Preface

It is widely agreed that Carl Friedrich Gauss’s 1801 book Disquisi-
tiones Arithmeticae [G] was the beginning of modern number theory,
the first work on the subject that was systematic and comprehen-
sive rather than a collection of special problems and techniques. The
name “number theory” by which the subject is known today was in
use at the time—Gauss himself used it (theoria numerorum) in Arti-
cle 56 of the book—but he chose to call it “arithmetic” in his title.
He explained in the first paragraph of his Preface that he did not
mean arithmetic in the sense of everyday computations with whole
numbers but a “higher arithmetic” that comprised “general studies
of specific relations among whole numbers.”

I too prefer “arithmetic” to “number theory.” To me, number the-
ory sounds passive, theoretical, and disconnected from reality. Higher
arithmetic sounds active, challenging, and related to everyday reality
while aspiring to transcend it.

Although Gauss’s explanation of what he means by “higher arith-
metic” in his Preface is unclear, a strong indication of what he had in
mind comes at the end of his Preface when he mentions the material
in his Section 7 on the construction of regular polygons. (In mod-
ern terms, Section 7 is the Galois theory of the algebraic equation
2™ —1 =0.) He admits that this material does not truly belong to
arithmetic but that “its principles must be drawn from arithmetic.”
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b Higher Arithmetic

What he means by arithmetic, I believe, is exact computation, close
to what Leopold Kronecker later called “general arithmetic.”?

In 21st century terms, Gauss’s subject is “algorithmic mathe-
matics,” mathematics in which the emphasis is on algorithms and
computations. Instead of set-theoretic abstractions and unrealizable
constructions, such mathematics deals with specific operations that
arrive at concrete answers. Regardless of what Gauss might have
meant by his title Disquisitiones Arithmeticae, what I mean by my
title Higher Arithmetic is an algorithmic approach to the number-
theoretic topics in the book, most of which are drawn from Gauss’s
great work.

Mathematics is about reasoning, both inductive and deductive.
Computations are simply very articulate deductive arguments. The
best theoretical mathematics is an inductive process by which such
arguments are found, organized, motivated, and explained. That is
why I think ample computational experience is indispensable to math-
ematical education.

In teaching the number theory course at New York University
several times in recent years, I have found that students enjoy and
feel they profit from doing computational assignments. My own ex-
perience in reading Gauss has usually been that I don’t understand
what he is doing until he gives an example, so I try to skip to the
example right away. Moreover, on another level, in writing this and
previous books, I have often found that creating exercises leads to a
clearer understanding of the material and a much improved version
of the text that the exercises had been meant to illustrate. (Very
often, the greatest enlightenment came when writing answers to the
exercises. For this reason, among others, answers are given for most
of the exercises, beginning on page 179.)

Fortunately, number theory is an ideal subject from the point of
view of providing illustrative examples of all orders of difficulty. In
this age of computers, students can tackle problems with real com-
putational substance without having to do a lot of tedious work. I

1See Essay 1.1 of my book [E3]. For the relation of general arithmetic to
Galois theory, see Essay 2.1.
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have tried to provide at the end of each chapter enough examples
and experiments for students to try, but I'm sure that enterprising
students and teachers will be able to invent many more.

What began as an experiment in the NYU course turned into
a substantial revision of the course. The experiment was to see how
much of number theory could be formulated in terms of “numbers” in
the most primitive sense—the numbers 0, 1, 2, ... used in counting.
To my surprise, I found that not only could I avoid negative num-
bers but that I didn’t miss them. The simple reason for this is that
the basic questions of number theory can be stated in terms of con-
gruences, and subtraction is always possible in congruences without
any need for negative numbers. Negative numbers have always led to
metaphysical conundrums—why should a negative times a negative
be a positive?—which cause confusing distractions right at the outset
when the meaning of “number” is being made precise. In this book,
the meaning of “number” derives simply from the activity of counting
and arithmetic can begin immediately. Kronecker’s famous dictum,
“God created the whole numbers; all the rest is human work,” can be
amended to say, “nonnegative whole numbers,” which is very likely
what Kronecker meant anyway.

A central theme of the book is the problem I denote by the equa-
tion AOD 4+ B = [, the problem of finding, for two given numbers A
and B, all numbers z for which Az? 4+ B is a square. As Chapter
2 explains, versions of this problem are at least as old as Pythago-
ras, although two millennia later the Disquisitiones Arithmeticae still
dealt with it. A simple algorithm for the complete solution is given
in Chapter 19.

Work on problems of the form A0 + B = [ led Leonhard Euler
to the discovery of what I call “Euler’s law,” the statement that the
answer to the question “Is A a square mod p?” for a prime number
p depends only on the value of p mod 4A. This statement, of which
the law of quadratic reciprocity is a byproduct, is completely proved
in Chapter 29.

When Ernst Eduard Kummer first introduced his theory of “ideal
complex numbers” in 1846, 45 years after the publication of Disqui-
sitiones Arithmeticae, Gauss said that he had worked out something
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resembling Kummer’s theory for his “private use” when he was writ-
ing about the composition of binary quadratic forms in Section 5 of
Disquisitiones Arithmeticae, but that he left it out of the book be-
cause he had not been able to put it on firm ground.? Although the
proof of quadratic reciprocity given in this book was originally in-
spired by Gauss’s proof using the composition of forms, it is stated
in terms closer to Kummer’s ideal numbers. Specifically:

If, in addition to using ordinary numbers 0, 1, 2, ..., one com-
putes with a symbol v/ A whose square is a fixed number A, one has
an arithmetic—I have dubbed it the arithmetic of “hypernumbers”
for that A—in which the natural generalization of doing computa-
tions mod n for some number n is to do computations mod [a, b] for
some pair of hypernumbers a and b. (With ordinary numbers, the
Euclidean algorithm serves to reduce the number of numbers in a set
that describes a modulus to just one, but with hypernumbers two may
be needed, as is shown in Chapter 18.) With natural definitions of
multiplication and equivalence of such “modules of hypernumbers,”
the computations needed to solve AL+ B = [J and to prove quadratic
reciprocity can be explained very simply. In this way, Gauss’s diffi-
cult composition of forms is avoided but the essence of his method is
preserved.

The last two chapters relate the methods of the book to Gauss’s
binary quadratic forms so students interested in reading further in
the Disquisitiones Arithmeticae—or students interested in binary qua-
dratic forms—will be able to make the transition.

Finally, an appendix gives a table of the cycles of stable modules
of hypernumbers for all numbers A < 111 that are not squares, which
will be useful for students, as they were for me, in understanding the
general theory and in working out examples.

2See [E4].



