
Introduction

Consider two finite sequences of vectors in the plane R2,
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The sequence A is an orthonormal basis (ONB) for R2, and it has
certain properties which we recall from calculus and linear algebra.
The sequence B is a bit different. Let us compare the two.

• Both A and B are spanning sets for R2, so every x ∈ R2 can
be written as a linear combination of the vectors in A, and
similarly for the vectors in B.

• The vectors in A are linearly independent, so the coefficients

in the linear expansion x = c1
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+ c2
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0
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]
, where ci ∈ R,
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are unique. The vectors in B are not linearly independent,
so a linear expansion would not be unique.

• The vectors in A all have length 1. The vectors in B all

have length
√

2
3 .

• The vectors in A are orthogonal (i.e., their dot product is
zero). The vectors in B are not orthogonal.

• The coefficients {ci}2
i=1 for a linear expansion in the se-

quence A can be computed easily using the dot product.
Specifically, let x = c1e1 + c2e2 where the vectors in A are
denoted e1 and e2. The coefficients are computed by the
dot products ci = x · ei for i = 1, 2. This is a property of or-
thonormal bases. If we check, however, we find that one way
to write x as a linear combination of the vectors in B can
be found using the coefficients formed by taking the same
dot products. In other words, if we denote the vectors of B

by f1, f2, f3 and given some x ∈ R2 we take di = x · fi for
i = 1, 2, 3, then x = d1f1 +d2f2 +d3f3. Even without being
orthogonal or linearly independent, the set B retains one of
the extremely useful features of an orthonormal basis.

• Both A and B satisfy a property which is known as Parse-
val’s identity for orthonormal bases. In the case of sequence
A, this is a version of the Pythagorean Theorem. Let ‖x‖
denote the length, or norm, of the vector x. Then,

‖x‖2 =
2∑

i=1

c2
i =

3∑
i=1

d2
i .

Again, we see that even though B is not even a basis, and
certainly not an orthonormal basis for R2, it maintains an
important characteristic of an ONB.

Both sequences A and B are examples of a particular type of
frame, called a Parseval frame, for the vector space R2. Sequence B

demonstrates that many of the properties of an orthonormal basis can
be achieved by nonbases. This is exactly the motivation behind the
study of frames. Frames are more general than orthonormal bases,
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but can often maintain some of the interesting and useful character-
istics of ONBs.

The property that makes orthonormal bases desirable in many
applications is that we can find the (unique) expansion coefficients for
a vector by taking inner products (dot products in Rn or Cn). This
requires fewer computations than matrix inversion, and is numerically
more stable. Let’s say you want to send a signal across some kind
of communication system, perhaps by talking on your wireless phone
or sending a photo to your mom over the internet. We think of that
signal as a vector in a vector space. The way it gets transmitted is
as a sequence of coefficients which represent the signal in terms of a
spanning set. If that spanning set is an ONB, then computing those
coefficients just involves finding some dot products of vectors, which
a computer can accomplish very quickly. As a result, there is not a
significant time delay in sending your voice or the photograph. This
is a good feature for a communication system to have, so orthonormal
bases are used a lot in such situations.

Orthogonality is a very restrictive property, though. What if
one of the coefficients representing a vector gets lost in transmission?
That piece of information cannot be reconstructed. It is lost. Perhaps
we’d like our system to have some redundancy, so that if one piece
gets lost, the information can be pieced together from what does get
through. This is where frames come in. Generally, a frame for a
finite-dimensional vector space is just a spanning set for the vector
space. In particular, it need not be a basis, which would require
linear independence. Where frames get interesting is that we can find
certain frames that retain that very handy ONB property – that we
can find the coefficients for expanding vectors using the dot product
instead of matrix inversion. We can retain the quick computation time
found in ONBs while not restricting ourselves in number, norms, or
linear independence.

By using a frame instead of an ONB, we do give up the uniqueness
of the coefficients and the orthogonality of the vectors. In many
circumstances, however, these properties are superfluous. If you are
sending your side of a phone conversation or a photo, what matters is
quickly computing a working set of expansion coefficients, not whether
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those coefficients are unique. In fact, in some settings the linear
independence and orthogonality restrictions inhibit the use of ONBs.
Frames can be constructed with a wider variety of characteristics, and
can thus be tailored to match the needs of a particular system.

This book gives an introduction to the study of frames to un-
dergraduate students who have had a course in linear algebra and a
proof-based course in analysis. The first chapter is a review of some
concepts from linear algebra, while the second chapter covers more
advanced matrix and finite-dimensional operator theory. The discus-
sion of frames begins in Chapter 3. A student can study the chapters
in order, but may wish to jump right into Chapter 3 and flip back to
the earlier chapters as needed.

We consider Chapters 7, 8, and 9 to be advanced topics. The
first two of these describe more theoretical results in the theory of
frames, while the last demonstrates how frames are applied to actual
problems in sampling theory.


