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Opening Thoughts:
Welcome to the Jungle

One of the most fundamental notions in mathematics is that of num-
ber. Although the idea of number is basic, the numbers themselves
possess both nuance and complexity that spark the imagination.

Mathematics is the queen of the sciences and
number theory is the queen of mathematics.

— Carl Friedrich Gauss

Welcome to diophantine analysis—an area of number theory in
which we attempt to discover hidden treasures and truths within
the jungle of numbers by exploring the rational numbers. Diophan-
tine analysis comprises two different but interconnected domains—
diophantine approximation and diophantine equations.

The rational numbers are creatures that appear both familiar
and understandable. In comparison, the irrational numbers, in some
sense, seem completely enigmatic. If we think about the rational
numbers as sitting in the real line, then diophantine approximation
can be viewed as an exploration of the number line under a micro-
scope. If we view a piece of the real number line under higher and
higher magnification we would see the following:

1



2 Opening Thoughts: Welcome to the Jungle

A piece of the real number line

A tiny portion of the previous line segment magnified

Thus we see that the line is such a dense number jungle that higher
magnification reveals no greater detail. We’ll discover that some of
the rich and beautiful structure of numbers can be brought into focus
by examining how well irrational numbers can be approximated by
rational ones. This strategy is the essence of diophantine approxima-
tion.

The other side of diophantine analysis, the study of diophantine
equations, revolves around the following basic question: How can an
equation be solved if the variables are to take only integer (or rational)
values? For example, let’s consider the equation

22— Ty’ =1

Clearly (£1,0) are solutions, but we’ll consider these trivial solutions.
Are there any nontrivial integer solutions? Are there infinitely many
integer solutions? Is there an algorithm to generate them all? The
following graph depicts the real solutions to the equation.
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Does that hyperbola contain integer lattice points other than (+1,0)?
Perhaps the curve carefully navigates itself so as to miss all other
integer points. A quick search reveals that (8, 3) satisfies the equation
and thus there exist nontrivial solutions. Are there others?

Let’s perform some algebraic gymnastics with our new-found,
nontrivial solution:

82— 7(3)% = (8 - 3\f7) (8 + 3\f7) —1,

and thus
1

8
3 VT = YO = 0.020915 - - .
From the previous identity we discover that % is impressively close to
the irrational v/7, and therefore we see that an integer solution to the
equation leads to an amazing rational approximation to an associated
irrational number. This observation illustrates a surprising connec-
tion between diophantine approximation and diophantine equations.
This intriguing interplay will be a recurring theme throughout our
journey.

The name “diophantine” honors Diophantus, a mathematician
who lived in Alexandria sometime between 150 and 350 A.D. Dio-
phantus is known for his passion for finding integer solutions to certain
equations, and he was the author of the seminal work Arithmetica. In
fact it was while Pierre de Fermat was reading Arithmetica that he
was inspired to jot a note in the small margin which only later became
known as Fermat’s Last Theorem. Very few details are known about
the personal life of Diophantus outside of the following conundrum
that appeared in Greek Anthology from 600 A.D.:

God granted him to be a boy for the sizth part of
his life, and adding a twelfth part to this, He clothed
his cheeks with down. He lit him the light of wedlock
after a seventh part, and five years after his marriage
He granted him a son. Alas! late-born wretched child;
after attaining the measure of half his father’s life,
chill Fate took him. After consoling his grief by this
science of numbers for four years he ended his life.
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Given this brief life history, your first challenge now awaits:

How old was Diophantus when he died?

Little background is required for the journey ahead, and a famil-
iarity with number theory is not expected. An understanding of cal-
culus and basic linear algebra together with the desire and ability to
prove theorems are all that is needed for most of the material. Toward
the end of this book, a few modules require some familiarity with be-
ginning abstract algebra. Each mathematical theme is presented in a
self-contained manner and is motived by very basic notions. However
beware: There are a few major jolts along the way—some extremely
challenging questions and even some open problems are thrown in!

In this book, you as the reader will be an active participant in
the explorations that lie ahead. In fact, the cover art illustrates this
theme—hidden in the front and back covers are “magic” stereogram
images. The secret to seeing the hidden images is to gaze at the cover
but focus (converge your eyes) on a position twice as far away as
the cover. After a few minutes the 3-D image should appear (helpful
viewing hints are included on the inside of the front cover). Thus
by actively participating, you will be able to discover the otherwise
invisible structure and richness in the number jungle.

Each module comprises a sequence of numbered questions that
you are asked to answer and statements that you are asked to verify.
Many hints and remarks are included and should be freely utilized
and enjoyed. The hints do not reveal any answers; instead they are
designed to give a gentle push in a particular direction. They are
placed at the end of the book only to allow readers, if they wish,
to think about the issues first without being distracted. There is no
wrong way of using the hints, and readers are welcome to immediately
visit them if they wish. There are three types of (star-struck) hints,
and throughout the text you will see the symbols [* HINT], [x * HINT],
and [* * x HINT]. A one-starred hint provides a tiny nudge to help get
you started. A two-starred hint contains more extensive remarks and
suggestions, and a three-starred hint is more significant and perhaps
includes an outline or overview of a plan of attack. Each module closes
with a Big Picture Question that invites you to step back from all the
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technical details and take a panoramic view of how the ideas at hand
fit into the larger mathematical landscape. Commentaries for selected
Big Picture Questions are also included at the end of the book. With
the text as your guide and your own creative contributions as the
points of interest, I hope you find your journey to be a truly interactive
experience.

...the primary question was not What we know,
but How do we know it.

— Aristotle

Although this book is small, its aims are not. The book is an
invitation to develop the ideas of diophantine analysis and to discover
the fundamental results on your own. I believe that this subject is one
of the most beautiful and rich areas of mathematics, and I hope you
will share my point of view and enjoy the sights and challenges that
lie ahead. This book also provides a setting where different areas and
ideas of mathematics come together. Here you will see basic notions
from algebra, analysis, geometry, and topology join together as one
collective whole. Most importantly however, I hope that through the
process of actively generating the ideas behind the subject, you will
continue to hone the habits of thought required to analyze issues and
reason in a more effective and creative manner.

Uncovering the mysterious structure of number has been one of
the great intellectual challenges of human history. I hope you en-
joy your journey through the beautiful mathematics that lies ahead
and enjoy the challenge of conquering this area of number theory for
yourself. You can do it!

With all good wishes,

Edward Burger
January 1, 2000



Module 9

Liouville’s work on
numbers algebraic and
not

In Module 7 we saw that there are numbers «, namely badly approx-
imable numbers, for which the inequality | —p/q| < 1/¢* is best
possible in that the exponent on ¢ cannot be improved for infinitely
many rationals. We've also seen that every quadratic irrational is
badly approximable.

In this module we consider the case when « is an algebraic num-
ber, but not quadratic. Will such an irrational number be badly ap-
proximable? Will such a number not be badly approximable? These
questions lead us to consider lower bounds for the quantity |a—p/q].
The first major result in this direction was given in 1844 by Liouville.
As a consequence of Liouville’s work, humankind, for the first time,
was treated to a proof of the fact that transcendental numbers ex-
ist. This spectacular episode is another instance of how diophantine
inequalities give rise to incredible, seemingly unrelated, discoveries.
Liouville’s beautiful theorem has also inspired an enormous amount
of new mathematics and led to many important results within num-
ber theory and beyond. As we will see for ourselves, Liouville’s work
is one of the jewels of diophantine approximation.
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Exactly 30 years after Liouville’s result, Cantor developed his
deep and revolutionary theory of sets. We’'ll close this module with
some diophantine consequences of Cantor’s work.

A number « is said to be algebraic if it is a root of a polynomial
of the form

f(z)= anzNy +ay_ 12N+ a1z + ag,

where a, € Z and any # 0. The minimal polynomial associated
with an algebraic number « is the polynomial with (relatively prime)
integer coefficients, ay > 0, having the smallest degree for which « is
a root. In other words, it is the irreducible polynomial associated with
a—the polynomial that cannot be factored into two polynomials with
integer coefficients each having degrees less than N. For example,
V/3 is algebraic because it is a root of the polynomial h(z) = z* - 9.
However, h(z) is not the minimal polynomial for /3 since h(z) can be
factored further: h(z) = (2% —3) (2% + 3). The minimal polynomial
for 4/3 is in fact f(z) = 22 — 3. Notice that f(z) is irreducible.
We define the degree of an algebraic number to be the degree of its
minimal polynomial. So the degree of v/3 is 2.

A number that is not algebraic is called transcendental. Certainly,
as we've seen in the previous paragraph, algebraic numbers exist. Do
transcendental numbers exist? This question was one of the major
open problems from 19th-century mathematics. This question was
finally answered by Liouville who used techniques from diophantine
approximation.

Liouville’s Theorem provides a measure for how well algebraic

numbers can be approximated by rational numbers that are not too
complicated. We edge our way up to Liouville’s result slowly.

9.1. Suppose that f(z) is a differentiable function and a and b are
real numbers satisfying |a — b| < 1. Use the Mean Value Theorem to
give a bound of the form

[f(b) = f(a)] < C(f,a)[b—al,

where C(f,a) is a constant that just depends upon the function f
and the number a, but not on b.
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9.2. Suppose that f(z) is a nonconstant polynomial. If 0 < |a —b| <
1, then the constant C(f,a) found above is nonzero.

LEMMA 9.3. Let f(x) be a polynomial of degree d, with integer co-
efficients. Suppose that the rational number p/q is not a root of f.

Then
1
7= (2)]

LEMMA 9.4. Suppose that « is a real number and p/q is a rational
number such that |« — p/q| > 1. Then for any positive integer d,

1<
g~

a— =
q

:

9.5. LIOUVILLE’S THEOREM. Let o be a real algebraic number of
degree d > 2. Then there exists a constant ¢ = ¢(«) > 0 such that for
all rational numbers p/q,

[* * x HINT]

9.6. Show that Liouville’s Theorem implies that all rational numbers
near algebraic numbers are complicated. Specifically, show that if «
is an algebraic number and p/q is a rational number that is very, very
close to a, then the height of p/q (i.e., ¢) must be very large.

9.7. Suppose that « is a transcendental number (note that at this
point we do not know if such animals exist). Does Liouville’s Theorem
imply anything about how well a can be approximated by rationals
having small height?

9.8. What is the contrapositive of Liouville’s Theorem? What does
that statement imply about numbers that have amazing approxima-
tions by rationals of small height?

An important consequence of Liouville’s celebrated result is the
existence of transcendental numbers.
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THEOREM 9.9. Let

a= Z 10~ = 0.1100010000000000000000010000 - - - .
n=1

Then « 1s a transcendental number.

[** HINT]

Congratulations—you’ve just demonstrated that a particular number
is transcendental! Feel free to enjoy your triumph!

Thirty years after Liouville proved his result, Cantor produced
his work on the cardinality of sets which gave a different, albeit non-
effective, proof of the existence of transcendental numbers. Cantor’s
work demonstrated that most numbers are transcendental. But even
today it remains extremely difficult to prove that a particular number
is transcendental. Liouville’s Theorem, on the other hand, allows us
to exhibit explicit examples. Before closing, we consider the work of
Cantor and explore its consequences within the context of diophantine
analysis.

An infinite set S is said to be countable if it has the same car-
dinality as the set of the natural numbers, that is, if there exists a
one-to-one correspondence between the natural numbers and the ele-
ments of S. An infinite set T is called uncountable if there does not
exist a one-to-one correspondence between the elements of T" and the
natural numbers.

9.10. Is the collection of algebraic numbers a countable or uncount-
able set? Justify your answer.

9.11. Are there uncountably many badly approximable numbers?
Are there uncountably many numbers that are not badly approx-
imable? As always, justify your answers with proofs. Suppose we
randomly picked a real number from the number line. Do you think
it is more likely that we would have selected a badly approximable
number or a non-badly approximable number? Just make a guess
(conjecture) without any justification.
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9.12. Suppose that « and (3 are both badly approximable. Suppose
also that o« + 8 ¢ Q. Then must o + 8 be badly approximable?
Is it possible that o 4+ 3 is not badly approximable? What about
aff? What about 1/a? What about bad, where b and d are nonzero
rational numbers? Give justifications for those questions that you
can answer (provide a general proof when you can or an illustative
example otherwise). If you cannot justify your answer to a question,
then just state your guess.

[* * * REMARK]|

9.13. Do badly approximable transcendental numbers exist? If so,
explain why. If not, prove why not.

9.14. Do badly approximable algebraic numbers exist? Do badly
approximable algebraic irrational numbers of any degree exist?

[* * * REMARK|

We close this module with three amusing remarks regarding e and
m. First, if we try to compute the beginning of the continued fraction
expansion for e, we would see

e=102,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,..].

It has been shown that the apparent pattern, in fact, continues and
thus the continued fraction expansion for e is completely understood.
In particular, we see that e is not a badly approximable number. If
we calculate the first few partial quotients of m, we would have

7 =1[3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1, 15,
3,13,1,4,2,6,6,99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,1,
1,12,1,1,1,3,1,1,8,1,1,2,1,6,1,1,5,2,2,3,1,2,4,4, 16, 1, 161,
45,1,22,1,2,2,1,4,1,2,24,1,2,1,3,1,2,1,1,10,2,5,4,1,2,2, 8,
1,5,2,2,26,1,4,1,1,8,2,42,2,1,7,3,3,1,1,7,2,4,9,7,2,3, 1,
57,1,18,1,9,19,1,2,18,1,3,7,30,1,1,1,3,3,3,1,2,8,1,1,2, 1,
15,1,2,13,1,2,1,4,1,12,1,1,3,3,28,1,10,3,2,20,1,1,1, 1,4, 1,
1,1,5,3,2,1,6,1,4,1,120,2, .. ..
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It is an open question as to whether or not the apparent lack of
pattern continues. In particular, the question of whether 7 is a badly
approximable number or not remains open. The general consensus
is that 7 is not badly approximable, but for now that is nothing
more than a guess. Finally, you are welcome to ask the same types of
questions for various other numbers, for example e+m. Unfortunately,
no one has been able to prove that e+ 7 is even an irrational number.
We’ll leave this as a bonus problem.

Big Picture Question. What is the basic idea behind Liouville’s
argument? Numbers having similar diophantine structure as that
of the a from Theorem 9.9 are known as Liouville numbers. All
Liouville numbers are transcendental, and the proof of Theorem 9.9
can be adapted to show that these numbers are transcendental. What
should be the definition of a Liouwville number?

(See Appendix 1 for some commentary on this question.)

Further Challenge. Suppose that a = [ag, a1,az,...] is an irra-
tional number with the property that there is an infinite subsequence
of partial quotients {ay,} that grows incredibly fast. In particular,
suppose that a,, > ¢’ |, where g, denotes the denominator of the
nth convergent of a. Prove that o must be transcendental.
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