
Preface to the English
Edition

This book is a translation of the second edition of my German book
Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theo-
rie, Vieweg, 2004. The original German edition has been expanded
by the addition of exercises. The goal of the book is described in
the original preface. In a few words it can be sketched as follows:
Galois theory is presented in the most elementary way, following the
historical evolution. The main focus is always the classical application
to algebraic equations and their solutions by radicals. I am grateful
to David Kramer, who did more than translate the present book,
having also offered several suggestions for improvements. My thanks
are also directed to Ulrike Schmickler-Hirzebruch, of Vieweg, who
first proposed a translation to the American Mathematical Society,
and to Edward Dunne, of the AMS, for managing the translation.

Jörg Bewersdorff

Translator’s Note

I wish to express my appreciation to Jörg Bewersdorff for his helpful
collaboration on the translation and to the following individuals at
the American Mathematical Society: Edward Dunne for entrusting
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me with this project, Barbara Beeton for her friendly and intelligent
TEXnical support, and Arlene O’Sean for her careful copyediting of
the translation.

David Kramer



Prefaces to the German
Editions

Math is like love; a simple idea, but it can get complicated.

— R. Drabek

Preface to the First German Edition

The subject of this book is the history of a classical problem in alge-
bra. We will recount the search for formulas describing the solutions
of polynomial equations in one unknown and how a succession of fail-
ures led finally to knowledge of a quite unexpected sort, and indeed,
of fundamental importance in mathematics.

Let us look briefly at the object that enticed many of the world’s
best mathematicians over a period of three centuries. Perhaps, dear
reader, you recall from your school days quadratic equations of the
form

x2 − 6x + 1 = 0

as well as the “quadratic formula”

x1,2 = −p

2
±

√
p2

4
− q

for the solution of the “general” quadratic equation

x2 + px + q = 0.
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If we apply this formula to our example, we obtain the two solu-
tions

x1 = 3 + 2
√

2 and x2 = 3 − 2
√

2.

If you are interested in a numerical solution, you can pull out
your handy pocket calculator (or perhaps you know how to com-
pute square roots by hand) and obtain the decimal representations
x1 = 5.828427 . . . and x2 = 0.171572 . . . . You could also use your cal-
culator to verify that these values are in fact solutions to the original
equation. A skeptic who wished to verify that the solutions derived
from the formula are the exact solutions would have to substitute
the expressions containing the square roots into the equation and
demonstrate that the quadratic polynomial x2 − 6x + 1 = 0 actually
vanishes—that is, assumes the value zero—at the values x = x1 and
x = x2.

The Solution of Equations of Higher Degree. It has long been
known how to solve cubic equations such as

x3 − 3x2 − 3x − 1 = 0

by means of a formula similar to the quadratic formula. Indeed,
such formulas were first published in 1545 by Cardano (1501–1676)
in his book Ars Magna. However, they are quite complicated, and
have little use for numerical calculation. In an age of practically
unlimited computing power, we can do without such explicit formulas
in practical applications, since it suffices completely to determine the
solutions by means of numeric algorithms. Indeed, for every such
equation in a single variable there exist approximation methods that
iteratively, that is, step by step, compute the desired solution more
and more precisely. Such a procedure is run until the solution has
reached an accuracy suitable for the given application.

However such iterative numeric procedures are unsuitable when
not only the numerical value of a solution is sought, such as x1 =
3.847322 . . . in the previous example, but the “exact” value

x1 = 1 + 3
√

2 + 3
√

4.

It is not only that such an algebraic representation possesses a certain
aesthetic quality, but in addition, a numeric solution is insufficient if
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one hopes to derive mathematical knowledge and principles from the
solution of the equation. Let us hypothesize, for example, based on
numeric calculation, the following identities:
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eπ
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163 = 262537412640768744,
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Without going into detail, it seems plausible that behind such
identities, if indeed they are correct, lie some mathematical laws.
A direct check to determine whether they are in fact correct or are
merely the result of chance numeric approximation would be difficult.1

But back to Cardano. In addition to the solution for cubic equa-
tions, Cardano published in his Ars Magna a general formula for
quartic equations, that is, equations of the fourth degree, also known
as biquadratic equations. Using such formulas, the equation

x4 − 8x + 6 = 0

1I will reveal that only the first and third identities are correct. The first was
discovered by the Indian mathematician Ramanujan (1887–1920) and can be easily
checked. The third, which will be discussed in Chapter 7, contains within it a proof that
the regular heptadecagon (seventeen-sided polygon) can be constructed with straight-
edge and compass.

The second equation is not exact. The actual value of the right-hand side is

262537412640768743.9999999999992501 . . . .

However, this approximate identity is more than mere chance. It is based on some
deep number-theoretic relationships. For more on this, see Philip J. Davies, Are there
coincidences in mathematics? American Mathematical Monthly 88 (1981), pp. 311–
320.
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can be shown to have the solution
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With the almost simultaneous discovery of formulas for solving
third- and fourth-degree equations came the inevitable problem of
finding similar formulas for equations of higher degree. To accomplish
this, the techniques that were used for the cubic and quartic equations
were systematized, already in Cardano’s time, so that they could be
applied to equations of the fifth degree. But after three hundred years
of failure, mathematicians began to suspect that perhaps there were
no such formulas after all.

This question was resolved in 1826 by Niels Henrik Abel (1802–
1829), who showed that there cannot exist general solution formulas
for equations of the fifth and higher degree that involve only the usual
arithmetic operations and extraction of roots. One says that such
equations cannot be solved in radicals . The heart of Abel’s proof is
that for the intermediate values that would appear in a hypothetically
existing formula, one could prove corresponding symmetries among
the various solutions of the equation that would lead to a contradic-
tion.

Galois Theory. A generalization of Abel’s approach, which was ap-
plicable to all polynomial equations, was found a few years later by
the twenty-year-old Évariste Galois (1811–1832). He wrote down the
results of his researches of the previous few months on the evening
before he was killed in a duel. In these writings are criteria that allow
one to investigate any particular equation and determine whether it
can be solved in radicals. For example, the solutions to the equation

x5 − x − 1 = 0

cannot be so expressed, while the equation

x5 + 15x − 44 = 0
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has the solution

x1 =
5
√
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2 +
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√
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Of much greater significance than such solutions is the method
that Galois discovered, which was unorthodox, indeed revolutionary,
at the time, but today is quite usual in mathematics. What Galois
did was to establish a relationship between two completely different
types of mathematical objects and their properties. In this way he
was able to read off the properties of one of these objects, namely
the solvability of a given equation and the steps in its solution, from
those of the corresponding object.

But it was not only the principle of this approach that benefited
future mathematics. In addition, the class of mathematical objects
that Galois created for the indirect investigation of polynomial equa-
tions became an important mathematical object in its own right, one
with many important applications. This class, together with similar
objects, today forms the foundation of modern algebra, and other
subdisciplines of mathematics have also progressed along analogous
paths.

The object created by Galois that corresponds to a given equa-
tion, called today the Galois group, can be defined on the basis of
relations between the solutions of the equation in the form of iden-
tities such as x2

1 = x2 + 2. Concretely, the Galois group consists of
renumberings of the solutions. Such a renumbering belongs to the
Galois group precisely if every relationship is transformed by this
renumbering into an already existing relationship. Thus for the case
of the relation x2

1 = x2 + 2 in our example, the renumbering corre-
sponding to exchanging the two solutions x1 and x2 belongs to the
Galois group only if the identity x2

2 = x1 + 2 is satisfied. Finally,
every renumbering belonging to the Galois group corresponds to a
symmetry among the solutions of the equation. Moreover, the Galois
group can be determined without knowledge of the solutions.

The Galois group can be described by a finite table that is ele-
mentary but not particularly elegant. Such a table is called a group
table, and it can be looked upon as a sort of multiplication table, in
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which each entry is the result of operating on two elements of the Ga-
lois group in succession. An example is shown in Figure 0.1. What is
significant about the Galois group, and its corresponding group table,
is that it always contains the information about whether, and if so,
how, the underlying equation can be solved in radicals. To be sure,
the proof of this in a concrete application can be quite involved; nev-
ertheless, it can always be accomplished in a finite number of steps
according to a fixed algorithm.

A B C D E F G H I J

A A B C D E F G H I J

B B C D E A J F G H I

C C D E A B I J F G H

D D E A B C H I J F G

E E A B C D G H I J F

F F G H I J A B C D E

G G H I J F E A B C D

H H I J F G D E A B C

I I J F G H C D E A B

J J F G H I B C D E A

Figure 0.1. The Galois group of the equation x5 − 5x+12 is
represented as a table by means of which the solvability in rad-
icals can be determined by purely combinatorial means. This
equation will be considered in detail in Section 9.17. Equa-
tions of the fifth degree that are not solvable in radicals have
tables of size 60 × 60 or 120 × 120.

Today, Galois’s ideas are described in textbooks in a very ab-
stract setting. Using the class of algebraic objects that we previously
mentioned, it became possible at the beginning of the twentieth cen-
tury to reformulate what has come to be called Galois theory, and
indeed in such a way that the problem itself can be posed in terms
of such objects. More precisely, the properties of equations and their
solution can be characterized in terms of associated sets of numbers
whose common characteristic is that they are closed under the four
basic arithmetic operations. These sets of numbers are called fields.
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Thus starting with a given equation

xn + an−1x
n−1 + · · · + a1x + a0 = 0,

one forms the smallest set of numbers that contains all quantities,
such as

a2

a0
− a2

1 + a0,

that can be obtained from the coefficients of the equation using suc-
cessive basic arithmetic operations. Then one obtains an enlarged set
of numbers that is of particular use in studying the given equation
by allowing in one’s calculations, in addition to the coefficients of
the equation, the solutions x1, x2, . . . . This set is therefore formed of
all numbers that can be obtained from expressions of the form, for
example,

a0

a2
x2

1 − a2x2 + a1.

If it now possible to represent the solutions of the given equation by
nested expressions involving radicals, then one can obtain additional
fields of numbers by allowing in addition to the coefficients some of
these nested radicals. Thus every solution of an equation corresponds
to a series of nested fields of numbers, and these can be found, accord-
ing to the main theorem of Galois theory, by analysis of the Galois
group. Thus by an analysis of the Galois group alone, one can answer
the question whether the solutions of an equation can be expressed
in radicals.

Figure 0.2. Évariste Galois and a fragment from his last let-
ter. In this passage he describes how a group G can be de-
composed with the help of the subgroup H. See Section 10.4.
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This abstraction achieved at the beginning of the twentieth cen-
tury and today basically unchanged marks both the end of a historical
process during which interest in the problem that we have described
has shifted in focus: For Cardano and his contemporaries the main
problem was to find concrete solutions to explicit problems using pro-
cedures of general applicability. But soon the point of view shifted and
the focus was on the important properties of the equations. Begin-
ning with Galois, but in full force only after the turn of the twentieth
century, the focus shifted drastically. Now abstract classes of objects
such as groups and fields became the basis for the formulation of a
host of problems, including those that inspired the creation of these
objects in the first place.2

About This Book. In order to reach as wide an audience as possible
(assumed is only general knowledge obtained from college courses in
mathematics), no attempt has been made to achieve the level of gen-
erality, precision, and completeness that are the hallmarks of mathe-
matical textbooks. The focus will be rather on ideas, concepts, and
techniques, which will be presented only insofar as they are applicable
to some concrete application and make further reading in the exten-
sive literature possible. In such a presentation, complicated proofs
have no place. However, proofs are without doubt the backbone of
any serious engagement with mathematics. In the spirit of compro-
mise, difficult proofs, except those in the last chapter, are set off from
the main text so that gaps in the logic can be avoided without the
flow of the narrative being interrupted.

Considerable emphasis is placed on the historical development of
the subject, especially since the development of modern mathematics
in recent centuries is much less well known than that of the natu-
ral sciences, and also because it can be very interesting to be able
to give a time-lapse view of false starts and important discoveries.

2In particular, many important applications have been found in modern infor-
mation theory, in particular in cryptography, as in, for example, the public key codes
realized in 1978. In these asymmetric encryption procedures, the key for encoding is
made public without creating the risk of unauthorized decoding. The mathematical
basis for such public key encryption algorithms as RSA and ElGamal is computations
carried out in special algebraic objects with a very large—but finite—number of el-
ements (precisely, the objects are residue class rings and elliptic curves defined over
finite fields). An introduction to this subject can be obtained from Johannes Buch-
mann, Introduction to Cryptography, Springer, 2004.
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And furthermore, a presentation that follows the historical develop-
ment has the advantage of making many mathematical abstractions
seem the natural consequence of individual investigations, so that one
never gets the impression of starting with an unmotivated definition
somehow descended from heaven in a completely arbitrary manner.
At the same time, we are able to leave out a great deal of material
that would be necessary to include in a work seeking great generality.
However, we must mention a significant drawback to our approach:
Many complicated calculations will be necessary, even if they are of
an elementary nature, whose results would be more simply derived
from a qualitative point of view on the basis of general principles.

In order to make this book as distinct as possible from mathe-
matical textbooks, I have chosen the same style of presentation as in
my book Luck, Logic, and White Lies. Every chapter begins with a
simple, usually more or less rhetorical, question that gives the reader
an idea of the nature and level of difficulty of the chapter ahead, even
if the chapter usually goes far beyond simply answering the ques-
tion posed. This structure should also offer the more mathematically
sophisticated reader, for whom the overview offered here will often
be too superficial and incomplete, a quick way of determining which
parts of the book are of particular interest, after which the references
to the literature will indicate a path of additional reading.

The topics of the individual chapters are too closely woven to-
gether to make it possible to read the chapters independently of one
another. Nevertheless, the reader who is interested in only a partic-
ular aspect of the subject is encouraged to plunge directly into the
relevant chapter. Even if one then encounters a reference to another
chapter, at least the details of the calculations carried out there will
be unnecessary for an understanding of the following chapters. Of
course, the beginning of every chapter offers the opportunity to start
over if the details of the previous chapter became too difficult.

The reader who wishes to keep the very abstract passages at a
greater distance might adhere to the following plan:

• In Chapters 1 through 6 the proofs in the set-off sections may
be skipped.
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• For understanding the following chapters, the only part of Chap-
ter 7 that is necessary is the first part, which deals with the
regular heptadecagon (17-gon).

• Chapter 8 can be omitted entirely.

• In Chapter 9 the set-off sections at the end of the chapter may
be skipped.

• Chapter 10 and the epilogue may also be omitted.

Readers who wish to follow a typical “Algebra I” course should
place Chapters 9 and 10, which deal with Galois theory, as well as
the epilogue, at the center of their reading. For a deep understanding
of the subject the following are of particular importance: the main
theorem on symmetric polynomials (Chapter 5), the factorization of
polynomials (Chapter 6), and the ideas around cyclotomy (the divi-
sion of the circle) (Chapter 7). How much relative attention should
be given to the remaining chapters depends on the reader’s interests
and prior knowledge.

Following the historical development of the subject, the presen-
tation on the solvability of equations is divided into three parts:

• Classical methods of solution, based on more or less complicated
equivalent reformulations of equations, were used historically for
deriving the general formulas for quadratic, cubic, and quartic
equations (Chapters 1 through 3).

• Systematic investigation of the discovered solution formulas be-
comes possible when one expresses the intermediate results of
the individual calculational steps in terms of the totality of the
solutions being sought (Chapters 4 and 5). This leads to the
solution of equations in special forms, namely, those that are
less complex than those in the general form in that they exhibit
particular relationships among the solutions that can be formu-
lated as polynomial identities. In addition to equations that can
be broken down into equations of lower degree (Chapter 6), the
so-called cyclotomic equations xn − 1 = 0 are examples of such
less-complex equations (Chapter 7). Finally, in this part should
be included the attempt, described in Chapter 8, at finding a
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general solution formula for fifth-degree equations, the result of
which is a formula that works only in special cases.

• Based on systematic attempts at finding solution formulas, we
finally arrive at the limits of solvability of equations in radicals.
These limits, as recognized and investigated by Abel and Ga-
lois, are dealt with, aside from a brief preview in Chapter 5, in
Chapters 9 and 10. The focus here is on Galois groups.

With the investigation of Galois groups we reach a level
of difficulty well beyond that of the first chapters. Therefore,
two different presentations are given. In Chapter 9 a relatively
elementary overview is given, supplemented by numerous exam-
ples, in which the scope of the concepts introduced is reduced as
much as possible. The resulting holes are filled in Chapter 10,
which leads to the main theorem of Galois theory, which involves
the mathematical objects called fields referred to earlier, which
are closed under the four basic arithmetic operations. The dis-
cussion of these objects will be limited to those aspects relevant
to Galois theory.

The reader who wishes to deepen his or her understanding of Ga-
lois theory beyond what is contained in this book can move on to any
textbook on modern algebra. One might mention as representatives
of these books the two classics Algebra, by Bartel Leendert van der
Waerden (1903–1996), and Galois theory, by Emil Artin (1898–1962),
whose first editions appeared in 1930 and 1948. But conversely, the
present book can be seen as an extension of the usual algebra text-
books in the direction of providing examples and historical motiva-
tion.
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