Chapter 2

Congruences for p(n)
and 7(n)

2.1. Historical Background

This chapter is primarily devoted to proving some of Ramanujan’s
congruences for p(n) and 7(n). We begin with a remark on notation.
Throughout the chapter, we shall see congruences of the sort

(2.1.1) f(q) = g(q) (modm),

where f(q) = > anq™ and g(q) = > b,g™ are power series in gq. The
congruence (2.1.1) is equivalent to the condition a,, = b, (mod m) for
every integer n appearing as an index in either power series.

In 1919, Ramanujan [188], [192, pp. 210-213] announced that he
had found three simple congruences satisfied by p(n), namely,

(2.1.2) p(5n +4) = 0 (mod 5),
(2.1.3) p(7n +5) = 0 (mod 7),
(2.1.4) p(11n +6) = 0 (mod 11).

He gave proofs of (2.1.2) and (2.1.3) in [188] and later in a short one
page note [190], [192, p. 230] announced that he had also found a
proof of (2.1.4). He also remarks in [190] that “It appears that there
are no equally simple properties for any moduli involving primes other
than these three.” In a posthumously published paper [191], [192,
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pp. 232-238], Hardy extracted different proofs of (2.1.2)—(2.1.4) from
an unpublished manuscript of Ramanujan on p(n) and 7(n) [194,
pp. 133-177], [50].

In [188], Ramanujan offered a more general conjecture. Let § =
597°11¢ and let A be an integer such that 24\ = 1 (mod §). Then

(2.1.5) p(nd + A) = 0 (mod ).

In his unpublished manuscript [194, pp. 133-177], [50], Ramanujan
gave a proof of (2.1.5) for arbitrary a and b = ¢ = 0. He also began
a proof of his conjecture for arbitrary b and a = ¢ = 0, but he did
not complete it. If he had completed his proof, he would have noticed
that his conjecture in this case needed to be modified. Ramanujan had
formulated his conjectures after studying a table of values of p(n),0 <
n < 200, made by P. MacMahon. After Ramanujan died, H. Gupta
extended MacMahon’s table up to n = 300. Upon examining Gupta’s
table in 1934, S. Chowla [75] found that p(243) is not divisible by 73,
despite the fact that 24 - 243 = 1 (mod 73). To correct Ramanujan’s
conjecture, define &' = 5%7Y'11¢, where b = b, if b = 0,1,2, and
b =[(b+2)/2],if b > 2. Then

(2.1.6) p(nd + A) = 0 (modd’).

In 1938, G. N. Watson [218] published a proof of (2.1.6) fora =c=0
and gave a more detailed version of Ramanujan’s proof of (2.1.6) in
the case b = ¢ = 0. It was not until 1967 that A. O. L. Atkin [28]
proved (2.1.6) for arbitrary ¢ and a = b = 0.

The tau function 7(n) was introduced by Ramanujan in his fa-
mous paper [186], [192, pp. 136-162]. Although he proved little
about 7(n) in this paper, he did formulate some fundamental conjec-
tures about 7(n). In [190], Ramanujan stated without proof congru-
ences for 7(n) modulo 5, 7, and 23. In his unpublished manuscript on
p(n) and 7(n) [194, pp. 133-177], [50], he proved these congruences
and several further results on 7(n).

2.2. Elementary Congruences for 7(n)

First, we show that 7(n) is seldom odd.
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Theorem 2.2.1. The number of values of n < x for which T(n) is
odd equals

2y 1],

where [z] denotes the greatest integer less than or equal to x.
Proof. Observe that, for any positive integer 7, by the binomial the-
orem,
(1—¢)®=1-8¢ +28¢¥ — - +¢¥ =1+¢¥ =1 ¢* (mod?2).
Hence,
(4;0)% = (4% ¢%)oo (m0d 2).

Therefore, using the definition of 7(n) in (1.1.10), the congruence
above, and Jacobi’s identity, Theorem 1.3.9, we find that

oo

T(n)q" = q(g;9)22 = q(q® ¢*)3,

n=1

=Y (=1 @n+ 1)g® D’ (mod 2).
n=0

Thus, 7(n) is odd or even according as n is an odd square or not.

Exercise 2.2.2. As an elementary exercise, show that the number of
odd squares less than or equal to x is precisely (2.2.1).

So the proof of Theorem 2.2.1 is complete. g
Theorem 2.2.3. For each nonnegative integer n,

(2.2.2) 7(n), 7(Tn + 3),7(Tn +5), 7(Tn + 6) = 0 (mod 7).

Proof. Applying the binomial theorem, as we did in the previous
proof, we easily deduce that

(€97 = (¢":¢") o (mod 7),

and so

(223) Y ()" = a(g;0)% = a(g; )% (473 ¢7) (mod 7).

n=1
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Since the powers in (¢7;¢7)2, are all multiples of 7, we need only

consider
(2.2.4) q(q; q)‘;o = Z(fl)”(Qn + 1)q1+n(n+1)/2,
n=0

by Jacobi’s identity, Theorem 1.3.9. Observe that 1 +n(n+1)/2 =
0,1,2,4 (mod 7). Moreover, 1 + n(n+1)/2 = 0(mod7) if and only
if n =3(mod7) or 2n+1 = 0(mod 7). It now follows from (2.2.3)
and (2.2.4) that 7(7n) = 0(mod 7). It also follows that there are no
powers of g on the right side of (2.2.4) that are congruent to either 3,
5, or 6 modulo 7. The latter three congruences in (2.2.2) thus follow
from (2.2.3) and (2.2.4). O

For example, 7(3) = 252 = 0(mod 7), 7(5) = 4830 = 0 (mod 7),
7(6) = —6048 = 0(mod7), and 7(7) = —16744 = 0(mod 7). The
reader will observe that 3, 5, and 6 are the quadratic nonresidues
modulo 7 and that indeed the proof of Theorem 2.2.3 demonstrates
this.

Theorem 2.2.4. Let r, 0 < r < 23, denote any quadratic residue
modulo 23. Then, for each positive integer n,

(2.2.5) 7(23n — r) = 0 (mod 23).

Proof. By the binomial theorem,
> 7(0)q" = a(4;0)% = 4(; D)oo (0% 6% oo (m0d 23).
n=1

Since the powers in (¢%3; ¢%3)

consider

- are all multiples of 23, we need only

oo

(2.2.6) (¢ Q)00 = Z (—1)ngltnn+D/2,

n=—o00
by Euler’s pentagonal number theorem (1.3.18). Observe that

(227) 1+n(3n +1) ~ 23n(3n+1)
2 2
Thus, 7(m) will be a multiple of 23 when m is not congruent to a
square modulo 23. In other words, if we set m =: 23n 4+ ¢ = k2,0 <
{ < 23, for some integers n, ¢, and k, then ¢ must be a quadratic

— (6n+1)2 = (6n+1)2 (mod 23).
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nonresidue modulo 23. Recall that r is a quadratic residue modulo
23. Since 23 = —1(mod4), —r,r # 0, is a quadratic nonresidue
modulo 23. Tt follows that

(2.2.8) 7(23n — r) = 0 (mod 23), 0<r<23.

O

For example, 3 and 6 are quadratic residues modulo 23, and so
7(20) = =7109760 = 0 (mod 23) and 7(17) = —6905934 = 0 (mod 23).

We shall later examine congruences for 7(n) modulo 5. However,
to establish these congruences, we first need to prove Ramanujan’s
famous congruence for p(n) modulo 5.

2.3. Ramanujan’s Congruence
p(5n +4) = 0 (mod 5)

In this monograph, we present four proofs of Ramanujan’s congruence
for p(n) modulo 5. We offer three proofs in this section. The first and
the second are more elementary than the third, but the third gives
more information.

Theorem 2.3.1. For each nonnegative integer n,

(2.3.1) p(5bn +4) = 0 (mod 5).

First Proof of Theorem 2.3.1. Our first proof is taken from Ra-
manujan’s paper [188], [192, pp. 210-213] and is reproduced in
Hardy’s book [107, pp. 87-88].

We begin by writing

(@*0°)c _ (@°6°)x -
(2:3.2) a(a:9)% = = (¢"4") (m)g™ .
PV~ Twoe mz::()p !

By the binomial theorem,

(2.3.3)
(@:9)% = (¢°;¢”)oo (mod5)  or ((équ)gfx’—l(mod&.
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Hence, by (2.3.2) and (2.3.3),

o0

(2.3.4) 00 0)a = (@°:16)oc Y p(m)g™ ™ (mod 5).

m=0
We now see from (2.3.4) that in order to show that p(5n + 4) =
0 (mod 5) we must show that the coefficients of ¢°"*> on the left side
of (2.3.4) are multiples of 5.
By the pentagonal number theorem, Corollary 1.3.5, and Jacobi’s
identity, Theorem 1.3.9,

(0 0)a =4(43 @)oo (0392,

=q Z 3J+1)/2Z 2k;+1 k(k+1)/2
Jj=—o0
(2.3.5) Z Z 1)7+F (2k + 1)g i GI+D/2+k(k+1)/2
j=—00 k=0

Our objective is to determine when the exponents on the right side
are multiples of 5. Observe that

20+ 1%+ 2k + 1) =8{1+3j(3j +1) + 3k(k + 1)} — 1057 — 5.
Thus, 1+ 35(3j + 1) + 1k(k + 1) is a multiple of 5 if and only if
(2.3.6) 2(j + 1) 4 (2k +1)® = 0 (mod 5).

It is easily checked that 2(j + 1) = 0,2, or 3 modulo 5 and that

(2k +1)2=0,1, or 4 modulo 5. We therefore see that (2.3.6) is true
if and only if

2(j+1)*>=0(mod5) and  (2k+1)* =0 (mod5).

In particular, 2k + 1 = 0(mod5), which, by (2.3.5), implies that
the coefficient of ¢°**° n > 0, in q(q; q)%, is a multiple of 5. The
coefficient of ¢°"*® on the right side of (2.3.4) is therefore also a

multiple of 5, i.e., p(5n + 4) is a multiple of 5. O

We now give a second simple proof due to G. E. Andrews [15]
and based on the simple lemma given below. See also an extensive
generalization of this lemma by Andrews and R. Roy [24]. In par-
ticular, taking a special case of their general theorem, Andrews and
Roy establish the congruence p(7n + 5) = 0 (mod 7).



SPIRIT OF RAMANUJAN 33

Lemma 2.3.2. Let {a,}, n > 0, be any sequence of integers. Then
the coefficient of ¢°" 3, n >0, in

1 >
2.3.7 L(q) := —— anq"
w1 0 oz S
is divisible by 5.

Proof. Write (2.3.7) in the form

2 2
Lg) = (g )% 2=t (g3 Emeotmd™
G * (%)

by the binomial theorem. Using Jacobi’s identity, Theorem 1.3.9, we
thus see that it suffices to examine the coefficient of ¢°"*3 in

(mod 5),

oo

(238) ()% Y amd™ =D (-1)(2j + D@23 apg™.
m=0 7=0 m=0

We want those terms above for which j(j + 1)/2 + m? = 5n + 3,
where n > 0. It is easy to see that this condition is equivalent to the
congruence

(2.3.9) (2§ 4+ 1)2 + 3m? = 0 (mod 5).

Since (2j+1)? = 0, £1 (mod 5) and 3m? = 0,2, 3 (mod 5), we see that
(2.3.9) holds only when

(2.3.10) m=2j+1=0(mod5).

The coefficients of ¢°**3 in (2.3.8) are then composed of terms of the
sort (—1)7(2§ + 1)a,,, which, by (2.3.10), are all multiples of 5.  [J

Exercise 2.3.3. Use (1.3.13) to show that

(45 9) o0

(2.3.11) o(—q) = (g )’

Second Proof of Theorem 2.3.1. Using (2.3.11), we find that

Zp(k_)qmc _ 1 — 1 _ 1 (Q;Q)oo
k=0

(%% (G060  (G0% (—4:0)

1 - 2
TR <1+2mz_1(_1) ! )
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By Lemma 2.3.2, the coefficients p(k) on the left side above are mul-
tiples of 5 whenever 2k = 55 + 3 (mod 5), i.e., whenever k = 5n + 4.
This then completes our second proof. O

Our third proof is also due to Ramanujan in [188], but it is only
briefly indicated in that paper. In his unpublished manuscript on
p(n) and 7(n), [194], [50], Ramanujan gives a more detailed sketch.
In this proof, the congruence p(5n + 4) = 0(mod 5) follows from a
beautiful identity. Following Ramanujan, throughout the proof we let
Ji(q), k = 1,2, denote power series with integral powers and integral
coefficients, not necessarily the same at each appearance. The precise
identities of J;(¢) and Ja(gq) are not important for the proof.

Theorem 2.3.4. We have

S (¢ ¢°)3
2.3.12 g p(bn +4)¢" = 522,
( ) ( ) (4:9)%

n=0

Proof. We begin by writing

(@"°:4"°)
(6°:6°) s
To see this, use the pentagonal number theorem (1.3.18) in the nu-
merator on the left side of (2.3.13) and, if n is the index of summation,
divide the terms into residue classes modulo 5. If n = 0,2 (mod5),
then the powers are integral, and these, when divided by (¢°;¢°)so,
account for the terms in Ji(q). If n = 3,4 (mod5), then the powers
are of the form k + 2/5, where k is a positive integer, i.e., we obtain

the terms J»(q)q%/°.

(2.3.13) = Ji(q) — ¢"° + Ja(q)g*°.

Exercise 2.3.5. Lastly, when n = 1(modb5), use the pentagonal
number theorem, Corollary 1.3.5, to show that these terms in
(4"/%:4"%)o0 are equal to —¢'/°(4°; ¢°)cc-

Hence, we obtain the term —¢'/> in (2.3.13). Now cube both
sides of (2.3.13) to obtain
1/5. ,1/5\3
(0 — U = 3730~ (82— J30) + 30?1+ D)
(2314) 7q3/5(1+6<]1<]2) +3J2q4/5(1+J1J2),
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where for brevity we have deleted the argument ¢ of J; and J5. Next,
we use Jacobi’s identity, Theorem 1.3.9, in the numerator on the left
side of (2.3.14) and repeat the same kind of argument that we applied
with the pentagonal number theorem in (2.3.13). We subdivide the
indices n of the sum in the numerator into residue classes modulo 5.
As an exercise, readers should use Jacobi’s identity (1.3.24) to show
that the contributions of the terms with n = 2 (mod5) are equal to
5(¢%;¢°)3,¢*/®. Thus, we obtain an equality of the sort

1/5. ,1/5\3
(¢ /5iq5/3)Oo — G1(q) + Ca(q)q® + 5¢°/°,

(% 0°)%
where G1(¢) and Ga(q) are power series with integral powers and
integral coefficients. Hence, equating coefficients on the right sides of
(2.3.14) and (2.3.15), we find that

(2.3.15)

Ji(1+ J1J3) =0, 14+ 6J1J2 = =5, Jo(1 4 J1J3) = 0.
From any one of these equalities, we deduce that

(2.3.16) JiJy = —1.

Our next task is to use (2.3.16), (2.3.13), and “rationalization”
to show that
(2.3.17)

(¢°:¢°)00 1

(@Y% %)ee — J1 = q'/5 + Jog?/?
(Ji +3J20) +¢'°(J? + 2J39) + ¢*°(2JF + J3q)
JP —11q+ ¢?J3
¢*/°(3J1 + J3q) + 5g*/°
JP —11q+ ¢2J3

We now demonstrate how to prove the second equality in (2.3.17).

Return to (2.3.13) and replace ¢/® by wq'/®, where w is any fifth
root, of unity. Thus,
(wg'/%; wg"?) o

(2.3.18) B PO J1(q) — wq'/® + Ja(q)w?q¥>.
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Let w run through all five fifth roots of unity and multiply all five
such equalities (2.3.18) to obtain

wal/5: wall®
(2.3.19) ] W =T {n@ - + a(a)?e}.

w

First examine the product on the left side of (2.3.19). Using the fact
that the sum of the five fifth roots of unity equals 0, we see that if n
is not a multiple of 5, we obtain products of the form

(2.3.20)

(1= ¢"")(1 = wg™®)(1 - w?q*?)(1 = q"?) (1 —w'q"?) =1 - ¢".

However, if n = 5m, then the corresponding terms are
1-g™A =g (A -g")(1~-g")(1—-¢")=(1~¢")°

instead of 1 — ¢" that we obtained in (2.3.20). Thus, we find that

(@:d%)  (6%0°)%

We now examine the product on the right side of (2.3.19). Since there
are no fractional powers of g on the left side of (2.3.19) by (2.3.21),
there are none on the right side as well. Thus, we only need to examine
those terms in the product that give rise to integral powers of q. A
brief inspection then convinces us that

(2.3.22)

11 {Jl(q) —wq'/® + Jz(q)w2q2/5} = J7(9) — g+ J3(9)g* + Crg+Cag,

w

1/5. ,1/5 \6
(2.3.21) H(‘*’q ;w0q' P)os _ (@:0)%

w

where (7 is the sum of the (1 g 1) = 20 terms of the form
—J1Jowiwawsw] = wiwowsw}, and Cy is the sum of the (,, >)) =30
terms of the form —J? Jiwjwiw? = —wiwiw3, since J1Jo = —1. Here,

for each j, w; is a fifth root of unity, and in each product w; # wy, if
j # k. First, examine the terms wjwswzw? = w4w5_1. Now,

E waws b = —wswy ' = —1,
wyaFws

where the sum is over the four fifth roots of unity wy, except ws. Since
there are five possibilities for ws, we conclude that C; = —5. Second,
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examine the terms —wjwiw3. Now,

— Z wWiwsws = (wg + w3)wsws = wiws + waws,

w1 Fwa,ws3

and
Z (W3w? + wiwd) = —wdw? — wiwd = 2.
waFw3

There are five possibilities for ws, and so it would seem that we obtain
a contribution of —10 to the value of (. However, because of the
symmetry of ws and ws, we have counted each contribution to Co
twice, i.e., in fact, Co = —5. Using our values C; = —5 = (5 in
(2.3.22), we deduce that

23.23) [ {Jl(Q) — gt/ Jz(q)w2q2/5} = J7 ()~ 11+ J3 ().

In summary, from (2.3.23), we have shown that

1 B [loa {J1(q) - wg'/s + JQ(Q)W2q2/5}
Jilg) — V5 + B(9)a?® T, {71(q) — wg'/5 + Ja(q)w2q?/5}
[Tz {N1(@) —wg*/® + Ja(q)w?q*/*}
J7 (@) — 11 + J5(q)q?
_ F(q)
JP(q) — 11q + J3(q)q?’

(2.3.24)

where
_ Jilg) —1lg+ B (@)¢
Ji(q) = ¢/ + J2(a)q*/®

If we consider the numerator and denominator above as polynomials
in ¢*/® and use long division, we find that F(q) indeed is the nu-
merator on the right side of (2.3.17). Thus, by (2.3.24), the proof of
(2.3.17) is complete.

Recalling that on the left side of (2.3.17) 1/(¢*/%;¢"/%) is the
generating function for p(n), we select those terms on both sides where

the powers of ¢ are congruent to 4/5 modulo 1. We then divide both
sides by ¢*° to find that

> 5
2.3.25 0" oo 5n 4+ 4)¢" = .
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However, from (2.3.19), (2.3.21), and (2.3.23), we also know that
(6% )% 1
(9%  Ji(9) —11g+ J3(q)q*
Utilizing (2.3.26) in (2.3.25), we complete the proof of (2.3.12). O

(2.3.26)

Theorem 2.3.4 can be utilized to provide a proof of Ramanujan’s
congruence for p(n) modulo 25.

Theorem 2.3.6. For every nonnegative integer n,

(2.3.27) p(25n + 24) = 0 (mod 25).

Proof. Applying the binomial theorem on the right side of (2.3.12),
we find that

(2.3.28)
= n (q5;q5)go 5. 5\4 = n
> pBn+4)g" =52 =5(¢%¢°)4, Y p(n)g" (mod 25).
n=0 (q’ q)oo n=0

From Theorem 2.3.1 we know that the coefficients of ¢*,¢”,¢'*,. ..,
@®"*4 ... on the far right side of (2.3.28) are all multiples of 25. It
follows that the coefficients of ¢°**4,n > 0, on the far left side of
(2.3.28) are also multiples of 25, i.e.,

p(25n + 24) = 0 (mod 25).

This completes the proof. O

Ramanujan’s congruence in Theorem 2.3.1 yields a simple proof
of Ramanujan’s congruence for the tau function modulo 5, as we next
demonstrate.

Theorem 2.3.7. For each nonnegative integer n,

(2.3.29) 7(5n) = 0 (mod 5).

Proof. By the definition of 7(n) and the binomial theorem,
(2.3.30)
oo 25
n q;9q
> rn)g" = alg )% = qig E

D) 4(4°:4°)% nz:%p(n)q” (mod 5).

n=1
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By Theorem 2.3.1, the coefficient of ¢°",n > 1, on the far right side
of (2.3.30) is a multiple of 5. Thus, the coefficient of ¢°® on the far
left side of (2.3.30) is a multiple of 5, i.e., 7(5n) = 0 (mod 5). O

2.4. Ramanujan’s Congruence

p("Tn+5) =0 (mod?7)
We consider next Ramanujan’s congruence for p(n) modulo 7.
Theorem 2.4.1. For each nonnegative integer n,

(2.4.1) p(7n +5) = 0 (mod 7).

Proof. Our proof is again taken from Ramanujan’s paper [188] and
was sketched by Hardy [107, p. 88].

First, by the binomial theorem,

_ (454 ) 2(,.. \6 (474"
Zp = ¢’ NP A Gk ey
(2.4.2) = ¢*(¢;9)% (mod 7).

Hence, if we can show that the coefficient of ¢""*7, n > 0, in ¢?(q; q)%,

is a multiple of 7, it will follow from (2.4.2) that the coefficient of ¢"**7
on the far left side is a multiple of 7, i.e., p(7n +5) = 0 (mod 7).

Applying Jacobi’s identity, Theorem 1.3.9, we find that
(4:9)% = {6 9%
(243) — ZZ ]-‘rk 2] + 1)(2k+ 1) 2+J(]+1)/2+k(k+1)/2
i

As we saw in the previous paragraph, we want to know when the
exponents above are multiples of 7. Now observe that

(25 + 17+ (2k+1)* = 8{24 3j(j + 1) + gk(k + 1)} — 14,
and so 2+ 3j(j + 1) + 2k(k + 1) is a multiple of 7 if and only if
(2.4.4) (25 + 1)+ (2k +1)> = 0 (mod 7).

We easily see that (25 + 1)2, (2k +1)?2 =0,1,2,4 (mod 7), and so the
only way (2.4.4) can hold is if both (25 + 1)2, (2k + 1)? = 0 (mod 7).
In such cases, we trivially see that the coefficients on the right side of



40 B. C. BERNDT

2.4.3) are multiples of 7. Hence, the coefficient of ¢"**7,n > 1, on
( p : q ,

the left side of (2.4.3) is a multiple of 7. As we demonstrated in the
foregoing paragraph, this implies that p(7n 4+ 5) = 0 (mod 7). O

We now consider the analogue of Theorem 2.3.4 for p(7n + 5),
which was stated without proof by Ramanujan in his paper [188].
In his unpublished manuscript on p(n) and 7(n), he gives a very
brief sketch of its proof [194, pp. 133-177], [50]. There are now
several proofs of Theorem 2.4.2, but the details of Ramanujan’s proof
were worked out only recently by Berndt, A. J. Yee, and J. Yi [54].
Because the details are cumbersome, we provide only the central ideas
and refer readers to [54] for a complete proof. Readers should not
attempt to complete missing details but merely try to grasp the ideas
behind Ramanujan’s proof.

Theorem 2.4.2. We have

= (¢":4")2 (q":4")7
2.4.5 p(Tn+5)¢" =7 =< +49¢q ==
(245) ;;% ( ) (¢ 9)% (¢;9)%

It is clear that Theorem 2.4.1 is an immediate corollary of Theo-
rem 2.4.2.

Proof. Using (1.3.18) in both the numerator and denominator and
then separating the indices of summation in the numerator into residue
classes modulo 7, we readily find that

1/7. 1/7
((I(q7jg7) ) —J Jrq1/7<]2 . q2/7 +q5/7J3,

where Jp, Jo, and J3 are power series in ¢ with integral coefficients,

(2.4.6)

and where the pentagonal number theorem was used to calculate the
coefficient of ¢*/7. Cubing both sides of (2.4.6), we find that

(¢V7;¢"7)3,
(q7547)3,

= (J} +3J3J3q — 6J1J3q) + ¢/ (32 T2 — 6.J2.J3q + J2?)
+ 3¢ (W JZ — JE + J3q) + ¢¥/T(J3 — 6J1J2 + 3J1J3q)
+3¢"7(Jy = J5 + JoJ3q) + 3¢° T (Jo + JT Js — Jq)

(247) + (]6/7(6J1J2J3 — 1)
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On the other hand, using Jacobi’s identity, Theorem 1.3.9, and
separating the indices of summation in the numerator on the left side
of (2.4.7) into residue classes modulo 7, we easily find that

1/7. ,1/7\3
(Q(;7TZ7;3)OO e Jrql/7Gz Jrq3/7G$ - 7116/77
? o0
where G1, G2, and G5 are power series in ¢ with integral coefficients,
and where Jacobi’s identity, Theorem 1.3.9, was used to determine
the coefficient of ¢%/7. Comparing coefficients in (2.4.7) and (2.4.8),
we conclude that

(2.4.8)

JiJs = Ji 4+ Jzq =0,
Ji 7J22+J2J§q =0,
Jy+ J2Js — J2q =0,
6J1JoJ3 — 1 =-T.

(2.4.9)

Replace ¢'/7 by wq'/7 in (2.4.6), where w is any seventh root of
unity. Therefore,

(wg'/ T3 0g 7)o
(074"
Taking the products of both sides of (2.4.10) over all seven seventh

(2.4.10) = T +wg "y — w2q¥ T + W5 T I

roots of unity, we find that

(4 9)%

(¢ha")5 [0+ wa /7T = wa? ™ + wa® 7 1y).
Using the generating function for p(n), (2.4.6), and (2.4.11), we find
that

(2.4.11)

w

ip(n)qn 1 @)L (@545 (6%547)s
vt (G Do (a54N5% (@545 (9w
(@)L [, (U 4wty — wg® + wgPJs)
(q7d7)5% Ji+qJ2 = q* + ¢°J
(%4, 5, 3
(2.4.12) — 2 [+ wads — wi® +wgTs)
@h9)5% | oa

We only need to compute the terms in [, (/1 +wgJo —wg® +wq® J3)
where the powers of ¢ are of the form 7n+5 to complete the proof. In
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order to do this, we need to prove several identities using the identities
of (2.4.9). We do not give the details.

Choosing only those terms on each side of (2.4.12) where the
powers of g are of the form 7n+ 5 and using the omitted calculations,
we find that

o 49. 49\7 7. ,7\4
n __ S(q 5 q )oo (q 3 q )oo 7
> P =g (q7;47)8, <7(q49;q49)§o A,
n557z§1%d7)
or
(@ ¢"*)3, 2 (q*¢*)7
2.4.13 p(Tn+5)¢™m =7 + 49¢q .
( ) Z (475474 (a7547)%,

Replacing ¢” by ¢ in (2.4.13), we complete the proof of (2.4.5). [

Recall that the identity of Theorem 2.3.4 yielded in Theorem 2.3.6
a congruence for p(n) modulo 52. Similarly, the identity in Theorem
2.4.2 yields a congruence for p(n) modulo 72, as we now demonstrate.

Theorem 2.4.3. For each nonnegative integer n,

(2.4.14) p(49n + 47) = 0 (mod 49).

Proof. Write (2.4.5) in the form

Zp7n+5 7w+4gq(q q"%

= (©:9)% (:9)5%
(2.4.15) =7(q"1¢")2 Y (=1)™(2m + 1)g™ " )/2 (mod 49),
m=0

by the binomial theorem and Jacobi’s identity (1.3.24). We now ex-
amine the terms on the right side of (2.4.15) where the powers of ¢
are of the form 7n + 6. Separating the summands into residue classes
modulo 7, we see that the only terms yielding such exponents are
when m = 3(mod7). But then 2m + 1 = 0(mod 7). Thus, the co-
efficient of the power ¢"**% n > 1, on the right side of (2.4.15) is a
multiple of 49. The same must be true, of course, on the left side of
(2.4.15), i.e., the coefficient p(49n + 47) must be a multiple of 49, i.e.,
(2.4.14) has been established. O
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We shall return to congruences for p(n) after we introduce Eisen-
stein series in Chapter 4.

2.5. The Parity of p(n)

In contrast to Theorem 2.2.1 which provides a criterion for deter-
mining when 7(n) is either even or odd, we know much less about
the parity of p(n). It has long been conjectured that p(n) is even
approximately half of the time, or, more precisely,

(2.5.1) #{n < N :p(n)is even} ~ LN,

as N — oo. T. R. Parkin and D. Shanks [178] undertook the first
extensive computations, providing strong evidence that indeed (2.5.1)
is most likely true. Despite the venerability of the problem, it was
not even known that p(n) assumes either even or odd values infinitely
often until 1959, when O. Kolberg [135] established these facts. Other
proofs of Kolberg’s theorem were later found by J. Fabrykowski and
M. V. Subbarao [93] and by M. Newman [168]. In 1983, L. Mirsky
[159] established the first quantitative result by showing that
loglog N

2log2
An improvement was made by J.—L. Nicolas and A. Sarkozy [171],
who proved that

(2.5.3) #{n < N :p(n) is even (odd)} > (log N),

(2.5.2) #{n < N :p(n) is even (odd)} >

for some positive constant c.

In the most recent investigations, the methods for finding lower
bounds for the number of occurrences of even values of p(n) have
been somewhat different from those for odd values of p(n). Greatly
improving on previous results, Nicolas, I. Z. Ruzsa, and Sarkozy [170)]
in 1998 proved that
(2.5.4) #{n < N :p(n) is even } > VN
and, for each ¢ > 0,

og N

(2.5.5) #{n < N :p(n) is odd } > v Ne~(o82+9) Tos Tos W |

(We pause to explain the notation >>. We write F'(N) > G(N), if and
only if there exists a positive constant ¢ such that F(N) > ¢G(N),
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for all N sufficiently large.) In an appendix to their paper [170],
J.—P. Serre used modular forms to prove that

< N: i
(2.5.6) i FARSN:ipn) dseven}
At present, this is the best known result for even values of p(n). The
lower bound (2.5.5) has been improved first by S. Ahlgren [6], who

utilized modular forms, and second by Nicolas [169], who used more

elementary methods, to prove that
VN (loglog N)¥
log N ’
for some positive number K. Ahlgren proved (2.5.7) with K = 0.
An elegant, elementary proof of (2.5.7) when K = 0 was established

by D. Eichhorn [86]. The lower bound (2.5.7) is currently the best
known result for odd values of p(n).

(2.5.7) #{n < N :p(n) is odd } >

Our goal in this section is to prove the results (2.5.5) and (2.5.4)
of Nicolas, Ruzsa, and Sarkozy [170] by relatively simple means. Our
proof is a special instance of an argument devised by Berndt, Yee, and
A. Zaharescu [55], who proved considerably more general theorems
that are applicable to a wide variety of partition functions. Except
for one step, when we must appeal to a theorem of S. Wigert [223]
and Ramanujan [185], our proof is elementary and self-contained.

Theorem 2.5.1. For each fized ¢ with ¢ > 2log2 and N sufficiently
large,

(2.5.8) #{n < N :p(n) is odd} > N2~ Tlogn |

Theorem 2.5.2. For each fived constant ¢ with ¢ < 1/v/6, and for
N sufficiently large,

(2.5.9) #{n < N : p(n) is even} > ¢V'N.

Before we begin our proofs of Theorems 2.5.1 and 2.5.2, we need
to establish some terminology. Although we shall use language from
modern algebra, readers need not know any theorems from the sub-
ject. In fact, some of the information conveyed in the next two para-
graphs will not be used in the sequel, but we think these facts are
interesting in themselves.
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Let A := F3[[X]] be the ring of formal power series in one variable
X over the field with two elements Fy = Z/2Z, i.e.,

(2.5.10) A= {f(X) =Y aX":a,€Fy, 0<n< oo} :
n=0

The ring A is an integral domain; note that an element f(X) =
S0 ganX™ € A is invertible if and only if ay = 1. Since 0 and 1 are
the only elements of Fo, we may write any element f(X) € A in the
form

(2.5.11) FX)=X™ 4 X" 4 ...

where the sum may be finite or infinite and 0 < n; < ng < --- . For
any f(X) € A, observe that

(2.5.12) fA(X) = f(X?).
In other words, if f(X) is given by (2.5.11), then
(2.5.13) FAX) = XM 4 X2 g

On A there exists a natural derivation which sends f(X) € A to
F(X)=4 ¢ A e, if

(25.14)  f(X)=> anX", then f/(X)=> na,X"".
n=0 n=1

Note that for any f(X) € A,

(2.5.15) (X)) =0.

We also remark that for any f(X) given in the form (2.5.11), the
condition

(2.5.16) F(X)=0

is equivalent to the condition that all the exponents n; are even num-
bers.

In our proof of Theorem 2.5.2, we need to know the shape (2.5.11)
of the series f(X)/(1 — X). For any integers 0 < a < b, we see that
in A
X+ Xb  X%(1-Xb9)

= = X% 4 xotl 4.4 xb-1
1-X 1-X + teet

(2.5.17)
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We put together pairs of consecutive terms X "2++1 4 X ™2k+2 to obtain
the equality

(2.5.18)
f(X) B X +Xn2 . Xns +Xn4 . n X M2k+1 +Xn2k+2
I-X 1-X 1-X 1-X

— (X"l Lo Xty +X”2*1)+(X”3+ - +X"4*1)+ o
+ (X"2k+1 L X"2k+2—1) NI
If the sum on the right side of (2.5.11) defining f(X) is finite, say
f(X)=X™ 4+ X" 4 ... 4+ X" then

f(X) X i+l x 21
_ ni ni - no R
1-X ( )

(2519) —+ (an—l + an—1+1 N —|—an71) :

if s is even, and

&7 n na—1
o = (XM X
(2.5.20) +(X”s—2+~~~+X”S‘1*1)+ ZXn,
if s is odd.

Before commencing our proofs of Theorems 2.5.1 and 2.5.2, we
introduce some standard notation in analytic number theory. We say
that f(IV) = O(g(N)), as N tends to oo, if there exists a positive
constant A > 0 and a number Ny > 0 such that |f(N)| < Alg(N)| for
all N > Ny. To emphasize that this positive constant A above may
depend upon another parameter ¢, we write f(N) = O.(g(N)), as N
tends to oo.

Proof of Theorem 2.5.1. We begin with the pentagonal number
theorem

(2521) > (=1)"gGnTN2 4N (1B = (g q) .
n=0 n=1

By reducing the coefficients modulo 2 and replacing ¢ by X in (2.5.21),
we find that, if 1/F(X) is the image of the infinite series of (2.5.21)
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in A, then
(2.5.22) 1=F(X) <1 + Z (Xn(3n71)/2 +Xn(3n+1)/2)> '
n=1
We write F'(X) in the form
(2.5.23) FX)=1+X"+X" 4+ - 4+ X" 4... |
where, of course, ni,no,... are positive integers. Clearly, from the
generating function of the partition function p(n) and (2.5.23),
(2.5.24) #{1 <n <N :p(n)isodd} = #{n; < N}
and
(2.5.25) #{1 <n < N:p(n)iseven} = N — #{n; < N}

We first establish a lower bound for #{n; < N}. Using (2.5.23),
write (2.5.22) in the form

anj (1 n i (Xn(3n71)/2 +Xn(3n+1)/2)>
j=1

n=1
oo
(2.5.26) = Z (Xm(3m—1)/2 +Xm(3m+l)/2) .
m=1

Asymptotically, there are /2N/3 terms of the form X™(3m=1/2 Jess
than X on the right side of (2.5.26). For a fixed positive integer n,
we determine how many of these terms appear in a series of the form

(oo}
(2.5.27) XM (1 + Z (Xn(Sn—l)/Z +Xn(3n+l)/2)> ’
n=1

arising from the left side of (2.5.26). Thus, for fixed n; < N, we esti-
mate the number of integral pairs (m,n) of solutions of the equation

(2.5.28) n;+ in(3n—1) = tm(3m — 1),

which we put in the form
(2.5.29) 2n; = (m—n)(3m+3n —1).
By a result of Wigert [223] and Ramanujan [185], [192, p. 80], the

number of divisors of 2n; is no more than O, { NTels¥ | for any fixed

¢ > log 2. Thus, each of the numbers m—n and 3m+3n—1 can assume



48 B. C. BERNDT

at most O, (Nm> values. Since the pair (m —n,3m + 3n — 1)
uniquely determines the pair (m,n), it follows that the number of
solutions to (2.5.29) is O, (Nm , where ¢ is any constant such
that ¢ > 2log2. A similar argument can be made for the terms in
(2.5.26) of the form X™Gm+1)/2,

Returning to (2.5.26) and (2.5.27), we see that each series of the
form (2.5.27) has at most O, (NW) terms X™Gm=D/2 yp to
XN that appear on the right side of (2.5.26). It follows that there are
at least O, (N%7m> numbers n; < N that are needed to match
all the (asymptotically \/M) terms X™G™=1/2 up to XV on the
right side of (2.5.26). Again, an analogous argument holds for terms

of the form X™(Bm+1)/2  We have therefore completed the proof of
Theorem 2.5.1. O

Proof of Theorem 2.5.2. Next, we provide a lower bound for
#{n < N : p(n) is even }. Let {my,ma,...} be the complement of
the set {0,n1,nsg, ...} in the set of natural numbers {0,1,2,...}, and
define

(2.5.30) GX):=X™ +X™ 4...€ A.
Then

1
(2531) GX)+FX)=1+X+X* 4+ +X\+... = Ty

Since, by (2.5.25),
(2.5.32) #{m; < N} =N —#{n; <N} ={n < N :p(n) is even},

we need a lower bound for #{m; < N}. Using (2.5.31) in (2.5.22),
we find that

1+ G(X) (1 + i (Xn(?mfl)/Q + Xn(3n+1)/2)>

n=1

=7 _1X (1 + i (xmmnrz g X"(3n+1)/2)>

n=1

1
71_X(1+X+X2+X5+X7+~~)
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:%((1+X)+(X2+X5)+---

+ (X(n—l)(3(n—1)+1)/2 +Xn(3n—1)/2)
n(3n+1)/2 (n+1)(3(n+1)—1)/2
(2.5.33) +(X +X )+ :

By (2.5.18), we see that the right side of (2.5.33) equals

(2.5.34)
1—|—(X2—|—X3 +X4)_~_. . .+(X(n—1)(3(n—1)+1)/2_'_. . .+X7L(37L—1)/2—1)
b (XMEnED/2 g x (D@D -D/2-1y

Observe that the gap between X™(37=1)/2=1 apnd X"(7+1)/2 contains
n terms that are missing from the series (2.5.34). This gap comes
after a segment of

inBn-1)-1-3(n-1)BMn-1)+1)+1=2n—1

terms that do appear in (2.5.34). So we see that (2.5.34) contains
asymptotically
2n -1 2n —1 2

——N=——-N~==N

n+(2n—1) 3n—1 3
terms up to XV. Now the sum in parentheses on the left side of
(2.5.33) has asymptotically 24/2N/3 nonzero terms up to X*~. Thus
G(X) must have at least \/N/6 nonzero terms up to X* in order for
the left side of (2.5.33) to have at least 2N/3 terms up to XV to match
those on the right side of (2.5.33). We have therefore completed the
proof of Theorem 2.5.2. O

2.6. Notes

Theorem 2.2.1 has been slightly refined by M. R. Murty, V. K. Murty,
and T. N. Shorey [165], using a more sophisticated argument. They
also obtain lower bounds for the values of 7(n) when 7(n) is odd.

Another proof of Theorem 2.3.1, rivalling Ramanujan’s first proof
in simplicity, has been given by J. Drost [84]. See M. D. Hirschhorn’s
paper [120] for still another elementary proof. Many references to fur-
ther proofs of both Theorem 2.3.1 and Theorem 2.3.4 can be found
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in the latest edition of Ramanujan’s Collected Papers [192, pp. 372
375]. These pages also contain references to other proofs of Theorems
2.4.1 and 2.4.2. Ramanujan himself summarized the congruences he
proved and the methods he utilized to prove them in a letter to Hardy
written from the nursing home, Fitzroy House, in the summer of 1918.
In particular, he wrote [51, pp. 192-193], “Thus the divisibility by
5%7°11¢ when a = 0,1,2,3; b = 0,1,2,3; ¢ = 0,1,2 amounting to
4 x4 x3—1 or 47 cases of the conjectured theorem are proved.”
This statement is interesting for several reasons. First, Ramanujan
had evidently proved special cases of his general conjecture without
leaving us proofs in these cases. Second, he claimed a proof for the
modulus 73, but we had noted in the introduction to this chapter
that Ramanujan’s conjecture was false in this case. Third, Ramanu-
jan’s proof of his conjecture for arbitrary powers of 5 was obviously
established after this letter was written.

We have not given a proof of Ramanujan’s congruence
p(11n+6) = 0 (mod 11). The most elementary proof is due to L. Win-
quist [227] and uses Winquist’s Identity. Further proofs of Winquist’s
identity have been found by Hirschhorn [117] and S.—Y. Kang [133].
Another elementary approach to proving that p(11n—+6) = 0 (mod 11)
has been devised by Berndt, S. H. Chan, Z.—G. Liu, and H. Yesilyurt
[48], who established a new identity for (¢; ¢)L0. Hirschhorn [118] has
devised a common approach to proving all three congruences (2.1.2)—
(2.1.4).

Hirschhorn and D. C. Hunt [126] gave an alternative proof along
classical lines to that of Ramanujan and Watson for Ramanujan’s
congruence modulo 5%. Those readers intrigued by our sketch of Ra-
manujan’s Theorem 2.4.2 might consult F. G. Garvan’s [95] proof of
the more general congruence modulo 7°.

Ramanujan appeared to conjecture that the only congruences of
the form p(¢n + B) = 0 (mod ¢), where £ is a prime, are those when
£ =5,7, or 11. This was not proved until 2003, when Ahlgren and
M. Boylan [8] proved that indeed these are the only three such con-
gruences.
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Suppose, however, that we drop the restriction that the moduli
of the arithmetic progressions are the same as the moduli of the con-
gruences. That is, are there congruences when the moduli are not
the same or are not primes? The first theorems establishing lots of
congruences for p(n) were found by Atkin [29]. Then K. Ono [175]
proved that, given any prime ¢ > 5, there exist infinitely many con-
gruences of the type p(An + B) = 0 (mod¢). This was extended by
Ahlgren [7] who established a similar result for any prime power £¢. A
consequence of their work is that if £ > 5 is prime, then for a positive
proportion of positive integers n, p(n) = 0 (mod ¢). Nonetheless, find-
ing concrete examples illustrating their theorems is not easy. Atkin
and J. N. O’Brien [30] had earlier found a couple of such congruences;
one is

p(17303n + 237) = 0 (mod 13).
R. Weaver [219] devised an algorithm based on Ono’s work and found
over 76,000 explicit examples, all with ¢ < 31.
Define

2 -1

24
Except for a couple of sporadic examples, it turns out that for all of
the congruences p(An + B) = 0(mod ¢) found by Ramanujan, Ono,
Ahlgren, and others, B = —§; (mod¢). In another breakthrough,
Ahlgren and Ono [10], proved that this residue class is only one of
(€+1)/2 residue classes where p(n) possesses many such congruences.
An informative historical description of the quest for congruences for
the partition function has been given by Ahlgren and Ono [9].

O :=

Subbarao [211] first conjectured that in every arithmetic pro-
gression n = r (modt) there are infinitely many values of n such that
p(n) is even and that there are infinitely many values of n for which
p(n) is odd. The most extensive results pointing toward the truth of
this conjecture have been found by Ono [173], [174] and Ahlgren [6],
with a summary of previous results provided in these papers. The
best lower bounds for the number of even and odd values of p(n) in
arithmetic progressions are (2.5.6) [170] and (2.5.7) [6], respectively,
while the most general theorems of this sort are found in [55] and
[56].
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In his unpublished manuscript on p(n) and 7(n), Ramanujan as-
serted and, in some cases, proved further congruences for 7(n), most
involving divisor functions. References to most of the many papers
written on this subject can be found in Berndt and Ono’s account of
Ramanujan’s manuscript [50]. We now have a complete understand-
ing of congruences for 7(n) through the theory of ¢-adic representa-
tions, and an account of this with many references can be found in
H. P. F. Swinnerton-Dyer’s survey paper [213]. There are, in essence,
only six congruences for 7(n), with the largest modulus being 691.

Z.—H. Sun and K. S. Williams [212] have established a refinement
of Theorem 2.2.4. To describe their theorem, we first need to define
the order of an integer. Let p denote a prime. Then the unique
nonnegative integer o such that p®|n but p®*! { n is called the order
of n modulo p and is denoted by ord,n.

Theorem 2.6.1. For any positive integer n,

0 (mod 23), if there exists a prime p such that
(&) =—-1 and 2f ord,n,
0 (mod 23), if there exists a prime p such that
p =22 4+ zy + 3y* and ordyn = 2 (mod 3),

(=1~ H (14 ordpn) (mod23), otherwise,
p=2x2+xy+3y2#£23

where

p:2m2+xy+3y2
ord,n=1 (mod 3)

where p runs over all primes represented by 2x% + xy + 3y>.

As mentioned in the Historical Background beginning this chap-
ter, Ramanujan introduced his arithmetical function 7(n) in [186],
[192, pp. 136-16], which was to become one of the most important
papers in the history of number theory. In this paper, Ramanujan
made three important conjectures about 7(n).

(a) 7(n) is multiplicative, i.e., 7(m)7(n) = 7(mn), whenever
(m,n) =1.
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(b) If p is any prime and n is any integer exceeding 1, then

n+1)

m(p mh.

=7(p)r(p") —p''7(p
(c) For each prime p,
[T(p)] < 2",

The first two conjectures were first proved by L. J. Mordell [161]
in 1917 and then greatly generalized by E. Hecke [113], beginning one
of the most important chapters in the theory of modular forms. Con-
jecture (c) was also considerably generalized and was one of the most
famous unproved conjectures in number theory until it was proved by
P. Deligne [81] in 1974.

Readers wanting to learn more about 7(n) might begin by reading
two expository papers, one by R. A. Rankin [197], and the other by
M. R. Murty [164]. See also a paper by V. K. Murty [166].



