Preface

Generally acknowledged as India’s greatest mathematician, Srinivasa
Ramanujan is most often thought of as a number theorist, although
he made substantial contributions to analysis and several other ar-
eas of mathematics. For most number theorists, when Ramanujan’s
name is mentioned, the partition and tau functions immediately come
to mind. His interest in these arithmetic functions was inextricably
intertwined with his primary interests of theta functions and other ¢-
series. In fact, most of Ramanujan’s research in number theory arose
out of ¢g-series and theta functions. Theta functions are the fundamen-
tal building blocks in the theory of elliptic functions, and Ramanujan
independently developed his own theory of elliptic functions, which is
quite unlike the classical theory. We do not formally define an elliptic
function, but, roughly, elliptic functions are meromorphic functions
with two linearly independent periods over the real numbers. The
concept of double periodicity is not used in this book, and, to the
best of our knowledge, Ramanujan never utilized this idea.

The purpose of this book is to provide an introduction to this
large expanse of Ramanujan’s work in number theory. Needless to
say, we shall be able to cover only a very small fraction of Ramanu-
jan’s work on theta functions and g¢-series and their connections with
number theory. However, after developing only a few facts about
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g-series and theta functions, we will be equipped to prove many in-
teresting theorems. The arithmetic functions on which we focus are
the partition function p(n), Ramanujan’s tau function 7(n), the num-
ber of representations of a positive integer n as a sum of 2k squares
denoted by r9r(n), and other arithmetic functions closely allied to
rok(n). Most of the material upon which we draw can be found in
Ramanujan’s published papers on p(n) and 7(n), the later chapters
in his second notebook, his lost notebook, and his handwritten man-
uscript on p(n) and 7(n) published with his lost notebook. We em-
phasize that Ramanujan left behind few of his proofs, especially for
his claims in his notebooks and lost notebook. Thus, for many of the
theorems that we discuss, we do not know Ramanujan’s proofs. This
is particularly true for the theorems on sums of squares and similar
arithmetic functions that we prove in Chapter 3.

The requirements for reading and understanding the material in
this book are relatively modest. An undergraduate course in elemen-
tary number theory is advisable. For some of the analytic arguments,
a solid undergraduate course in complex analysis is essential. How-
ever, the occasions when deep analytical rigor is needed are few, and
so readers who do not have a strong background in analysis can sim-
ply verify formally the needed manipulations. Our intent here is not
to give a rigorous course in analysis but to emphasize the most impor-
tant ideas about g-series and theta functions and how they interplay
with number theory. This book should be suitable for junior and
senior undergraduates and beginning graduate students.

Since many readers may not be familiar with Ramanujan’s life,
we begin with a short account of his life where readers learn about
the notebooks and lost notebook in which he recorded his theorems
over several years. We provide brief histories, first of the “ordinary”
notebooks, and second of the lost notebook. After these biographical
and historical narrations, we provide short summaries of the book’s
seven chapters.

Ramanujan was born on December 22, 1887 in the home of his
maternal grandmother in Erode, located in the southern Indian state
of Tamil Nadu. After a few months, his mother, Komalatammal, re-
turned with her son to her home in Kumbakonam approximately 160
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miles south-southwest of Madras, where her husband was a clerk in
the office of a cloth merchant. At the age of twelve, Ramanujan bor-
rowed a copy of the second part of Loney’s Plane Trigonometry [149]
from an older student and worked all the problems in it. This longtime
popular textbook in India has much more in it than its title suggests.
For example, infinite series and elementary functions of a complex
variable are two of its topics. At the age of about fifteen, he borrowed
from the Kumbakonam College library a copy of G. S. Carr’s A Syn-
opsis of Elementary Results in Pure Mathematics [64], which served
as his primary source for learning mathematics. Carr was a tutor in
London and compiled this compendium of 4417 results (with very few
proofs) to facilitate his tutoring. At the age of sixteen, Ramanujan
entered the Government College in Kumbakonam. By that time, Ra-
manujan was completely devoted to mathematics and consequently
failed his examinations at the end of his first year, because he would
not study any other subject. He therefore lost his scholarship and,
because his family was poor, was forced to terminate his formal edu-
cation. He later twice tried to obtain an education at Pachaiyappa’s
College in Madras, but each time he failed his examinations.

After leaving the Government College in Kumbakonam, Ramanu-
jan devoted all of his time to mathematics, recording his results with-
out proofs in notebooks. It was probably around the age of sixteen
that Ramanujan began to record his mathematical discoveries in note-
books, although the entries on magic squares in Chapter 1 in both his
first and second notebooks likely emanate from his school days. Liv-
ing in poverty with no means of financial support, suffering at times
from serious illnesses, and working in isolation, Ramanujan devoted
all of his efforts to mathematics and continued to record his discov-
eries without proofs in notebooks for the next five years. In 1909, he
married Janaki, who was only nine or ten years old. With mounting
pressure to find a job, Ramanujan visited V. Ramaswami Ayyar, the
founder of the Indian Mathematical Society. Ayyar contacted R. Ra-
machandra Rao, who agreed to give Ramanujan, who now had moved
to Madras, a monthly stipend so that Ramanujan could continue his
mathematical research unabated.
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After being supported for about fifteen months, for reasons that
are unclear, Ramanujan refused further financial assistance and be-
came a clerk in the Madras Port Trust Office. This turned out to
be a watershed in Ramanujan’s career. Several people, including
S. Narayana Iyer, the Chief Accountant, and Sir Francis Spring, the
Chairman, offered support, and Ramanujan was persuaded to write
English mathematicians about his mathematical discoveries. Two
of them, H. F. Baker and E. W. Hobson, evidently did not reply.
M. J. M. Hill replied but was not encouraging. But on January 16,
1913, Ramanujan wrote G. H. Hardy, who responded immediately and
encouragingly, inviting Ramanujan to come to Cambridge to develop
his mathematical gifts. Ramanujan and his family were Iyengars, a
conservative branch in the Brahmin tradition. Travelling to a dis-
tant land would make a person unclean, and so Ramanujan’s mother
was particularly adamant about her son’s not accepting Hardy’s in-
vitation. After a pilgrimage to Namakal with S. N. Iyer and after
Goddess Namagiri appeared in a dream to Komalatammal, Ramanu-
jan received permission to travel. So on March 17, 1914, Ramanujan
boarded a passenger ship for England.

At about this time, Ramanujan evidently stopped recording his
theorems in notebooks, although a few entries in his third notebook
were undoubtedly recorded in England. That Ramanujan no longer
concentrated on logging entries in his notebooks is evident from two
letters that he wrote to friends in Madras during his first year in
England. In a letter of November 13, 1914 to his friend R. Krishna
Rao [51, pp. 112-113], Ramanujan confided, “I have changed my
plan of publishing my results. I am not going to publish any of the
old results in my notebooks till the war is over.” And in a letter of
January 7, 1915 to S. M. Subramanian [51, pp. 123-125], Ramanujan
admitted, “I am doing my work very slowly. My notebook is sleeping
in a corner for these four or five months. I am publishing only my
present researches as I have not yet proved the results in my notebooks
rigorously.”

Ramanujan soon became famous for the papers he published in
England, some of them coauthored with Hardy. One of his most im-
portant papers is [186], [192, pp. 136-162], in which he introduced
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his famous tau function 7(n), discussed in Chapter 2 of this book, and
the Eisenstein series, P, @), and R, which are introduced here in Chap-
ter 4 and which were key players in so much of his research. In their
paper [109], [192, pp. 262-275], Hardy and Ramanujan launched the
new field of probabilistic number theory, which became an important
branch in number theory. In another paper [110], [192, pp. 276
309], in the course of obtaining an asymptotic series for the partition
function p(n), Hardy and Ramanujan introduced the circle method,
which still today is the primary tool for analytically attacking prob-
lems in additive number theory. The genesis of the circle method can
be found in Ramanujan’s notebooks [193], but unfortunately it is
most frequently called the Hardy—Littlewood circle method today. In
the latter part of his stay in England, Ramanujan wrote his famous
papers on congruences for p(n) [188], [192, pp. 210-213] and [190],
[192, p. 230], about which much is written in this book.

Although Ramanujan never doubted his decision to accept
Hardy’s invitation to Cambridge, not all was well with Ramanujan.
World War I began shortly after his arrival, and being a strict veg-
etarian, he could not always obtain familiar food and spices from
India. On March 24, 1915, near the end of his first winter in Cam-
bridge, Ramanujan wrote his friend E. Vinayaka Row in Madras [51,
pp. 116-117], “I was not well till the beginning of this term owing to
the weather and consequently I couldn’t publish any thing for about
5 months.” By the end of his third year in England, Ramanujan was
critically ill, and, for the next two years, he was confined to sanitari-
ums and nursing homes.

Ramanujan’s health turned slightly upward when in 1918 he be-
came the second Indian to be elected as a Fellow of the Royal Society
and the first Indian to be chosen as a Fellow of Trinity College. Af-
ter World War I ended, in 1919, Ramanujan returned home, but his
health continued to deteriorate, and on April 26, 1920 Ramanujan
died at the age of 32.

Doctors in both England and India had difficulty diagnosing Ra-
manujan’s illness. He was treated for tuberculosis, but a severe vi-
tamin deficiency, liver cancer, lead poisoning purportedly from not
properly cleaning his cooking vessels, and a rare tropical disease were
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other diagnoses. However, D. A. B. Young [52, pp. 65-75] made a
careful examination of all extant records and recorded symptoms of
Ramanujan’s illness and convincingly concluded that Ramanujan suf-
fered from hepatic amoebiasis (a parasitic infection of the liver). Not
only do all of Ramanujan’s symptoms suggest this disease, but Ra-
manujan’s medical history in India also favors this diagnosis. Amoe-
biasis is a protozoal infection of the large intestine that gives rise to
dysentery. In 1906 Ramanujan left home to attend Pachaiyappa’s
College in Madras, where he contracted a severe case of dysentery
and had to return home for three months. Unless adequately treated,
the infection is permanent, although the patient may go for long pe-
riods without exhibiting any symptoms. Relapses occur when the
host—parasite relationship is disturbed, which likely happened when
he endured a colder climate and perhaps inadequate nutrition after
his arrival in England. The illness is difficult to diagnose.

Our description of Ramanujan’s life has been necessarily brief.
For several years, the standard sources about Ramanujan’s life have
been the obituaries of P. V. Seshu Aiyar, R. Ramachandra Rao, and
Hardy, found in Ramanujan’s Collected Papers [192] and Chapter 1
of Hardy’s book [107]. By far, the most comprehensive biography of
Ramanujan has been written by R. Kanigel [134]. The letters from
and to Ramanujan are also a source of both mathematical and per-
sonal information about Ramanujan, and most of the extant letters
have been compiled with commentary by R. A. Rankin and the author
[51].

After Ramanujan died, Hardy strongly urged that Ramanujan’s
notebooks be edited and published. By “editing,” Hardy meant that
each claim made by Ramanujan in his notebooks should be examined
and proved, if it cannot be found in the literature. Ramanujan, in
fact, had left his first notebook with Hardy when he returned to India
in 1919, and in 1923 Hardy wrote a paper [106], [108, pp. 505-516]
about a chapter on hypergeometric series found in the first notebook.
In this paper, Hardy pointed out that Ramanujan had independently
discovered most of the important classical results in the subject while
also discovering several new theorems as well. For the definition of a
hypergeometric series, see Chapter 5 of this monograph.
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Hardy sent the first notebook to the University of Madras where
Ramanujan’s other notebooks and papers were being preserved. Plans
were undertaken to publish Ramanujan’s collected papers and, possi-
bly, his notebooks and other manuscripts. Handwritten copies of the
notebooks were sent to Hardy along with other manuscripts and pa-
pers in 1923, but the papers were never returned to the University of
Madras. It transpired that Ramanujan’s Collected Papers [192] were
published in 1927, but his notebooks and other manuscripts were not
published.

Sometime in the late 1920s, G. N. Watson and B. M. Wilson
began the task of editing Ramanujan’s notebooks. The second note-
book, being a revised, enlarged edition of the first, was their primary
focus. Wilson was assigned Chapters 2-14, and Watson was to exam-
ine Chapters 15-21. Wilson devoted his efforts to this task until 1935,
when he died from an infection at the early age of 38. Watson wrote
over 30 papers inspired by the notebooks before his interest evidently
waned in the late 1930s. Thus, the project was never completed.

It was not until 1957 that the notebooks were made available
to the public when the Tata Institute of Fundamental Research in
Bombay published a photocopy edition [193], but no editing was un-
dertaken. The first notebook was published in volume 1, and volume
2 comprises the second and third notebooks. The present author un-
dertook the task of editing Ramanujan’s notebooks in 1977. With the
help of several mathematicians, the author completed his work with
the publication of his fifth volume [38] on the notebooks in 1998.

In the spring of 1976, George Andrews of Pennsylvania State
University visited Trinity College, Cambridge, to examine the papers
left by Watson. Among Watson’s papers, he found a manuscript
containing 138 pages in the handwriting of Ramanujan. In view of the
fame of Ramanujan’s notebooks [193], it was natural for Andrews to
call this newly found manuscript “Ramanujan’s lost notebook.” How
did this manuscript reach Trinity College?

Watson died in 1965 at the age of 79. Shortly thereafter, on sep-

arate occasions, J. M. Whittaker and R. A. Rankin visited Mrs. Wat-
son. Whittaker was a son of E. T. Whittaker, who coauthored with
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Watson probably the most popular and frequently used text on anal-
ysis in the 20th century [221]. Rankin had succeeded Watson as
Mason Professor of Mathematics at the University of Birmingham,
where Watson served for most of his career, but was now Professor
of Mathematics at the University of Glasgow. Both Whittaker and
Rankin went to Watson’s attic office to examine the papers left by
him, and Whittaker found the aforementioned manuscript by Ra-
manujan. Rankin suggested to Mrs. Watson that he might sort her
late husband’s papers and send those worth preserving to Trinity Col-
lege Library, Cambridge. During the next three years, Rankin sorted
through Watson’s papers sending them in batches to Trinity College
Library, with Ramanujan’s manuscript being sent on December 26,
1968. Not realizing the importance of Ramanujan’s papers, neither
Rankin nor Whittaker mentioned them in their obituaries of Wat-
son [195], [222]. The next question is: How did Watson come into
possession of this sheaf of 138 pages of Ramanujan’s work?

We mentioned above that in 1923 the University of Madras had
sent a package of Ramanujan’s papers to Hardy. Most likely, this
shipment contained the “lost notebook.” Of the over 30 papers that
Watson wrote on Ramanujan’s work, two of his last papers were de-
voted to Ramanujan’s mock theta functions, which Ramanujan dis-
covered in the last year of his life, which he described in a letter to
Hardy only about three months before he died [51, pp. 220-223], and
which are also found in the lost notebook. In these two papers, Wat-
son made some conjectures about the existence of certain mock theta
functions. If he had the lost notebook at that time, he would have
seen that his conjectures were correct. Thus, probably sometime af-
ter Watson’s interest in Ramanujan’s work declined in the late 1930s,
Hardy passed Ramanujan’s papers to Watson.

In early 1988, just after the centenary of Ramanujan’s birth,
Narosa Publishing House in New Delhi published a photocopy edition
of the lost notebook [194]. Included in this publication are partial
manuscripts, loose papers, and fragments by Ramanujan, as well as
letters from Ramanujan to Hardy written from nursing homes during
the last two years of Ramanujan’s sojourn in England.
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The first chapter of this book is devoted to basic facts about
g-series and theta functions, including the g-binomial theorem, the
Jacobi triple product identity, the pentagonal number theorem, Ra-
manujan’s 117 summation theorem, and the quintuple product iden-
tity. Many of the theorems proved in Chapter 1 can be found in
Chapter 16 of Ramanujan’s second notebook [193], [34].

Chapter 2 focuses on congruences for the partition function p(n)
and Ramanujan’s tau function 7(n). Much of this material is taken
from Ramanujan’s handwritten manuscript on p(n) and 7(n), which
was first published in 1988 along with Ramanujan’s lost notebook
[194]. Adding details to many of Ramanujan’s proofs and discussing
Ramanujan’s theorems in light of the literature written after Ra-
manujan’s death, the present author and K. Ono [50] published an
expanded version of this manuscript.

In his notebooks [193], Ramanujan recorded a large number of
entries on Lambert series. These identities for Lambert series were
used by Ramanujan to establish theta function identities and formu-
las for the number of representations of an integer as a sum of a
certain numbers of squares or of triangular numbers. We introduce
readers to Lambert series in Chapter 3 and establish many identi-
ties leading to formulas for sums of squares and triangular numbers.
A manuscript with no proofs on precisely this subject is another of
those manuscripts published with Ramanujan’s lost notebook [194],
[19, Chapter 18]. His second notebook also contains a large number
of such theorems.

Eisenstein series permeate Ramanujan’s notebooks [193] and lost
notebook [194]. Much of our exposition on Eisenstein series in Chap-
ter 4, however, is taken from Ramanujan’s epic paper [186], [192,
136-162]. One of Ramanujan’s approaches to congruences for p(n)
is based on Eisenstein series, which we demonstrate at the close of
Chapter 4.

In Chapter 5, we introduce readers to hypergeometric functions
and elliptic integrals. Our goal in this chapter is to prove one of
the most fundamental theorems of elliptic functions relating hyper-
geometric functions and elliptic integrals to theta functions. This
theorem enables us to express theta functions and Eisenstein series
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at various arguments in terms of certain elliptic parameters. Our
exposition is derived from Chapter 17 of Ramanujan’s second note-
book [193], [34, Chapter 17], where, through a series of preliminary
lemmas, Ramanujan leads us to the aforementioned key theorem.

Applications of the aforementioned representations for Eisenstein
series and theta functions form the content of Chapter 6. First, we
return to the topic of sums of squares and demonstrate how the for-
mulas for Eisenstein series lead to short proofs of some of the results
from Chapter 3. However, most of Chapter 6 is devoted to modu-
lar equations, a topic to which Ramanujan made more contributions
than any other mathematician. Chapters 19-21 in his second note-
book are devoted to modular equations, and our short introduction
to this topic is drawn from our previous account of Ramanujan’s work
in these chapters [34].

One of Ramanujan’s favorite topics was the Rogers—Ramanujan
continued fraction, the focus of Chapter 7. Because we wish to share
so much about this continued fraction with readers and because the
length of the chapter would be prohibitive if we proved all theorems
offered in this chapter, we forego some of the proofs. However, we do
prove two key theorems relating the continued fraction with its recip-
rocal. These theorems are then used to give an alternative, cleaner
proof of an identity of Ramanujan in Chapter 2, yielding immedi-
ately the congruence p(5n 4+ 4) = 0(mod5). The famous Rogers—
Ramanujan functions are also discussed, and, in particular, we prove
that the Rogers—-Ramanujan continued fraction can be represented as
a quotient of the two Rogers—Ramanujan functions. Our fervent wish
is that our sampling of the many beautiful properties satisfied by this
continued fraction will motivate readers to turn to original sources to
learn more about it.

Ubiquitous in this book are products of the form
(1-a)(1—ag)(1—ag®) - (1—ag"™") = (a;q)n
as well as their infinite versions
(1-a)1-ag)(1-ag®) - (1-aq") - = (@q)s,  lal <1,

which are called g-products. Although we assume that readers of
this book are familiar with infinite series, it may well be that some
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are not familiar with infinite products. A reader desiring to learn a
few basic facts about the convergence of infinite products may con-
sult a good text on complex analysis, such as that of N. Levinson
and R. Redheffer [142, pp. 382-385], for basic properties of infinite
products. In particular, all the infinite products in the present text
converge absolutely and uniformly on compact subsets of |¢] < 1. In
particular, taking logarithms of infinite products and differentiating
the resulting series termwise is permitted. At first, you may find that
working with the products (a;q), and (a;¢)s is somewhat tedious.
In order to verify g-product identities or to manipulate g-products,
it may be helpful to write out the first three or four terms of each
g-product. This should provide the needed insight in order to justify
a given step. After working with g-products for awhile, you will be-
gin to handle them more quickly and adroitly, and no longer need to
write out any of their terms longhand. When you reach this stage,
you should feel quite comfortable in manipulating g¢-series. It is as-
sumed throughout the entire book that |¢| < 1. Over 50 exercises are
interspersed within the exposition.

The author is grateful for the comments of graduate students at
the Universities of Illinois and Lecce where this material was taught.
Y.—S. Choi, S. Cooper, D. Eichhorn, AMS copy editor M. Letourneau,
J. Sohn, and K. S. Williams provided the author with many helpful
suggestions and corrections for which he is especially thankful. The
author also thanks N. D. Baruah, S. Bhargava, Z. Cao, H. H. Chan,
W. Chu, AMS Acquisitions Editor E. Dunne, M. D. Hirschhorn,
M. Somos, A. J. Yee, and the referees for their suggestions and cor-
rections.



