
Chapter 1

Random Walk and
Discrete Heat Equation

1.1. Simple random walk

We consider one of the basic models for random walk, simple random

walk on the integer lattice Zd. At each time step, a random walker

makes a random move of length one in one of the lattice directions.

1.1.1. One dimension. We start by studying simple random walk

on the integers. At each time unit, a walker flips a fair coin and moves

one step to the right or one step to the left depending on whether the

coin comes up heads or tails. Let Sn denote the position of the walker

at time n. If we assume that the walker starts at x, we can write

Sn = x+X1 + · · ·+Xn

where Xj equals ±1 and represents the change in position between

time j − 1 and time j. More precisely, the increments X1, X2, . . . are

independent random variables with P{Xj = 1} = P{Xj = −1} = 1/2.

Suppose the walker starts at the origin (x = 0). Natural questions

to ask are:

• On the average, how far is the walker from the starting

point?
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Figure 1. One-dimensional random walk with x = 0

• What is the probability that at a particular time the walker

is at the origin?

• More generally, what is the probability distribution for the

position of the walker?

• Does the random walker keep returning to the origin or does

the walker eventually leave forever?

Probabilists use the notation E for expectation (also called ex-

pected value, mean, average value) defined for discrete random vari-

ables by

E[X] =
∑
z

z P{X = z}.

The random walk satisfies E[Sn] = 0 since steps of +1 and −1 are

equally likely. To compute the average distance, one might try to
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compute E [|Sn|]. It turns out to be much easier to compute E[S2
n],

E[S2
n] = E

⎡
⎢⎣
⎛
⎝ n∑

j=1

Xj

⎞
⎠

2
⎤
⎥⎦

= E

⎡
⎣ n∑
j=1

n∑
k=1

XjXk

⎤
⎦

=

n∑
j=1

n∑
k=1

E[XjXk] = n+
∑
j �=k

E[XjXk].

♦ This calculation uses an important property of average values:

E[X + Y ] = E[X] + E[Y ].

The fact that the average of the sum is the sum of the averages for random

variables even if the random variables are dependent is easy to prove but can

be surprising. For example, if one looks at the rolls of n regular 6-sided dice,

the expected value of the sum is (7/2)n whether one takes one die and uses

that number n times or rolls n different dice and adds the values. In the first

case the sum takes on the six possible values n, 2n, . . . , 6n with probability

1/6 each while in the second case the probability distribution for the sum is

hard to write down explicitly.

If j �= k, there are four possibilities for the (Xj , Xk); for two

of them XjXk = 1 and for two of them XjXk = −1. Therefore,

E[XjXk] = 0 for j �= k and

Var[Sn] = E[S2
n] = n.

Here Var denotes the variance of a random variable, defined by

Var[X] = E
[
(X − EX)2

]
= E[X2]− (EX)

2

(a simple calculation establishes the second equality). Our calculation

illustrates an important fact about variances of sums: if X1, . . . , Xn

are independent, then

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+Var[Xn].
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♦ The sum rule for expectation and the fact that the cross terms E[XjXk]

vanish make it much easier to compute averages of the square of a random

variable than other powers. In many ways, this is just an analogy of the

Pythagorean theorem from geometry: the property E[XjXk] = 0, which fol-

lows from the fact that the random variables are independent and have mean

zero, is the analogue of perpendicularity or orthogonality of vectors.

Finding the probability that the walker is at the origin after n

steps is harder than computing E[S2
n]. However, we can use our com-

putation to make a guess about the size of the probability. Since

E[S2
n] = n, the typical distance away from the origin is of order

√
n.

There are about
√
n integers whose distance is at most

√
n from the

starting point, so one might guess that the probability for being at

a particular one should decay like a constant times n−1/2. This is

indeed the case as we demonstrate by calculating the probability ex-

actly.

It is easy to see that after an odd number of steps the walker is

at an odd integer and after an even number of steps the walker is at

an even integer. Therefore, P{Sn = x} = 0 if n + x is odd. Let us

suppose the walker has taken an even number of steps, 2n. In order

for a walker to be back at the origin at time 2n, the walker must have

taken n “+1” steps and n “−1” steps. The number of ways to choose

which n steps are +1 is
(
2n
n

)
and each particular choice of 2n +1’s

and −1’s has probability 2−2n of occurring. Therefore,

P{S2n = 0} =

(
2n

n

)
2−2n =

(2n)!

n!n!
2−2n.

More generally, if the walker is to be at 2j, there must be (n + j)

steps of +1 and (n− j) steps of −1. The probabilities for the number

of +1 steps are given by the binomial distribution with parameters

2n and 1/2,

P{S2n = 2j} =

(
2n

n+ j

)
2−2n =

(2n)!

(n+ j)! (n− j)!
2−2n.

While these formulas are exact, it is not obvious how to use them be-

cause they contain ratios of very large numbers. Trying to understand
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the expression on the right-hand side leads to studying the behavior

of n! as n gets large. This is the goal of the next section.

1.1.2. Stirling’s formula. Stirling’s formula states that as n → ∞,

n! ∼
√
2π nn+ 1

2 e−n,

where ∼ means that the ratio of the two sides tends to 1. We will

prove this in the next two subsections. In this subsection we will

prove that there is a positive number C0 such that

(1.1) lim
n→∞

bn = C0, where bn =
n!

nn+ 1
2 e−n

,

and in Section 1.1.3 we show that C0 =
√
2π.

♦ Suppose an is a sequence of positive numbers going to infinity and
we want to find a positive function f(n) such that an/f(n) converges to a
positive constant L. Let bn = an/f(n). Then

bn = b1

n∏
j=2

bj
bj−1

= b1

n∏
j=2

[1 + δj ],

where

δj =
bj

bj−1
− 1,

and

lim
n→∞

log bn = log b1 + lim
n→∞

n∑
j=2

log[1 + δj ] = log b1 +

∞∑
j=2

log[1 + δj ],

provided that the sum converges. A necessary condition for convergence is that
δn → 0. The Taylor’s series for the logarithm shows that | log[1+ δn]| ≤ c |δn|
for |δn| ≤ 1/2, and hence a sufficient condition for uniform convergence of the
sum is that

∞∑
n=2

|δn| < ∞.

Although this argument proves that the limit exists, it does not determine the

value of the limit.

To start, it is easy to check that b1 = e and if n ≥ 2, then

(1.2)
bn

bn−1
= e

(
n− 1

n

)n− 1
2

= e

(
1− 1

n

)n (
1− 1

n

)−1/2

.

Let δn = (bn/bn−1)− 1. We will show that
∑

|δn| < ∞.
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♦ One of the most important tools for determining limits is Taylor’s
theorem with remainder, a version of which we now recall. Suppose f is a
Ck+1 function, i.e., a function with k+1 derivatives all of which are continuous
functions. Let Pk(x) denote the kth-order Taylor series polynomial for f about
the origin. Then, for x > 0,

|f(x)− Pk(x)| ≤ ak x
k+1,

where

ak =
1

(k + 1)!
max
0≤t≤x

|f (k+1)(t)|.

A similar estimate is derived for negative x by considering f̃(x) = f(−x). The
Taylor series for the logarithm gives

log(1 + u) = u− u2

2
+

u3

3
− · · · ,

which is valid for |u| < 1. In fact, the Taylor series with remainder tells us that
for every positive integer k,

(1.3) log(1 + u) = Pk(u) +O(|u|k+1),

where Pk(u) = u − (u2/2) + · · · + (−1)k+1(uk/k). The O(|u|k+1) denotes
a term that is bounded by a constant times |u|k+1 for small u. For example,
there is a constant ck such that for all |u| ≤ 1/2,

(1.4) | log(1 + u)− Pk(u)| ≤ ck |u|k+1.

We will use the O(·) notation as in (1.3) when doing asymptotics — in all

cases this will be shorthand for a more precise statement as in (1.4).

We will show that δn = O(n−2), i.e., there is a c such that

|δn| ≤
c

n2
.

To see this consider (1− 1
n )

n which we know approaches e−1 as n gets

large. We use the Taylor series to estimate how fast it converges. We

write

log

(
1− 1

n

)n

= n log

(
1− 1

n

)

= n

[
− 1

n
− 1

2n2
+O(n−3)

]

= −1− 1

2n
+O(n−2),
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and

log

(
1− 1

n

)−1/2

=
1

2n
+O(n−2).

By taking logarithms in (1.2) and adding the terms we finish the proof

of (1.1). In fact (see Exercise 1.19), we can show that

(1.5) n! = C0 n
n+ 1

2 e−n
[
1 +O(n−1)

]
.

1.1.3. Central limit theorem. We now use Stirling’s formula to

estimate the probability that the random walker is at a certain posi-

tion. Let Sn be the position of a simple random walker on the integers

assuming S0 = 0. For every integer j, we have already seen that the

binomial distribution gives us

P{S2n = 2j} =

(
2n

n+ j

)
2−2n =

2n!

(n+ j)!(n− j)!
2−2n.

Let us assume that |j| ≤ n/2. Then plugging into Stirling’s formula

and simplifying gives us

P{S2n = 2j}

∼
√
2

C0

(
1− j2

n2

)−n (
1 +

j

n

)−j (
1− j

n

)j (
n

n2 − j2

)1/2

.
(1.6)

In fact (if one uses (1.5)), there is a c such that the ratio of the two

sides is within distance c/n of 1 (we are assuming |j| ≤ n/2).

What does this look like as n tends to infinity? Let us first

consider the case j = 0. Then we get that

P{S2n = 0} ∼
√
2

C0 n1/2
.

We now consider j of order
√
n. Note that this confirms our previ-

ous heuristic argument that the probability should be like a constant

times n−1/2, since the typical distance is of order
√
n.
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Since we expect S2n to be of order
√
n, let us write an integer j

as j = r
√
n. Then the right-hand side of (1.6) becomes

√
2

C0
√
n

(
1− r2

n

)−n
[(

1 +
r√
n

)−√
n
]r

×
[(

1− r√
n

)−√
n
]−r (

1

1− (r2/n)

)1/2

.

♦ We are about to use the well-known limit(
1 +

a

n

)n
−→ ea n → ∞.

In fact, using the Taylor’s series for the logarithm, we get for n ≥ 2a2,

log
(
1 +

a

n

)n
= a+O

(
a2

n

)
,

which can also be written as(
1 +

a

n

)n
= ea

[
1 +O(a2/n)

]
.

As n → ∞, the right-hand side of (1.6) is asymptotic to
√
2

C0
√
n
er

2

e−r2 e−r2 =

√
2

C0
√
n
e−j2/n.

For every a < b,

(1.7) lim
n→∞

P{a
√
2n ≤ S2n ≤ b

√
2n} = lim

n→∞

∑ √
2

C0
√
n
e−j2/n,

where the sum is over all j with a
√
2n ≤ 2j ≤ b

√
2n. The right-

hand side is the Riemann sum approximation of an integral where

the intervals in the sum have length
√
2/n. Hence, the limit is∫ b

a

1

C0
e−x2/2 dx.

This limiting distribution must be a probability distribution, so we

can see that ∫ ∞

−∞

1

C0
e−x2/2 dx = 1.
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This gives the value C0 =
√
2π (see Exercise 1.21), and hence Stir-

ling’s formula can be written as

n! =
√
2π nn+ 1

2 e−n
[
1 +O(n−1)

]
.

The limit in (1.7) is a statement of the central limit theorem (CLT)

for the random walk,

lim
n→∞

P{a
√
2n ≤ S2n ≤ b

√
2n} =

∫ b

a

1√
2π

e−x2/2 dx.

1.1.4. Returns to the origin.

♦ Recall that the sum
∞∑

n=1

n−a

converges if a > 1 and diverges otherwise.

We now consider the number of times that the random walker

returns to the origin. Let Jn = 1{Sn = 0}. Here we use the indicator

function notation: if E is an event, then 1E or 1(E) is the random

variable that takes the value 1 if the event occurs and 0 if it does not

occur. The total number of visits to the origin by the random walker

is

V =

∞∑
n=0

J2n.

Note that

E[V ] =
∞∑

n=0

E[J2n] =
∞∑

n=0

P{S2n = 0}.

We know that P{S2n = 0} ∼ c/
√
n as n → ∞. Therefore,

E[V ] = ∞.

It is possible, however, for a random variable to be finite yet have an

infinite expectation, so we need to do more work to prove that V is

actually infinite.

♦ A well-known random variable with infinite expectation is that obtained
from the St. Petersburg Paradox. Suppose you play a game where you flip a
coin until you get tails. If you get k heads before flipping tails, then your payoff
is 2k. The probability that you get exactly k heads is the probability of getting
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k consecutive heads followed by tails which is 2k+1. Therefore, the expected
payoff in this game is

20 · 1
2
+ 21 · 1

22
+ 22 · 1

23
+ · · · = 1

2
+

1

2
+

1

2
+ · · · = ∞.

Since the expectation is infinite, one should be willing to spend any amount of

money in order to play this game once. However, this is clearly not true and

here lies the paradox.

Let q be the probability that the random walker ever returns to

the origin after time 0. We will show that q = 1 by first assuming

q < 1 and deriving a contradiction. Suppose that q < 1. Then we can

give the distribution for V . For example, P{V = 1} = (1 − q) since

V = 1 if and only if the walker never returns after time zero. More

generally,

P{V = k} = qk−1 (1− q), k = 1, 2, . . . .

This tells us that

E[V ] =

∞∑
k=1

k P{V = k} =

∞∑
k=1

k qk−1 (1− q) =
1

1− q
< ∞;

but we know that E[V ] = ∞. Hence, it must be the case that q = 1.

We have established the following.

Theorem 1.1. The probability that a (one-dimensional) simple ran-

dom walker returns to the origin infinitely often is one.

Note that this also implies that if the random walker starts at

x �= 0, then the probability that it will get to the origin is one.

♦ Another way to compute E[V ] in terms of q is to argue that

E[V ] = 1 + q E[V ].

The 1 represents the first visit; q is the probability of returning to the origin;

and the key observation is that the expected number of visits after the first

visit, given that there is a second visit, is exactly the expected number of visits

starting at the origin. Solving this simple equation gives E[V ] = (1− q)−1.
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1.1.5. Several dimensions. We now consider a random walker on

the d-dimensional integer grid

Z
d = {(x1, . . . , xd) : xj integers} .

At each time step, the random walker chooses one of its 2d nearest

neighbors, each with probability 1/2d, and moves to that site. Again,

we let

Sn = x+X1 + · · ·+Xn

denote the position of the particle. Here x,X1, . . . , Xn, Sn represent

points in Z
d, i.e., they are d-dimensional vectors with integer compo-

nents. The increments X1, X2, . . . are unit vectors with one compo-

nent of absolute value 1. Note that Xj · Xj = 1 and if j �= k, then

Xj ·Xk equals 1 with probability 1/(2d); equals −1 with probability

1/(2d); and otherwise equals zero. In particular, E[Xj ·Xj ] = 1 and

E[Xj · Xk] = 0 if j �= k. Suppose S0 = 0. Then E[Sn] = 0, and a

calculation as in the one-dimensional case gives

E[|Sn|2] = E[Sn · Sn] = E

⎡
⎣
⎛
⎝ n∑

j=1

Xj

⎞
⎠ ·

⎛
⎝ n∑

j=1

Xj

⎞
⎠
⎤
⎦ = n.

o

Figure 2. The integer lattice Z2
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What is the probability that we are at the origin after n steps

assuming S0 = 0? This is zero if n is odd. If n is even, let us give

a heuristic argument. The typical distance from the origin of Sn is

of order
√
n. In d dimensions the number of lattice points within

distance
√
n grows like (

√
n)d. Hence, the probability that we choose

a particular point should decay like a constant times n−d/2.

The combinatorics for justifying this is a little more complicated

than in the one-dimensional case, so we will just wave our hands to

get the right behavior. In 2n steps, we expect that approximately

2n/d of them will be taken in each of the d possible directions (e.g.,

if d = 2, we expect about n horizontal and n vertical steps). In

order to be at the origin, we need to take an even number of steps

in each of the d-directions. The probability of this (Exercise 1.17) is

2−(d−1). Given that each of these numbers is even, the probability

that each individual component is at the origin is the probability

that a one-dimensional walk is at the origin at time 2n/d (or, more

precisely, an even integer very close to 2n/d). Using this idea we get

the asymptotics

P{S2n = 0} ∼ cd
nd/2

, cd =
dd/2

πd/2 2d−1
.

The particular value of cd will not be important to us, but the fact

that the exponent of n is d/2 is very important.

Consider the expected number of returns to the origin. If V is

the number of visits to the origin, then just as in the d = 1 case,

E[V ] =
∞∑

n=0

P{S2n = 0}.

Also,

E[V ] =
1

1− q
,

where q = qd is the probability that the d-dimensional walk returns

to the origin. Since P{S2n = 0} ∼ c/nd/2,

E[V ] =

∞∑
n=0

P{S2n = 0} =

{
< ∞, d ≥ 3,

= ∞, d = 2
.

Theorem 1.2. Suppose Sn is simple random walk in Zd with S0 = 0.

If d = 1, 2, the random walk is recurrent, i.e., with probability one it
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returns to the origin infinitely often. If d ≥ 3, the random walk is

transient, i.e., with probability one it returns to the origin only finitely

often. Also,

P{Sn �= 0 for all n > 0} > 0 if d ≥ 3.

1.1.6. Notes about probability. We have already implicitly used

some facts about probability. Let us be more explicit about some of

the rules of probability. A sample space or probability space is a set

Ω and events are a collection of subsets of Ω including ∅ and Ω. A

probability P is a function from events to [0, 1] satisfying P(Ω) = 1

and the following countable additivity rule:

• If E1, E2, . . . are disjoint (mutually exclusive) events, then

P

( ∞⋃
n=1

En

)
=

∞∑
n=1

P(En).

We do not assume that P is defined for every subset of Ω, but we do

assume that the collection of events is closed under countable unions

and “complementation”, i.e., if E1, E2, . . . are events so are
⋃
Ej and

Ω \ Ej .

♦ The assumptions about probability are exactly the assumptions used

in measure theory to define a measure. We will not discuss the difficulties

involved in proving such a probability exists. In order to do many things in

probability rigorously, one needs to use the theory of Lebesgue integration. We

will not worry about this in this book.

We do want to discuss one important lemma that probabilists use

all the time. It is very easy, but it has a name. (It is very common for

mathematicians to assign names to lemmas that are used frequently

even if they are very simple—this way one can refer to them easily.)

Lemma 1.3 (Borel-Cantelli Lemma). Suppose E1, E2, . . . is a collec-

tion of events such that
∞∑

n=1

P(En) < ∞.

Then with probability one at most finitely many of the events occur.
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Proof. Let A be the event that infinitely many of E1, E2, . . . occur.

For each integer N, A ⊂ AN where AN is the event that at least one

of the events EN , EN+1, . . . occurs. Then,

P(A) ≤ P(AN ) = P

( ∞⋃
n=N

En

)
≤

∞∑
n=N

P(En);

but
∑

P(En) < ∞ implies

lim
N→∞

∞∑
n=N

P(En) = 0.

Hence, P(A) = 0. �

As an example, consider the simple random walk in Zd, d ≥ 3 and

let En be the event that Sn = 0. Then, the estimates of the previous

section show that ∞∑
n=1

P(En) < ∞,

and hence with probability one, only finitely many of the events En

occur. This says that with probability one, the random walk visits

the origin only finitely often.

1.2. Boundary value problems

1.2.1. One dimension: Gambler’s ruin. Suppose N is a positive

integer and a random walker starts at x ∈ {0, 1, . . . , N}. Let Sn

denote the position of the walker at time n. Suppose the walker stops

when the walker reaches 0 or N . To be more precise, let

T = min {n : Sn = 0 or N} .
Then the position of the walker at time n is given by Ŝn = Sn∧T

where n ∧ T means the minimum of n and T . It is not hard to see

that with probability one, T < ∞, i.e., eventually the walker will

reach 0 or N and then stop. Our goal is to try to figure out which

point it stops at. Define the function F : {0, . . . , N} → [0, 1] by

F (x) = P{ST = N | S0 = x}.
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♦ Recall that if V1, V2 are events, then P(V1 | V2) denotes the conditional
probability of V1 given V2. It is defined by

P(V1 | V2) =
P(V1 ∩ V2)

P(V2)
,

assuming P(V2) > 0.

We can give a gambling interpretation to this by viewing Sn as

the number of chips currently held by a gambler who is playing a

fair game where at each time duration the player wins or loses one

chip. The gambler starts with x chips and plays until he or she has

N chips or has gone bankrupt. The chance that the gambler does

not go bankrupt before attaining N is F (x). Clearly, F (0) = 0 and

F (N) = 1. Suppose 0 < x < N . After the first game, the gambler

has either x− 1 or x+ 1 chips, and each of these outcomes is equally

likely. Therefore,

(1.8) F (x) =
1

2
F (x+ 1) +

1

2
F (x− 1), x = 1, . . . , N − 1.

One function F that satisfies (1.8) with the boundary conditions

F (0) = 0, F (N) = 1 is the linear function F (x) = x/N . In fact,

this is the only solution as we shall now see.

Theorem 1.4. Suppose a, b are real numbers and N is a positive

integer. Then the only function F : {0, . . . , N} → R satisfying (1.8)

with F (0) = a and F (N) = b is the linear function

F0(x) = a+
x(b− a)

N
.

This is a fairly easy theorem to prove. In fact, we will give several

proofs. This is not just to show off how many proofs we can give! It

is often useful to give different proofs to the same theorem because

it gives us a number of different approaches for trying to prove gen-

eralizations. It is immediate that F0 satisfies the conditions; the real

question is one of uniqueness. We must show that F0 is the only such

function.

Proof 1. Consider the set V of all functions F : {0, . . . , N} → R

that satisfy (1.8). It is easy to check that V is a vector space, i.e., if
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f, g ∈ V and c1, c2 are real numbers, then c1f + c2g ∈ V . In fact, we

claim that this vector space has dimension two. To see this, we will

give a basis. Let f1 be the function defined by f1(0) = 0, f1(1) = 1

and then extended in a unique way to satisfy (1.8). In other words,

we define f1(x) for x > 1 by

f1(x) = 2f1(x− 1)− f1(x− 2).

It is easy to see that f1 is the only solution to (1.8) satisfying f1(0) =

0, f1(1) = 1. We define f2 similarly with initial conditions f2(0) =

1, f2(1) = 0. Then c1f1+c2f2 is the unique solution to (1.8) satisfying

f1(0) = c2, f1(1) = c1. The set of functions of the form F0 as a, b vary

form a two-dimensional subspace of V and hence must be all of V .

♦ The set of all functions f : {0, . . . , N} → R is essentially the same

as R
N+1. One can see this by associating to the function f the vector

(f(0), f(1), . . . , f(N)). The set V is a subspace of this vector space. Re-

call to show that a subspace has dimension k, it suffices to find a basis for the

subspace with k elements v1, . . . , vk. To show they form a basis, we need to

show that they are linearly independent and that every vector in the subspace

is a linear combination of them.

Proof 2. Suppose F is a solution to (1.8). Then for each 0 < x < N ,

F (x) ≤ max{F (x− 1), F (x+ 1)}.

Using this we can see that the maximum of F is obtained either

at 0 or at N . Similarly, the minimum of F is obtained on {0, N}.
Suppose F (0) = 0, F (N) = 0. Then the minimum and the maxi-

mum of the function are both 0 which means that F ≡ 0. Suppose

F (0) = a, F (N) = b and let F0 be the linear function with these same

boundary values. Then F − F0 satisfies (1.8) with boundary value 0,

and hence is identically zero. This implies that F = F0.

Proof 3. Consider the equations (1.8) as N − 1 linear equations in

N − 1 unknowns, F (1), . . . , F (N − 1). We can write this as

Av = w,
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
2 0 0 · · · 0 0

1
2 −1 1

2 0 · · · 0 0

0 1
2 −1 1

2 · · · 0 0
...

0 0 0 0 · · · −1 1
2

0 0 0 0 · · · 1
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F (0)
2

0

0
...

0

−F (N)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we prove thatA is invertible, then the unique solution is v = A−1w.

To prove invertibility it suffices to show that Av = 0 has a unique

solution and this can be done by an argument as in the previous proof.

Proof 4. Suppose F is a solution to (1.8). Let Sn be the random

walk starting at x. We claim that for all n, E[F (Sn∧T )] = F (x).

We will show this by induction. For n = 0, F (S0) = F (x) and

hence E[F (S0)] = F (x). To do the inductive step, we use a rule for

expectation in terms of conditional expectations:

E[F (S(n+1)∧T )] =

N∑
y=0

P{Sn∧T = y}E[F (S(n+1)∧T ) | Sn∧T = y].

If y = 0 or y = N and Sn∧T = y, then S(n+1)∧T = y and hence

E[F (S(n+1)∧T ) | Sn∧T = y] = F (y). If 0 < y < x and Sn∧T = y, then

E[F (S(n+1)∧T ) | Sn∧T = y] =
1

2
F (y + 1) +

1

2
F (y − 1) = F (y).

Therefore,

E[F (S(n+1)∧T )] =
N∑

y=0

P{Sn∧T = y}F (y) = E[F (Sn∧T )] = F (x),

with the last equality holding by the inductive hypothesis. Therefore,

F (x) = lim
n→∞

E[F (Sn∧T )]

= lim
n→∞

N∑
y=0

P{Sn∧T = y}F (y)

= P{ST = 0}F (0) + P{ST = N}F (N)

= [1− P{ST = N}]F (0) + P{ST = N}F (N).
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Considering the case F (0) = 0, F (N) = 1 gives P{ST = N | S0 =

x} = x/N and for more general boundary conditions,

F (x) = F (0) +
x

N
[F (N)− F (0)].

One nice thing about the last proof is that it was not necessary

to have already guessed the linear functions as solutions. The proof

produces these solutions.

1.2.2. Higher dimensions. We will generalize this result to higher

dimensions. We replace the interval {1, . . . , N} with an arbitrary

finite subset A of Zd. We let ∂A be the (outer) boundary of A defined

by

∂A = {z ∈ Z
d \A : dist(z, A) = 1},

and we let A = A ∪ ∂A be the “closure” of A.

Figure 3. The white dots are A and the black dots are ∂A

♦ The term closure may seem strange, but in the continuous analogue,

A will be an open set, ∂A its topological boundary and A = A ∪ ∂A its

topological closure.

We define the linear operators Q,L on functions by

QF (x) =
1

2d

∑
y∈Zd,|x−y|=1

F (y),

LF (x) = (Q− I)F (x) =
1

2d

∑
y∈Zd,|x−y|=1

[F (y)− F (x)].
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The operator L is often called the (discrete) Laplacian. We let Sn be

a simple random walk in Zd. Then we can write

LF (x) = E[F (S1)− F (S0) | S0 = x].

We say that F is (discrete) harmonic at x if LF (x) = 0; this is an

example of a mean-value property. The corresponding boundary value

problem we will state is sometimes called the Dirichlet problem for

harmonic functions.

♦ The term linear operator is often used for a linear function whose

domain is a space of functions. In our case, the domain is the space of functions

on the finite set A which is isomorphic to R
K where K = #(A). In this case a

linear operator is the same as a linear transformation from linear algebra. We

can think of Q and L as K ×K matrices. We can write Q = [Q(x, y)]x,y∈A

where Q(x, y) = 1/(2d) if |x − y| = 1 and otherwise Q(x, y) = 0. Define

Qn(x, y) by Qn = [Qn(x, y)]. Then Qn(x, y) is the probability that the

random walk starts at x, is at site y at time n, and and has not left the set A

by time n.

Dirichlet problem for harmonic functions. Given a set A ⊂ Zd

and a function F : ∂A → R find an extension of F to A such that F

is harmonic in A, i.e.,

(1.9) LF (x) = 0 for all x ∈ A.

For the case d = 1 and A = {1, . . . , N −1}, we were able to guess

the solution and then verify that it is correct. In higher dimensions,

it is not so obvious how to give a formula for the solution. We will

show that the last proof for d = 1 generalizes in a natural way to

d > 1. We let TA = min{n ≥ 0 : Sn �∈ A}.

Theorem 1.5. If A ⊂ Z
d is finite, then for every F : ∂A → R, there

is a unique extension of F to A that satisfies (1.9). It is given by

F0(x) = E[F (STA
) | S0 = x] =

∑
y∈∂A

P{STA
= y | S0 = x}F (y).
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It is not difficult to verify that F0, as defined above, is a solution

to the Dirichlet problem. The problem is to show that it is unique.

Suppose F is harmonic on A, S0 = x ∈ A, and let

Mn = F (Sn∧TA
).

Then (1.9) can be rewritten as

(1.10) E[Mn+1 | S0, . . . , Sn] = F (Sn∧TA
) = Mn.

A process that satisfies E[Mn+1 | S0, . . . , Sn] = Mn is called a martin-

gale (with respect to the random walk). It is easy to see that F (Sn∧TA
)

being a martingale is essentially equivalent to F being harmonic on

A. It is easy to check that martingales satisfy E[Mn] = E[M0], and

hence if S0 = x, then∑
y∈A

P{Sn∧TA
= y}F (y) = E[Mn] = M0 = F (x).

An easy argument shows that with probability one TA < ∞. We can

take limits and get

(1.11)

F (x) = lim
n→∞

∑
y∈A

P{Sn∧TA
= y}F (y) =

∑
y∈∂A

P{STA
= y}F (y).

♦ There is no problem interchanging the limit and the sum because it is a

finite sum. If A is infinite, one needs more assumptions to justify the exchange

of the limit and the sum.

Let us consider this from the perspective of linear algebra. Sup-

pose that A has N elements and ∂A has K elements. The solution

of the Dirichlet problem assigns to each function on ∂A (a vector in

RK) a function on A (a vector in RN ). Hence the solution can be

considered as a linear function from RK to RN (the reader should

check that this is a linear transformation). Any linear transformation

is given by an N ×K matrix. Let us write the matrix for the solution

as

HA = [HA(x, y)]x∈A,y∈∂A.

Another way of stating (1.11) is to say that

HA(x, y) = P {STA
= y | S0 = x} .
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This matrix is often called the Poisson kernel. For a given set A, we

can solve the Dirichlet problem for any boundary function in terms

of the Poisson kernel.

♦ Analysts who are not comfortable with probability1 think of the Poisson

kernel only as the matrix for the transformation which takes boundary data to

values on the interior. Probabilists also have the interpretation of HA(x, y) as

the probability that the random walk starting at x exits A at y.

What happens in Theorem 1.5 if we allow A to be an infinite

set? In this case it is not always true that the solution is unique.

Let us consider the one-dimensional example with A = {1, 2, 3, . . .}
and ∂A = {0}. Then for every c ∈ R, the function F (x) = cx is

harmonic in A with boundary value 0 at the origin. Where does

our proof break down? This depends on which proof we consider

(they all break down!), but let us consider the martingale version.

Suppose F is harmonic on A with F (0) = 0 and suppose Sn is a

simple random walk starting at positive integer x. As before, we let

T = min{n ≥ 0 : Sn = 0} and Mn = F (Sn∧T ). The same argument

shows that Mn is a martingale and

F (x) = E[Mn] =
∞∑
y=0

F (y)P{Sn∧T = y}.

We have shown in a previous section that with probability one T < ∞.

This implies that P{Sn∧T = 0} tends to 1, i.e.,

lim
n→∞

∑
y>0

P{Sn∧T = y} = 0.

However, if F is unbounded, we cannot conclude from this that

lim
n→∞

∑
y>0

F (y)P{Sn∧T = y} = 0.

However, we do see from this that there is only one bounded function

that is harmonic on A with a given boundary value at 0. We state

the theorem leaving the details as Exercise 1.7.

1The politically correct term is stochastically challenged.
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Theorem 1.6. Suppose A is a proper subset of Zd such that for all

x ∈ Zd,

lim
n→∞

P{TA > n | S0 = x} = 0.

Suppose F : ∂A → R is a bounded function. Then there is a unique

bounded extension of F to A that satisfies (1.9). It is given by

F0(x) = E[F (STA
) | S0 = x] =

∑
y∈∂A

P{STA
= y | S0 = x}F (y).

1.3. Heat equation

We will now introduce a mathematical model for heat flow. Let A be a

finite subset of Zd with boundary ∂A. We set the temperature at the

boundary to be zero at all times and, as an initial condition, set the

temperature at x ∈ A to be pn(x). At each integer time unit n, the

heat at x at time n is spread evenly among its 2d nearest neighbors.

If one of those neighbors is a boundary point, then the heat that goes

to that site is lost forever. A more probabilistic view of this is given

by imagining that the temperature in A is controlled by a very large

number of “heat particles”. These particles perform random walks on

A until they leave A at which time they are killed. The temperature

at x at time n, pn(x) is given by the density of particles at x. Either

interpretation gives a difference equation for the temperature pn(x).

For x ∈ A, the temperature at x is given by the amount of heat going

in from neighboring sites,

pn+1(x) =
1

2d

∑
|y−x|=1

pn(y).

If we introduce the notation ∂npn(x) = pn+1(x) − pn(x), we get the

heat equation

(1.12) ∂npn(x) = Lpn(x), x ∈ A,

where L denotes the discrete Laplacian as before. The initial temper-

ature is given as the initial condition

(1.13) p0(x) = f(x), x ∈ A.

We rewrite the boundary condition as

(1.14) pn(x) = 0, x ∈ ∂A.
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If x ∈ A and the initial condition is f(x) = 1 and f(z) = 0 for z �= x,

then

pn(y) = P{Sn∧TA
= y | S0 = x}.

♦ The heat equation is a deterministic (i.e., without randomness) model

for heat flow. It can be studied without probability. However, probability adds

a layer of richness in terms of movements of individual random particles. This

extra view is often useful for understanding the equation.

Given any initial condition f , it is easy to see that there is

a unique function pn satisfying (1.12)–(1.14). Indeed, we just set:

pn(y) = 0 for all n ≥ 0 if y ∈ ∂A; p0(x) = f(x) if x ∈ A; and for

n > 0, we define pn(x), x ∈ A recursively by (1.12). This tells us

that set of functions satisfying (1.12) and (1.14) is a vector space of

dimension #(A). In fact, {pn(x) : x ∈ A} is the vector Qnf .

Once we have existence and uniqueness, the problem remains to

find the function. For a bounded set A, this is a problem in lin-

ear algebra and essentially becomes the question of diagonalizing the

matrix Q.

♦ Recall from linear algebra that if A is a k × k symmetric matrix with
real entries, then we can find k (not necessarily distinct) real eigenvalues

λk ≤ λk−1 ≤ · · · ≤ λ1,

and k orthogonal vectors v1, . . . ,vk that are eigenvectors,

Avj = λj vj .

(If A is not symmetric, A might not have k linearly independent eigenvectors,

some eigenvalues might not be real, and eigenvectors for different eigenvalues

are not necessarily orthogonal.)

We will start by considering the case d = 1. Let us compute the

function pn for A = {1, . . . , N −1}. We start by looking for functions

satisfying (1.12) of the form

(1.15) pn(x) = λn φ(x).

If pn is of this form, then

∂npn(x) = λn+1 φ(x)− λn φ(x) = (λ− 1)λn φ(x).
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This nice form leads us to try to find eigenvalues and eigenfunctions

of Q, i.e., to find λ, φ such that

(1.16) Qφ(x) = λφ(x),

with φ ≡ 0 on ∂A.

♦ The “algorithmic” way to find the eigenvalues and eigenvectors for

a matrix Q is first to find the eigenvalues as the roots of the characteristic

polynomial and then to find the corresponding eigenvector for each eigenvalue.

Sometimes we can avoid this if we can make good guesses for the eigenvectors.

This is what we will do here.

The sum rule for sine,

sin((x± 1)θ) = sin(xθ) cos(θ)± cos(xθ) sin(θ),

tells us that

Q{sin(θx)} = λθ {sin(θx)}, λθ = cos θ,

where {sin(θx)} denotes the vector whose component associated to

x ∈ A is sin(θx). If we choose θj = πj/N , then φj(x) = sin(πjx/N),

which satisfies the boundary condition φj(0) = φj(N) = 0. Since

these are eigenvectors with different eigenvalues for a symmetric ma-

trix Q, we know that they are orthogonal, and hence linearly inde-

pendent. Hence every function f on A can be written in a unique

way as

(1.17) f(x) =
N−1∑
j=1

cj sin

(
πjx

N

)
.

This sum in terms of trigonometric functions is called a finite Fourier

series. The solution to the heat equation with initial condition f is

pn(y) =

N−1∑
j=1

cj

[
cos

(
jπ

N

)]n
φj(y).

Orthogonality of eigenvectors tells us that

N−1∑
x=1

sin

(
πjx

N

)
sin

(
πkx

N

)
= 0 if j �= k.
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Also,

(1.18)

N−1∑
x=1

sin2
(
πjx

N

)
=

N

2
.

♦ The Nth roots of unity, ζ1, . . . , ζN are the N complex numbers ζ such
that ζN = 1. They are given by

ζk = cos

(
2kπ

N

)
+ i sin

(
2kπ

N

)
, j = 1, . . . , N.

The roots of unity are spread evenly about the unit circle in C; in particular,

ω1 + ω2 + · · ·+ ωN = 0,

which implies that

N∑
j=1

cos

(
2kπ

N

)
=

N∑
j=1

sin

(
2kπ

N

)
= 0.

The double angle formula for sine gives

N−1∑
j=1

sin2

(
jxπ

N

)
=

N∑
j=1

sin2

(
jxπ

N

)

=
1

2

N−1∑
j=0

[
1− cos

(
2jxπ

N

)]

=
N

2
− 1

2

N∑
j=1

cos

(
2jxπ

N

)
.

If x is an integer, the last sum is zero. This gives (1.18).

In particular, if we choose the solution with initial condition

f(x) = 1; f(z) = 0, z �= x we can see that

P{Sn∧TA
= y | S0 = x} =

2

N

N−1∑
j=1

φj(x)

[
cos

(
jπ

N

)]n
φj(y).

It is interesting to see what happens as n → ∞. For large n, the

sum is very small but it is dominated by the j = 1 and j = N − 1
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terms for which the eigenvalue has maximal absolute value. These

two terms give

2

N
cosn

( π

N

) [
sin
(πx
N

)
sin
(πy
N

)

+ (−1)n sin

(
xπ(N − 1)

N

)
sin

(
yπ(N − 1)

N

)]
.

One can check that

sin

(
xπ(N − 1)

N

)
= (−1)x+1 sin

(πx
N

)
,

and, hence, if x, y ∈ {1, . . . , N − 1}, as n → ∞, then

P{Sn∧TA
= y | S0 = x}

∼ 2

N
cosn

( π

N

)
[1 + (−1)n+x+y] sin

(πx
N

)
sin
(πy
N

)
.

For large n, conditioned such that the walker has not left {1, . . . , N −
1}, the probability that the walker is at y is about c sin(πy/N) as-

suming that the “parity” is correct (n + x + y is even). Other than

the parity, there is no dependence on the starting point x for the lim-

iting distribution. Note that the walker is more likely to be at points

toward the “middle” of the interval.

The above example illustrates a technique for finding solutions of

the form (1.15) called separation of variables. The same idea works for

all d although it may not always be possible to give nice expressions

for the eigenvalues and eigenvectors. For finite A this is essentially

the same as computing powers of a matrix by diagonalization. We

summarize here.

Theorem 1.7. If A is a finite subset of Zd with N elements, then

we can find N linearly independent functions φ1, . . . , φN that satisfy

(1.16) with real eigenvalues λ1, . . . , λN . The solution to (1.12)–(1.14)

is given by

pn(x) =
N∑
j=1

cj λ
n
j φj(x),

where cj are chosen so that

f(x) =
N∑
j=1

cj φj(x).
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In fact, the φj can be chosen to be orthonormal,

〈φj , φk〉 :=
∑
x∈A

φj(x)φk(x) = δ(k − j).

♦ Here we have introduced the delta function notation, δ(z) = 1 if z = 0

and δ(z) = 0 if z �= 0.

Since pn(x) → 0 as n → ∞, we know that the eigenvalues have

absolute value strictly less than one. We can order the eigenvalues

1 > λ1 ≥ λ2 ≥ · · · ≥ λN > −1.

We will write p(x, y;A) to be the solution of the heat equation with

initial condition equal to one at x and 0 otherwise. In other words,

pn(x, y;A) = P{Sn = y, TA > n | S0 = x}, x, y ∈ A.

Then if #(A) = N ,

pn(x, y;A) =

N∑
j=1

cj(x)λ
n
j φj(y),

where cj(x) have been chosen so that

N∑
j=1

cj(x)φj(y) = δ(y − x).

In fact, this tells us that cj(x) = φj(x). Hence,

pn(x, y;A) =
N∑
j=1

λn
j φj(x)φj(y).

Note that the quantity on the right is symmetric in x, y. One can

check that the symmetry also follows from the definition of pn(x, y;A).

The largest eigenvalue λ1 is often denoted λA. We can give a

“variational” definition of λA as follows. This is really just a theorem

about the largest eigenvalue of symmetric matrices.

Theorem 1.8. If A is a finite subset of Zd, then λA is given by

λA = sup
f

〈Qf, f〉
〈f, f〉 ,
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where the supremum is over all functions f on A, and 〈·, ·〉 denotes

the inner product

〈f, g〉 =
∑
x∈A

f(x) g(x).

Proof. If φ is an eigenvector with eigenvalue λ1, then Qφ = λ1φ and

setting f = φ shows that the supremum is at least as large as λ1.

Conversely, there is an orthogonal basis of eigenfunctions φ1, . . . , φN

and we can write any f as

f =
N∑
j=1

cj φj .

Then

〈Qf, f〉 =

〈
Q

N∑
j=1

cj φj ,
N∑
j=1

cj φj

〉

=

〈
N∑
j=1

cjQφj ,
N∑
j=1

cj φj

〉

=
∑
j=1

c2j λj 〈φj , φj〉

≤ λ1

∑
j=1

c2j 〈φj , φj〉 = λ1 〈f, f〉.

The reader should check that the computation above uses the orthog-

onality of the eigenfunctions and also the fact that 〈φj , φj〉 ≥ 0. �

Using this variational formulation, we can see that the eigenfunc-

tion for λ1 can be chosen so that φ1(x) ≥ 0 for each x (since if φ1 took

on both positive and negative values, we would have 〈Q|φ1|, |φ1|〉 >
〈φ1, φ1〉). The eigenfunction is unique, i.e., λ2 < λ1, provided we

put an additional condition on A. We say that a subset A on Zd is

connected if any two points in A are connected by a nearest neighbor

path that stays entirely in A. Equivalently, A is connected if for each

x, y ∈ A there exists an n such that pn(x, y;A) > 0. We leave it as

Exercise 1.23 to show that this implies that λ1 > λ2.

Before stating the final theorem, we need to discuss some par-

ity (even/odd) issues. If x = (x1, . . . , xd) ∈ Zd we let par(x) =
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(−1)x1+···+xd . We call x even if par(x) = 1 and otherwise x is odd.

If n is a nonnegative integer, then

pn(x, y;A) = 0 if (−1)npar(x+ y) = −1.

If Qφ = λφ, then Q[parφ] = −λparφ.

Theorem 1.9. Suppose A is a finite connected subset of Zd with at

least two points. Then λ1 > λ2, λN = −λ1 < λN−1. The eigenfunc-

tion φ1 can be chosen so that φ1(x) > 0 for all x ∈ A,

lim
n→∞

λ−n
1 pn(x, y;A) = [1 + (−1)n par(x+ y)]φ1(x)φ1(y).

Example 1.10. One set in Zd for which we can compute the eigen-

functions and eigenvalues exactly is a d-dimensional rectangle,

A = {(x1, . . . , xd) ∈ Z
d : 1 ≤ xj ≤ Nj − 1}.

The eigenfunctions are indexed by k̄ = (k1, . . . , kd) ∈ A,

φk̄(x1, . . . , xd) = sin

(
k1πx1

N1

)
sin

(
k2πx2

N2

)
· · · sin

(
kdπxd

Nd

)
,

with eigenvalue

λk̄ =
1

d

[
cos

(
k1π

N1

)
+ · · ·+ cos

(
kdπ

Nd

)]
.

1.4. Expected time to escape

1.4.1. One dimension. Let Sn denote a one-dimensional random

walk starting at x ∈ {0, . . . , N} and let T be the first time that the

walker reaches {0, N}. Here we study the expected time to reach 0

or N ,

e(x) = E[T | S0 = x].

Clearly, e(0) = e(N) = 0. Now suppose x ∈ {1, . . . , N −1}. Then the

walker takes one step which goes to either x− 1 or x+ 1. Using this

we get the relation

e(x) = 1 +
1

2
[e(x+ 1) + e(x− 1)] .

Hence, e satisfies

(1.19) e(0) = e(N) = 0, Le(x) = −1, x = 1, . . . , N − 1.


