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This book is part of a collection published jointly by the American

Mathematical Society and the MASS (Mathematics Advanced Study

Semesters) program as a part of the Student Mathematical Library

series. The books in the collection are based on lecture notes for

advanced undergraduate topics courses taught at the MASS (Math-

ematics Advanced Study Semesters) program at Penn State. Each

book presents a self-contained exposition of a non-standard mathe-

matical topic, often related to current research areas, which is acces-

sible to undergraduate students familiar with an equivalent of two

years of standard college mathematics, and is suitable as a text for

an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced

undergraduate students from across the USA. The program’s curricu-

lum amounts to sixteen credit hours. It includes three core courses

from the general areas of algebra/number theory, geometry/topol-

ogy, and analysis/dynamical systems, custom designed every year; an

interdisciplinary seminar; and a special colloquium. In addition, ev-

ery participant completes three research projects, one for each core

course. The participants are fully immersed into mathematics, and

this, as well as intensive interaction among the students, usually leads

vii



viii Foreword: MASS at Penn State University

to a dramatic increase in their mathematical enthusiasm and achieve-

ment. The program is unique for its kind in the United States.

Detailed information about the MASS program at Penn State can

be found on the website www.math.psu.edu/mass.



Chapter 2

Infinite Ramsey theory

2.1. The infinite Ramsey theorem

In this chapter, we will look at Ramsey’s theorem for colorings of

infinite sets. We start with the simplest infinite Ramsey theorem.

We carry over the notation from the finite case. Given any set Z and

a natural number p ≥ 1, [Z]p denotes the set of all p-element subsets

of Z, or simply the p-sets of Z.

Theorem 2.1 (Infinite Ramsey theorem). Let Z be an infinite set.

For any p ≥ 1 and r ≥ 1, if [Z]p is colored with r colors, then there

exists an infinite set H ⊆ Z such that [H]p is monochromatic.

Compared with the finite versions of Ramsey’s theorem in Chap-

ter 1, the statement of the theorem seems rather elegant. This is due

to a robustness of infinity when it comes to subsets: It is possible to

remove infinitely many elements from an infinite set and still have

an infinite set. It is customary to call a monochromatic set H as in

Theorem 2.1 a homogeneous (for c) subset, and from here on we

will use monochromatic and homogeneous interchangeably.

Proof. Fix r ≥ 1. We will proceed via induction on p. For p =
1 the statement is the simplest version of an infinite pigeonhole

principle:

41



42 2. Infinite Ramsey theory

If we distribute infinitely many objects into finitely many

drawers, one drawer must contain infinitely many objects.

In our case, the drawers are the colors 1, . . . , r, and the objects are

the elements of Z.

Next assume p > 1 and let c ∶ [Z]p → {1, . . . , r} be an r-coloring

of the p-element subsets of Z.

To use the induction hypothesis, we fix an arbitrary element z0 ∈
Z and use c to define a coloring of (p − 1)-sets: For {b1, . . . , bp−1} ∈
[Z ∖ {z0}]p−1, define

c0(b1, . . . , bp−1) ∶= c(z0, b1, . . . , bp−1).

Note that Z∖{z0} is still infinite. Hence, by the inductive hypoth-

esis, there exists an infinite homogeneous Z1 ⊆ Z ∖ {z0} for c0, which

in turn means that all p-sets {z0, b1, . . . , bp−1} with b1, . . . , bp−1 ∈ Z1

have the same c-color.

Pick an element z1 of Z1. Now define a coloring of the (p−1)-sets
of Z1 ∖ {z1}: For b1, . . . , bp−1 ∈ Z1 ∖ {z1}, put

c1(b1, . . . , bp−1) ∶= c(z1, b1, . . . , bp−1).

Again, our inductive hypothesis tells us that there is an infinite

homogeneous subset Z2 ⊆ Z1 ∖ {z1} for c1.

We can continue this construction inductively and obtain infinite

sets Z ⊃ Z1 ⊃ Z2 ⊃ Z3 ⊃ ⋯, where Zi+1 is homogeneous for a coloring

ci of the (p−1)-sets of Zi that is derived from c by fixing one element

zi of Zi, and thus all p-sets of {zi} ∪ Zi+1 that contain zi have the

same ci-color.

By virtue of our choice of the Zi and the zi, the sequence of the

zi has the crucial property that for any i ≥ 0,

{zi+1, zi+2, . . .}

is homogeneous for ci (namely, it is a subset of Zi+1). Let ki de-

note the color (∈ {1, . . . , r}) for which the homogeneous set Zi+1 is

monochromatic.

Now use the infinite pigeonhole principle one more time: At least

one color, say k∗, must occur infinitely often among the ki. Collect
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the corresponding zi’s in a set H. We claim that H is homogeneous

for c.

To verify the claim, let {h1, h2, . . . , hp} ⊂ H. Every element of H

is a zi, i.e. there exist i1, . . . , ip such that

h1 = zi1 , . . . , hp = zip .

Without loss of generality, we can assume that i1 < i2 < ⋅ ⋅ ⋅ < ip
(otherwise reorder). Then {h1, h2, . . . , hp} ⊂ Zi1 , and hence the color

of {h1, h2, . . . , hp} is ki1 = k∗ (all the colors corresponding to a zj in

H are equal to k∗). The choice of {h1, h2, . . . , hp} was arbitrary, and

thus H is homogeneous for c. �

Conceptually, this proof is not really different from the proofs of

the finite Ramsey theorem, Theorem 1.31. We start with an arbitrary

element of Z and “thin out” the set N so that all possible completions

of this element to a p-set have the same c-color. We pick one of the

remaining elements and do the same for all other remaining elements,

and so on. Then we apply the pigeonhole principle one more time

to homogenize the colors. The difference is that in the finite case we

argued that if we start with enough numbers (or vertices), the process

will produce a large enough finite sequence of numbers (vertices). In

the infinite case, the process never stops. This is the robustness of

infinity mentioned above: It is possible to take out infinitely many

elements infinitely many times from an infinite set and still end up

with an infinite set. In some sense, the set we end up with (H) is

smaller than the set we started with (Z). But in another sense, it is

of the same size: it is still infinite.

This touches on the important concept of infinite cardinalities, to

which we will return in Section 2.5.

2.2. König’s lemma and compactness

As noted before, the infinite Ramsey theorem is quite elegant, in

that its nature seems more qualitative than quantitative. We do not

have to worry about keeping count of finite cardinalities. Instead, the

robustness of infinity takes care of everything.
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It is possible to exploit infinitary results to prove finite ones. This

technique is usually referred to as compactness. The essential ingre-

dient is a result about infinite trees known as König’s lemma. This

is a purely combinatorial statement, but we will see in the next section

that it can in fact be seen as a result in topology, where compactness

is originally rooted.

Using compactness relieves us of much of the counting and book-

keeping we did in Chapter 1, but usually at the price of not being

able to derive bounds on the finite Ramsey numbers. In fact, using

compactness often introduces huge numbers. In Chapters 3 and 4, we

will see how large these numbers actually get.

Partially ordered sets. In Section 1.2, we introduced trees as a

special family of graphs (those without cycles). We also saw that

every tree induces a partial order on its vertex set. Conversely, if

a partial order satisfies certain additional requirements, it induces a

tree structure on its elements, on which we will now elaborate.

Orders play a fundamental role not only in mathematics but in

many other fields from science to finance. Many things we deal with

in our life come with some characteristics that allow us to compare

and order them: gas mileage or horse power in cars, interest rates for

mortgages, temperatures in weather reports—the list of examples is

endless. Likewise, the mathematical theory of orders studies sets that

come equipped with a binary relation on the elements, the order.

Most mathematical orders you encounter early on are linear, and

they are so natural that we often do not even realize there is an

additional structure present. The integers, the rationals, and the reals

are all linearly ordered: If we pick any two numbers from these sets

one will be smaller than the other. But we can think of examples

where this is not necessarily the case. For example, take the set

{1,2,3} and consider all possible subsets:

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,2,3}.

We order these subsets by saying that A is smaller than B if A ⊂ B.

Then {1} is smaller than {1, 2}, but what about {1, 2} and {1,3}?
Neither is contained in the other, and so the two sets are incomparable

with respect to our order—the order is partial (Figure 2.1).
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 2.1. The subset partial order on {1,2,3}

The notion of a partially ordered set captures the minimum

requirements for a binary relation on a set to be meaningfully con-

sidered a partial order.

Definition 2.2. Let X be a set. A partial order on X is a binary

relation < on X such that

(P1) for all x ∈ X, x ≮ x (irreflexive);

(P2) for all x, y, z ∈ X, if x < y and y < z, then x < z (transitive).

The pair (X,<) is often simply called a poset. A partial order < on

X is linear (also called total) if additionally

(L) for all x, y ∈ X, x < y or x = y or y < x.

If (X,<) is a poset one writes, as usual, x ≤ y to express that

either x < y or x = y. As we saw above, the usual order on the integers,

rationals, and reals is linear, while the subset-ordering of the subsets

of {1,2,3} is a partial order but not linear. Another example of a

partial order that is not linear is the following: Let X = R2, and for

x = (x1, x2) and y = (y1, y2) in R2 put

x < y ⇐⇒ ∥x∥ < ∥y∥,
that is, we order vectors by their length. This order is not linear

since for each length l > 0, there are infinitely many vectors of length

l (which therefore cannot be compared).
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Trees from partial orders. Let (T,<) be a partially ordered set.

(T,<) is called a tree (as a partial order) if

(T1) there exists an r ∈ T such that for all x ∈ T , r ≤ x

(r is the root of the tree);

(T2) for any x ∈ T , the set of predecessors of x, {y ∈ T ∶ y < x}, is
finite and linearly ordered by <.

Note that not every poset is a tree. For example, in the set of

all subsets of {1,2,3}, the predecessors of {1, 2,3} are not linearly

ordered. Often a poset also lacks a root element. For example, the

usual ordering of the integers Z, ⋅ ⋅ ⋅ < −2 < −1 < 0 < 1 < 2 < ⋯, satisfies

neither (T1) nor (T2).

Trees arising from partial orders can be interpreted as graph-

theoretic trees, as introduced in Section 1.2. In fact, the elements

of T are called nodes, and sets of the form {y ∈ T ∶ y ≤ x} are called

branches.

Exercise 2.3. Let (T,<) be a tree (partial order). Define a graph by

letting the node set be T and connect two nodes if one is an immediate

predecessor of the other. (Node s is an immediate predecessor of t if

s < t and if for all u ∈ T , u < t implies u ≤ s.) Show that the resulting

graph is a tree in the graph-theoretic sense.

As an example, consider the set {0, 1}∗ of all binary strings . A

binary string σ is a finite sequence of 0s and 1s, for example,

σ = 01100010101.

We order strings via the initial segment relation: σ < τ if σ is shorter

than τ and the two strings agree on the bits of σ. For example, 011

is an initial segment of 01100, but 010 is not (the two strings disagree

on the third bit). It is not hard to verify that (P1) and (P2) hold for

this relation. Furthermore, the empty string λ is an initial segment

of any other string and the initial segments of a string are linearly

ordered by <; for example, for σ = 010010,

λ < 0 < 01 < 010 < 0100 < 01001 < σ.

Therefore, ({0,1}∗,<) is a tree, the full binary tree (Figure 2.2).
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λ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 2.2. The full binary tree up to strings of length 3

Paths and König’s lemma. While we think of branches as some-

thing finite—due to (T2)—a sequence of them can give rise to an

infinite branch, also called an infinite path.

Definition 2.4. An infinite path in a tree (T,≤) is a sequence

r = x0 < x1 < x2 < ⋯ where all xi ∈ T and for all i, {x ∈ T ∶ x < xi} =
{x0, x1, . . . , xi−1}.

One can think of an infinite path as a sequence of elements on

the tree where each element is a “one-step” extension of the previous

one. In the full binary tree, an infinite path corresponds to an infinite

sequence of zeros and ones.

It is clear that if a tree T has a path, then it must be infinite (i.e.

T as a set is infinite). But does the converse hold? That is:

If a tree is infinite, does it have a path?

It is easy to give an example to show that this is not true. Consider

the tree on N where 0 is the root and every number n ≥ 1 is an

immediate successor of 0 (an infinite fan of depth one).

Definition 2.5. A tree (T,≤) is finitely branching if for every x ∈ T ,
there exist at most finitely many y1, . . . , yn ∈ T such that whenever

z > x for some z ∈ T , we have z ≥ yi for some i. (That is, every x ∈ T

has at most finitely many immediate successors.)
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Our example of the full binary tree {0, 1}∗ is finitely branching.

Theorem 2.6 (König’s lemma). If an infinite tree (T,<) is finitely

branching, then it has an infinite path.

Proof. We construct an infinite sequence on T by induction. Let

x0 = r. Given any x ∈ T , let Tx denote the part of T “above” x, i.e.

Tx = {y ∈ T ∶ x ≤ y}.

Tx inherits a tree structure from T by letting x be its root. Note that

T = Tr. Let y
(r)
1 , . . . , y

(r)
n be the immediate successors of r in T . Since

we assume T to be infinite, by the infinite pigeonhole principle, one

of the trees T
y
(r)
1

, . . . , T
y
(r)
n

must be infinite, say T
y
(r)
i

. Put x1 = y
(r)
i .

We can now iterate this construction, using the infinite pigeon-

hole principle on the finitely many disjoint trees above the immediate

successors of x1, and so on. Since we always maintain an infinite tree

above our current xk, the construction will carry on indefinitely and

we obtain an infinite sequence x0 < x1 < x2 < ⋯, an infinite path

through T . �

Proving finite results from infinite ones. We can use König’s

lemma and the infinite Ramsey theorem (Theorem 2.1) to prove the

general finite Ramsey theorem (Theorem 1.31).

Assume, for the sake of contradiction, that for some k, p, and r,

the statement of the finite Ramsey theorem does not hold. That is, for

all n there exists at least one coloring cn ∶ [n]p → 1, . . . , r such that no

monochromatic subsets of size k exist. Collect these counterexamples

cn, for all n, in a single set T , and order them by extension: Let

cm < cn if and only if m < n and the restriction of cn to [m]p is equal

to cm, i.e. cm extends cn as a function.

We make three crucial observations:

(1) (T,<) is a tree; the root r is the empty function and the

predecessors of a coloring cn ∈ T are the restricted colorings

∅ < cn ∣[p]p< cn ∣[p+1]p< ⋯ < cn ∣[n−1]p< cn.

(2) T is finitely branching; this is clear since for every n there

are only finitely many functions c ∶ [n]p → {1, . . . , r} at all.
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(3) T is infinite; this is true because we are assuming that at

least one such coloring exists for all n.

Therefore, we can apply König’s lemma and obtain an infinite

path

∅ < cp < cp+1 < cp+2 < ⋯.

Since each cn on our path is an extension of all the previous functions

on the path, we can construct a well-defined function C ∶ [N]p →
{1, . . . , r} which has the property that C ∣[n]p= cn. That is, if X is a

p-set of N where N is the largest integer in X, then C(X) = cN(X).
Now we have a coloring on N and we can apply the infinite Ram-

sey theorem to deduce that there exists an infinite subset H ⊆ N such

that [H]p is monochromatic.

We write H = {h1 < h2 < h3 < ⋯} and let N = hk. Since H

is monochromatic for the coloring C, so is every subset of H. In

particular, Hk ∶= {h1 < h2 < ⋯ < hk} is a monochromatic subset of

size k for the coloring C. But we have C(Hk) = cN(Hk), and therefore

cN has a monochromatic subset of size k, which contradicts our initial

assumption.

A blueprint for compactness arguments. We can use the pre-

vious proof as a prototype for future uses of compactness. Suppose

we have a statement P (π⃗) with a vector of parameters π⃗ that asserts

the existence of a certain object, and we want to show that for a

sufficiently large finite set {1, . . . ,N}, P (π⃗) is always true. Suppose

further that we have shown P (π⃗) is true for N. Here is a blueprint

for an argument using compactness:

(1) Assume, for a contradiction, that the finite version of P fails.

(2) Then we can find counterexamples for every set [n].
(3) Collect these counterexamples in a set T , order them by

extension, and show that under this ordering T forms an

infinite, finitely branching tree.

(4) Apply König’s lemma to obtain an infinite path in T , which

corresponds to an instance of our statement P (π⃗) for N.

(5) Since P (π⃗) is true for N, we can choose a witness example

for this instance.
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(6) By restricting the witness to a sufficiently large subset, we

obtain a contradiction to the fact that T contains only coun-

terexamples to P .

We will later see that the introduction of infinitary methods

opens a fascinating metamathematical door: There exist “finitary”

statements (in the sense that all objects involved—sets, functions,

numbers–are finite) for which only infinitary proofs exist. In a certain

sense, the finite sets whose existence the infinitary methods establish

are so huge that a “finitary accounting method” cannot keep track of

them. We will investigate this phenomenon in Chapter 4.

2.3. Some topology

If you have learned about compactness in a topology or analysis class,

you might be wondering why we are using this word. We will show

that König’s lemma can be rephrased in terms of sequential compact-

ness. While we will provide all the necessary definitions, we can of

course not even scratch the surface of the theory of metric spaces and

topology. For a reader who has no previous experience in this area,

we recommend consulting on the side one of the numerous textbooks

on analysis or topology, for example [51].

Metric spaces. The concept of a metric space is a generalization of

distance. We use it to describe how close or far two elements in a set

are from each other.

Definition 2.7. A metric on a set X is any function d ∶ X2 → R

such that for all x, y, z ∈ X:

(1) d is non-negative, that is, d(x, y) ≥ 0, and moreover d(x, y) =
0 if and only if x = y;

(2) d is symmetric, that is, d(x, y) = d(y, x); and
(3) d satisfies the triangle inequality, that is, d(x, z) ≤ d(x, y) +

d(y, z).

A metric space (X,d) is a set X together with a metric d.

The prototypical examples of metric spaces include R with the

standard distance d(x, y) = ∣x − y∣, or R2 with the distance function
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which comes from the Pythagorean theorem,

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.
These are both examples of the n-dimensional Euclidean metric: For

x, y ∈ Rn,

d(x, y) = (
n

∑
i=1

(xi − yi)2)
1/2

.

This metric is the natural function with which we associate the idea

of “distance” between two points. However, there are many other

important metrics. For any non-empty set X, we can consider the

discrete metric, defined by

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = y

1 if x /= y

This is a metric where every two distinct points are the same distance

away—a rather crude measure of distance.1 One can refine this idea

to take the combinatorial structure into account. For any connected

graph G, we can define a metric on G by letting

d(v,w) = length of the shortest path between v and w.

Exercise 2.8. Show that d(v,w) defines a metric on a connected

graph G.

Neighborhoods and open sets. Given a point x in a metric space

(X,d) and a real number ε, the ε-neighborhood of x is the set

Bε(x) ∶= {y ∈ X ∶ d(x, y) < ε},
i.e. all points which are less than ε away from x.

For example, an open ball Bε(x) (with respect to the Euclidean

metric) on the real line R is just an open interval of the form (x −
ε, x + ε).

An open set is any set U ⊆ X where, for every x in U , there

exists an ε > 0 such that Bε(x) is contained entirely in U . The union

of open sets is also an open subset. The complement of an open set is

called a closed set. Note that in any metric space (X,d), the entire

set X and the empty set ∅ are both open and closed.

1The mathematician Stanislaw Ulam once wrote that Los Angeles is a discrete
metric space, where the distance between any two points is an hour’s drive [67].
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We can now define the topological notion of compactness using

open coverings: A collection of open subsets {Ui}i∈I is defined to be

an open cover of Y if Y ⊆ ⋃Ui.

Definition 2.9. A subset Y in a metric space (X,d) is compact if

whenever {Ui}i∈I is an open cover of Y , there is a finite subset J ⊆ I

such that {Uj}j∈J is also an open cover of Y , in other words, if every

open cover has a finite subcover.

Suppose we cover R with balls Bε(x) for an arbitrarily small ε, so

that every x ∈ R contributes an interval (x − ε, x + ε). Together these
intervals clearly cover all of R. It is easy to see that this covering has

no finite subcover, as choosing finitely many of the Bε(x) covers at

most an interval of the form (−M,M), where M < ∞. Therefore, R

with the Euclidean metric is not a compact space.

This example suggests that compact sets, although possibly infi-

nite (as sets), should somehow be considered “finite”. In Euclidean

space this is confirmed by the Heine-Borel theorem: A set X ⊆ Rn

is compact if and only if it is closed and bounded, that is, X is con-

tained in some n-dimensional cube (−M,M)n.

Sequential compactness. Given a sequence of points (xi) in a met-

ric space (X,d), the sequence converges to a point x if

lim
i→∞

d(xi, x) = 0.

A metric space (X,d) is sequentially compact if every sequence has

a convergent subsequence. In metric spaces, the notion of compact-

ness and sequential compactness are equivalent (see [51]), although

this is not true for general topological spaces.

In Rn (with the Euclidean metric) the equivalence of compactness

and sequential compactness follows from the Bolzano-Weierstrass the-

orem: Every bounded sequence has a convergent subsequence.

Exercise 2.10. Use the infinite Ramsey theorem to prove that every

sequence in R has a monotone subsequence. As any bounded, mono-

tone sequence converges in R, this implies the Bolzano-Weierstrass

theorem.
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Infinite trees as metric spaces. Given an infinite, finitely branch-

ing tree T , König’s lemma tells us that there will be at least one

infinite path. We can collect all of the infinite paths into a set, de-

noted by [T ]. It will be useful to visualize the elements of [T ] not

just as paths on a tree, but also as infinitely long sequences of nodes.

Suppose we have two elements of [T ], s⃗ and t⃗, and their sequences

of nodes

s⃗ = {r = s0 < s1 < s2 < ⋯} and t⃗ = {r = t0 < t1 < t2 < ⋯}.

To define a notion of distance, two paths will be regarded as “close”

if their sequences agree for a long time. We put, for distinct s⃗ and t⃗,

Ds⃗,t⃗ = min{i ≥ 0∶ si ≠ ti}

and then define our distance function as

d(s⃗, t⃗) =
⎧⎪⎪⎨⎪⎪⎩

0 if s = t,

2−Ds⃗,t⃗ if s /= t.

We claim that d is a metric on [T ] and will call it the path metric

on [T ]. Non-negativity and symmetry are clear from the definition of

d. To verify the triangle inequality, suppose s⃗, t⃗, and u⃗ are pairwise

distinct paths in [T ]. (If any two of the sequences are identical, the

statement is easy to verify.) We distinguish two cases:

Case 1: Ds⃗,u⃗ ≤ Ds⃗,t⃗.

This means that s⃗ agrees at least as long with t⃗ as with u⃗.

But this implies that t⃗ agrees with u⃗ precisely as long as s⃗

does, which in turn means Dt⃗,u⃗ = Ds⃗,u⃗, and hence

d(s⃗, u⃗) = 2−Ds⃗,u⃗ = 2−Dt⃗,u⃗ ≤ 2−Ds⃗,t⃗ + 2−Dt⃗,u⃗ = d(s⃗, t⃗) + d(t⃗, u⃗).

Case 2: Ds⃗,u⃗ > Ds⃗,t⃗.

In this case s⃗ agrees with u⃗ longer than it agrees with t⃗. But

this directly implies that

d(s⃗, u⃗) = 2−Ds⃗,u⃗ < 2−Ds⃗,t⃗ ≤ 2−Ds⃗,t⃗ + 2−Dt⃗,u⃗ = d(s⃗, t⃗) + d(t⃗, u⃗).

What do the neighborhoods Bε(s) look like for this metric? A

sequence t is in Bε(s) if and only if 2−Ds⃗,t⃗ < ε, which means Ds⃗,t⃗ >
− log2 ε. Hence t is in the ε-neighborhood of s⃗ if and only if it agrees

with s⃗ on the first ⌈− log2 ε⌉ bits.
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Exercise 2.11. Draw a picture of B1/8(10101010 . . .).

König’s lemma and compactness. We can now interpret König’s

lemma as an instance of topological compactness.

Theorem 2.12. If T is a finitely branching tree, then [T ] with the

path metric is a compact metric space.

Proof. Assume that [T ] is not empty. Let (s⃗n) be a sequence in

[T ]. (We use the vector notation, afterall.) This means that every

s⃗n is itself a sequence r = s0n < s1n < s2n < ⋯ in T . We will construct

a convergent subsequence (s⃗ni
). It follows that [T ] is sequentially

compact and therefore compact.

Let T ∗ be the subtree of T defined as follows: Let σ ∈ T ∗ if and

only if σ = r or σ = sin for some i and n; that is, σ is in T ∗ if and only

if it occurs in one of the paths s⃗n.

We observe that T ∗ is infinite, because each s⃗n is an infinite path.

It is also finitely branching as it is a subtree of the finitely branching

tree T .

By König’s lemma, T ∗ has an infinite path t⃗ of the form r = t0 <
t1 < t2 < t3 < ⋯. We use this path to identify a subsequence of (s⃗n)
that converges to t⃗ ∈ [T ].

The path t⃗ is built from nodes that occur as a node in some path

s⃗n. This means that for every i there exists an n such that ti = sin.

We use this to define a subsequence of (sn) as follows: Let

ni = min{n∶ sin = ti}.

Claim: (s⃗ni
) converges to t⃗.

By the definition of the path metric d,

d(s⃗ni
, t⃗) i→∞�→ 0 iff s⃗ni

and t⃗ agree

on longer and longer segments.

But this is built into the definition of (s⃗ni
): We have

sini
= ti,

and since initial segments in trees are unique, this implies that

s0ni
= t0, s1ni

= t1, . . . , si−1ni
= ti−1.
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Therefore, s⃗ni
and t⃗ have an agreement of length i, and thus

d(s⃗ni
, t⃗) i→∞�→ 0.

�

Exercise 2.13. Every real number x ∈ [0, 1] has a dyadic expansion

s⃗(x) ∈ {0,1}∞ such that

x = ∑
i

s
(x)
i 2−i.

The expansion is unique except when x is of the form m/2n, with
m,n ≤ 1 integer. To make it unique, we require the dyadic expansion

to eventually be constant ≡ 1.

Show that a sequence (xi) of real numbers in [0,1] converges with
respect to the Euclidean metric if and only if (s⃗(xi)) converges with

respect to the path metric d.

2.4. Ordinals, well-orderings, and the axiom of
choice

The natural numbers form the mathematical structure that we use to

count things. In the process of counting, we bestow an order on the

objects we are counting. We speak of the first, the second, the third

element, and so on. The realm of the natural numbers is sufficient as

long as we count only finite objects. But how can we count infinite

sets? This is made possible by the theory of ordinal numbers.

Properties of ordinals. Ordinal numbers are formally defined using

set theory, as transitive sets that are well-ordered by the element

relation ∈. We will not introduce ordinals formally here, but instead

simply list some crucial properties of ordinal numbers that let us

extend the counting process into the infinite realm. For a formal

development of ordinals, see for example [35].
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(O1) Every natural number is an ordinal number.

(O2) The ordinal numbers are linearly ordered, and 0 is the least

ordinal.

(O3) Every ordinal has a unique successor (the next number);

that is, for every ordinal α there exists an ordinal β > α

such that

(∀γ) α < γ ⇒ β ≤ γ.

The successor of α is denoted by α + 1.

(O4) For every set A of ordinals, there exists an ordinal β that is

the least upper bound of A, that is,

for all α ∈ A,

α ≤ β and β is the least number with this property.

If we combine (O1) and (O4), there must exist a least ordinal that

is greater than every natural number. This number is called ω. (O3)

tells us that ω has a successor, ω + 1, which in turn has a successor

itself, (ω+1)+1, which we write as ω+2. We can continue this process

and obtain

ω, ω + 1, ω + 2, ω + 3, . . . , ω + n, . . . .

But the ordinals do not stop here. Applying (O4) to the set {ω+n∶n ∈
N}, we obtain a number that is greater than any of these, denoted by

ω+ω. Here is a graphical representation of these first infinite ordinals:

ω ○ ○ ○ ⋯
ω + 1 ○ ○ ○ ⋯ ●
ω + 2 ○ ○ ○ ⋯ ● ○
ω + ω ○ ○ ○ ⋯ ● ○ ○ ⋯

One can continue enumerating:

ω + ω + 1, ω + ω + 2, . . . , ω + ω + ω, . . . , ω + ω + ω + ω, . . . .

In this process we encounter two types of ordinals.

● Successor ordinals: Any ordinal α for which there exists an

ordinal β such that α = β + 1. Examples include all natural

numbers greater than 0, ω + 1, and ω + ω + 3.
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● Limit ordinals: Any ordinal that is not a successor ordinal,

for example 0, ω, and ω + ω + ω.

Since there is always a successor, the process never stops. An

attentive reader will remark that, on the other hand, we could apply

(O4) to the set of all ordinals. Would this not yield a contradiction?

This is known as the Burali-Forti paradox. We have to be careful

which mathematical objects we consider a set and which not. And in

our case we say:

There is no set of all ordinals.

There are simply too many to form a set. The ordinals form what is

technically referred to as a proper class, which we will denote by Ord.

Other examples of proper classes are the class of all sets and the class

of all sets that do not contain themselves (this is Russell’s paradox ).

The assumption that either of these is a set leads to a contradiction

similar to assuming that a set of all ordinals exists. Classes behave

in many ways like sets—for example, we can talk about the elements

of a class. But these elements cannot be other classes; classes are too

large to be an element of something.

Ordinal arithmetic. The counting process above indicates that we

can define arithmetical operations on ordinals similar to the oper-

ations we have on the natural numbers. For the natural numbers,

addition and multiplication are defined by induction, by means of the

following identities.

● m + (n + 1) = (m + n) + 1,

● m ⋅ (n + 1) = m ⋅ n + m.

For ordinals, we use transfinite induction. This is essentially the same

as “ordinary” induction, except that we also have to account for limit

ordinals in the induction step.

Addition of ordinals.

α + 0 = α,

α + (β + 1) = (α + β) + 1,

α + λ = sup{α + γ∶ γ < λ} if λ is a limit ordinal.
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There is an important aspect in which ordinal addition behaves very

differently from addition for natural numbers. Take, for example,

1 + ω = sup{1 + n∶ n ∈ N} = sup{m∶ m ∈ N} = ω ≠ ω + 1.

So ordinal addition is not commutative; that is, it is not true

in general that α + β = β + α.

Multiplication of ordinals.

α ⋅ 0 = 0,

α ⋅ (β + 1) = (α ⋅ β) + α,

α ⋅ λ = sup{α ⋅ γ∶ γ < λ} if λ is a limit ordinal.

Let us calculate a few examples.

ω ⋅ 2 = ω(1 + 1) = ω + ω,

and similarly ω ⋅ 3 = ω +ω +ω, ω ⋅ 4 = ω +ω +ω +ω, and so on. On the

other hand,

2 ⋅ ω = sup{2n∶ n ∈ N} = sup{m∶ m ∈ N} = ω.

(Think of α ⋅ β as “α repeated β-many times.”) Hence ordinal multi-

plication is not commutative either. Moreover, we have

ω ⋅ ω = sup{ω ⋅ n∶ n ∈ N}.

Hence we can view ω ⋅ ω as the limit of the sequence

ω, ω + ω, ω + ω + ω, ω + ω + ω + ω, . . . .

Similarly, we can now form the sequence

ω, ω ⋅ ω, ω ⋅ ω ⋅ ω, . . . .

What should the limit of this sequence be? If we let ourselves be

guided by the analogy of the finite world of natural numbers, it ought

to be

ωω.

Just as multiplication is obtained by iterating addition, exponenti-

ation is obtained by iterating multiplication. We can do this for

ordinals, too.
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Exponentiation of ordinals.

α0 = 1,

αβ+1 = αβ ⋅ α,
αλ = sup{αγ ∶ γ < λ} if λ is a limit ordinal.

By this definition, ωω is the limit of ω,ω2, ω3, . . . indeed.

Using exponentiation, we can form the sequence

ω,ωω, ωωω

, . . . .

The limit of this sequence is called ε0. It is the least ordinal with

the property that

ωε0 = ε0.

This property seems rather counterintuitive, since in the finite realm

mn is much larger than n as m and n grow larger and larger.

Ordinals, well-orderings and the axiom of choice. Let’s look

at the sequence of ordinals we have encountered so far:

0 < 1 < 2 < ⋅ ⋅ ⋅ < ω < ω + 1 < ⋅ ⋅ ⋅ < ω + ω < ⋅ ⋅ ⋅ < ωω < ⋅ ⋅ ⋅ < ωω < ⋅ ⋅ ⋅ < ε0.

Property (O2) requires that the ordinal numbers be linearly ordered,

and our initial list above clearly reflects this property. It turns out

that the ordinals are a linear ordering of a special kind, a well-

ordering .

Definition 2.14. Assume that (S,<) is a linearly ordered set. We

say that (S,<) is a well-ordering if every non-empty subset of S has

a <-least element.

In particular, this means that S itself must have a <-minimal

element. Therefore, Z,Q, and R are not well-orderings. On the

other hand, the natural numbers with their standard ordering are

a well-ordering—in every non-empty subset of N there is a least num-

ber. If we restrict the rationals (or reals) to [0,1], we do not get a

well-ordering, since the subset {1/n∶ n ≥ 1} does not have a minimal

element in the subset.

The last example hints at an equivalent characterization of well-

orderings.
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Proposition 2.15. A linear ordering (S,<) is a well-ordering if and

only if there does not exist an infinite descending sequence

s0 > s1 > s2 > ⋯

in S.

Proof. It is clear that if such a sequence exists, then the ordering

cannot be a well-ordering, since the set {s0, s1, s2, . . .} does not have

a minimal element.

On the other hand, suppose (S,<) is not a well-ordering. Then

there exists a non-empty subset M ⊆ S that has no minimal element

with respect to <. We use this fact to construct a descending sequence

s0 > s1 > s2 > ⋯ in M .

Let s0 be any element of M ; then s0 cannot be a minimum of M ,

since M does not have a minimum. Hence we can find an element

s1 < s0 in M . But s1 cannot be a minimum of M either, and hence

we can find s2 < s1, and so on. �

This characterization shows us that well-orderings have a strong

asymmetry. While we can “count up” unboundedly through an in-

finite well-ordering, we cannot “count down” in the same way. No

matter how we do it, after finitely many steps we reach the end, i.e.

the minimal element.

We now verify that the ordinals are well-ordered by <.

Proposition 2.16. Any set of ordinal numbers is well-ordered by <.

Proof. Suppose S is a set of ordinals not well-ordered by <. Then

there is an infinite descending sequence α0 > α1 > ⋯ in S. Let M be

the set of all ordinals smaller than every element of the sequence, i.e.

M = {β∶β < αi for all i}.

By (O4), M has a least upper bound γ. Now γ has to be below all

αi as well, because otherwise every αi < γ would be a smaller upper

bound for M . Therefore, γ ∈ M .

By (O3), there exists a smallest ordinal greater than γ, namely

its successor γ + 1. But γ + 1 cannot be in M , for otherwise γ would

not be an upper bound for M . Hence there must exist an i such that
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αi < γ + 1. But since γ + 1 is the smallest ordinal greater than γ, it

follows that αi+1 < αi ≤ γ, contradicting that γ ∈ M . �

As we have mentioned above, the collection of all ordinals does

not form a set. But if we fix any ordinal β, the initial segment of

Ord up to β,

Ord↾β= {α∶ α is an ordinal and α < β},
does form a set, and the proof as above shows that this initial segment

is well-ordered.

Of course not every set that comes with a partial ordering is a

well-ordering (or even a linear ordering). But if we are given the

freedom to impose our own ordering, can every set be well-ordered?

This appears to be clear for finite sets. Suppose S is a non-empty

finite set. We pick any element, declare it to be the minimal element,

and pick another (different) element, which we declare to be the min-

imum of the remaining elements. We continue this process till we

have covered the whole set. What we are really doing is constructing

a bijection π ∶ {0,1, . . . , n−1} → S, where n is a natural number. The

well-ordering of S is then given by

(2.1) s < t ∶⇔ π−1(s) < π−1(t).

Can we implement a similar process for infinite sets? We have

introduced the ordinals as a transfinite analogue of the natural num-

bers, so what we could try to do is find a bijection π between our set

and an initial segment of the ordinals of the form

{α∶ α is an ordinal and α < β},
where β is an ordinal. Then, as can be easily verified, (2.1) again

defines a well-ordering on our set.

Another way to think of a well-ordering of a set S is as an enu-

meration of S indexed by ordinals : If we let sξ = π(ξ), then
S = {s0 < s1 < s2 < ⋯} = {sξ ∶ ξ < β}

for some ordinal β.

If a set is well-ordered, one can in turn show that the ordering is

isomorphic to the well-ordering of an initial segment of Ord.
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Proposition 2.17. Suppose (A,≺) is a well-ordering. Then there

exists a unique ordinal β and a bijection π ∶ A → {α∶α < β} such that

for all a, b ∈ A
a ≺ b ⇔ π(a) < π(b).

We call β the order type of the well-ordering (A,≺).
You can try to prove Proposition 2.17 yourself as an exercise,

but you will need to establish some more (albeit easy) properties of

ordinals and well-orderings along the way. You can also look up a

proof, for example in [35].

One can furthermore show that the order type of Ord↾β is β. For

this reason, ordinals are usually identified with their initial segments

in Ord.

Returning to our question above, is it possible to well-order any

set? The answer to this question is, maybe somewhat surprisingly, a

hesitant “it depends”.

The axiom of choice and the well-ordering principle. Intu-

itively, an argument for the possibility of well-ordering an arbitrary

set S might go like this:

Let S′ = S. If S′ ≠ ∅, let ξ be the least ordinal to which we

have not yet assigned an element of S. Pick any x ∈ S′, map

ξ ↦ x, put S′ ∶= S′ ∖ {x}, and iterate.

The problem here is the “pick any x ∈ S′”. It seems an innocent

step; after all, S′ is assumed to be non-empty. But we have to look

at the fact that we repeatedly apply this step. In fact, what we seem

to assert here is the existence of a special kind of choice function:

There exists a function f whose domain is the set of all non-empty

subsets of S, P0(S) = {S′∶ ∅ ≠ S′ ⊆ S}, such that for all S′ ∈ P0(S),

f(S′) ∈ S′.

Indeed, equipped with such a function, we can formalize our argument

above.

If S = ∅, we are done. So assume S ≠ ∅. Put s0 = f(S).
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Suppose now we have enumerated elements

{sξ ∶ ξ < α}

from S. If S ∖ {sξ ∶ ξ < α} is non-empty, put

sα = f(S ∖ {sξ ∶ ξ < α}).

Now iterate. This procedure has to stop at some ordinal, i.e. there

exists an ordinal β such that

S = {sξ ∶ ξ < β}.

If not, that is, if the procedure traversed all ordinals, we would have

constructed an injection F ∶ Ord → S. Using some standard axioms

about sets, this would imply that, since Ord is not a set, S cannot be

a set (it would be as large as the ordinals, which form a proper class),

which is a contradiction.

Does such a choice function exist? Most mathematicians are

comfortable to assume this, or at least they do not feel that there

is overwhelming evidence against it. It turns out, however, that the

existence of general choice functions is a mathematical principle that

cannot be reduced to or proved from other, more evident principles

(this is the result of some seminal work on the foundations of math-

ematics first by Gödel [20] and then by Cohen [8,9]). It is therefore

usually stated as an axiom.

Axiom of choice (AC): Every family of non-empty sets has

a choice function. That is, if S is a family of sets and ∅ ∉ S,

then there exists a function f on S such that f(S) ∈ S for all

S ∈ S.

The axiom of choice is equivalent to the following principle.

Well-ordering principle (WO): Every set can be well-

ordered.

We showed above that (AC) implies (WO). It is a nice exercise

to show the converse.

Exercise 2.18. Derive (AC) from (WO).
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There are some consequences of the axiom of choice that are, to

say the least, puzzling. Arguably the most famous of these is the

Banach-Tarksi paradox: Assuming the axiom of choice, it

is possible to partition a unit ball in R3 into finitely many

pieces and rearrange the pieces so that we get two unit balls

in R3.

Why has the Banach-Tarski paradox not led to an outright rejec-

tion of the axiom of choice, as this consequence clearly seems to run

counter to our geometric intuition?

The reason is that our intuitions about notions such as length

and volume are not so easy to formalize mathematically. The pieces

obtained in the Banach-Tarksi decomposition of a ball are what is

called non-measurable, meaning essentially that the concept of vol-

ume in Euclidean space as we usually think about it (the Lebesgue

measure) is not applicable to these pieces.

For now, let us just put on record that the use of the axiom of

choice may present some foundational issues. By using a choice func-

tion without specifying further the specific objects which are chosen,

the axiom introduces a non-constructive aspect into proofs. For this

reason, one often tries to clarify whether the axiom of choice is needed

in its full strength, whether it can be replaced by weaker (and founda-

tionally less critical) principles such as the axiom of countable choice

(ACω) or the axiom of dependent choice (DC), or whether it can be

avoided altogether (for example by giving an explicit, constructive

proof).

The book by Jech [36] is an excellent source on many questions

surrounding the axiom of choice.

2.5. Cardinality and cardinal numbers

We introduced ordinals as a continuation of the counting process

through the transfinite. In the finite realm, one of the main pur-

poses of counting is to establish cardinalities. We count a finite set

by assigning its elements successive natural numbers. In other words,
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to count a finite set S means to put the elements of S into a one-

to-one correspondence with the set {0, . . . , n − 1}, for some natural

number n. In this case we say S has cardinality n.

How can this be generalized to infinite sets? The basic idea is

that:

Two sets have the same cardinality if there is a bijection (a

mapping that is one-to-one and onto) between them.

For example, the sets {1, 2, 3, 4, 5} and {6,7,8,9,10} have the

same cardinality. In the finite realm, it is impossible for a set to be a

proper subset of another set yet have the same cardinality as the other

set. This is no longer the case for infinite sets. The set of integers

has the same cardinality as the set of even integers, as witnessed by

the bijection z ↦ 2z.

A very interesting case is N versus N×N. While N is not a subset

of N × N, we can embed it via the mapping n ↦ (n, 0) as a proper

subset of N × N. But there is actually a bijection between the two

sets, the Cantor pairing function

(x, y) ↦ ⟨x, y⟩ = (x + y)2 + 3x + y

2
.

Exercise 2.19. (a) Draw the points of N × N in a two-dimensional

grid. Start at (0,0), which maps to 0, and find the point which maps

to 1. Connect the two with an arrow. Next find the point that maps

to 2, and connect it by an arrow to the point that maps to 1. Continue

in this way. What pattern emerges?

(b) We can rewrite the pairing function as

(x + y)2 + 3x + y

2
= x + (x + y + 1)(x + y)

2
.

Recall that the sum of all numbers from 1 to n is given by

(n + 1)n
2

.

How does this help to explain the pattern in part (a)?

It can be quite hard to find a bijection between two sets of the

same cardinality. The Cantor-Schröder-Bernstein theorem can

be very helpful in this regard.
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Theorem 2.20. If there is an injection f ∶ X → Y and an injection

g ∶ Y → X, then X and Y have the same cardinality.

You can find a proof in [35]. You can of course try proving it

yourself, too.

Exercise 2.21. Use the Cantor-Schröder-Bernstein theorem to show

that R and [0,1] have the same cardinality.

Being able to map a set bijectively to another set is another im-

portant example of an equivalence relation (see Section 1.2). Let us

write

A ∼ B∶ ⇔ there exists a bijection π ∶ A → B.

Exercise 2.22. Show that ∼ is an equivalence relation, that is, it is

reflexive, symmetric, and transitive.

We could define the cardinality of a set to be its equivalence class

with respect to ∼. (This would indeed be a proper class, not a set.)

While this is mathematically sound, it makes thinking about and

working with cardinalities rather cumbersome.

One way to overcome this is to pick a canonical representative for

each equivalence class and then study the system of representatives.

In the case of cardinalities, what should be our representatives?

For finite sets, we use natural numbers. For infinite sets, we can

try to use ordinals, as they continue the counting process beyond the

finite realm. Counting, in this generalized sense, means establishing a

bijection between the set we are counting and an ordinal. If we assume

the axiom of choice, the well-ordering principle ensures that every set

can be well-ordered, so every set would have a representative. The

only problem is that an infinite set can be well-ordered in more than

one way.

Consider for instance the set of integers, Z. We can well-order Z

as follows:

0 < 1 < −1 < 2 < −2 < 3 < ⋯.

This gives a well-ordering of order type ω. But we could also proceed

like this:

1 < −1 < 2 < −2 < 3 < −3 < ⋅ ⋅ ⋅ < 0,
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that is, we put 0 on top of all other numbers. This gives a well-

ordering of order type ω+1. Or we could put all the negative numbers

on top of the positive integers:

0 < 1 < 2 < 3 < ⋅ ⋅ ⋅ < −1 < −2 < −3 < ⋯,

which gives a well-ordering of type ω + ω.

This implies, in particular, that ω, ω + 1, and ω + ω all have

the same cardinality. Recall that we identify ordinals with their

initial segment, i.e. we put β = {α ∈ Ord∶ α < β}. Hence ω + 1 =
{0,1,2, . . . , ω}, and we can map ω + 1 bijectively to ω as follows

ω ↦ 0, 0 ↦ 1, 1 ↦ 2, . . .

Exercise 2.23. Show that ωω has the same cardinality as ω.

To obtain a unique representative for each cardinality, we pick

the least ordinal in each equivalence class. (Here it comes in very

handy that the ordinals are well-ordered.)

Definition 2.24. An ordinal κ is a cardinal if for all ordinals β < κ,

β ≁ κ.

For example, ω + 1 is not a cardinal, while ω is—every ordinal

below ω is finite and hence not of the same cardinality as ω. Thus, ω

enjoys a special status in that it is the first infinite cardinal.

Exercise 2.25. Show that every cardinal greater than ω is a limit

ordinal.

To define the cardinality of a set S, denoted by ∣S∣, we now

simply pick out the one ordinal among all possible order types of S

that is a cardinal

∣S∣ = min{α∶ there exists a well-ordering of S of order type α}
= the unique cardinal κ such that S ∼ κ.

Note that this definition uses the axiom of choice, since we have

to ensure that each set has at least one well-ordering.

Exercise 2.26. Show that ∣A∣ ≤ ∣B∣ if and only if there exists a one-

to-one mapping A → B.
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How many cardinals are there? Infinitely many. This is Cantor’s

famous theorem.

Theorem 2.27. For every set S, there exists a set of strictly larger

cardinality.

Proof. Consider P(S) = {X ∶X ⊆ S}, the power set of S. The map-

ping S → P(S) given by s ↦ {s} is clearly injective, so ∣S∣ ≤ ∣P(S)∣.
We claim that there is no bijection f ∶ S → P(S). Suppose there

were such a bijection f , that is, in particular,

P(S) = {f(x)∶ x ∈ S}.

Every subset of S is the image of an element of S under f . To get

a contradiction, we exhibit a set X ⊆ S for which this is impossible,

namely by letting

x ∈ X ∶⇔ x ∉ f(x).
Now, if there were x0 ∈ S such that f(x0) = X, then, by the definition

of X,

x0 ∈ X ⇔ x0 ∉ f(x0) ⇔ x0 ∉ X,

a contradiction. This is a set-theoretic version of Cantor’s diagonal

argument. �

The power set operation always yields a set of higher cardinality.

But by how much? Since the ordinals are well-ordered, so are the

cardinals. We can therefore define, for any cardinal κ,

κ+ = the least cardinal greater thanκ.

Cardinal arithmetic. We now define the basic arithmetic opera-

tions on cardinals. Given cardinals κ and λ, let A and B be sets such

that ∣A∣ = κ, ∣B∣ = λ, and A ∩ B = ∅. Let

κ + λ = ∣A ∪ B∣,(2.2)

κ ⋅ λ = ∣A × B∣,(2.3)

κλ = ∣AB ∣ = ∣{f ∶ f maps B to A}∣.(2.4)

Exercise 2.28. Verify that the definitions above are independent of

the choice of A and B.
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The power operation 2κ is particularly important because it co-

incides with the cardinality of the power set of κ:

2κ = cardinality of P(κ).

In some ways, cardinal arithmetic behaves just like the familiar

arithmetic of real numbers.

Exercise 2.29. Let κ,λ, and μ be cardinals. Show that

(κλ)μ = κλ⋅μ.

But in other regards, cardinal arithmetic is very different.

Proposition 2.30. Let κ and λ be infinite cardinals. Then

κ + λ = κ ⋅ λ = max{κ,λ}.

Exercise 2.31. Prove Proposition 2.30.

Note that for many arguments involving cardinals and cardinal

arithmetic, the axiom of choice is needed.

Alephs and the continuum hypothesis. Let us denote the car-

dinality of N by ℵ0, i.e. any countable, infinite set has cardinality ℵ0.

Pronounced “aleph”, ℵ is the first letter of the Hebrew alphabet. The

cardinal ℵ0 is the smallest infinite cardinal. We know that the real

numbers R are uncountable, i.e. ∣R∣ > ℵ0, and it is not hard to show

(identifying reals with their binary expansions, which in turn can be

interpreted as characteristic functions of subsets of N) that ∣R∣ = 2ℵ0 .

But is the cardinality of the reals actually the smallest uncountable

cardinality? That is, is it true that

ℵ+0 = 2ℵ0?

This is the continuum hypothesis (CH). Like the axiom of choice,

the continuum hypothesis is independent over the most common ax-

iom system for set theory, ZF. This means that the continuum hy-

pothesis can be neither proved nor disproved in this axiom system.

We will say more about independence in Chapter 4.

Since every cardinal has a successor cardinal (just like ordinals),

we can use ordinals to index cardinals: We let

ℵ1 = ℵ+0 ,
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and more generally, for any ordinal α,

ℵα+1 = ℵ+α.
We use ωα instead of ℵα to denote the order type of the cardinal ℵα.

If λ is a limit ordinal, we define

ℵλ = sup{ωα∶α < λ}.

Exercise 2.32. Show that αλ as defined above is indeed a cardinal.

In other words, if S is a set of cardinals, so is the supremum of S.

Exercise 2.33. Show that every cardinal is an aleph, i.e. if κ is a

cardinal, then there exists an ordinal α such that κ = ℵα.

Generalized continuum hypothesis (GCH):

For any α, ℵα+1 = 2ℵα .

If the GCH is true, it means that cardinalities are neatly aligned

with the power set operation. The beth function ℶα is defined

inductively as

ℶ0 = ℵ0, ℶα+1 = 2ℶα , ℶλ = sup{ℶα∶α < λ} for λ a limit ordinal.

That is, ℶα enumerates the cardinalities obtained by iterating the

power set operation, starting with N. If the GCH holds, then ℶα = ℵα

for all α.

2.6. Ramsey theorems for uncountable cardinals

Equipped with the notion of a cardinal, we can now attack the ques-

tion of whether Ramsey’s theorem holds for uncountable sets. It also

makes sense now to consider colorings with infinitely many colors—

the corresponding Ramsey statements are not trivially false anymore.

We will also look at colorings of sets of infinite tuples over a set.

It is helpful to extend the arrow notation for these purposes.

Recall that N �→ (k)pr means that every r-coloring of [N]p has a

monochromatic subset of size k. This is really a statement about

cardinalities, which we can extend from natural numbers to cardinals.

Let κ,μ, η, and λ be cardinals, where μ, η ≤ κ.

κ �→ (η)μλ
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means:

If ∣X ∣ ≥ κ and c ∶ [X]μ → λ, then there exists H ⊆ X with

∣H ∣ ≥ η such that c∣[H]μ is constant.

Here [X]μ is the set of all subsets of X of cardinality μ:

[X]μ = {D∶D ⊆ X and ∣D∣ = μ}.

The following lemma keeps track of the cardinality of [X]μ.

Lemma 2.34. If κ ≥ μ are infinite cardinals and ∣A∣ = κ, then

[A]μ = {D∶D ⊆ A and ∣D∣ = μ}

has cardinality κμ.

Proof. As ∣A∣ = κ, any element of κμ corresponds to a mapping

f ∶ μ → A, which is a subset of μ × A. Moreover, any such f satisfies

∣f ∣ = μ. Hence κμ ≤ ∣[μ × A]μ∣ = ∣[A]μ∣, as ∣μ × A∣ = ∣A∣.
On the other hand, we can define an injection [A]μ → Aμ: If

D ⊆ A with ∣D∣ = μ, we can choose a function fD ∶ μ → A whose range

is D. Then the mapping D ↦ fD is one-to-one. �

As ℵ0 is the smallest infinite cardinal, we can now write the infi-

nite Ramsey theorem, Theorem 2.1, as

ℵ0 �→ (ℵ0)pr (for any p, r ∈ N).

Finite colorings of uncountable sets. Does the infinite Ramsey

theorem still hold if we pass to uncountable cardinalities?

Let us try to lift the proof from N to ℵ1. To keep things simple,

let us assume we are coloring pairs of real numbers with two colors.

In the proof of ℵ0 �→ (ℵ0)22, one proceeds by constructing a sequence

of natural numbers

z0, z1, z2, . . .

along with a sequence of sets

N = Z0 ⊇ Z1 ⊇ Z2 ⊇ ⋯
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such that

● zi ∈ Zi;

● for each i, the color of {zi, zj} is the same for all j > i; and

● each Zi is infinite.

It was possible to find these sequences because of the simple in-

finite pigeonhole principle: If we partition an infinite set into finitely

many parts, one of them must be infinite.

This principle still holds for uncountable sets: Any finite partition

of an uncountable set must have an uncountable part. In fact, we have

something stronger:

In any partition of an uncountable set into countably many

parts, one of the parts must be uncountable.

Using the language of cardinals, we can state and prove a formal

version of this principle.

Proposition 2.35. If κ is an uncountable cardinal and f ∶ κ → ω,

then there exists an α < ω such that ∣f−1({α})∣ = ℵ1.

Proof. Assume for a contradiction that κα = ∣f−1({α})∣ is countable
for all α < ω. Then

κ = ⋃
α<ω

κα

would be a countable union of countable sets, which is countable—a

contradiction. �

Looking at the countable infinite case, one might conjecture that

an even stronger pigeonhole principle should be true, namely that

there is an α such that ∣f−1({α})∣ = κ. This is not quite so; it touches

on an aspect of cardinals called cofinality. We will learn more about

it when we look at large cardinals.

The pigeonhole principle is one instance where uncountable car-

dinals can behave rather differently from ℵ0. We will see that this

has consequences for Ramsey’s theorem.

We return to Ramsey’s theorem and try to prove ℵ1 �→ (ℵ1)22.
We start with the usual setup. We choose z0 ∈ ℵ1 and look at all

z ∈ ℵ1∖{z0} such that {z0, z} is red. If the set of such z is uncountable,
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then we put Z1 = {z∶ c(z0, z) = red}. Otherwise, by the uncountable

pigeonhole principle, {z∶ c(z0, z) = blue} is uncountable, and we let Z1

be this set. We can now continue as usual inductively and construct

the sequences z0, z1, z2, . . . and Z1 ⊇ Z2 ⊇ Z3 ⊇ ⋯, where each Zi

is uncountable. In the countable case, we were almost done, since it

took only one more application of the (countable) pigeonhole principle

to select an infinite homogeneous subsequence from the zi. Now,

however, we cannot do this, since we are looking for an uncountable

homogeneous set. We therefore need to continue our sequence into

the transfinite. How can this be done? We need to choose a “next”

element of our sequence. We have learned in Section 2.4 that ordinals

are made for exactly that purpose. Hence we would index the next

element by zω. But what should the corresponding set Zω be? We

required Z1 ⊇ Z2 ⊇ Z3 ⊇ ⋯, and hence we should have that

Z1 ⊇ Z2 ⊇ Z3 ⊇ ⋅ ⋅ ⋅ ⊇ Zω.

The only possible choice would therefore be

Zω = ⋂
i

Zi.

But this is a problem, because the intersection of countably many

uncountable nested sets is not necessarily uncountable. Consider for

instance the intersection of countably many open intervals

⋂
n

(0, 1/n),

which is empty. Indeed, this obstruction is not a coincidence.

Proposition 2.36. Ramsey’s theorem does not hold for the real num-

bers:

∣R∣ = 2ℵ0 /�→ (2ℵ0)22.

We will, in fact, show something slightly stronger:

2ℵ0 /�→ (ℵ1)22.

Of course, if the continuum hypothesis holds, this is equivalent to the

previous statement.

Proof. The proof is based on the fact that a well-ordering of R must

look very different from the usual ordering of the real line.



74 2. Infinite Ramsey theory

Using the axiom of choice, let ≺ be any well-ordering of R. Hence

we can write

R = {x0 ≺ x1 ≺ ⋅ ⋅ ⋅ ≺ xα ≺ xα+1 ≺ ⋯} with all α < 2ℵ0 .

We define a coloring c ∶ [R]2 → {red, blue}. Let y ≠ z be real

numbers and denote the usual ordering of R by <R. Let

c(y, z) =
⎧⎪⎪⎨⎪⎪⎩

red if (y <R z and y ≺ z) or (z <R y and z ≺ y),
blue otherwise.

Here <R denotes the usual order of R. In other words, we color a set

{y, z} red if the two orderings <R and ≺ agree for y and z. If they

differ, we color the pair blue.

Assume for a contradiction that H is a homogeneous subset for

c of size ℵ1. We can write H as

H = {xα0
≺ xα1

≺ ⋅ ⋅ ⋅ ≺ xαξ
≺ ⋯} with ξ < ℵ1.

If c↾[H]2≡ red, then we have by definition of c that also

xα0
<R xα1

<R ⋅ ⋅ ⋅ <R xαξ
<R ⋯,

that is, H gives us a <R-increasing sequence of length ℵ1. If c↾[H]2≡
blue, then we get a <R-decreasing sequence of length ℵ1.

We claim that there cannot be such a sequence.

The rationals are dense in R with respect to <R, i.e. between

any two real numbers is a rational number (not equal to either of

them). If there were a strictly <R-increasing or strictly <R-decreasing

sequence of length ℵ1, there would also have to be a strictly <R-

increasing/decreasing sequence of rational numbers of length ℵ1, but

this is impossible, since the rationals are countable. �

The essence of the proof lies in the fact that a homogeneous set

would “line-up” the well-ordering ≺ with the standard ordering <R of

R. If this line-up is too long (uncountable), we get a contradiction

due to the fact that R contains Q as a dense “backbone” (under <R).

The proof also links back to the difficulties encountered earlier

when trying to lift Ramsey’s theorem to 2ℵ0 .
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We are dealing with two orderings here: a well ordering ≺ of R

and the familiar linear ordering <R of the real line. Let us call the

first one the “enumeration” ordering, since it determines the order

in which we enumerate R and which element we choose next during

our attempted construction—the ≺-least available. We do not know

much about this ordering other than that it is a well-ordering. (In

fact, there are some metamathematical issues that prevent us from

proving that any explicitly defined function from R to an ordinal is a

bijection.)

The standard ordering <R, on the other hand, is the “color” or-

dering, since going up or down along it determines whether we color

red or blue.

Let us try to follow the construction of a homogeneous set in

the proof of Theorem 2.1 and see where it fails for coloring c. Pick

the ≺-first element of Z0 = R, say xα0
. Next check whether the set

{y∶ c(xα0
, y) = red} is uncountable. This is the case, since there are

uncountably many y “to the right” of xα0
, and also uncountably many

y not yet enumerated (these appear after xα0
in the well-ordering).

Hence we put Z1 = {y∶ c(xα0
, y) = red} and repeat the argument

for Z1: Pick the ≺-least element of Z1 (which must exist since ≺ is

a well-ordering) and observe that {y ∈ Z1∶ c(xα0
, y) = red} is again

uncountable. Inductively, we construct an increasing sequence

xα0
<R xα1

<R xα2
<R ⋯

and a nested sequence of sets

Z0 ⊃ Z1 ⊃ Z2 ⊃ ⋯

such that

(xαn
,∞) ⊇ Zn+1.

But if xαn
→ ∞ (which might well be the case), this implies

⋂
n

Zn = ∅,

and hence after ω-many steps we cannot continue our construction.

We could try to select the αn a little more carefully; in particular,

we could, for instance, let xαn+1
be the ≺-least element of Zn+1 such

that xαn
<R xαn+1

< xαn
+1/2n. This way we would guarantee that we
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could continue our construction beyond stage ω and into the transfi-

nite. In fact, by choosing the xα carefully enough, we can ensure that

the construction goes on for β-many stages for any fixed countable

ordinal β. But the cardinality argument of the proof above tells us it

is impossible to do this for ℵ1-many stages.

Exercise 2.37. Show that Proposition 2.36 generalizes to

2κ /�→ (κ+)22.

(Hint: Show that {0, 1}κ has no increasing or decreasing sequence of

length κ+.)

An obvious question now arises: If we allow higher cardinalities κ

beyond 2ℵ0 , does κ → (ℵ1)22 become true eventually? The Erdős-Rado

theorem shows that we in fact only have to pass to the next higher

cardinality.

Theorem 2.38 (Erdős-Rado theorem).

(2ℵ0)+ �→ (ℵ1)22.

Compared to the counterexample in Proposition 2.36, the extra

cardinal gives us some space to

set aside an uncountable set such that whenever we extend

our current homogeneous set, we leave this set untouched,

i.e. we do not add elements from it.

In this way, we can now guarantee that the sets Zα will have a non-

empty, in fact uncountable, intersection.

This “setting aside” happens by virtue of the following lemma.

Lemma 2.39. There exists a set R ⊂ (2ℵ0)+ of cardinality ∣R∣ = 2ℵ0

such that for every countable D ⊆ R and for every x ∈ (2ℵ0)+ ∖ D,

there exists an r ∈ R ∖ D such that for all d ∈ D,

(2.5) c(x, d) = c(r, d).

Informally, whenever we choose an x and a countable D ⊂ R, we

can find a “replacement” for x in R that behaves in a color-identical

manner with respect to D. This will enable us, in our construction
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of a homogeneous set of size ℵ1, to choose the xα from a set of size

2ℵ0 , leaving a “reservoir” of uncountable cardinality.

Proof. We construct the set R by extending it step by step, adding

the witnesses required by (2.5).

We start by putting R0 = 2ℵ0 . We have to ensure that (2.5) holds

for every countable subset D ⊂ R0 and every x ∈ (2ℵ0)+ ∖ D. To

simplify notation, let us put

cx(y) = c(x, y).

Hence every x fixes a function cx ∶ (2ℵ0)+ ∖ {x} → {0,1}. We are

interested in the functions cx ↾D for countable D ⊂ R0. Each such

function maps a countable subset of R0 to {0, 1}.
We count the number of such functions. If we fix a countable

D ⊂ R0, there are at most 2ℵ0-many ways to map D to {0,1}. By

Lemma 2.34, there are

(2ℵ0)ℵ0 = 2ℵ0 ⋅ℵ0 = 2max{ℵ0,ℵ0} = 2ℵ0

countable subsets of 2ℵ0 . Therefore, there are at most

2ℵ0 ⋅ 2ℵ0 = 2ℵ0

possible functions cx↾D. (Note that while each x ∈ (2ℵ0)+ gives rise

to such a function, many of them will actually be identical, by the

pigeonhole principle.)

Therefore, we need to add at most 2ℵ0-many witnesses to R0,

one r ∈ (2ℵ0)+ for each function cx↾D (of which there are at most 2ℵ0-

many). This gives us R1, and R1 in turn gives rise to new countable

subsets D which we have to witness by possibly adding new elements

from (2ℵ0)+ to R1. But the crucial fact here is that the cardinality

of R1 is still 2ℵ0 , since 2ℵ0 + 2ℵ0 = 2ℵ0 , and therefore we can resort

to the same argument as before, adding at most 2ℵ0-many witnesses,

resulting in a set R2 of cardinality 2ℵ0 .

We have to run our construction into the transfinite. Let α be a

countable ordinal, and assume that we have defined sets

R0 ⊆ R1 ⊆ ⋅ ⋅ ⋅ ⊆ Rβ ⊆ ⋯
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for all β < α, ∣Rβ ∣ = 2ℵ0 . If α is a successor ordinal, α = β+1, we define
Rα by the argument given above, adding at most 2ℵ0 new witnesses.

If α is a limit ordinal, we put

Rα = ⋃
β<α

Rβ.

This is a countable union of sets of cardinality 2ℵ0 , and hence is also

of cardinality 2ℵ0 (see Proposition 2.30).

Finally, put

R = ⋃
α<ω1

Rα.

We claim that this R has the desired property. First note that the

cardinality of R is

ℵ1 ⋅ 2ℵ0 = max{ℵ1, 2
ℵ0} = 2ℵ0 .

LetD ⊂ R be countable and let x ∈ (2ℵ0)+∖D. The crucial observation

is that

all elements ofD must have been added by some stage α < ω1,

i.e. there exists an α < ω1 such that D ⊆ Rα.

If this were not the case, every stage would add a new element of D,

which would mean D has at least ω1-many elements, in contradiction

to D being countable. But then the necessary witness for cx ↾D is

present in Rα+1; that is, there exists an r ∈ Rα+1 ⊆ R such that

cr ↾D= cx ↾D.

This completes the proof of the lemma. �

We can now use the lemma to modify our construction of a ho-

mogeneous set H.

Proof of the Erdős-Rado theorem. Let x∗ be an arbitrary ele-

ment of (2ℵ0)+ ∖ R. This will be our “anchor point”. Choose x0 ∈ R

arbitrary.

Suppose now, given α < ω1, we have chosen xβ for all β < α.

Let

D = {xβ ∶β < α}.
This is a countable set (since α < ω1). By Lemma 2.39, there exists

an r ∈ R such that cx∗ ↾D= cr ↾D. Put xα = r.
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By the pigeonhole principle, there exists i ∈ {0,1} such that

H = {xα∶ α < ω1, c(x∗, xα) = i}

is uncountable. We claim that c↾[H]2≡ i, i.e. H is homogeneous for c.

For suppose xζ , xξ ∈ H and ζ < ξ. Then, by definition of xξ,

c(xξ, xζ) = cξ(xζ) = cx∗(xζ) = c(x∗, xα) = i.

�

Note that the proof becomes quite elegant once we have proved

the lemma. After we ensured the existence of the set R, we can work

in some sense “backwards”: We choose a single “anchor point” x∗

from the reserved set (2ℵ0)+∖R. You can think of x∗ as always being

the next point chosen in the sense of the standard construction, only

then to be replaced by an element from R which behaves exactly like

it in terms of color pairings with the already constructed xβ .

Note also that we do not need to construct a sequence of shrinking

sets Zα anymore. In the standard construction, the Zα represent the

reservoir from which the next potential elements of the homogeneous

set are chosen. They are no longer needed since x∗ is always available

(as explained above).

We also do not need to keep track of the color choices we made

along the way, as x∗ does this job for us, too. For example, if

c(x∗, x0) = 0, it follows by construction that c(xβ , x0) = 0 for all

β > 0, which in the previous constructions means that we restrict the

Z to all elements which color 0 with x0.

Exercise 2.40. Generalize the proof of the Erdős-Rado theorem (and

Lemma 2.39) to show that

ℶ+n �→ (ℵ1)n+1ℵ0 .

Infinite colorings. The Erdős-Rado theorem holds for countable

colorings, too (see Exercise 2.40). What else can we say about infinite

colorings? Clearly, the number of colors should be smaller than the

set we are trying to color. For example,

ℵ0 /�→ (2)1ℵ0 .
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But even if we make the colored set larger than the number of colors,

this does not mean we can find even a finite homogeneous set.

Proposition 2.41. For any infinite cardinal κ,

2κ /�→ (3)2κ.

Proof. We define c ∶ [2κ]2 → κ as follows. An element of 2κ corre-

sponds to a {0,1}-sequence (xβ ∶β < κ) of length κ (recall that 2κ is

the cardinality of the power set of κ, and every element of the power

set can be coded by its characteristic sequence; (xβ ∶β < κ) is such a

characteristic sequence). Given two such sequences (xβ) ≠ (yβ), we
let

c((xβ), (yβ)) = the least α < κ such that xα ≠ yα.

Now assume that (xβ), (yβ), (zβ) are pairwise distinct. Let c((xβ),
(yβ)) = α. Without loss of generality, xα = 0 and yα = 1. Now zα ∈
{0,1}, so either zα = xα or zα = yα. In the first case c((xβ), (zβ)) ≠ α

and in the second case c((yβ), (zβ)) ≠ α. Therefore, there cannot

exist a c-homogeneous subset of size 3. �

2.7. Large cardinals and Ramsey cardinals

The results of the previous section make the set of natural numbers

stand out among the infinite sets not only because ℵ0 is the first

infinite cardinal but also for another reason: With respect to finite

colorings of finite tuples, the natural numbers admit a homogeneous

subset of the same size, or, in the Ramsey arrow notation,

ℵ0 �→ (ℵ0)pr
for any positive integers p and r.

In the previous section, we saw that this is no longer true for ℵ1

(Proposition 2.36). In fact, for any infinite cardinal κ,

2κ /�→ (κ+)22,
so in particular

2κ /�→ (2κ)22
for any infinite cardinal κ.

This in turn means that any cardinal λ that can be written as λ =
2κ cannot satisfy λ �→ (λ)22. But are there any cardinals that cannot
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be written this way? ℵ0, the cardinality of N, is such a cardinal—the

power set of a finite set is still finite. But other than N?

Definition 2.42. A cardinal λ is a limit cardinal if λ = ℵγ for some

limit ordinal γ. λ is a strong limit cardinal if for all cardinals κ < λ,

2κ < λ.

Any strong limit cardinal is a limit cardinal. For if λ is a succes-

sor cardinal, then λ = ℵα+1 = ℵ+α ≤ 2ℵα . Is being strong limit truly

stronger than being limit? Well, it depends. If the GCH holds, then

2ℵα = ℵ+α = ℵα+1 for all α, and therefore every limit cardinal is actually

a strong limit cardinal.

For now just let us assume that κ is a strong limit cardinal. Is

this sufficient for

κ �→ (κ)22 ?
Take for example ℵω. This is clearly a limit cardinal and, if the GCH

holds, also a strong limit cardinal. Does it hold that

ℵω �→ (ℵω)22?
The problem is that we can “reach” ℵω rather “quickly” from below,

since

ℵω = ⋃
n<ω

ℵn.

We can use this fact to devise a coloring of ℵω that cannot have a

homogeneous subset of size ℵω. Namely, let us put, for each n < ω,

Xn+1 = ℵn+1 ∖ ℵn.

Then ℵω is the disjoint union of the Xn, and the cardinality of each

Xn is strictly less than ℵω. Now define a coloring c ∶ [ℵω]2 → {0,1}
by

c(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 if x and y are in different Xn,

0 if x and y are in the same Xn.

Let H ⊂ ℵω be a homogeneous subset for c. If c↾[H]2≡ 1, then no two

elements of H can be in the same Xn, but there are only ℵ0-many

Xn, and hence H is countable. If c ↾[H]2≡ 0, then all elements of H

have to be in the same Xn, but as noted above, ∣Xn∣ < ℵω for each n.

The proof works in general for any cardinal κ that we can reach

in fewer than κ steps. This brings us to the notion of cofinality.
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Definition 2.43. The cofinality of a limit ordinal α, cf(α), is the

least ordinal β such that there exists an increasing sequence (αγ)γ<β
of length β such that αγ < α for all α and

α = lim
γ→β

αγ = sup{ξγ ∶γ < β}.

Obviously, we always have cf(α) ≤ α. Here are some examples as

an exercise.

Exercise 2.44. Prove the following cofinalities:

(i) cf(ω) = ω,

(ii) cf(ω + ω) = ω,

(iii) cf(α) = ω for every countable, infinite α,

(iv) cf(ω1) = ω1 (if we assume AC),

(v) cf(ωω) = ω.

The last statement can be generalized to

cf(ωλ) = cf(λ),

where λ is any limit ordinal.

If κ is an infinite cardinal and cf(κ) < κ, it means that κ can

be reached from below by means of a “ladder” that has fewer steps

than κ. Such a cardinal is called singular. If cf(κ) = κ, κ is called

regular. Hence ℵ0 and ℵ1 are regular cardinals, while ℵω is singular.

Assuming the axiom of choice, one can show that every successor

cardinal, that is, a cardinal of the form ℵα+1, is a regular cardinal.

It seems much harder for a limit cardinal to be regular. For this

to be true, the following must hold:

ℵλ = cf(ℵλ) = cf(λ) ≤ λ.

But since clearly ℵλ ≥ λ, this means that

if ℵλ is regular (λ limit), then ℵλ = λ.

This seems rather strange. Going, for example, from ℵ0 to ℵ1, we

traverse ω1-many ordinals, but the jump “costs” only one step in

terms of cardinals. That means we have to go a long, long way if we

ever want to “catch up” with the alephs again.
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Anyway, let us capture the notions of large cardinals we have

found so far in a formal definition.

Definition 2.45. Let κ be an uncountable cardinal.

(i) κ isweakly inaccessible if it is regular and a limit cardinal.

(ii) κ is (strongly) inaccessible if it is regular and a strong

limit cardinal.

(iii) κ is Ramsey if κ �→ (κ)22.

Usually, strongly inaccessible cardinals are called simply inacces-

sible. Our investigation leading up to Definition 2.45 now yields the

following.

Theorem 2.46. Every Ramsey cardinal is inaccessible.

Do Ramsey cardinals exist? We cannot answer this question here,

nor will we in this book. In fact, in a certain sense we cannot answer

this question at all. More precisely, the existence of Ramsey cardinals

cannot be proved in ZF. As mentioned before in Section 2.5, ZF is a

common axiomatic framework for set theory in which most of con-

temporary mathematics can be formalized. We will say more about

axiom systems and formal proofs in Chapter 4.


	stml-87-foreword
	stml-87-chapter-2

