∩
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aff({vj : j ∈ J}) = ∅, then P lies in one halfspace defined by the
hyperplane H obtained by extending aff({vj : j ∈ J}) which is thus
a supporting hyperplane of P . This shows that J is a face of P . �

You might wonder why the lemma was not stated in the seemingly
stronger form: J ⊆ [n] is a face of P if and only if conv({vj : j ∈
[n]\J}) ∩ conv({vj : j ∈ J}) = ∅. The above form of the lemma is
what is needed to prove the main theorem below.

Definition 5.5. Call [n]\J a co-face of P if J is a face of P .

Note that a co-face is not the same as a non-face. In the triangular
prism in Figure 1, 123 is both a face and a co-face. (The labeling of
the vertices of the prism was fixed by how we ordered them to create
the matrix A.)

In order to understand our main theorem, we need to define for-
mally what we mean by the interior and relative interior of a poly-
tope. The interior of a polytope in Rd is the set of all points in
the polytope such that we can fit a d-dimensional ball centered at
this point, of infinitesimal (as small as you wish but positive) radius,
entirely inside the polytope. A polytope has an interior if and only if
it is full-dimensional. For instance the interior of C2 is the set

int(C2) = {(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < 1}.
The line segment conv({(1, 0), (0, 1)}) ⊂ R2 does not have an interior
since there is no point on this segment such that a two-dimensional
ball centered at this point will be contained in the line segment. How-
ever, this line segment does have an interior if we think of it as a poly-
tope in its affine hull, where it is a full-dimensional polytope. This is
known as the relative interior of the line segment. In our example,
relint(conv({(1, 0), (0, 1)})) equals

{(x1, x2) ∈ R2 : x1 + x2 = 1, x1 > 0, x2 > 0}.

We now come to the main theorem of this chapter. The proof of
this theorem is taken from [Grü03, page 88].

Theorem 5.6. Let P = conv({v1, . . . ,vn}), vi ∈ Rd−1, and let B
be the Gale transform of {v1, . . . ,vn}. Then J is a face of P if and
only if either J = [n] or 0 ∈ relint(conv({bk : k �∈ J})).
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Proof. Note that J = [n] if and only if J is the whole polytope P

which is an improper face of P . So we have to show that J � [n]
is a face of P if and only if 0 ∈ relint(conv({bk : k �∈ J})). Let
dim(P ) = d − 1.

If J � [n] is not a face of P , then by Lemma 5.4,

aff({vk : k ∈ J}) ∩ conv({vk : k �∈ J}) �= ∅.

Let z be in this intersection. Then z =
∑

k∈J pkvk =
∑

k �∈J qkvk

with ∑
k∈J

pk = 1,
∑
k �∈J

qk = 1, and qk ≥ 0 for all k �∈ J

or, equivalently,∑
k∈[n]

rkvk = 0,
∑

k∈[n]

rk = 0 and
∑
k �∈J

rk = 1, rk ≥ 0 for all k �∈ J

by taking rk = qk when k �∈ J and rk = −pk when k ∈ J .

The first two conditions imply that r = (r1, . . . , rn) lies in kerR(A)
where

A :=
(

1 1 · · · 1
v1 v2 · · · vn

)
.

Let B be the matrix from which the Gale transform B was taken.
Since the columns of B form a basis for kerR(A), there exists t ∈ Rn−d

such that

r = Bt or, equivalently, rk = bk · t for all k = 1, . . . , n.

Since rk ≥ 0 for all k �∈ J , we get that rk = bk · t ≥ 0 for all k �∈ J ,
which means that all the bk’s with k �∈ J lie in the halfspace defined
by t · x ≥ 0 in Rn−d. Also since

∑
k �∈J rk = 1, it cannot be that

rk = bk · t = 0 for all k �∈ J or, in other words, not all the bk’s with
k �∈ J lie in the hyperplane defined by t · x = 0. Thus 0 is not in the
relative interior of conv({bk : k �∈ J}). Reversing all the arguments,
you get the other direction of the theorem. �

Example 5.7. Let’s use Theorem 5.6 to read off the face lattice
of the triangular prism from the Gale diagram in Figure 1. First,
note that for each i = 1, . . . , 6, 0 ∈ relint(conv(bk : k �= i)). This
implies that all the singletons 1, 2, 3, 4, 5, 6 are faces of P , as indeed
they are. Now let’s find the edges of P . These will be all pairs
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ij such that 0 ∈ relint(conv({bk : k �= i, j})). For instance 14 is
an edge of P since 0 ∈ relint(conv({b2,b3,b5,b6})). However, 16
is not an edge of P since 0 �∈ relint(conv({b2,b3,b4,b5})). Can
you find all the other edges? The face 123 is witnessed by the fact
that 0 ∈ relint(conv({b4,b5,b6})), but 245 is not a face since 0 �∈
relint(conv({b1,b3,b6})).

Exercise 5.8. Compute the face lattice of the cyclic polytope in R4

with seven vertices. The Gale transform consists of the columns of
the matrix (

−1 5 −10 10 −5 1 0
−5 24 −45 40 −15 0 1

)
.

(Hint: For a simplicial polytope, it suffices to know the facets to
write down the whole face lattice.)

Theorem 5.6 can be used to read off the face lattice of any poly-
tope. But it is most useful when the Gale diagram is in a low-
dimensional space such as R or R2. Three-dimensional Gale diagrams
are already quite challenging. However, there is a nice trick to reduce
the dimension of the Gale diagram by one. These Gale diagrams are
known as affine Gale diagrams. See [Zie95] for a formal definition.
We give the idea below.

We can think of a Gale diagram in Rn−d as n vectors that poke out
through a (n−d−1)-sphere. If we look at this sphere from outside, we
only see one hemisphere, which we will call the northern hemisphere.
We can mark all the vectors that poke out through this hemisphere
with a dot and label them as before. The rest of the vectors poke out
through the southern hemisphere and we will mark their antipodal
vectors on the northern hemisphere with an open circle and change
labels to the old labels with bars on top. You should always choose
the equator so that no vector pokes out through the equator. This
can always be done since there are only finitely many vectors in the
Gale diagram. Let’s first try this on the Gale diagram from Figure 1.

We first put a circle (1-sphere) around the Gale diagram with the
dotted line chosen to be the equator. See Figure 4. Let’s declare the
right hemisphere to be the northern hemisphere. The Gale vectors
1, 6, 2 intersect this hemisphere. We mark those points with black
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affine Gale diagram 

equator

1

6

2
b2

b6

b4

b1

b5

b3

4̄

3̄

5̄

Figure 4. The affine Gale diagram of the triangular prism.

dots. The antipodals of the other vectors also intersect the northern
hemisphere at the same points. We mark those intersections with
open circles and label them 4̄, 3̄, 5̄. On the right we see the affine
Gale diagram, which lives in R. Can we read off the face lattice from
this affine Gale diagram? To do this, we need to say what condition
on a collection of black and white dots is equivalent to the origin being
in the relative interior of the Gale vectors with the same indices. For
instance to check whether 1346 is a face of P , we remove the dots
with labels 1, 3̄, 4̄ and 6. This leaves the black dot 2 and the white
dot 5̄ which are at the same position. This means that b2 and b5 are
opposite to each other and 0 is in the relative interior of their convex
hull. Thus 1346 is a face.

Exercise 5.9. What conditions on a collection of black and white
dots in the affine Gale diagram guarantees that the origin is in the
relative interior of the corresponding Gale vectors?

Exercise 5.10. Compute the face lattice of the cyclic polytope in R3

with seven vertices.

In this case,

A =

⎛
⎜⎜⎝

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49
1 8 27 64 125 216 343

⎞
⎟⎟⎠ .
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Using a computer package that does linear algebra, we compute a
basis for kerR(A) to get

Bt =

⎛
⎜⎜⎝

1 −4 6 −4 1 0 0

4 −15 20 −10 0 1 0

10 −36 45 −20 0 0 1

⎞
⎟⎟⎠ .

Let’s try to draw the affine Gale diagram for this example. We
can start by positioning the last three vectors at the corners of an
equilateral triangle that will be in the center of the hemisphere we
can see. In our case then, we are looking at the sphere along the
vector (1, 1, 1) toward the origin. Can you finish and write down
the face lattice? (Hint: Read the rest of this page for a methodical
procedure.)

As the above exercise shows, it is hard to draw affine Gale dia-
grams precisely, with the description we have of it so far. We need a
more methodical procedure for drawing them, which we now describe.

Let B ⊂ Rn−d be the Gale transform. Choose a vector y ∈ Rn−d

such that y ·b �= 0 for any b ∈ B. We now compute b′ := b
b·y for each

b ∈ B. Then the points b′ lie on the hyperplane H := {x ∈ Rn−d :
y ·x = 1}. If bi ·y > 0, then label b′ with i and mark it with a black
dot. If b · y < 0, then label b′ with ī and mark it with a white dot.
Since H is isomorphic to Rn−d−1, we simply have to find an explicit
isomorphism that will help us draw our new points on H ⊂ Rn−d in
Rn−d−1. Projection of the points onto the first n− d− 1 coordinates
turns out to be such an isomorphism in the examples you will see in
these chapters.

Exercise 5.11. Compute the face lattice of the four-dimensional
cross-polytope C∆(4) by drawing its affine Gale diagram.

Exercise 5.12. Now replace the vertex e1 ∈ R4 in C∆(4) with α ·e1.
For different values of α ∈ R, how will this new convex polytope
change? How is this change reflected in the affine Gale diagram?



Chapter 6

Bizarre Polytopes

In this chapter we will see that Gale diagrams are powerful tools for
studying polytopes beyond their ability to encode the faces of a poly-
tope. Let us first investigate some properties of Gale diagrams. The
most fundamental question you can ask is if any vector configura-
tion can be the Gale diagram of some polytope. The material in this
chapter is taken from [Zie95, Chapter 6].

As in Chapter 5, let V := {v1, . . . ,vn} ⊂ Rd−1 and let

A =
(

1 · · · 1
v1 · · · vn

)
∈ Rd×n.

Assume that rank(A) = d, and choose a matrix B ∈ Rn×(n−d) whose
columns form a basis of kerR(A). Recall that the Gale transform
B = {b1, . . . ,bn} ⊂ Rn−d consists of the rows of B.

Definition 6.1. (1) A vector configuration {w1, . . . ,wp} ⊂ Rq

is said to be acyclic if there exists a vector α ∈ Rq such that
α ·wi > 0 for all i = 1, . . . , p. Geometrically this means that
all the vectors wi lie in the interior of a halfspace defined
by a hyperplane in Rq containing the origin.

(2) A vector configuration {w1, . . . ,wp} ⊂ Rq is said to be to-
tally cyclic if there exists a vector β > 0 in Rp such that
β1w1 + . . . + βpwp = 0. Geometrically this means that the

47



48 6. Bizarre Polytopes

wi are arranged all the way around the origin and are not
entirely on one side of any hyperplane through the origin.

Lemma 6.2. The columns of A form an acyclic configuration in Rd

since they all lie in the open halfspace {x ∈ Rd : x1 > 0}, while
the Gale transform B is a totally cyclic configuration in Rn−d since
b1 + . . . + bn = 0. (Note that the first row of A, which is a row of
ones, dots to zero with the rows of B.)

Suppose we start with a totally cyclic vector configuration B =
{b1, . . . ,bn} ⊂ Rn−d and a vector β > 0 such that

∑
βibi = 0. By

rescaling the elements of B, we may assume that β = (1, 1, . . . , 1). If
B ∈ Rn×(n−d) is the matrix whose rows are the elements of B, then we
can also assume that rank(B) = n − d. This means that kerR(Bt) =
{x ∈ Rn : Btx = 0} is a linear subspace of rank n− (n−d) = d. Let
A ∈ Rd×n be a matrix whose rows form a basis for kerR(Bt). The
columns of A form the vector configuration A = {a1, . . . ,an} ⊂ Rd.
Then A is said to be a Gale dual of B and B a Gale dual of A.
By our assumption that β = (1, . . . , 1), we may assume that the first

row of A is a row of all ones or, in other words, ai =
(

1
vi

)
for all

i = 1, . . . , n. Now the question is, what conditions on B will ensure
that {v1, . . . ,vn} is the vertex set of a (d−1)-polytope? To state our
answer formally, we introduce the notion of circuits and co-circuits of
vector configurations.

Definition 6.3. (1) The sign of a vector u ∈ Rn is the vector
sign(u) ∈ {+, 0,−}n defined as

sign(u)i :=

⎧⎨
⎩

+ if ui > 0
− if ui < 0
0 if ui = 0.

(2) The support of a vector u ∈ Rn is the set

supp(u) := {i : ui �= 0} ⊆ [n].

Note that the supports of a collection of vectors can be partially
ordered by set inclusion.

Definition 6.4. Let W = {w1, . . . ,wp} ⊂ Rq be a vector configura-
tion.
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(1) A circuit of W is any non-zero vector u ∈ Rp of minimal
support such that w1u1+. . .+wpup = 0. The vector sign(u)
is called a signed circuit of W .

(2) A co-circuit of W is any non-zero vector of minimal support
of the form (v·w1, . . . ,v·wn) where v ∈ Rq. The sign vector
of a co-circuit is called a signed co-circuit.

Example 6.5. Consider the vector configuration shown in Figure 1
that is the Gale transform of the triangular prism from Chapter 5.
If we take v = (1, 0) in Definition 6.4(2), then we get the co-circuit
(0, 1,−1, 0,−1, 1) and the signed co-circuit (0, +,−, 0,−, +). On the
other hand, the vector (1, 0, 0, 1, 0, 0) is a circuit of the configuration,
and hence (+, 0, 0, +, 0, 0) is a signed circuit of the configuration.

b2

b6

b4

b1

b5

b3

Figure 1. Gale diagram of the vertices of the triangular prism
from Chapter 5.

The signed circuits (or, equivalently, signed co-circuits) of a vector
configuration completely determine the combinatorics of the configu-
ration. In fact there is a very rich theory of circuits and co-circuits
that we will not get into here. It is also a fact that if A and B are
Gale duals, then the circuits of A are exactly the co-circuits of B and
vice versa. For instance, in our triangular prism example, A can be
taken to be the columns of the matrix

A =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

⎞
⎟⎟⎠ .
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The co-circuit (0, 1,−1, 0,−1, 1) of B does indeed form a circuit of
A: Check first that this vector lies in the kernel of A. To see that
it is a circuit, i.e., a dependency on the columns of A of minimal
support, you have to check that all subsets of columns 2, 3, 5, 6 are in
fact linearly independent.

Circuits and co-circuits come in symmetric pairs: the negative of
a circuit is again a circuit and similarly for co-circuits. It suffices to
record one member of each pair.

Theorem 6.6. ([Zie95, Theorem 6.19]) Let B = {b1, . . . ,bn} ⊂
Rn−d be a totally cyclic vector configuration with

∑
bi = 0 and the

matrix B having rank n− d as before. Then B is a Gale transform of
a (d − 1)-polytope with n vertices if and only if every co-circuit of B
has at least two positive coordinates.

Proof. Recall the matrix A constructed from B as before. We have
to show that {v1, . . . ,vn} is the vertex set of the (d − 1)-polytope
P = conv({v1, . . . ,vn}) if and only if every co-circuit of B has at
least two positive coordinates. Since B is totally cyclic, every co-
circuit of B has at least one positive entry and one negative entry.
Some co-circuit of B has exactly one positive entry — say in position
j — if and only if 0 �∈ relint(conv(bi : i �= j)) which, by Theorem 5.6,
is if and only if vj is not a vertex of P . This proves the theorem. �

Remark 6.7. If every vi is a vertex of conv({v1, . . . ,vn}), then
we say that the vi are in convex position. Theorem 6.6 provides
conditions on a vector configuration B with the stated assumptions
that precisely guarantee when B is the Gale dual of a configuration
A whose columns are all in convex position.

We can also characterize affine Gale diagrams by reinterpreting
Theorem 6.6.

Corollary 6.8. ([Zie95, Corollary 6.20]) A point configuration C =
{c1, . . . , cn} ⊂ Rn−d−1, each of them declared to be either black or
white, that affinely spans Rn−d−1, is the affine Gale diagram of a
(d − 1)-polytope with n vertices if and only if the following condition
is satisfied: for every oriented hyperplane H in Rn−d−1 spanned by
some points of C, the number of black dots on the positive side of H
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plus the number of white dots on the negative side of H is at least
two.

Exercise 6.9. Check that Corollary 6.8 is a straight translation of
Theorem 6.6 to affine Gale diagrams.

Exercise 6.10. Check that the condition of Corollary 6.8 is true for
the affine Gale diagram of the triangular prism from Chapter 5.

We are now ready to get to the fun. We could try to use Gale
diagrams to classify (d − 1)-polytopes with n vertices. Any (d − 1)-
polytope with d vertices is a simplex. The Gale diagram in this case
is in zero-dimensional space R0 and all the bi = 0 ∈ R0. If P is
a (d − 1)-polytope with d + 1 vertices, then its Gale diagram is a
totally cyclic vector configuration in R and its affine Gale diagram
is a cloud of black and white points in R0. It is known that there
are �(d − 1)2/4� combinatorial types of (d − 1)-polytopes with d + 1
vertices. Of these, �(d−1)/2� are simplicial polytopes and the others
are multiple pyramids over simplicial polytopes of this type. This is
a non-obvious but classical result. Further results are known. See
[Grü03, Chapter 6] for details. Our goal in the rest of the chapter
will be to show that Gale diagrams exhibit the existence of some really
bizarre polytopes.

Theorem 6.11. ([Grü03, page 94]) There exists a non-rational
eight-dimensional polytope with twelve vertices.

Proof. Using Corollary 6.8, check that the point configuration shown
in Figure 2 is the affine Gale diagram of an 8-polytope P with twelve
vertices. It turns out that this point configuration cannot be real-
ized by rational coordinates without violating the prescribed com-
binatorics. By “prescribed combinatorics” we mean that the same
points should be collinear, or on a plane, etc. as in Figure 2. First
note that fixing the combinatorics implies that there will always be
a pentagon in the middle of the configuration. It is harder to see
that this pentagon has to be regular (do you see it?). Furthermore,
a regular pentagon cannot be embedded in the plane with rational
coordinates as its coordinates will involve

√
5, which is not rational.
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Let Q be any polytope that is combinatorially equivalent to P .
Then the affine Gale diagram of Q also has the same combinatorics,
i.e., same collinearities, circuits, coincidences, etc. Thus Q cannot be
realized with rational coordinates either. In particular, neither P nor
any polytope combinatorially equivalent to it can be realized with
rational coordinates.

1̄1

1 5 6 9̄ 2

7

3 4

8

1̄0

1̄2

Figure 2. Affine Gale diagram for Theorem 6.11.

�

The above example is due to Perles. No non-rational polytope
with less than twelve vertices is known. However, Richter-Gebert has
constructed 4-polytopes (with about thirty vertices) which are non-
rational. This stands in contrast to the fact that all polytopes of
dimension at most three can be realized with rational coordinates.
Also, all (d− 1)-polytopes with at most d + 2 vertices can be realized
with rational coordinates. Can you see how to construct infinitely
many polytopes of dimension d ≥ 8 and at least d + 4 vertices that
do not have rational realizations, beginning with the above example?
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We now turn to a different feature of polytopes that can be un-
covered via their Gale diagrams. It is known that for all polytopes of
dimension d ≤ 3 or with at most d + 3 vertices, one can prescribe the
shape of a facet. This means that if a particular facet is known to
be an octahedron, say, then we can start with any embedding of an
octahedron as this facet and then complete the construction of the
polytope according to the combinatorics prescribed. This contrasts
the following theorem whose proof is from [Zie95, Theorem 6.22].

Theorem 6.12. ([Stu88]) There is a 4-polytope P with seven facets
for which the shape of a facet cannot be prescribed.

Proof. Let P∆ be the bi-pyramid over a square pyramid. Let the A

matrix for this be

A =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 0 −1 0 0 0 0
0 1 0 −1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

To see that the convex hull of the columns of A is a bi-pyramid over
a square pyramid, first note that the convex hull of the first four
columns of A is a square, and the convex hull of the first five columns
of A is a square pyramid. Next note that the average of the last
two columns of A is (1, 0, 0, 1/2, 0), which is the midpoint of the line
segment perpendicular to the base of the pyramid, dropped from the
apex of the pyramid. The columns of(

1 0 1 0 2 −2 −2

0 1 0 1 2 −2 −2

)

form the Gale transform B of P∆. The Gale diagram is shown in
Figure 3.

Now we examine an operation on polytopes that we have not
seen so far. The vertex figure of a polytope Q at a vertex v is the
intersection of Q with a hyperplane H that “chops off” vertex v very
near vertex v — i.e., v lies on one side of H and all other vertices of
Q lie on the other side of H. The resulting polytope is denoted as
Q/v.
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1,3

2,4

6,7

5

5

2,4

6̄

7̄

1,3

Figure 3. Gale and affine Gale diagram for Theorem 6.12.

Let’s consider the vertex figure of our bi-pyramid P∆ at the vertex
5. The Gale diagram of P∆/5 is obtained from the Gale diagram of
P∆ by deleting the point 5 from the diagram. (This is Exercise 6.13.)
The resulting Gale diagram is that of a regular octahedron, for in-
stance the one with

A′ =

⎛
⎜⎜⎝

1 1 1 1 1 1
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎞
⎟⎟⎠ .

Check that for P∆, 56̄ and 57̄ are co-facets. However, this requires
that the points 6̄ and 7̄ coincide in the affine Gale diagram of P∆/5
or, equivalently, that the Gale vectors 6 and 7 are in the linear span
of the Gale vector 5 in the opposite direction from 5. Therefore, if we
start with a non-regular octahedron such as the following one with

A′ =

⎛
⎜⎜⎝

1 1 1 1 1 1
1 −1 0 0 0 0

1/6 0 1 −1 0 0
0 0 0 0 1 −1

⎞
⎟⎟⎠ ,

which has the affine Gale diagram shown in Figure 4, then it is not



6. Bizarre Polytopes 55

2,4

6̄

7̄

1,3

Figure 4. Affine Gale diagram of a non-regular octahedron.

the vertex figure of a 4-polytope that is combinatorially isomorphic
to P∆.

Recall that the face lattices of P and P∆ are anti-isomorphic,
which means that the vertex 5 of P∆ corresponds to a facet of P .
This facet has the same combinatorics as the vertex figure P∆/5.
Thus by showing that a vertex figure of P∆ cannot be prescribed, we
have shown that a facet of P cannot be prescribed. �

Exercise 6.13. Argue that the Gale diagram of the vertex figure
P∆/5 is obtained from the Gale diagram of P∆ by deleting the point
5 from the diagram. This result is true in general.


	stml-33-chpt5.pdf
	stml-33-chpt6.pdf

