
Groundwork

In this chapter we lay the foundation for the computation of the trace
of Tn. First we show that Sk(N, ω′) embeds isometrically into L2

0(ω) for an
appropriately chosen Hecke character ω. This having been done, the main
result of this chapter is the construction of a function f on G(A) for which
the following diagram commutes:

L2(ω)
n

k
2
−1R(f)� L2(ω)

Sk(N, ω′)

orthog. proj.

� Tn � Sk(N, ω′)

�

In particular, although L2(ω) is infinite-dimensional, n
k
2
−1R(f) will be an

operator of finite rank (with rankC R(f) ≤ dimC Sk(N, ω′)) and having the
same eigenvalues as Tn.

12. Cusp forms as elements of L2
0(ω)

12.1. From Dirichlet characters to Hecke characters. Let ω′ be
a Dirichlet character modulo N satisfying (3.12):

(12.1) ω′(−1) = (−1)k.

Using strong approximation for the ideles

A∗ = Q∗(R∗
+ × Ẑ∗),

we use ω′ to define a Hecke character of A∗ (trivial on Q∗ and R∗
+):

(12.2) ω : A∗ −→ Ẑ∗ −→ (Z/NZ)∗ −→ C∗,

where the first arrow is the canonical projection, the second arrow is the
quotient map, and the last arrow is given by ω′. Let

πN :
∏
p|N

Zp −→ Z/NZ

be the canonical surjection. For any idele x ∈ A∗, let xN be the idele which
agrees with x at the places p|N , and which is 1 at all other places. Then

(12.3) for x ∈ R∗
+ × Ẑ∗, ω(x) = ω(xN) = ω′(πN (

∏
p|N

xp)).
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If d is an integer coprime to N , then dN ∈ R∗
+ × Ẑ∗, so by the above,

(12.4) ω(dN) = ω′(d).

(However ω(d) = 1 since d ∈ Q∗). More generally, if d is an arbitrary
nonzero integer, it is not hard to check that

ω(dN ) = ω′(
d∏

p|N
pvp(d)

).

The above procedure can be reversed. A Hecke character ω has finite
order if there exists an integer � such that ω(x)� = 1 for all x ∈ A∗. Such
a character is necessarily unitary.

Lemma 12.1. A Hecke character has finite order if and only if it is
unitary and trivial on R∗

+.

Proof. Suppose ω has order � ≥ 1. Define ω+
∞ : R∗

+ → C∗ by ω+
∞(x) =

ω(x∞ × 1fin). Such a character must be of the form ω+
∞(x) = xs for some

s ∈ C by Proposition 11.6. Now ω+
∞(x)� = xs� = 1 for all x ∈ R∗

+, so we
must have s = 0. Thus ω is trivial on R∗

+.
Conversely, suppose ω is a (unitary) Hecke character which is trivial on

R∗
+. Then ω defines a continuous homomorphism ω : Ẑ∗ → C∗. If O ⊂ C∗

is a small open neighborhood of 1, then ω−1(O) is open, and hence contains
UM ⊂ Ẑ∗ for some M > 0. Then ω(UM ) ⊂ O is a subgroup of C∗, which
must be trivial if O is sufficiently small. Thus each such ω factors through
Ẑ∗/UM

∼= (Z/MZ)∗ for some positive integer M . �
If in the above proof M > 0 is chosen to be as small as possible, we set

Nω = M and call this integer the conductor of ω. In this way, there is a
natural bijection{

Dirichlet characters
of conductor M

}
↔

{
finite order Hecke

characters of conductor M

}
.

We remark that for the character defined in (12.2),

Nω = Nω′ .

The character ω′ may not be primitive, i.e. N may not be minimal, so we
can only say that Nω|N .

A continuous character of Q∗
p is unramified if its kernel contains Z∗

p.
Every continuous character of A∗ factorizes as a product of local characters,
all but finitely many of which are unramified. Let ω be the character defined
in (12.2). We factorize ω in this way as follows. For xp ∈ Qp (p ≤ ∞), define

ωp(xp)
def= ω(1, . . . , 1,

pth

xp, 1, 1, . . .).
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For p finite, suppose vp(xp) = j so that xp = pju, where u ∈ Z∗
p. Then if

p � N ,

(12.5) ωp(xp) = ω(pj(p−j , . . . , p−j , u, p−j , . . .)) = ω′(p)−j.

In particular, if j = 0 then ωp(u) = 1, so ωp is unramified when p � N . As a
result, the following decomposition holds for any x ∈ A∗:

ω(x) =
∏

p≤∞
ωp(xp).

Using (12.1) and (12.3), it is easy to show that

(12.6) ω∞(x) = sgn(x)k.

Suppose d > 0 and gcd(d, N) = 1. Then ω∞(d) = 1 and ωp(d) = 1 for
all p � dN since ωp is unramified. Therefore

1 = ω(d) =
∏
p|d

ωp(d)
∏
p|N

ωp(d) =
∏
p|d

ωp(d) ω′(d)

by (12.4). Thus

(12.7)
∏
p|d

ωp(d) = ω′(d)−1 (d > 0, (d, N) = 1).

12.2. From cusp forms to functions on G(A). We now review the
embedding

Sk(N, ω′) −→ L2
0(ω).

Recall that we have defined K0(N) =
∏

p<∞
K0(N)p, where

K0(N)p = {
(

a b
c d

)
∈ Kp | c ≡ 0 modN}.

By strong approximation for G(A), we have

(12.8) G(A) = G(Q)(G(R)+ ×K0(N)).

If k0 =
(

a b
c d

)
∈ K0(N), define

(12.9) ω(k0) = ω(dN).

Because ω(dN ) depends only on dN modulo N Ẑ∗, this defines a character of
K0(N). If k0 = γ ∈ Γ0(N) ⊂ K0(N), then by (12.4) this agrees with ω′(γ)
defined in (3.9):

ω(γ) = ω(dN ) = ω′(d) = ω′(γ).
By identifying Z(A) with A∗, we also view ω as a character of Z(A).

Suppose z ∈ Z(A), and write z = zQ(z∞ × z0) with z∞ ∈ Z(R)+, and
z0 ∈ Z(Ẑ) ⊂ K0(N). Then by (12.3),

(12.10) ω(z) = ω((z∞ × z0)N ) = ω(z0),

where ω(z0) is defined as in (12.9).



198 GROUNDWORK

For z ∈ Z(Afin) define ω(z) = ω(1∞ × z). Then we find by the above
that for

(12.11) z ∈ Z(Afin) ∩K0(N),

the value of ω(z) is independent of whether we regard z as belonging to
Z(Afin) or K0(N).

There is a chart in the Appendix which tabulates the various uses of ω
and ω′.

For h ∈Wk(N, ω′), define a left G(Q)-invariant function φh on G(A) by

(12.12) φh(γ(g∞ × k0)) = ω(k0)j(g∞, i)−kh(g∞(i)),

for γ ∈ G(Q), g∞ ∈ G(R)+, and k0 ∈ K0(N). The decomposition

g = γ(g∞ × k0)

is not unique, so we will show that φh(g) is well-defined. Suppose g =
γ′(g′∞ × k′

0) is another decomposition. Then

γ′−1γ = g′∞g−1
∞ × k′

0k
−1
0 ∈ (G(R)+ ×K0(N)) ∩G(Q) = Γ0(N).

Thus any decomposition of g has the form g = γδ−1(δ∞g∞×δfink0) for some
δ ∈ Γ0(N). To check that φh is well-defined, we must check that inserting δ
in this manner does not affect the value of φh. We have

φh(γδ−1(δ∞g∞ × δfink0)) = ω(δfink0)j(δg∞, i)−kh(δg∞(i))

= ω(δfin) ω(k0) j(δ, g∞(i))−k j(g∞, i)−k ω′(δ)−1 j(δ, g∞(i))k h(g∞(i))
= ω(k0)j(g∞, i)−kh(g∞(i))

= φh(γ(g∞ × k0)),
as needed.

If g = γ(g∞ × k0) ∈ G(A) and z = zQ(z∞ × z0), then

φh(zg) = ω(z0k0)j(z∞g∞, i)−kh(z∞g∞(i))

= ω(z)φh(g),
(12.13)

by equations (12.10), (3.7) and (3.8). Thus φh has central character ω, and
our goal is to show that φh ∈ L2

0(ω) when h is a cusp form.

12.3. Comparison of classical and adelic Fourier coefficients.
Let h ∈Wk(N, ω′). Fix any g ∈ G(A) and consider the map A→ C defined
by

x �→ φh(
(

1 x
1

)
g).

By the G(Q)-invariance of φh this defines a continuous function on Q\A.
Therefore by Proposition 8.10 it has a Fourier expansion

(12.14) φh(
(

1 x
1

)
g) =

∑
β∈Q

Wβ(g) θ(−βx),

assuming absolute convergence of the series. The Fourier coefficient Wβ(g) is
called the θβ-Whittaker function of φh. Our goal in the next proposition is
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to compute Wβ(g) explicitly. In fact the above Fourier expansion is closely
related to the Fourier expansion of h at a certain cusp determined by g.
Consequently, we will see that (12.14) is justified, and we will be able to
prove that φh ∈ L2

0(ω) when h is a cusp form.
First we claim that for computing Wβ(g), it suffices to consider the

case where det g∞ > 0. In fact, suppose g′ =
(
−1

1

)
g. Then Wβ(g) =

W−β(g′). Indeed, because φh is G(Q)-invariant,

φh(ng) = φh(
(

1 x
1

)(
−1

1

)
g′) = φh(

(
−1

1

)(
1 −x

1

)
g′) = φh(n−1g′).

Therefore

Wβ(g) =
∫

N(Q)\N(A)

φh(ng)θβ(n)dn =
∫

N(Q)\N(A)

φh(n−1g′) θ−β(n−1)dn

= W−β(g′),
as claimed. Here (and below) we regard θβ as a character on N(Q)\N(A)
in the obvious way.

Proposition 12.2. Let h ∈ Wk(N, ω′), and let φh be the associated
function defined in (12.12). For δ ∈ G(Q)+ write

hδ(z) =
∑
n∈Z

an(δ)qn,

where q = e
2πiz
M and M = Mδ(Γ1(N)) is given in Lemma 3.7. Fix g ∈

G(R)+ ×G(Afin), and consider the Fourier expansion (12.14). Then there
exists δ ∈ G(Q)+, determined by gfin in (12.17) below, such that for any
β ∈ Q,

Wβ(g) =

⎡⎣ j(g∞, i)−ke
2πinz

M an(δ) if β = n
M ∈ 1

M Z

0 if β /∈ 1
M Z,

where z = g∞(i). (If gfin ∈ G(Q)+, then δ = g−1
fin .) In particular, taking

β = 0, we see that

(12.15) W0(g) = (φh)
N

(g) = j(g∞, i)−ka0(δ)

is the constant term of φh.

Before proving the proposition, we highlight two consequences.

Corollary 12.3. In the above notation,
∑
|Wβ(g)| <∞, so (12.14) is

justified.

Proof. Let z = g∞(i) and q = e2πiz/M . By the proposition,∑
β∈Q

|Wβ(g)| = |j(g∞, i)|−k
∑
n∈Z

|an(δ)qn|,

which is finite since hδ(q) =
∑

an(δ)qn is absolutely convergent. �
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Corollary 12.4. Let h ∈ Sk(N, ω′), and write h(z) =
∑
n>0

anqn, where

q = e2πiz. Then for m ∈ Q,∫
Q\A

φh(
(

1 t
1

)
)θ(mt)dt =

⎡⎣ e−2πmam if m ∈ Z+

0 otherwise.

Proof. Apply the proposition with g = 1, so δ = 1, M = 1, β = m,
and z = i. �

Proof of the proposition. Let

K1(N) = {
(

a b
c d

)
∈ K0(N) | d ≡ 1 mod N Ẑ}.

Using (12.12) it is immediate that

(12.16) φh(gk) = φh(g)

for all k ∈ K1(N).
Note that detK1(N) = Ẑ∗, so by strong approximation we can write

(12.17) gfin = δ−1k

for some δ ∈ G(Q) and k ∈ K1(N). Multiplying both δ and k by
(
−1

1

)
if necessary, we can assume δ ∈ G(Q)+. Let z = g∞(i). Then using (12.16),

φh(g∞ × gfin) = φh(g∞ × δ−1k) = φh(δg∞ × 1fin)

= j(δg∞, i)−kh(δ(z))(12.18)

= j(g∞, i)−kj(δ, z)−kh(δ(z))

= j(g∞, i)−khδ(z).

Let M = Mδ(Γ1(N)) be the positive rational number given in Lemma
3.7 (page 15). By definition, M is the positive rational number satisfying

N(Q) ∩ δ−1Γ1(N)δ = N(MZ) =
{(

1 tM
0 1

)
| t ∈ Z

}
.

Thus

δ

{(
1 tM
0 1

)
| t ∈ Z

}
δ−1 ⊂ Γ1(N).

In particular, the lower left entry, as a linear function of t, is congruent to
0 mod N , and the lower right entry is congruent to 1 mod N . This remains
true if we allow t to range through all of Ẑ instead of Z. Consequently,

δ N(M Ẑ) δ−1 ⊂ K1(N).

For n ∈ N(A) and n′ ∈ N(M Ẑ), we have (identifying n′ with 1∞ × n′)

φh(nn′g) = φh(ng(g−1
fin n′gfin)) = φh(ng)
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since by (12.17) g−1
fin n′gfin = k−1δn′δ−1k ∈ K1(N). By strong approxima-

tion,
N(A) = N(Q)[N(R)×N(M Ẑ)],

so N(Q)\N(A) = N(MZ)\[N(R)×N(M Ẑ)]. Note that the interval [0, M ]
is a fundamental domain in R ∼= N(R) for N(MZ)\N(R). Thus by the
divorce theorem we have

Wβ(g) =
∫

N(Q)\N(A)
φh(ng)θβ(n)dn

=
∫ M

0

∫
N(M bZ)

φh(
(

1 t
1

)
n′g)θβ,∞(t) θβ,fin(n′)dn′ dt

=
∫ M

0
φh(

(
1 t

1

)
g)θ∞(βt)dt

∫
M bZ

θfin(βa)da.

Note that the integral over M Ẑ is nonzero if and only if βM Ẑ ⊂ Ẑ, i.e.
if and only if β ∈ 1

M Z (Lemma 8.3). Assume this is the case, and write
β = n

M . Then by (12.18), the above is

= meas(M Ẑ)
∫ M

0
j(g∞, i)−khδ(z + t)e−

2πint
M dt

= j(g∞, i)−k 1
M

∫ M

0
hδ(z + t)e−2πint/Mdt

= j(g∞, i)−ke
2πinz

M an(δ)
by (3.20) on page 17. �

12.4. Characterizing the image of Sk(N, ω′) in L2
0(ω).

Proposition 12.5. Let Ak(N, ω) be the space of all functions ϕ ∈ L2
0(ω)

satisfying
(a) ϕ(gk) = ω(k)ϕ(g) for all k ∈ K0(N) and g ∈ G(A)

(b) ϕ(g
(

cos θ sin θ
− sin θ cos θ

)
) = eikθϕ(g) for all θ and all g ∈ G(A)

(c) The function ϕ satisfies

R(E−)ϕ = 0,

where we take R(E−)ϕ(g) = d
dt

∣∣
t=0

R(exp(tE−)× 1fin)ϕ(g).
Then the map h �→ φh defines an isometry from Sk(N, ω′) onto Ak(N, ω).

Remarks: (i) For any function ϕ that transforms under Z(A) by ω, condition
(a) is equivalent to:

(a′) ϕ(gk) = ϕ(g) for all k ∈ K1(N).
(ii) Condition (c) can be replaced by

R(∆)ϕ =
k

2
(1− k

2
)ϕ.

This can be seen using Theorem 12.6 below and Theorem 11.44.
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Proof. Let h ∈ Sk(N, ω′). We begin by showing that φh satisfies con-
ditions (a), (b) and (c). Write g = γ(g∞ × k0) for γ ∈ G(Q), g∞ ∈ G(R)+,
and k0 ∈ K0(N). For any k ∈ K0(N),

φh(gk) = φh(γ(g∞ × k0k))

= ω(k)ω(k0)j(g∞, i)−kh(g∞(i))
= ω(k)φh(g).

Thus φh satisfies condition (a).

Let kθ =
(

cos θ sin θ
− sin θ cos θ

)
. Then kθ stabilizes i, so for g = γ(g∞ × k),

φh(gkθ) = ω(k)j(g∞kθ, i)−k h(g∞kθ(i))

= ω(k)j(g∞, kθ(i))−kj(kθ, i)−k h(g∞(i))
= eikθφh(g).

This proves condition (b) for φh.
Let L denote the left regular representation L(g)f(x) = f(g−1x). It is

clear that L commutes with the right regular action of the Lie algebra, i.e.
L(g)R(X) = R(X)L(g). Therefore for any g ∈ G(A),

R(E−)φh(g∞ × gfin) = L(ε∞ × gfin)−1R(E−)φh(ε∞g∞ × 1fin),

where ε∞ =
(

1
−1

)sgn(det g∞)

. Thus in order to verify condition (c) it

suffices to show that R(E−)φh(g∞ × 1fin) = 0 for g∞ ∈ G(R)+. Write

g∞ = z∞

(
1 x

1

)(
y1/2

y−1/2

)
kθ ∈ G(R)+.

Note that
φh(g∞ × 1fin) = yk/2eikθh(x + iy).

Recall from Proposition 11.37 that as an operator on C∞(G(R)+),

R(E−) = e−2iθ

(
−2iy

∂

∂x
+ 2y

∂

∂y
+ i

∂

∂θ

)
.

Let z = x + iy. Then using subscripts to denote partial derivatives,

R(E−)φh(g∞ × 1fin) = R(E−)yk/2eikθh(z)

= e−2iθ(−2iy
k
2
+1eikθhx(z)+2y

(
y

k
2 eikθhy(z) +

k

2
y

k
2
−1eikθh(z)

)
−keikθyk/2h(z))

= e−2iθ
(
−2iy

k
2
+1eikθhx(z) + 2y

k
2
+1eikθhy(z) + kyk/2eikθh(z)− keikθyk/2h(z)

)
= −2ie(k−2)iθy

k
2
+1 (hx(z) + ihy(z))

(12.19) = −4ie(k−2)iθy
k
2
+1 ∂h

∂z̄
(z).

Because h is holomorphic, the above is identically 0. This proves that φh

satisfies condition (c).
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Let DN ⊂ H be a fundamental domain for Γ0(N)\H. We identify DN

in the usual way with a subset of SL2(R) (cf. Proposition 7.43, p. 104). For
the square-integrability of φh, we use Proposition 7.43 to compute∫

G(Q)\G(A)
|φh(g)|2dg =

∫
DNK∞×K0(N)

|φh(g)|2dg

=
∫

DNK∞×K0(N)
|j(g∞, i)−kh(g∞(i))|2dg

(12.20) = meas(K0(N))
∫∫

DN

|yk/2h(x + iy)|2dx dy

y2

=
1

ψ(N)

∫∫
Γ0(N)\H

|h(x + iy)|2ykdx dy

y2
.

Thus the L2-norm of φh equals the Petersson norm of h. (We are using
the fact that meas(K0(N)) = 1/ψ(N). See the beginning of Section 13.) It
follows that φh is square-integrable, and because its constant term vanishes
by (12.15) of Proposition 12.2, we see that φh ∈ L2

0(ω). Recall that the fact
that φh(zg) = ω(z)φh(g) was shown in (12.13) above. This completes the
proof that φh ∈ Ak(N, ω).

Conversely, suppose ϕ ∈ Ak(N, ω). Define a function h on the upper
half plane in the following way. For z ∈ H, choose g∞ ∈ G(R)+ such that
g∞(i) = z, and let

h(z) = h(g∞(i)) = j(g∞, i)kϕ(g∞ × 1fin).

Using the fact that the stabilizer of i ∈ H in G(R)+ is Z(R)K∞, it is
straightforward to check that h(z) is independent of the choice of g∞. Using
(12.12), define a function φh on G(A). Then φh = ϕ since

φh(γ(g∞×k)) = ω(k)j(g∞, i)−kh(g∞(i)) = ω(k)ϕ(g∞×1fin) = ϕ(γ(g∞×k)).

Let

g∞ =
(

1 x
1

)(
y1/2

y−1/2

)
.

Then z = g∞(i) = x+ iy and h(x+ iy) = y−k/2ϕ(g∞×1fin). Using condition
(c) and (12.19) with θ = 0, we have

∂h

∂z̄
= − 1

4iyk/2+1
R(E−)ϕ(g∞ × 1fin) = 0.

Thus h is holomorphic.
Write z = g∞(i) as above, and let γ ∈ Γ0(N). Then

h(γz) = h(γg∞(i)) = j(γg∞, i)kϕ(γg∞ × 1fin)

= j(γ, g∞(i))kj(g∞, i)kϕ(g∞ × γ−1
fin )

= ω′(γ)−1j(γ, z)kh(z).
Thus h is weakly modular.
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To show that h ∈ Sk(N, ω′), it remains to check that h vanishes at the
cusps of Γ1(N). This is a consequence of the square-integrability of φ. By
(12.20) we see that the Petersson norm of h is finite. By Proposition 3.39, h
is a cusp form. Hence h �→ φh is surjective. Because it is a norm-preserving
linear map, it must also be injective, so the proposition is proven. �

As mentioned earlier, the right regular representation of G(A) on L2
0(ω)

decomposes into an orthogonal Hilbert space direct sum of irreducible rep-
resentations

R0
∼=

⊕
π,

where π are (by definition) the cuspidal automorphic representations of
G(A) with central character ω.

Each cuspidal representation π is isomorphic to a restricted tensor
product

π ∼=
⊗
p≤∞

′ πp

where πp is an irreducible admissible representation of G(Qp). For the proof
and a rigorous statement, see Section 3.3.3 of [GGPS]. A more general fac-
torization theorem which applies to all irreducible admissible representations
of G(A) (G any reductive group) was given by Flath, [Fl]. See also Section
3.4 of [Bu] for the case of GLn(A). For the present purpose, it is enough to
know that π is a tensor product

π = π∞ ⊗ πfin

where π∞ (resp. πfin) is an irreducible unitary representation of G(R) (resp.
G(Afin)). The isomorphism class of π∞ is called the infinity type of π.
When π∞ ∼= πk, we let vπ∞ ∈ Vπ∞ denote a lowest weight vector (unique up
to scalars). For any representation πfin of G(Afin) and any subgroup U of
G(Afin), let πU

fin denote the subspace of U -fixed vectors in the space of πfin.

Theorem 12.6. With notation as above, we have

(12.21) Ak(N, ω) =
⊕

π∞∼=πk

Cvπ∞ ⊗ π
K1(N)
fin

where the sum taken is over all cuspidal representations in L2
0(ω) of the form

π = πk ⊗ πfin.

Proof. Suppose φ = v∞ ⊗ vfin belongs to one of the summands on the
right-hand side of (12.21). To show that φ ∈ Ak(N, ω), we check that φ sat-
isfies conditions (a′), (b) and (c) of Proposition 12.5. This is straightforward,
using Theorem 11.44:

(a′) For k ∈ K1(N),

R(1∞ × k)φ = π∞(1)v∞ ⊗ πfin(k)vfin = v∞ ⊗ vfin = φ.
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(b) For kθ ∈ K∞,

R(kθ × 1fin)φ = π∞(kθ)v∞ ⊗ πfin(1)vfin = eikθv∞ ⊗ vfin = eikθφ

since v∞ is a lowest weight vector for π∞ ∼= πk (cf. Theorem 11.44).
(c) Lastly,

R(E−)φ =
d

dt

∣∣∣∣
t=0

R(exp(tE−)× 1fin)φ

=
d

dt

∣∣∣∣
t=0

π∞(exp(tE−))v∞ ⊗ πfin(1)vfin

= (π∞(E−)v∞)⊗ vfin = 0,

again by Theorem 11.44.
Conversely, suppose φ ∈ Ak(N, ω) is nonzero. We need to show that φ

belongs to the right-hand side of (12.21). For any cuspidal π, let Vπ be the
space of π, so L2

0(ω) is the closure of
⊕

Vπ. Let pπ : L2
0(ω) → Vπ be the

orthogonal projection map. Then pπ intertwines the action of R since Vπ is a
closed stable subspace and R is unitary. Using this fact, it is straightforward
to show that pπ(Ak(N, ω)) ⊂ Ak(N, ω), and hence

pπ(Ak(N, ω)) = Ak(N, ω) ∩ Vπ.

It follows that Ak(N, ω) is the closure of
⊕

π(Vπ ∩Ak(N, ω)). However this
direct sum is finite-dimensional, hence already closed, so

Ak(N, ω) =
⊕

π

(Vπ ∩Ak(N, ω)).

By this fact, it suffices to consider the case where

φ ∈ Vπ ∩Ak(N, ω)

for some cuspidal π.
It remains to show that π∞ ∼= πk and φ ∈ Cvπ∞ ⊗ π

K1(N)
fin . By linearity,

we can assume that φ = v∞⊗vfin for some nonzero v∞ ∈ Vπ∞ and vfin ∈ Vπfin
.

Let
V∞(k) = {v ∈ Vπ∞ |π∞(kθ)v = eikθv}

be the isotypic component in Vπ∞ of the character kθ �→ eikθ of K∞. Note
that by property (b),

π∞(kθ)v∞ ⊗ vfin = π(kθ × 1fin)φ

= eikθφ = eikθv∞ ⊗ vfin.

This proves that v∞ ∈ V∞(k). By a similar argument, we see easily that
vfin ∈ π

K1(N)
fin , and hence φ ∈ V∞(k)⊗ π

K1(N)
fin .

Now because φ satisfies condition (c),

0 =
d

dt

∣∣∣∣
t=0

π(exp(tE−)× 1fin)φ =
d

dt

∣∣∣∣
t=0

π∞(exp(tE−))v∞ ⊗ vfin

= (π∞(E−)v∞)⊗ vfin.
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Thus π∞(E−)v∞ = 0. We have now shown that v∞ satisfies (2) of Theorem
11.44, and hence π∞ ∼= πk and v∞ is a lowest weight vector. �
Remark: If h ∈ Sk(N, ω′) is a Hecke eigenform, the cuspidal representation
π generated by φh ∈ Ak(N, ω) ⊂ L2

0(ω) is irreducible and has π∞ = πk. For
details about the correspondence (1-1 only at the level of newforms) between
h and π, including a description of the local factors πp, see [G1] or [Ro1].

13. Construction of the test function f

We now construct a continuous function f ∈ L1(G(A), ω−1) such that
the trace of R(f) on L2(ω) gives the trace of the Hecke operator Tn on
Sk(N, ω′). The function f will be a product of local functions on G(Qp), i.e.
f = f∞ × fn, where fn =

∏
p<∞ fn

p .

13.1. The non-archimedean component of f . The idea is to define
fn using double cosets as in the construction of Tn, using K0(N) in place of
Γ0(N).

Lemma 13.1. Suppose p|N . Then

Kp =
⋃

δ∈Zp/NZp

(
δ 1
1 0

)
K0(N)p ∪

⋃
τ∈pZp/NZp

(
1 0
τ 1

)
K0(N)p,

a disjoint union.

Proof. Let
(

a b
c d

)
∈ Kp. If p|c, then a ∈ Z∗

p, so
(

a−1 −b
ad−bc

0 a
ad−bc

)
∈

K0(N)p, and (
a b
c d

)(
a−1 −b

ad−bc
0 a

ad−bc

)
=

(
1 0

c/a 1

)
.

Because we can further multiply by
(

1 0
N 1

)
to obtain

(
1 0

c/a + N 1

)
, the

entry τ = c/a ∈ pZp is unique modulo NZp.

If c is a unit, then multiplying by
(

c−1 d
ad−bc

0 −c
ad−bc

)
gives

(
a/c 1
1 0

)
. Once

again, δ = a/c ∈ Zp is unique modulo NZp.
This proves the decomposition. To see that it is disjoint, note that(

1 0
τ 1

)(
w x

Ny z

)
=

(
∗ ∗

τw + Ny ∗

)
,

which cannot equal
(

δ 1
1 0

)
since p|(τw + Ny). �

Define
ψp(N) = [Kp : K0(N)p].


