
Preface

If we split a set into two parts, will at least one of the parts behave like

the whole? Certainly not in every aspect. But if we are interested only

in the persistence of certain small regular substructures, the answer

turns out to be “yes”.

A famous example is the persistence of arithmetic progressions.

The numbers 1, 2, . . . ,N form the most simple arithmetic progres-

sion imaginable: The next number differs from the previous one by

exactly 1. But the numbers 4, 7, 10, 13, . . . also form an arithmetic

progression, where each number differs from its predecessor by 3.

So, if we split the set {1, . . . ,N} into two parts, will one of them

contain an arithmetic progression, say of length 7? Van der Waerden’s

theorem, one of the central results of Ramsey theory, tells us precisely

that: For every k there exists a number N such that if we split the

set {1, . . . ,N} into two parts, one of the parts contains an arithmetic

progression of length k.

Van der Waerden’s theorem exhibits the two phenomena, the

interplay of which is at the heart of Ramsey theory:

● Principle 1: If we split a large enough object with a certain

regularity property (such as a set containing a long arith-

metic progression) into two parts, one of the parts will also

exhibit this property (to a certain degree).
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● Principle 2: When proving Principle 1, “large enough”

often means very, very, very large.

The largeness of the numbers encountered seems intrinsic to Ram-

sey theory and is one of its most peculiar and challenging features.

Many great results in Ramsey theory are actually new proofs of known

results, but the new proofs yield much better bounds on how large an

object has to be in order for a Ramsey-type persistence under parti-

tions to take place. Sometimes, “large enough” is even so large that

the numbers become difficult to describe using axiomatic arithmetic—

so large that they venture into the realm of metamathematics.

One of the central issues of metamathematics is provability. Sup-

pose we have a set of axioms, such as the group axioms or the ax-

ioms for a vector space. When you open a textbook on group theory

or linear algebra, you will find results (theorems) that follow from

these axioms by means of logical deduction. But how does one know

whether a certain statement about groups is provable (or refutable)

from the axioms at all? A famous instance of this problem is Euclid’s

fifth postulate (axiom), also known as the parallel postulate. For more

than two thousand years, mathematicians tried to derive the parallel

postulate from the first four postulates. In the 19th century it was fi-

nally discovered that the parallel postulate is independent of the first

four axioms, that is, neither the postulate nor its negation is entailed

by the first four postulates.

Toward the end of the 19th century, mathematicians became in-

creasingly disturbed as more and more strange and paradoxical re-

sults appeared. There were different sizes of infinity, one-dimensional

curves that completely fill two-dimensional regions, and subsets of the

real number line that have no reasonable measure of length, or there

was the paradox of a set containing all sets not containing them-

selves. It seemed increasingly important to lay a solid foundation

for mathematics. David Hilbert was one of the foremost leaders of

this movement. He suggested finding axiom systems from which all

of mathematics could be formally derived and in which it would be

impossible to derive any logical inconsistencies.

An important part of any such foundation would be axioms which

describe the natural numbers and the basic operations we perform on
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them, addition and multiplication. In 1931, Kurt Gödel published

his famous incompleteness theorems, which dealt a severe blow to

Hilbert’s program: For any reasonable, consistent axiomatization of

arithmetic, there are independent statements—statements which can

be neither proved nor refuted from the axioms.

The independent statements that Gödel’s proof produces, how-

ever, are of a rather artificial nature. In 1977, Paris and Harrington

found a result in Ramsey theory that is independent of arithmetic.

In fact, their theorem is a seemingly small variation of the original

Ramsey theorem. It is precisely the very rapid growth of the Ram-

sey numbers (recall Principle 2 above) associated with this variation

of Ramsey’s theorem that makes the theorem unprovable in Peano

arithmetic.

But if the Paris-Harrington principle is unprovable in arithmetic,

how do we convince ourselves that it is true? We have to pass from

the finite to the infinite. Van der Waerden’s theorem above is of a

finitary nature: All sets, objects, and numbers involved are finite.

However, basic Ramsey phenomena also manifest themselves when

we look at infinite sets, graphs, and so on. Infinite Ramsey theo-

rems in turn can be used (and, as the result by Paris and Harrington

shows, sometimes have to be used) to deduce finite versions using

the compactness principle, a special instance of topological compact-

ness. If we are considering only the infinite as opposed to the finite,

Principle 2 in many cases no longer applies.

● Principle 1 (infinite version): If we split an infinite ob-

ject with a certain regularity property (such as a set contain-

ing arbitrarily long arithmetic progressions) into two parts,

one infinite part will exhibit this property, too.

If we take into account, on the other hand, that there are differ-

ent sizes of infinity, as reflected by Cantor’s theory of ordinals and

cardinals, Principle 2 reappears in a very interesting way. Moreover,

as with the Paris-Harrington theorem, it leads to metamathematical

issues, this time in set theory.
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It is the main goal of this book to introduce the reader to the

interplay between Principles 1 and 2, from finite combinatorics to set

theory to metamathematics. The book is structured as follows.

In Chapter 1, we prove Ramsey’s theorem and study Ramsey

numbers and how large they can be. We will make use of the proba-

bilistic methods of Paul Erdős to give lower bounds for the Ramsey

numbers and a result in extremal graph theory.

In Chapter 2, we prove an infinite version of Ramsey’s theorem

and describe how theorems about infinite sets can be used to prove

theorems about finite sets via compactness arguments. We will use

such a strategy to give a new proof of Ramsey’s theorem. We also

connect these arguments to topological compactness. We introduce

ordinal and cardinal numbers and consider generalizations of Ram-

sey’s theorem to uncountable cardinals.

Chapter 3 investigates other classical Ramsey-type problems and

the large numbers involved. We will encounter fast-growing functions

and make an analysis of these in the context of primitive recursive

functions and the Grzegorczyk hierarchy. Shelah’s elegant proof of

the Hales-Jewett theorem, and a Ramsey-type theorem with truly

explosive bounds due to Paris and Harrington, close out the chapter.

Chapter 4 deals with metamathematical aspects. We introduce

basic concepts of mathematical logic such as proof and truth, and we

discuss Gödel’s completeness and incompleteness theorems. A large

part of the chapter is dedicated to formulating and proving the Paris-

Harrington theorem.

The results covered in this book are all cornerstones of Ramsey

theory, but they represent only a small fraction of this fast-growing

field. Many important results are only briefly mentioned or not ad-

dressed at all. The same applies to important developments such as

ultrafilters, structural Ramsey theory, and the connection with dy-

namical systems. This is done in favor of providing a more complete

narrative explaining and connecting the results.

The unsurpassed classic on Ramsey theory by Graham, Roth-

schild, and Spencer [24] covers a tremendous variety of results. For

those especially interested in Ramsey theory on the integers, the book
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by Landman and Robertson [43] is a rich source. Other reading sug-

gestions are given throughout the text.

The text should be accessible to anyone who has completed a

first set of proof-based math courses, such as abstract algebra and

analysis. In particular, no prior knowledge of mathematical logic

is required. The material is therefore presented rather informally

at times, especially in Chapters 2 and 4. The reader may wish to

consult a textbook on logic, such as the books by Enderton [13] and

Rautenberg [54], from time to time for more details.

This book grew out of a series of lecture notes for a course on

Ramsey theory taught in the MASS program of the Pennsylvania

State University. It was an intense and rewarding experience, and the

authors hope this book conveys some of the spirit of that semester

back in the fall of 2011.

It seems appropriate to close this introduction with a few words

on the namesake of Ramsey theory. Frank Plumpton Ramsey (1903–

1930) was a British mathematician, economist, and philosopher. A

prodigy in many fields, Ramsey went to study at Trinity College

Cambridge when he was 17 as a student of economist John May-

nard Keynes. There, philosopher Ludwig Wittgenstein also served as

a mentor. Ramsey was largely responsible for Wittgenstein’s Tracta-

tus Logico-Philosophicus being translated into English, and the two

became friends.

Ramsey was drawn to mathematical logic. In 1928, at the age

of 25, Ramsey wrote a paper regarding consistency and decidability.

His paper, On a problem in formal logic, primarily focused on solv-

ing certain problems of axiomatic systems, but in it can be found a

theorem that would become one of the crown jewels of combinatorics.

Given any r, n, and μ we can find an m0 such that, if m ≥ m0

and the r-combinations of any Γm are divided in any manner

into μ mutually exclusive classes Ci (i = 1, 2, . . . , μ), then Γm

must contain a sub-class Δn such that all the r-combinations

of members of Δn belong to the same Ci. [53, Theorem B,

p. 267]



xiv Preface

Ramsey died young, at the age of 26, of complications from

surgery and sadly did not get to see the impact and legacy of his

work.
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