
Chapter 1

Introduction

Notation:

N = {1, 2, 3, . . .} is the set of natural numbers.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the ring of integers.

Q = {m
n : m,n ∈ Z, n �= 0} is the field of rational numbers.

R is the field of real numbers.

C = {a + bi : a, b ∈ R, i2 = −1} is the field of complex numbers.

In this chapter, we introduce elliptic curves, modular forms and L-
functions through examples that motivate the definitions.

1.1. Elliptic curves

For the time being, we define an elliptic curve to be any equation of
the form

y2 = x3 + ax2 + bx + c

with a, b, c ∈ Z and such that the polynomial x3 + ax2 + bx + c does
not have repeated roots. See Section 2.2 for a precise definition.

Example 1.1.1. Are there three consecutive integers whose product
is a perfect square?

There are some trivial examples that involve the number zero, for
example, 0, 1 and 2, whose product equals 0 · 1 · 2 = 0 = 02, a square.
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2 1. Introduction

Are there any non-trivial examples? If we try to assign variables to
our problem, we see that we are trying to find solutions to

y2 = x(x + 1)(x + 2)(1.1)

with x, y ∈ Z and y �= 0. Equation (1.1) defines an elliptic curve. It
turns out that there are no integral solutions other than the trivial
ones (see Exercise 1.4.1). Are there rational solutions, i.e., are there
solutions with x, y ∈ Q? This is a more delicate question, but the
answer is still no (we will prove it in Example 2.7.6). Here is a similar
question, with a very different answer:

• Are there three integers that differ by 5, i.e., x, x + 5 and
x + 10, and whose product is a perfect square?

In this case, we are trying to find solutions to y2 = x(x+5)(x+10)

with x, y ∈ Z. As in the previous example, there are trivial solutions
(those which involve 0) but in this case, there are non-trivial solutions
as well:

(−9) · (−9 + 5) · (−9 + 10) = (−9) · (−4) · 1 = 36 = 62

40 · (40 + 5) · (40 + 10) = 40 · 45 · 50 = 90000 = 3002.

Moreover, there are also rational solutions, which are far from obvious:(
5

4

)
·
(

5

4
+ 5

)
·
(

5

4
+ 10

)
=

(
75

8

)2

(
−50

9

)
·
(
−50

9
+ 5

)
·
(
−50

9
+ 10

)
=

(
100

27

)2

and, in fact, there are infinitely many rational solutions! Here are
some of the x-coordinates that work:

x = −9, 40,
5

4
,
−50

9
,

961

144
,

7200

961
, −12005

1681
, −16810

2401
, −27910089

5094049
, . . .

In Sections 2.9 and 2.10 we will explain a method to find rational
points on elliptic curves and, in Exercise 2.12.23, the reader will cal-
culate all the rational points of y2 = x(x + 5)(x + 10).

Example 1.1.2 (The Congruent Number Problem). We say that
n ≥ 1 is a congruent number if there exists a right triangle whose
sides are rational numbers and whose area equals n. What natural
numbers are congruent?
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For instance, the number 6 is congruent, because the right triangle
with sides of length (a, b, c) = (3, 4, 5) has area equal to 3·4

2 = 6.
Similarly, the number 30 is the area of the right triangle with sides
(5, 12, 13); thus, 30 is a congruent number.

Figure 1. A right triangle of area 5 and rational sides.

The number 5 is congruent but there is no right triangle with
integer sides and area equal to 5. However, our definition allowed
rational sides, and the triangle with sides

(
3
2 ,

20
3 , 41

6

)
has area exactly

5. We do not allow, however, triangles with irrational sides even if
the area is an integer. For example, the right triangle (1, 2,

√
5) has

area 1, but that does not imply that 1 is a congruent number (in fact,
1 is not a congruent number, as we shall see below).

The congruent number problem is one of the oldest open problems
in number theory. For more than a millennium, mathematicians have
attempted to provide a characterization of all congruent numbers.
The oldest written record of the problem dates back to the early
Middle Ages, when it appeared in an Arab manuscript written before
972 (a later 10th century manuscript written by Mohammed Ben
Alcohain would go as far as to claim that the principal object of the
theory of rational right triangles is to find congruent numbers). It is
known that Leonardo Pisano, a.k.a. Fibonacci, was challenged around
1220 by Johannes of Palermo to find a rational right triangle of area
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n = 5, and Fibonacci found the triangle ( 32 ,
20
3 , 41

6 ). We will explain a
method to find this triangle below. In 1225, Fibonacci wrote a more
general treatment about the congruent number problem, in which he
stated (without proof) that if n is a perfect square, then n cannot
be a congruent number. The proof of such a claim had to wait until
Pierre de Fermat (1601-1665) settled that the number 1 (and every
square number) is not a congruent number (a result that he showed
in order to prove the case n = 4 of Fermat’s last theorem).

The connection between the congruent number problem and el-
liptic curves is as follows:

Proposition 1.1.3. The number n > 0 is congruent if and only if the
curve y2 = x3−n2x has a point (x, y) with x, y ∈ Q and y �= 0. More
precisely, there is a one-to-one correspondence Cn ←→ En between
the following two sets:

Cn = {(a, b, c) : a2 + b2 = c2,
ab

2
= n}

En = {(x, y) : y2 = x3 − n2x, y �= 0}.

Mutually inverse correspondences f : Cn → En and g : En → Cn are
given by

f((a, b, c)) =

(
nb

c− a
,

2n2

c− a

)
, g((x, y)) =

(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
.

The reader can provide a proof (see Exercise 1.4.3). For example,
the curve E : y2 = x3 − 25x has a point (−4, 6) that corresponds to
the triangle ( 32 ,

20
3 , 416 ). But E has other points, such as ( 1681144 , 62279

1728 )

that corresponds to the triangle(
1519

492
,
4920

1519
,
3344161

747348

)

which also has area equal to 5. See Figure 2.

Today, there are partial results toward the solution of the congru-
ent number problem, and strong results that rely heavily on famous
(and widely accepted) conjectures, but we do not have a full answer
yet. For instance, in 1975 (see [Ste75]), Stephens showed that the
Birch and Swinnerton-Dyer conjecture (which we will discuss in Sec-
tion 5.2) implies that any positive integer n ≡ 5, 6 or 7 mod 8 is a
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Figure 2. Two rational points on the curve y2 = x3 − 25x.

congruent number. For example, n = 157 ≡ 5 mod 8 must be a con-
gruent number and, indeed, Don Zagier has exhibited a right triangle
(a, b, c) whose area equals 157. The hypotenuse of the simplest such
triangle is:

c =
2244035177043369699245575130906674863160948472041

8912332268928859588025535178967163570016480830
.

In Example 5.2.7 we will see an application of the conjecture of Birch
and Swinnerton-Dyer to find a rational point P on y2 = x3 − 1572x,
which corresponds to a right triangle of area 157 via the correspon-
dence in Proposition 1.1.3.

The best known result on the congruent number problem is due
to J. Tunnell:

Theorem 1.1.4 (Tunnell, 1983, [Tun83]). If n is an odd square-
free positive integer and n is the area of a right triangle with rational
sides, then the following cardinalities are equal:

#{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2}

=
1

2

(
#

{
(x, y, z) ∈ Z3 : n = 2x2 + y2 + 8z2

})
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and, if n is even,

#{(x, y, z) ∈ Z3 :
n

2
= 4x2 + y2 + 32z2}

=
1

2

(
#{(x, y, z) ∈ Z3 :

n

2
= 4x2 + y2 + 8z2}

)
.

Moreover, if the Birch and Swinnerton-Dyer conjecture is true, then,
conversely, these equalities imply that n is a congruent number.

For example, for n = 2 we have n
2 = 1 = 4x2 + y2 + 32z2 if and

only if x = z = 0 and y = ±1, so the left-hand side of the appropriate
equation in Tunnell’s theorem is equal to 2. However, the right-hand
side is equal to 1 and the equality does not hold. Hence, 2 is not a
congruent number.

For a complete historical overview of the congruent number prob-
lem, see [Dic05], Ch. XVI. The book [Kob93] contains a thorough
modern treatment of the problem. The reader may also find useful an
expository paper [Con08] on the congruent number problem, written
by Keith Conrad. Another neat exposition, more computational in
nature (using Sage), appears in [Ste08], Section 6.5.3.

Example 1.1.5 (Fermat’s last theorem). Let n ≥ 3. Are there any
solutions to xn + yn = zn in integers x, y, z with xyz �= 0? The
answer is no. In 1637, Pierre de Fermat wrote in the margin of a
book (Diophantus’ Arithmetica; see Figure 9 in Section 5.5) that he
had found a marvellous proof, but the margin was too small to contain
it. Since then, many mathematicians tried in vain to demonstrate (or
disprove!) this claim. A proof was finally found in 1995 by Andrew
Wiles ([Wil95]). We shall discuss the proof in some more detail
in Section 5.5. For now, we will outline the basic structure of the
argument.

First, it is easy to show that, to prove the theorem, it suffices to
show the cases n = 4 and n = p ≥ 3, a prime. It is not difficult to
show that x4+y4 = z4 has no non-trivial solutions in Z (this was first
shown by Fermat). Now, suppose that p ≥ 3 and a, b, c are integers
with abc �= 0 and ap + bp = cp. Gerhard Frey conjectured that if such
a triple of integers exists, then the elliptic curve

E : y2 = x(x− ap)(x + bp)
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Figure 3. Pierre de Fermat (1601-1665).

would have some unexpected properties that would contradict a well-
known conjecture that Taniyama, Shimura and Weil had formulated
in the 1950’s. Their conjecture spelled out a strong connection be-
tween elliptic curves and modular forms, which we will describe in
Section 5.4. Ken Ribet proved that, indeed, such a curve would con-
tradict the Taniyama-Shimura-Weil (TSW) conjecture. Finally, An-
drew Wiles was able to prove the TSW conjecture in a special case
that would cover the hypothetical curve E. Therefore, E cannot exist
and the triple (a, b, c) cannot exist, either.

The Taniyama-Shimura-Weil conjecture (Conjecture 5.4.5), i.e.,
the modularity theorem 5.4.6, was fully proved by Christophe Breuil,
Brian Conrad, Fred Diamond, and Richard Taylor in their article
[BCDT01].

1.2. Modular forms

Let C be the complex plane and let H be the upper half of the complex
plane, i.e., H = {a+bi : a, b ∈ R, b > 0}. A modular form is a function
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f : H → C that has several relations among its values (which we will
specify in Definitions 4.1.3 and 4.2.1). In particular, the values of the
function f satisfy several types of periodicity relations. For example,
the modular forms for SL(2,Z) satisfy, among other properties, the
following:

• f(z) = f(z + 1) for all z ∈ H, and

• f
(−1

z

)
= zkf(z) for all z ∈ H. The number k is an integer

called the weight of the modular form.

We will describe modular forms in detail in Chapter 4. Let us see
some examples that motivate our interest in these functions.

Example 1.2.1 (Representations of integers as sums of squares). Is
the number n > 0 a sum of two (integer) squares? In other words,
are there a, b ∈ Z such that n = a2 + b2? And if so, in how many
different ways can you represent n as a sum of two squares?

For instance, the number n = 3 cannot be represented as a sum
of two squares but the number n = 5 has 8 distinct representations:

5 = (±1)2 + (±2)2 = (±2)2 + (±1)2.

Notice that here we consider (−1)2 +22, 12 +22 and 22 +1 as distinct
representations of 5. A general formula for the number of represen-
tations of an integer n as a sum of 2 squares, due to Lagrange, Gauss
and Jacobi, is given by

S2(n) = 2

(
1 +

(
−1

n

))∑
d|n

(
−1

d

)
,(1.2)

where
(
m
n

)
is the Jacobi symbol and

∑
d|n is a sum over all positive

divisors of n (including 1 and n). Here we just need the easiest values
(−1

n ) = (−1)(n−1)/2 of the Jacobi symbol. Let us see that the formula
works:

S2(3) = 2

(
1 +

(
−1

3

))∑
d|3

(
−1

d

)
= 2(1 + (−1))(1 + (−1)) = 0,

S2(5) = 2

(
1 +

(
−1

5

))∑
d|5

(
−1

d

)
= 2(1 + 1)(1 + 1) = 8,
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and S2(9) = 4. Indeed, the number nine has 4 different representa-
tions: 9 = (±3)2 + 02 = 02 + (±3)2. Let us explore other similar
questions.

Let n > 0 and k ≥ 2. Is the number n > 0 a sum of k (integer)
squares? In other words, are there a1, . . . , ak ∈ Z such that n =

a21+· · ·+a2k? And if so, in how many different ways can you represent
n as a sum of k squares? Lagrange showed that every natural number
can be represented as a sum of k ≥ 4 squares, but how many different
representations are there?

Let Sk(n) be the number of representations of n as a sum of k
squares. Determining exact formulas for Sk(n) is a classical problem
in number theory. There are exact formulas known in a number of
cases (e.g. Eq. 1.2). The formulas for k = 4, 6 and 8 are due to
Jacobi and Siegel. We write n = 2νg, with ν ≥ 0 and odd g > 0:

S4(n) = 8
∑

d|n, 4�d

d,

S6(n) =

((
−1

g

)
22ν+4 − 4

)∑
d|g

(
−1

d

)
d2,

S8(n) = 16 ·
{∑

d|n d
3 if n is odd,∑

d|n d
3 − 2

∑
d|g d

3 if n is even.

For example, S4(4) = 8(1 + 2) = 24 and, indeed

4 = (±1)2 + (±1)2 + (±1)2 + (±1)2 = (±2)2 + 0 + 0 + 0

= 0 + (±2)2 + 0 + 0 = 0 + 0 + (±2)2 + 0 = 0 + 0 + 0 + (±2)2.

So there are 16 + 2 + 2 + 2 + 2 = 24 possible representations of the
number 4 as a sum of 4 squares. Notice that S4(2) = S4(4). In how
many ways can 4 be represented as a sum of 6 squares? We write
4 = 22 · 1, so ν = 2 and g = 1, and thus,

S6(4) =

((
−1

1

)
22·2+4 − 4

)((
−1

1

)
· 12

)
= (28 − 4) · 1 = 252.
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The formulas for Sk(n) given above are derived using the theory of
modular forms, as follows. We define a formal power series Θ(q) by

Θ(q) =
∞∑

j=−∞
qj

2

and, for k ≥ 2, consider the power series expansion of the kth power
of Θ:

(Θ(q))k =

⎛
⎝ ∞∑

j=−∞
qj

2

⎞
⎠

k

=

( ∞∑
a1=−∞

qa
2
1

)
· · ·

( ∞∑
ak=−∞

qa
2
k

)
=

∑
n≥0

cnq
n.

What is the nth coefficient, cn, of Θk? If the readers stare at the
previous equation for a while, they will find that cn is given by

cn = #{(a1, . . . , ak) ∈ Zk : a21 + · · · + a2k = n}.

Therefore, cn = Sk(n) and (Θ(q))k =
∑

n≥0 Sk(n)qn. In other words,
Θk is a generating function for Sk(n). But, how do we find closed
formulas for Sk(n)? This is where the theory of modular forms be-
comes particularly useful, for it provides an alternative description of
the coefficients of Θk.

It turns out that, for even k ≥ 2, the function Θk is a modular
form of weight k

2 (more precisely, it is a modular form for the group
Γ1(4)), and the space of all modular forms of weight k

2 , denoted by
M k

2
(Γ1(4)), is finite dimensional (we will carefully define all these

terms later). For instance, let k = 4. Then M2(Γ1(4)), the space of
modular forms of weight 4

2 = 2 for Γ1(4), is a 2-dimensional C-vector
space and a basis is given by modular forms with q-expansions:

f(q) = 1 + 24q2 + 24q4 + 96q6 + 24q8 + 144q10 + 96q12 + · · ·
g(q) = q + 4q3 + 6q5 + 8q7 + 13q9 + 12q11 + 14q13 + · · · .
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Therefore, Θ4(q) = λf(q) + μg(q) for some constants λ, μ ∈ C. We
may compare q-expansions to find the values of λ and μ:

Θ4(q) =
∑
n≥0

S4(n)qn = 1 + 8q + 24q2 + 32q3 + 24q4 + · · ·

λf(q) + μg(q) = λ + μq + 24λq2 + 4μq3 + · · · .

Therefore, it is clear that λ = 1 and μ = 8, so Θ4 = f + 8g. Since
the expansions of f and g are easy to calculate (for example, using
Sage; see Appendix A.2), we can easily calculate the coefficients of
the q-expansion of Θ and, therefore, values of S4(n).

The exact formulas given above for Sk(n), however, follow from
some deeper facts. Here is a sketch of the ideas involved (the reader
may skip these details for now and return here after reading Chapter
4): given Θ4 =

∑
cnq

n and F (q) =
∑

(
∑

d|n d)qn, one can find an
eigenvector G(q) =

∑
bnq

n for a collection of linear maps Tn (the so-
called Hecke operators, Tn : M2(Γ1(4)) → M2(Γ1(4))) among spaces
of modular forms, i.e., Tn(G) = λnG for n > 1, and the eigenvalues
λn = bn/b1 =

∑
d|n d. Moreover, the eigenvector G can be written

explicitly as a combination of Θ4 and F . Finally, one can show that
the coefficients cn must be given by the formula cn = 8

∑
d|n, 4�d d

(see [Kob93], III, §5, for more details).

1.3. L-functions

An L-function is a function L(s), usually given as an infinite series of
the form

L(s) =
∞∑
n=1

ann
−s =

∞∑
n=1

an
ns

= a1 +
a2
2s

+
a3
3s

+ · · ·

with some coefficients an ∈ C. Typically, the function L(s) con-
verges for all complex numbers s in some half-plane (i.e., those s

with real part larger than some constant), and in many cases L(s)

has an analytic or meromorphic continuation to the whole complex
plane. Mathematicians are interested in L-functions because they
are objects from analysis that, sometimes, capture very interesting
algebraic information.
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Example 1.3.1 (The Riemann zeta function). The Riemann zeta
function, usually denoted by ζ(s), is perhaps the most famous L-
function:

ζ(s) =

∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · · .

The reader may already know some values of ζ. For example ζ(2) =∑
1
n2 is convergent by the p-series test, and its value is π2/6 (this

value can be computed using Fourier analysis and Parseval’s equality).
The connection between ζ(s) and number theory comes from the fact
that ζ(s) has an Euler product:

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

1

1 − p−s

=

(
1

1 − 2−s

)
·
(

1

1 − 3−s

)
·
(

1

1 − 5−s

)
· · · .

This Euler product is not difficult to establish (Exercise 1.4.8) and
has the very interesting consequence that any information on the
distribution of the zeros of ζ(s) can be translated into information
about the distribution of prime numbers among the natural numbers.

Example 1.3.2 (Dirichlet L-function). Let a,N ∈ N be relatively
prime integers. Are there infinitely many primes p of the form a+kN

(i.e., p ≡ a mod N) for k ≥ 0? The answer is yes and this fact,
known as Dirichlet’s theorem on primes in arithmetic progressions,
was first proved by Dirichlet using a particular kind of L-function
that we know today as a Dirichlet L-function.

Let N > 0. A Dirichlet character (modulo N) is a function
χ : (Z/NZ)× → C× that is a homomorphism of groups, i.e., χ(nm) =

χ(n)χ(m) for all n,m ∈ (Z/NZ)×. Notice that χ(n) ∈ C and
χ(n)ϕ(N) = 1 for all gcd(n,N) = 1. Therefore, χ(n) must be a root of
unity. We extend χ to Z as follows. Let a ∈ Z. If gcd(a,N) = 1, then
χ(a) = χ(a mod N). Otherwise, if gcd(a,N) �= 1, then χ(a) = 0.

A Dirichlet L-function is a function of the form

L(s, χ) =

∞∑
n=1

χ(n)

ns
,
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Figure 4. Johann Peter Gustav Lejeune Dirichlet (1805-
1859) and Georg Friedrich Bernhard Riemann (1826-1866).

where χ is a given Dirichlet character. For example, one can take χ0

to be the trivial Dirichlet character, i.e., χ0(n) = 1 for all n ≥ 1. Then
L(s, χ0) is the Riemann zeta function ζ(s). Dirichlet L-functions also
have Euler products:

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

∏
p

1

1 − χ(p)p−s
.

The idea of the proof of Dirichlet’s theorem generalizes the fol-
lowing proof, due to Euler, of the infinitude of the primes. Consider
ζ(s) =

∑∞
n=1

1
ns =

∏
p

1
1−p−s and suppose there are only finitely many

primes. Then the product over all primes is finite, and therefore its
value at s = 1 would be finite (a rational number, in fact). However,
ζ(1) =

∑∞
n=1 1/n is the harmonic series, which diverges! Therefore,

there must be infinitely many prime numbers.

Dirichlet adapted this argument by looking instead at a different
function:

Ψa,N (s) =
∑

p≡a mod N

1

ps
.
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He showed that (a) for every non-trivial Dirichlet character χ modulo
N , we have L(1, χ) �= 0 or ∞, and (b) this implies that Ψa,N (1)

diverges to ∞. Part (b) follows from the equality

log(ζ(s)) +
∑

χ mod N
χ �=1

χ(a)−1 log(L(s, χ))

= φ(N)

⎛
⎝ ∑

p≡a mod N

1

ps

⎞
⎠ + g(s),

where g(s) is a function with g(1) finite, and φ is the Euler φ-function.
Therefore, there cannot be a finite number of primes of the form
p ≡ a mod N .

Example 1.3.3 (Representations of integers as sums of squares). Is
the number n > 0 a sum of three integer squares? In Subsection 1.2,
we saw formulas for the number of representations of an integer as a
sum of k = 2, 4, 6 and 8 integer squares, but we avoided the same
question for odd k. The known formulas for S3(n), S5(n) and S7(n)

involve values of Dirichlet L-functions.

Let us first define the Dirichlet character that we shall use here.
The reader should be familiar with the Legendre symbol

(
n
p

)
, which

is equal to 0 if p|n, equal to 1 if n is a square mod p, and equal to
−1 if n is not a square mod p. Let m > 0 be a natural number
with prime factorization m =

∏
i pi (the primes are not necessarily

distinct). First we define

(n
2

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if n is even,
1 if n ≡ ±1 mod 8,
−1 if n ≡ ±3 mod 8.

Now we are ready to define the Kronecker symbol of n over m > 0 by
( n

m

)
=

∏
i

(
n

pi

)
.

For any n > 0, the symbol
(−n

)
induces a Dirichlet character χn

defined by χn(a) =
(−n

a

)
, and we can define the associated L-function
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by

L(s, χn) =
∞∑
a=1

χn(a)

as
.

We are ready to write down the formula for S3(n), due to Gauss,
Dirichlet and Shimura (there are also formulas for S5(n), due to Eisen-
stein, Smith, Minkowski and Shimura, and a formula for S7(n), also
due to Shimura). For simplicity, let us assume that n is odd and
square free (for the utmost generality, please check [Shi02]):

S3(n) =

{
0 if n ≡ 7 mod 8,
24

√
n

π L(1, χn) otherwise.

The reader is encouraged to investigate this problem further by at-
tempting Exercises 1.4.6 and 1.4.7.

1.4. Exercises

Exercise 1.4.1. Use the divisibility properties of integers to show
that the only solutions to y2 = x(x + 1)(x + 2) with x, y ∈ Z are
(0, 0), (−1, 0) and (−2, 0). (Hint: If a and b are relatively prime and
ab is a square, then a is a square and b is a square.)

Exercise 1.4.2. Find all the Pythagorean triples (a, b, c), i.e., a, b, c ∈
Z and a2 + b2 = c2, such that b2 + c2 = d2 for some d ∈ Z. In other
words, find all the integers a, b, c, d such that (a, b, c) and (b, c, d)

are both Pythagorean triples. (Hint: You may assume that y2 =

x(x + 1)(x + 2) has no rational points other than (0, 0), (−1, 0) and
(−2, 0).)

Exercise 1.4.3. Prove Proposition 1.1.3; i.e., show that f((a, b, c)) is
a point in En, that g((x, y)) is a triangle in Cn and that f(g((x, y))) =

(x, y) and g(f((a, b, c))) = (a, b, c).

Exercise 1.4.4. Calculate S4(n), for n = 1, 3, 5, 6, by hand, using
Jacobi’s formula and also by finding all possible ways of writing n as
a sum of 4 squares.

Exercise 1.4.5. The goal of this problem is to find the q-expansion
of Θ6(q):
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(1) Find by hand the values of S6(n), for n = 0, 1, 2; i.e., find
all possible ways to write n = 0, 1, 2 as a sum of 6 squares.

(2) Using Sage, calculate the dimension of M k
2
(Γ1(4)) (see Ap-

pendix A.2) and a basis of modular forms for k = 6.

(3) Write Θ6 as a linear combination of the basis elements found
in part 2.

(4) Use part 3 to write the q-expansion of Θ6 up to O(q20).

(5) Use the expansion of Θ6 to verify that S6(4) = 252. Also,
calculate S6(19) using Jacobi’s formula and verify that it
coincides with the coefficient of Θ6 in front of the q19 term.

Exercise 1.4.6. Show that any integer n ≡ 7 mod 8 cannot be rep-
resented as a sum of three integer squares.

Exercise 1.4.7. Find the number of representations of n = 3 as a
sum of 3 squares. Then compare your result with the value of the
formula given in Example 1.3.3; i.e., use a computer to approximate

S3(3) =
24
√

3

π
L(1, χ3) =

24
√

3

π

∞∑
a=1

(−3
a

)
a

by adding the first 10, 000 terms of L(1, χ3). Do the same for n = 5

and n = 11. Does the formula seem to work for n = 2? (Note: the
command kronecker(-n,m) calculates the Kronecker symbol

(−n
m

)
in

Sage.)

Exercise 1.4.8. Prove that the Riemann zeta function ζ(s) =
∑∞

n=1
1
ns

has an Euler product; i.e., prove the following formal equality of series
∞∑

n=1

1

ns
=

∏
p prime

1

1 − p−s
.

(Hint: There are two possible approaches:

Hint (a). Expand the right-hand side using the Fundamental Theorem
of Arithmetic and the algebraic equality 1

1+x =
∑∞

k=0 x
k.

[This approach helps build an intuition about what is going
on, but may be hard to write into a rigorous proof]

Hint (b). Calculate (1− 1/2s)ζ(s) and (1− 1/3s)(1− 1/2s)ζ(s), etc.)


