Groundwork

In this chapter we lay the foundation for the computation of the trace of T_{n}. First we show that $S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$ embeds isometrically into $L_{0}^{2}(\omega)$ for an appropriately chosen Hecke character ω. This having been done, the main result of this chapter is the construction of a function f on $G(\mathbf{A})$ for which the following diagram commutes:

In particular, although $L^{2}(\omega)$ is infinite-dimensional, $\mathrm{n}^{\frac{k}{2}-1} R(f)$ will be an operator of finite $\operatorname{rank}\left(\right.$ with $\operatorname{rank}_{\mathbf{C}} R(f) \leq \operatorname{dim}_{\mathbf{C}} S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$) and having the same eigenvalues as T_{n}.

12. Cusp forms as elements of $L_{0}^{2}(\omega)$

12.1. From Dirichlet characters to Hecke characters. Let ω^{\prime} be a Dirichlet character modulo N satisfying (3.12):

$$
\begin{equation*}
\omega^{\prime}(-1)=(-1)^{\mathrm{k}} \tag{12.1}
\end{equation*}
$$

Using strong approximation for the ideles

$$
\mathbf{A}^{*}=\mathbf{Q}^{*}\left(\mathbf{R}_{+}^{*} \times \widehat{\mathbf{Z}}^{*}\right)
$$

we use ω^{\prime} to define a Hecke character of $\mathbf{A}^{*}\left(\right.$ trivial on \mathbf{Q}^{*} and $\left.\mathbf{R}_{+}^{*}\right)$:

$$
\begin{equation*}
\omega: \mathbf{A}^{*} \longrightarrow \widehat{\mathbf{Z}}^{*} \longrightarrow(\mathbf{Z} / N \mathbf{Z})^{*} \longrightarrow \mathbf{C}^{*} \tag{12.2}
\end{equation*}
$$

where the first arrow is the canonical projection, the second arrow is the quotient map, and the last arrow is given by ω^{\prime}. Let

$$
\pi_{N}: \prod_{p \mid N} \mathbf{Z}_{p} \longrightarrow \mathbf{Z} / N \mathbf{Z}
$$

be the canonical surjection. For any idele $x \in \mathbf{A}^{*}$, let x_{N} be the idele which agrees with x at the places $p \mid N$, and which is 1 at all other places. Then

$$
\begin{equation*}
\text { for } x \in \mathbf{R}_{+}^{*} \times \widehat{\mathbf{Z}}^{*}, \quad \omega(x)=\omega\left(x_{N}\right)=\omega^{\prime}\left(\pi_{N}\left(\prod_{p \mid N} x_{p}\right)\right) \tag{12.3}
\end{equation*}
$$

If d is an integer coprime to N, then $d_{N} \in \mathbf{R}_{+}^{*} \times \widehat{\mathbf{Z}}^{*}$, so by the above,

$$
\begin{equation*}
\omega\left(d_{N}\right)=\omega^{\prime}(d) \tag{12.4}
\end{equation*}
$$

(However $\omega(d)=1$ since $d \in \mathbf{Q}^{*}$). More generally, if d is an arbitrary nonzero integer, it is not hard to check that

$$
\omega\left(d_{N}\right)=\omega^{\prime}\left(\frac{d}{\prod_{p \mid N} p^{v_{p}(d)}}\right)
$$

The above procedure can be reversed. A Hecke character ω has finite order if there exists an integer ℓ such that $\omega(x)^{\ell}=1$ for all $x \in \mathbf{A}^{*}$. Such a character is necessarily unitary.

Lemma 12.1. A Hecke character has finite order if and only if it is unitary and trivial on \mathbf{R}_{+}^{*}.

Proof. Suppose ω has order $\ell \geq 1$. Define $\omega_{\infty}^{+}: \mathbf{R}_{+}^{*} \rightarrow \mathbf{C}^{*}$ by $\omega_{\infty}^{+}(x)=$ $\omega\left(x_{\infty} \times 1_{\text {fin }}\right)$. Such a character must be of the form $\omega_{\infty}^{+}(x)=x^{s}$ for some $s \in \mathbf{C}$ by Proposition 11.6. Now $\omega_{\infty}^{+}(x)^{\ell}=x^{s \ell}=1$ for all $x \in \mathbf{R}_{+}^{*}$, so we must have $s=0$. Thus ω is trivial on \mathbf{R}_{+}^{*}.

Conversely, suppose ω is a (unitary) Hecke character which is trivial on \mathbf{R}_{+}^{*}. Then ω defines a continuous homomorphism $\omega: \widehat{\mathbf{Z}}^{*} \rightarrow \mathbf{C}^{*}$. If $O \subset \mathbf{C}^{*}$ is a small open neighborhood of 1 , then $\omega^{-1}(O)$ is open, and hence contains $U_{M} \subset \widehat{\mathbf{Z}}^{*}$ for some $M>0$. Then $\omega\left(U_{M}\right) \subset O$ is a subgroup of \mathbf{C}^{*}, which must be trivial if O is sufficiently small. Thus each such ω factors through $\widehat{\mathbf{Z}}^{*} / U_{M} \cong(\mathbf{Z} / M \mathbf{Z})^{*}$ for some positive integer M.

If in the above proof $M>0$ is chosen to be as small as possible, we set $N_{\omega}=M$ and call this integer the conductor of ω. In this way, there is a natural bijection

$$
\left\{\begin{array}{c}
\text { Dirichlet characters } \\
\text { of conductor } M
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { finite order Hecke } \\
\text { characters of conductor } M
\end{array}\right\}
$$

We remark that for the character defined in (12.2),

$$
N_{\omega}=N_{\omega^{\prime}}
$$

The character ω^{\prime} may not be primitive, i.e. N may not be minimal, so we can only say that $N_{\omega} \mid N$.

A continuous character of \mathbf{Q}_{p}^{*} is unramified if its kernel contains \mathbf{Z}_{p}^{*}. Every continuous character of \mathbf{A}^{*} factorizes as a product of local characters, all but finitely many of which are unramified. Let ω be the character defined in (12.2). We factorize ω in this way as follows. For $x_{p} \in \mathbf{Q}_{p}(p \leq \infty)$, define

$$
\omega_{p}\left(x_{p}\right) \stackrel{\text { def }}{=} \omega\left(1, \ldots, 1, x_{p}^{p^{\mathrm{th}}}, 1,1, \ldots\right)
$$

For p finite, suppose $v_{p}\left(x_{p}\right)=j$ so that $x_{p}=p^{j} u$, where $u \in \mathbf{Z}_{p}^{*}$. Then if $p \nmid N$,

$$
\begin{equation*}
\omega_{p}\left(x_{p}\right)=\omega\left(p^{j}\left(p^{-j}, \ldots, p^{-j}, u, p^{-j}, \ldots\right)\right)=\omega^{\prime}(p)^{-j} \tag{12.5}
\end{equation*}
$$

In particular, if $j=0$ then $\omega_{p}(u)=1$, so ω_{p} is unramified when $p \nmid N$. As a result, the following decomposition holds for any $x \in \mathbf{A}^{*}$:

$$
\omega(x)=\prod_{p \leq \infty} \omega_{p}\left(x_{p}\right)
$$

Using (12.1) and (12.3), it is easy to show that

$$
\begin{equation*}
\omega_{\infty}(x)=\operatorname{sgn}(x)^{\mathrm{k}} \tag{12.6}
\end{equation*}
$$

Suppose $d>0$ and $\operatorname{gcd}(d, N)=1$. Then $\omega_{\infty}(d)=1$ and $\omega_{p}(d)=1$ for all $p \nmid d N$ since ω_{p} is unramified. Therefore

$$
1=\omega(d)=\prod_{p \mid d} \omega_{p}(d) \prod_{p \mid N} \omega_{p}(d)=\prod_{p \mid d} \omega_{p}(d) \omega^{\prime}(d)
$$

by (12.4). Thus

$$
\begin{equation*}
\prod_{p \mid d} \omega_{p}(d)=\omega^{\prime}(d)^{-1} \quad(d>0,(d, N)=1) \tag{12.7}
\end{equation*}
$$

12.2. From cusp forms to functions on $G(\mathbf{A})$. We now review the embedding

$$
S_{\mathrm{k}}\left(N, \omega^{\prime}\right) \longrightarrow L_{0}^{2}(\omega)
$$

Recall that we have defined $K_{0}(N)=\prod_{p<\infty} K_{0}(N)_{p}$, where

$$
K_{0}(N)_{p}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in K_{p} \right\rvert\, c \equiv 0 \bmod N\right\}
$$

By strong approximation for $G(\mathbf{A})$, we have

$$
\begin{equation*}
G(\mathbf{A})=G(\mathbf{Q})\left(G(\mathbf{R})^{+} \times K_{0}(N)\right) \tag{12.8}
\end{equation*}
$$

If $k_{0}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{0}(N)$, define

$$
\begin{equation*}
\omega\left(k_{0}\right)=\omega\left(d_{N}\right) \tag{12.9}
\end{equation*}
$$

Because $\omega\left(d_{N}\right)$ depends only on d_{N} modulo $N \widehat{\mathbf{Z}}^{*}$, this defines a character of $K_{0}(N)$. If $k_{0}=\gamma \in \Gamma_{0}(N) \subset K_{0}(N)$, then by (12.4) this agrees with $\omega^{\prime}(\gamma)$ defined in (3.9):

$$
\omega(\gamma)=\omega\left(d_{N}\right)=\omega^{\prime}(d)=\omega^{\prime}(\gamma)
$$

By identifying $Z(\mathbf{A})$ with \mathbf{A}^{*}, we also view ω as a character of $Z(\mathbf{A})$. Suppose $z \in Z(\mathbf{A})$, and write $z=z_{\mathbf{Q}}\left(z_{\infty} \times z_{0}\right)$ with $z_{\infty} \in Z(\mathbf{R})^{+}$, and $z_{0} \in Z(\widehat{\mathbf{Z}}) \subset K_{0}(N)$. Then by (12.3),

$$
\begin{equation*}
\omega(z)=\omega\left(\left(z_{\infty} \times z_{0}\right)_{N}\right)=\omega\left(z_{0}\right) \tag{12.10}
\end{equation*}
$$

where $\omega\left(z_{0}\right)$ is defined as in (12.9).

For $z \in Z\left(\mathbf{A}_{\mathrm{fin}}\right)$ define $\omega(z)=\omega\left(1_{\infty} \times z\right)$. Then we find by the above that for

$$
\begin{equation*}
z \in Z\left(\mathbf{A}_{\mathrm{fin}}\right) \cap K_{0}(N) \tag{12.11}
\end{equation*}
$$

the value of $\omega(z)$ is independent of whether we regard z as belonging to $Z\left(\mathbf{A}_{\text {fin }}\right)$ or $K_{0}(N)$.

There is a chart in the Appendix which tabulates the various uses of ω and ω^{\prime}.

For $h \in W_{\mathbf{k}}\left(N, \omega^{\prime}\right)$, define a left $G(\mathbf{Q})$-invariant function ϕ_{h} on $G(\mathbf{A})$ by

$$
\begin{equation*}
\phi_{h}\left(\gamma\left(g_{\infty} \times k_{0}\right)\right)=\omega\left(k_{0}\right) j\left(g_{\infty}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right) \tag{12.12}
\end{equation*}
$$

for $\gamma \in G(\mathbf{Q}), g_{\infty} \in G(\mathbf{R})^{+}$, and $k_{0} \in K_{0}(N)$. The decomposition

$$
g=\gamma\left(g_{\infty} \times k_{0}\right)
$$

is not unique, so we will show that $\phi_{h}(g)$ is well-defined. Suppose $g=$ $\gamma^{\prime}\left(g_{\infty}^{\prime} \times k_{0}^{\prime}\right)$ is another decomposition. Then

$$
\gamma^{\prime-1} \gamma=g_{\infty}^{\prime} g_{\infty}^{-1} \times k_{0}^{\prime} k_{0}^{-1} \in\left(G(\mathbf{R})^{+} \times K_{0}(N)\right) \cap G(\mathbf{Q})=\Gamma_{0}(N)
$$

Thus any decomposition of g has the form $g=\gamma \delta^{-1}\left(\delta_{\infty} g_{\infty} \times \delta_{\text {fin }} k_{0}\right)$ for some $\delta \in \Gamma_{0}(N)$. To check that ϕ_{h} is well-defined, we must check that inserting δ in this manner does not affect the value of ϕ_{h}. We have

$$
\begin{gathered}
\phi_{h}\left(\gamma \delta^{-1}\left(\delta_{\infty} g_{\infty} \times \delta_{\text {fin }} k_{0}\right)\right)=\omega\left(\delta_{\text {fin }} k_{0}\right) j\left(\delta g_{\infty}, i\right)^{-\mathrm{k}} h\left(\delta g_{\infty}(i)\right) \\
=\omega\left(\delta_{\text {fin }}\right) \omega\left(k_{0}\right) j\left(\delta, g_{\infty}(i)\right)^{-\mathrm{k}} j\left(g_{\infty}, i\right)^{-\mathrm{k}} \omega^{\prime}(\delta)^{-1} j\left(\delta, g_{\infty}(i)\right)^{\mathrm{k}} h\left(g_{\infty}(i)\right) \\
=\omega\left(k_{0}\right) j\left(g_{\infty}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right) \\
=\phi_{h}\left(\gamma\left(g_{\infty} \times k_{0}\right)\right),
\end{gathered}
$$

as needed.
If $g=\gamma\left(g_{\infty} \times k_{0}\right) \in G(\mathbf{A})$ and $z=z_{\mathbf{Q}}\left(z_{\infty} \times z_{0}\right)$, then

$$
\begin{align*}
\phi_{h}(z g) & =\omega\left(z_{0} k_{0}\right) j\left(z_{\infty} g_{\infty}, i\right)^{-\mathrm{k}} h\left(z_{\infty} g_{\infty}(i)\right) \\
& =\omega(z) \phi_{h}(g) \tag{12.13}
\end{align*}
$$

by equations (12.10), (3.7) and (3.8). Thus ϕ_{h} has central character ω, and our goal is to show that $\phi_{h} \in L_{0}^{2}(\omega)$ when h is a cusp form.
12.3. Comparison of classical and adelic Fourier coefficients. Let $h \in W_{\mathbf{k}}\left(N, \omega^{\prime}\right)$. Fix any $g \in G(\mathbf{A})$ and consider the map $\mathbf{A} \rightarrow \mathbf{C}$ defined by

$$
x \mapsto \phi_{h}\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right) g\right)
$$

By the $G(\mathbf{Q})$-invariance of ϕ_{h} this defines a continuous function on $\mathbf{Q} \backslash \mathbf{A}$. Therefore by Proposition 8.10 it has a Fourier expansion

$$
\phi_{h}\left(\left(\begin{array}{ll}
1 & x \tag{12.14}\\
& 1
\end{array}\right) g\right)=\sum_{\beta \in \mathbf{Q}} W_{\beta}(g) \theta(-\beta x)
$$

assuming absolute convergence of the series. The Fourier coefficient $W_{\beta}(g)$ is called the θ_{β}-Whittaker function of ϕ_{h}. Our goal in the next proposition is
to compute $W_{\beta}(g)$ explicitly. In fact the above Fourier expansion is closely related to the Fourier expansion of h at a certain cusp determined by g. Consequently, we will see that (12.14) is justified, and we will be able to prove that $\phi_{h} \in L_{0}^{2}(\omega)$ when h is a cusp form.

First we claim that for computing $W_{\beta}(g)$, it suffices to consider the case where $\operatorname{det} g_{\infty}>0$. In fact, suppose $g^{\prime}=\left(\begin{array}{cc}-1 & \\ & 1\end{array}\right) g$. Then $W_{\beta}(g)=$ $W_{-\beta}\left(g^{\prime}\right)$. Indeed, because ϕ_{h} is $G(\mathbf{Q})$-invariant,
$\phi_{h}(n g)=\phi_{h}\left(\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)\left(\begin{array}{ll}-1 & \\ & 1\end{array}\right) g^{\prime}\right)=\phi_{h}\left(\left(\begin{array}{ll}-1 & \\ & 1\end{array}\right)\left(\begin{array}{cc}1 & -x \\ & 1\end{array}\right) g^{\prime}\right)=\phi_{h}\left(n^{-1} g^{\prime}\right)$.
Therefore

$$
\begin{gathered}
W_{\beta}(g)=\int_{N(\mathbf{Q}) \backslash N(\mathbf{A})} \phi_{h}(n g) \overline{\theta_{\beta}(n)} d n=\int_{N(\mathbf{Q}) \backslash N(\mathbf{A})} \phi_{h}\left(n^{-1} g^{\prime}\right) \overline{\theta_{-\beta}\left(n^{-1}\right)} d n \\
=W_{-\beta}\left(g^{\prime}\right)
\end{gathered}
$$

as claimed. Here (and below) we regard θ_{β} as a character on $N(\mathbf{Q}) \backslash N(\mathbf{A})$ in the obvious way.

Proposition 12.2. Let $h \in W_{\mathrm{k}}\left(N, \omega^{\prime}\right)$, and let ϕ_{h} be the associated function defined in (12.12). For $\delta \in G(\mathbf{Q})^{+}$write

$$
h_{\delta}(z)=\sum_{n \in \mathbf{Z}} a_{n}(\delta) q^{n}
$$

where $q=e^{\frac{2 \pi i z}{M}}$ and $M=M_{\delta}\left(\Gamma_{1}(N)\right)$ is given in Lemma 3.7. Fix $g \in$ $G(\mathbf{R})^{+} \times G\left(\mathbf{A}_{\text {fin }}\right)$, and consider the Fourier expansion (12.14). Then there exists $\delta \in G(\mathbf{Q})^{+}$, determined by g_{fin} in (12.17) below, such that for any $\beta \in \mathbf{Q}$,

$$
W_{\beta}(g)=\left[\begin{array}{cl}
j\left(g_{\infty}, i\right)^{-\mathrm{k}} e^{\frac{2 \pi i n z}{M}} a_{n}(\delta) & \text { if } \beta=\frac{n}{M} \in \frac{1}{M} \mathbf{Z} \\
0 & \text { if } \beta \notin \frac{1}{M} \mathbf{Z},
\end{array}\right.
$$

where $z=g_{\infty}(i)$. (If $g_{\mathrm{fin}} \in G(\mathbf{Q})^{+}$, then $\delta=g_{\mathrm{fin}}^{-1}$.) In particular, taking $\beta=0$, we see that

$$
\begin{equation*}
W_{0}(g)=\left(\phi_{h}\right)_{N}(g)=j\left(g_{\infty}, i\right)^{-\mathrm{k}} a_{0}(\delta) \tag{12.15}
\end{equation*}
$$

is the constant term of ϕ_{h}.
Before proving the proposition, we highlight two consequences.
Corollary 12.3. In the above notation, $\sum\left|W_{\beta}(g)\right|<\infty$, so (12.14) is justified.

Proof. Let $z=g_{\infty}(i)$ and $q=e^{2 \pi i z / M}$. By the proposition,

$$
\sum_{\beta \in \mathbf{Q}}\left|W_{\beta}(g)\right|=\left|j\left(g_{\infty}, i\right)\right|^{-\mathrm{k}} \sum_{n \in \mathbf{Z}}\left|a_{n}(\delta) q^{n}\right|,
$$

which is finite since $h_{\delta}(q)=\sum a_{n}(\delta) q^{n}$ is absolutely convergent.

Corollary 12.4. Let $h \in S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$, and write $h(z)=\sum_{n>0} a_{n} q^{n}$, where $q=e^{2 \pi i z}$. Then for $m \in \mathbf{Q}$,

$$
\int_{\mathbf{Q} \backslash \mathbf{A}} \phi_{h}\left(\left(\begin{array}{ll}
1 & t \\
& 1
\end{array}\right)\right) \theta(m t) d t=\left[\begin{array}{cc}
e^{-2 \pi m} a_{m} & \text { if } m \in \mathbf{Z}^{+} \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof. Apply the proposition with $g=1$, so $\delta=1, M=1, \beta=m$, and $z=i$.

Proof of the proposition. Let

$$
K_{1}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in K_{0}(N) \right\rvert\, d \equiv 1 \bmod N \widehat{\mathbf{Z}}\right\}
$$

Using (12.12) it is immediate that

$$
\begin{equation*}
\phi_{h}(g k)=\phi_{h}(g) \tag{12.16}
\end{equation*}
$$

for all $k \in K_{1}(N)$.
Note that $\operatorname{det} K_{1}(N)=\widehat{\mathbf{Z}}^{*}$, so by strong approximation we can write

$$
\begin{equation*}
g_{\mathrm{fin}}=\delta^{-1} k \tag{12.17}
\end{equation*}
$$

for some $\delta \in G(\mathbf{Q})$ and $k \in K_{1}(N)$. Multiplying both δ and k by $\left(\begin{array}{cc}-1 & \\ & 1\end{array}\right)$ if necessary, we can assume $\delta \in G(\mathbf{Q})^{+}$. Let $z=g_{\infty}(i)$. Then using (12.16),

$$
\begin{align*}
\phi_{h}\left(g_{\infty} \times g_{\text {fin }}\right) & =\phi_{h}\left(g_{\infty} \times \delta^{-1} k\right)=\phi_{h}\left(\delta g_{\infty} \times 1_{\text {fin }}\right) \\
& =j\left(\delta g_{\infty}, i\right)^{-\mathrm{k}} h(\delta(z)) \tag{12.18}\\
& =j\left(g_{\infty}, i\right)^{-\mathrm{k}} j(\delta, z)^{-\mathrm{k}} h(\delta(z)) \\
& =j\left(g_{\infty}, i\right)^{-\mathrm{k}} h_{\delta}(z) .
\end{align*}
$$

Let $M=M_{\delta}\left(\Gamma_{1}(N)\right)$ be the positive rational number given in Lemma 3.7 (page 15). By definition, M is the positive rational number satisfying

$$
N(\mathbf{Q}) \cap \delta^{-1} \Gamma_{1}(N) \delta=N(M \mathbf{Z})=\left\{\left.\left(\begin{array}{cc}
1 & t M \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbf{Z}\right\}
$$

Thus

$$
\delta\left\{\left.\left(\begin{array}{cc}
1 & t M \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbf{Z}\right\} \delta^{-1} \subset \Gamma_{1}(N)
$$

In particular, the lower left entry, as a linear function of t, is congruent to $0 \bmod N$, and the lower right entry is congruent to $1 \bmod N$. This remains true if we allow t to range through all of $\widehat{\mathbf{Z}}$ instead of \mathbf{Z}. Consequently,

$$
\delta N(M \widehat{\mathbf{Z}}) \delta^{-1} \subset K_{1}(N)
$$

For $n \in N(\mathbf{A})$ and $n^{\prime} \in N(M \widehat{\mathbf{Z}})$, we have (identifying n^{\prime} with $1_{\infty} \times n^{\prime}$)

$$
\phi_{h}\left(n n^{\prime} g\right)=\phi_{h}\left(n g\left(g_{\text {fin }}^{-1} n^{\prime} g_{\text {fin }}\right)\right)=\phi_{h}(n g)
$$

since by (12.17) $g_{\text {fin }}^{-1} n^{\prime} g_{\text {fin }}=k^{-1} \delta n^{\prime} \delta^{-1} k \in K_{1}(N)$. By strong approximation,

$$
N(\mathbf{A})=N(\mathbf{Q})[N(\mathbf{R}) \times N(M \widehat{\mathbf{Z}})]
$$

so $N(\mathbf{Q}) \backslash N(\mathbf{A})=N(M \mathbf{Z}) \backslash[N(\mathbf{R}) \times N(M \widehat{\mathbf{Z}})]$. Note that the interval $[0, M]$ is a fundamental domain in $\mathbf{R} \cong N(\mathbf{R})$ for $N(M \mathbf{Z}) \backslash N(\mathbf{R})$. Thus by the divorce theorem we have

$$
\begin{gathered}
W_{\beta}(g)=\int_{N(\mathbf{Q}) \backslash N(\mathbf{A})} \phi_{h}(n g) \overline{\theta_{\beta}(n)} d n \\
=\int_{0}^{M} \int_{N(M \widehat{\mathbf{Z}})} \phi_{h}\left(\left(\begin{array}{ll}
1 & t \\
& 1
\end{array}\right) n^{\prime} g\right) \overline{\theta_{\beta, \infty}(t)} \overline{\theta_{\beta, \mathrm{fin}}\left(n^{\prime}\right)} d n^{\prime} d t \\
=\int_{0}^{M} \phi_{h}\left(\left(\begin{array}{ll}
1 & t \\
& 1
\end{array}\right) g\right) \theta_{\infty}(\beta t) d t \int_{M \widehat{\mathbf{Z}}} \theta_{\mathrm{fin}}(\beta a) d a .
\end{gathered}
$$

Note that the integral over $M \widehat{\mathbf{Z}}$ is nonzero if and only if $\beta M \widehat{\mathbf{Z}} \subset \widehat{\mathbf{Z}}$, i.e. if and only if $\beta \in \frac{1}{M} \mathbf{Z}$ (Lemma 8.3). Assume this is the case, and write $\beta=\frac{n}{M}$. Then by (12.18), the above is

$$
\begin{gathered}
=\operatorname{meas}(M \widehat{\mathbf{Z}}) \int_{0}^{M} j\left(g_{\infty}, i\right)^{-\mathrm{k}} h_{\delta}(z+t) e^{-\frac{2 \pi i n t}{M}} d t \\
=j\left(g_{\infty}, i\right)^{-\mathrm{k}} \frac{1}{M} \int_{0}^{M} h_{\delta}(z+t) e^{-2 \pi i n t / M} d t \\
=j\left(g_{\infty}, i\right)^{-\mathrm{k}} e^{\frac{2 \pi i n z}{M}} a_{n}(\delta)
\end{gathered}
$$

by (3.20) on page 17.
12.4. Characterizing the image of $S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$ in $L_{0}^{2}(\omega)$.

Proposition 12.5. Let $A_{\mathfrak{k}}(N, \omega)$ be the space of all functions $\varphi \in L_{0}^{2}(\omega)$ satisfying
(a) $\varphi(g k)=\omega(k) \varphi(g)$ for all $k \in K_{0}(N)$ and $g \in G(\mathbf{A})$
(b) $\varphi\left(g\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\right)=e^{i \mathrm{k} \theta} \varphi(g)$ for all θ and all $g \in G(\mathbf{A})$
(c) The function φ satisfies

$$
R\left(E^{-}\right) \varphi=0
$$

where we take $R\left(E^{-}\right) \varphi(g)=\left.\frac{d}{d t}\right|_{t=0} R\left(\exp \left(t E^{-}\right) \times 1_{\text {fin }}\right) \varphi(g)$.
Then the map $h \mapsto \phi_{h}$ defines an isometry from $S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$ onto $A_{\mathrm{k}}(N, \omega)$.
Remarks: (i) For any function φ that transforms under $Z(\mathbf{A})$ by ω, condition (a) is equivalent to:
$\left(a^{\prime}\right) \varphi(g k)=\varphi(g)$ for all $k \in K_{1}(N)$.
(ii) Condition (c) can be replaced by

$$
R(\Delta) \varphi=\frac{\mathrm{k}}{2}\left(1-\frac{\mathrm{k}}{2}\right) \varphi
$$

This can be seen using Theorem 12.6 below and Theorem 11.44.

Proof. Let $h \in S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$. We begin by showing that ϕ_{h} satisfies conditions $(a),(b)$ and (c). Write $g=\gamma\left(g_{\infty} \times k_{0}\right)$ for $\gamma \in G(\mathbf{Q}), g_{\infty} \in G(\mathbf{R})^{+}$, and $k_{0} \in K_{0}(N)$. For any $k \in K_{0}(N)$,

$$
\begin{gathered}
\phi_{h}(g k)=\phi_{h}\left(\gamma\left(g_{\infty} \times k_{0} k\right)\right) \\
=\omega(k) \omega\left(k_{0}\right) j\left(g_{\infty}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right) \\
=\omega(k) \phi_{h}(g) .
\end{gathered}
$$

Thus ϕ_{h} satisfies condition (a).
Let $k_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Then k_{θ} stabilizes i, so for $g=\gamma\left(g_{\infty} \times k\right)$,

$$
\begin{gathered}
\phi_{h}\left(g k_{\theta}\right)=\omega(k) j\left(g_{\infty} k_{\theta}, i\right)^{-\mathrm{k}} h\left(g_{\infty} k_{\theta}(i)\right) \\
=\omega(k) j\left(g_{\infty}, k_{\theta}(i)\right)^{-\mathrm{k}} j\left(k_{\theta}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right) \\
=e^{i \mathrm{k} \theta} \phi_{h}(g) .
\end{gathered}
$$

This proves condition (b) for ϕ_{h}.
Let L denote the left regular representation $L(g) f(x)=f\left(g^{-1} x\right)$. It is clear that L commutes with the right regular action of the Lie algebra, i.e. $L(g) R(X)=R(X) L(g)$. Therefore for any $g \in G(\mathbf{A})$,

$$
R\left(E^{-}\right) \phi_{h}\left(g_{\infty} \times g_{\mathrm{fin}}\right)=L\left(\varepsilon_{\infty} \times g_{\mathrm{fin}}\right)^{-1} R\left(E^{-}\right) \phi_{h}\left(\varepsilon_{\infty} g_{\infty} \times 1_{\mathrm{fin}}\right)
$$

where $\varepsilon_{\infty}=\left(\begin{array}{ll}1 & \\ & -1\end{array}\right)^{\operatorname{sgn}\left(\operatorname{det} g_{\infty}\right)}$. Thus in order to verify condition (c) it suffices to show that $R\left(E^{-}\right) \phi_{h}\left(g_{\infty} \times 1_{\text {fin }}\right)=0$ for $g_{\infty} \in G(\mathbf{R})^{+}$. Write

$$
g_{\infty}=z_{\infty}\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right) k_{\theta} \in G(\mathbf{R})^{+} .
$$

Note that

$$
\phi_{h}\left(g_{\infty} \times 1_{\text {fin }}\right)=y^{\mathrm{k} / 2} e^{i \mathrm{k} \theta} h(x+i y) .
$$

Recall from Proposition 11.37 that as an operator on $C^{\infty}\left(G(\mathbf{R})^{+}\right)$,

$$
R\left(E^{-}\right)=e^{-2 i \theta}\left(-2 i y \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}+i \frac{\partial}{\partial \theta}\right) .
$$

Let $z=x+i y$. Then using subscripts to denote partial derivatives,

$$
\begin{align*}
& \qquad R\left(E^{-}\right) \phi_{h}\left(g_{\infty} \times 1_{\text {fin }}\right)=R\left(E^{-}\right) y^{\mathrm{k} / 2} e^{i \mathrm{k} \theta} h(z) \\
& =e^{-2 i \theta}\left(-2 i y^{\frac{\mathrm{k}}{2}+1} e^{i \mathrm{k} \theta} h_{x}(z)+2 y\left(y^{\frac{\mathrm{k}}{2}} e^{i \mathrm{k} \theta} h_{y}(z)+\frac{\mathrm{k}}{2} y^{\frac{\mathrm{k}}{2}-1} e^{i \mathrm{k} \theta} h(z)\right)-\mathrm{k} e^{i \mathrm{k} \theta} y^{\mathrm{k} / 2} h(z)\right) \\
& =e^{-2 i \theta}\left(-2 i y^{\frac{\mathrm{k}}{2}+1} e^{i \mathrm{k} \theta} h_{x}(z)+2 y^{\frac{\mathrm{k}}{2}+1} e^{i \mathrm{k} \theta} h_{y}(z)+\mathrm{k} y^{\mathrm{k} / 2} e^{i \mathrm{k} \theta} h(z)-\mathrm{k} e^{i \mathrm{k} \theta} y^{\mathrm{k} / 2} h(z)\right) \\
& =-2 i e^{(\mathrm{k}-2) i \theta} y^{\frac{\mathrm{k}}{2}+1}\left(h_{x}(z)+i h_{y}(z)\right) \\
& (12.19) \quad=-4 i e^{(\mathrm{k}-2) i \theta} y^{\frac{\mathrm{k}}{2}+1} \frac{\partial h}{\partial \bar{z}}(z) . \tag{12.19}
\end{align*}
$$

Because h is holomorphic, the above is identically 0 . This proves that ϕ_{h} satisfies condition (c).

Let $D_{N} \subset \mathbf{H}$ be a fundamental domain for $\Gamma_{0}(N) \backslash \mathbf{H}$. We identify D_{N} in the usual way with a subset of $\mathrm{SL}_{2}(\mathbf{R})$ (cf. Proposition 7.43 , p. 104). For the square-integrability of ϕ_{h}, we use Proposition 7.43 to compute

$$
\begin{gather*}
\int_{\bar{G}(\mathbf{Q}) \backslash \bar{G}(\mathbf{A})}\left|\phi_{h}(g)\right|^{2} d g=\int_{D_{N} K_{\infty} \times K_{0}(N)}\left|\phi_{h}(g)\right|^{2} d g \\
=\int_{D_{N} K_{\infty} \times K_{0}(N)}\left|j\left(g_{\infty}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right)\right|^{2} d g \\
=\operatorname{meas}\left(K_{0}(N)\right) \iint_{D_{N}}\left|y^{\mathrm{k} / 2} h(x+i y)\right|^{2} \frac{d x d y}{y^{2}} \tag{12.20}\\
=\frac{1}{\psi(N)} \iint_{\Gamma_{0}(N) \backslash \mathbf{H}}|h(x+i y)|^{2} y^{\mathrm{k}} \frac{d x d y}{y^{2}}
\end{gather*}
$$

Thus the L^{2}-norm of ϕ_{h} equals the Petersson norm of h. (We are using the fact that meas $\left(K_{0}(N)\right)=1 / \psi(N)$. See the beginning of Section 13.) It follows that ϕ_{h} is square-integrable, and because its constant term vanishes by (12.15) of Proposition 12.2, we see that $\phi_{h} \in L_{0}^{2}(\omega)$. Recall that the fact that $\phi_{h}(z g)=\omega(z) \phi_{h}(g)$ was shown in (12.13) above. This completes the proof that $\phi_{h} \in A_{\mathrm{k}}(N, \omega)$.

Conversely, suppose $\varphi \in A_{\mathrm{k}}(N, \omega)$. Define a function h on the upper half plane in the following way. For $z \in \mathbf{H}$, choose $g_{\infty} \in G(\mathbf{R})^{+}$such that $g_{\infty}(i)=z$, and let

$$
h(z)=h\left(g_{\infty}(i)\right)=j\left(g_{\infty}, i\right)^{\mathrm{k}} \varphi\left(g_{\infty} \times 1_{\mathrm{fin}}\right)
$$

Using the fact that the stabilizer of $i \in \mathbf{H}$ in $G(\mathbf{R})^{+}$is $Z(\mathbf{R}) K_{\infty}$, it is straightforward to check that $h(z)$ is independent of the choice of g_{∞}. Using (12.12), define a function ϕ_{h} on $G(\mathbf{A})$. Then $\phi_{h}=\varphi$ since
$\phi_{h}\left(\gamma\left(g_{\infty} \times k\right)\right)=\omega(k) j\left(g_{\infty}, i\right)^{-\mathrm{k}} h\left(g_{\infty}(i)\right)=\omega(k) \varphi\left(g_{\infty} \times 1_{\text {fin }}\right)=\varphi\left(\gamma\left(g_{\infty} \times k\right)\right)$.
Let

$$
g_{\infty}=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)
$$

Then $z=g_{\infty}(i)=x+i y$ and $h(x+i y)=y^{-\mathrm{k} / 2} \varphi\left(g_{\infty} \times 1_{\text {fin }}\right)$. Using condition (c) and (12.19) with $\theta=0$, we have

$$
\frac{\partial h}{\partial \bar{z}}=-\frac{1}{4 i y^{k / 2+1}} R\left(E^{-}\right) \varphi\left(g_{\infty} \times 1_{\mathrm{fin}}\right)=0
$$

Thus h is holomorphic.
Write $z=g_{\infty}(i)$ as above, and let $\gamma \in \Gamma_{0}(N)$. Then

$$
\begin{gathered}
h(\gamma z)=h\left(\gamma g_{\infty}(i)\right)=j\left(\gamma g_{\infty}, i\right)^{\mathrm{k}} \varphi\left(\gamma g_{\infty} \times 1_{\text {fin }}\right) \\
=j\left(\gamma, g_{\infty}(i)\right)^{\mathrm{k}} j\left(g_{\infty}, i\right)^{\mathrm{k}} \varphi\left(g_{\infty} \times \gamma_{\text {fin }}^{-1}\right) \\
=\omega^{\prime}(\gamma)^{-1} j(\gamma, z)^{\mathrm{k}} h(z) .
\end{gathered}
$$

Thus h is weakly modular.

To show that $h \in S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$, it remains to check that h vanishes at the cusps of $\Gamma_{1}(N)$. This is a consequence of the square-integrability of ϕ. By (12.20) we see that the Petersson norm of h is finite. By Proposition 3.39, h is a cusp form. Hence $h \mapsto \phi_{h}$ is surjective. Because it is a norm-preserving linear map, it must also be injective, so the proposition is proven.

As mentioned earlier, the right regular representation of $G(\mathbf{A})$ on $L_{0}^{2}(\omega)$ decomposes into an orthogonal Hilbert space direct sum of irreducible representations

$$
R_{0} \cong \bar{\bigoplus} \pi
$$

where π are (by definition) the cuspidal automorphic representations of $G(\mathbf{A})$ with central character ω.

Each cuspidal representation π is isomorphic to a restricted tensor product

$$
\pi \cong \bigotimes_{p \leq \infty}^{\prime} \pi_{p}
$$

where π_{p} is an irreducible admissible representation of $G\left(\mathbf{Q}_{p}\right)$. For the proof and a rigorous statement, see Section 3.3 .3 of [GGPS]. A more general factorization theorem which applies to all irreducible admissible representations of $G(\mathbf{A})$ (G any reductive group) was given by Flath, $[\mathbf{F l}]$. See also Section 3.4 of $[\mathbf{B u}]$ for the case of $\mathrm{GL}_{n}(\mathbf{A})$. For the present purpose, it is enough to know that π is a tensor product

$$
\pi=\pi_{\infty} \otimes \pi_{\mathrm{fin}}
$$

where π_{∞} (resp. $\pi_{\text {fin }}$) is an irreducible unitary representation of $G(\mathbf{R})$ (resp. $\left.G\left(\mathbf{A}_{\text {fin }}\right)\right)$. The isomorphism class of π_{∞} is called the infinity type of π. When $\pi_{\infty} \cong \pi_{\mathrm{k}}$, we let $v_{\pi_{\infty}} \in V_{\pi_{\infty}}$ denote a lowest weight vector (unique up to scalars). For any representation $\pi_{\text {fin }}$ of $G\left(\mathbf{A}_{\text {fin }}\right)$ and any subgroup U of $G\left(\mathbf{A}_{\text {fin }}\right)$, let $\pi_{\text {fin }}^{U}$ denote the subspace of U-fixed vectors in the space of $\pi_{\text {fin }}$.

Theorem 12.6. With notation as above, we have

$$
\begin{equation*}
A_{\mathrm{k}}(N, \omega)=\bigoplus_{\pi_{\infty} \cong \pi_{\mathrm{k}}} \mathbf{C} v_{\pi_{\infty}} \otimes \pi_{\text {fin }}^{K_{1}(N)} \tag{12.21}
\end{equation*}
$$

where the sum taken is over all cuspidal representations in $L_{0}^{2}(\omega)$ of the form $\pi=\pi_{\mathrm{k}} \otimes \pi_{\mathrm{fin}}$.

Proof. Suppose $\phi=v_{\infty} \otimes v_{\text {fin }}$ belongs to one of the summands on the right-hand side of (12.21). To show that $\phi \in A_{\mathrm{k}}(N, \omega)$, we check that ϕ satisfies conditions $\left(a^{\prime}\right),(b)$ and (c) of Proposition 12.5. This is straightforward, using Theorem 11.44:

$$
\begin{aligned}
& \left(a^{\prime}\right) \text { For } k \in K_{1}(N) \\
& \quad R\left(1_{\infty} \times k\right) \phi=\pi_{\infty}(1) v_{\infty} \otimes \pi_{\mathrm{fin}}(k) v_{\mathrm{fin}}=v_{\infty} \otimes v_{\mathrm{fin}}=\phi
\end{aligned}
$$

(b) For $k_{\theta} \in K_{\infty}$,

$$
R\left(k_{\theta} \times 1_{\mathrm{fin}}\right) \phi=\pi_{\infty}\left(k_{\theta}\right) v_{\infty} \otimes \pi_{\mathrm{fin}}(1) v_{\mathrm{fin}}=e^{i \mathrm{k} \theta} v_{\infty} \otimes v_{\mathrm{fin}}=e^{i \mathrm{k} \theta} \phi
$$

since v_{∞} is a lowest weight vector for $\pi_{\infty} \cong \pi_{\mathrm{k}}$ (cf. Theorem 11.44).
(c) Lastly,

$$
\begin{aligned}
& R\left(E^{-}\right) \phi=\left.\frac{d}{d t}\right|_{t=0} R\left(\exp \left(t E^{-}\right) \times 1_{\mathrm{fin}}\right) \phi \\
& =\left.\frac{d}{d t}\right|_{t=0} \pi_{\infty}\left(\exp \left(t E^{-}\right)\right) v_{\infty} \otimes \pi_{\mathrm{fin}}(1) v_{\mathrm{fin}} \\
& \quad=\left(\pi_{\infty}\left(E^{-}\right) v_{\infty}\right) \otimes v_{\mathrm{fin}}=0
\end{aligned}
$$

again by Theorem 11.44.
Conversely, suppose $\phi \in A_{\mathrm{k}}(N, \omega)$ is nonzero. We need to show that ϕ belongs to the right-hand side of (12.21). For any cuspidal π, let V_{π} be the space of π, so $L_{0}^{2}(\omega)$ is the closure of $\bigoplus V_{\pi}$. Let $p_{\pi}: L_{0}^{2}(\omega) \rightarrow V_{\pi}$ be the orthogonal projection map. Then p_{π} intertwines the action of R since V_{π} is a closed stable subspace and R is unitary. Using this fact, it is straightforward to show that $p_{\pi}\left(A_{\mathrm{k}}(N, \omega)\right) \subset A_{\mathrm{k}}(N, \omega)$, and hence

$$
p_{\pi}\left(A_{\mathrm{k}}(N, \omega)\right)=A_{\mathrm{k}}(N, \omega) \cap V_{\pi}
$$

It follows that $A_{\mathrm{k}}(N, \omega)$ is the closure of $\bigoplus_{\pi}\left(V_{\pi} \cap A_{\mathrm{k}}(N, \omega)\right)$. However this direct sum is finite-dimensional, hence already closed, so

$$
A_{\mathrm{k}}(N, \omega)=\bigoplus_{\pi}\left(V_{\pi} \cap A_{\mathrm{k}}(N, \omega)\right) .
$$

By this fact, it suffices to consider the case where

$$
\phi \in V_{\pi} \cap A_{\mathrm{k}}(N, \omega)
$$

for some cuspidal π.
It remains to show that $\pi_{\infty} \cong \pi_{\mathrm{k}}$ and $\phi \in \mathbf{C} v_{\pi_{\infty}} \otimes \pi_{\text {fin }}^{K_{1}(N)}$. By linearity, we can assume that $\phi=v_{\infty} \otimes v_{\mathrm{fin}}$ for some nonzero $v_{\infty} \in V_{\pi_{\infty}}$ and $v_{\mathrm{fin}} \in V_{\pi_{\mathrm{fin}}}$. Let

$$
V_{\infty}(\mathrm{k})=\left\{v \in V_{\pi_{\infty}} \mid \pi_{\infty}\left(k_{\theta}\right) v=e^{i \mathrm{k} \theta} v\right\}
$$

be the isotypic component in $V_{\pi_{\infty}}$ of the character $k_{\theta} \mapsto e^{i \mathrm{k} \theta}$ of K_{∞}. Note that by property (b),

$$
\begin{gathered}
\pi_{\infty}\left(k_{\theta}\right) v_{\infty} \otimes v_{\mathrm{fin}}=\pi\left(k_{\theta} \times 1_{\mathrm{fin}}\right) \phi \\
=e^{i \mathbf{k} \theta} \phi=e^{i \mathrm{k} \theta} v_{\infty} \otimes v_{\mathrm{fin}} .
\end{gathered}
$$

This proves that $v_{\infty} \in V_{\infty}(\mathrm{k})$. By a similar argument, we see easily that $v_{\mathrm{fin}} \in \pi_{\mathrm{fin}}^{K_{1}(N)}$, and hence $\phi \in V_{\infty}(\mathrm{k}) \otimes \pi_{\text {fin }}^{K_{1}(N)}$.

Now because ϕ satisfies condition (c),

$$
\begin{aligned}
& 0=\left.\frac{d}{d t}\right|_{t=0} \pi\left(\exp \left(t E^{-}\right) \times 1_{\mathrm{fin}}\right) \phi=\left.\frac{d}{d t}\right|_{t=0} \pi_{\infty}\left(\exp \left(t E^{-}\right)\right) v_{\infty} \otimes v_{\mathrm{fin}} \\
&=\left(\pi_{\infty}\left(E^{-}\right) v_{\infty}\right) \otimes v_{\mathrm{fin}}
\end{aligned}
$$

Thus $\pi_{\infty}\left(E^{-}\right) v_{\infty}=0$. We have now shown that v_{∞} satisfies (2) of Theorem 11.44, and hence $\pi_{\infty} \cong \pi_{\mathrm{k}}$ and v_{∞} is a lowest weight vector.

Remark: If $h \in S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$ is a Hecke eigenform, the cuspidal representation π generated by $\phi_{h} \in A_{\mathrm{k}}(N, \omega) \subset L_{0}^{2}(\omega)$ is irreducible and has $\pi_{\infty}=\pi_{\mathrm{k}}$. For details about the correspondence (1-1 only at the level of newforms) between h and π, including a description of the local factors π_{p}, see [G1] or [Ro1].

13. Construction of the test function f

We now construct a continuous function $f \in L^{1}\left(G(\mathbf{A}), \omega^{-1}\right)$ such that the trace of $R(f)$ on $L^{2}(\omega)$ gives the trace of the Hecke operator T_{n} on $S_{\mathrm{k}}\left(N, \omega^{\prime}\right)$. The function f will be a product of local functions on $G\left(\mathbf{Q}_{p}\right)$, i.e. $f=f_{\infty} \times f^{\mathrm{n}}$, where $f^{\mathrm{n}}=\prod_{p<\infty} f_{p}^{\mathrm{n}}$.
13.1. The non-archimedean component of f. The idea is to define f^{n} using double cosets as in the construction of T_{n}, using $K_{0}(N)$ in place of $\Gamma_{0}(N)$.

Lemma 13.1. Suppose $p \mid N$. Then

$$
K_{p}=\bigcup_{\delta \in \mathbf{Z}_{p} / N \mathbf{Z}_{p}}\left(\begin{array}{ll}
\delta & 1 \\
1 & 0
\end{array}\right) K_{0}(N)_{p} \cup \bigcup_{\tau \in p \mathbf{\mathbf { Z } _ { p } / N \mathbf { Z } _ { p }}}\left(\begin{array}{ll}
1 & 0 \\
\tau & 1
\end{array}\right) K_{0}(N)_{p}
$$

a disjoint union.
Proof. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{p}$. If $p \mid c$, then $a \in \mathbf{Z}_{p}^{*}$, so $\left(\begin{array}{cc}a^{-1} & \frac{-b}{a d-b c} \\ 0 & \frac{a}{a d-b c}\end{array}\right) \in$ $K_{0}(N)_{p}$, and

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
a^{-1} & \frac{-b}{a d-b c} \\
0 & \frac{a}{a d-b c}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
c / a & 1
\end{array}\right) .
$$

Because we can further multiply by $\left(\begin{array}{cc}1 & 0 \\ N & 1\end{array}\right)$ to obtain $\left(\begin{array}{cc}1 & 0 \\ c / a+N & 1\end{array}\right)$, the entry $\tau=c / a \in p \mathbf{Z}_{p}$ is unique modulo $N \mathbf{Z}_{p}$.

If c is a unit, then multiplying by $\left(\begin{array}{cc}c^{-1} & \frac{d}{a d-b c} \\ 0 & \frac{-c}{a d-b c}\end{array}\right)$ gives $\left(\begin{array}{cc}a / c & 1 \\ 1 & 0\end{array}\right)$. Once again, $\delta=a / c \in \mathbf{Z}_{p}$ is unique modulo $N \mathbf{Z}_{p}$.

This proves the decomposition. To see that it is disjoint, note that

$$
\left(\begin{array}{ll}
1 & 0 \\
\tau & 1
\end{array}\right)\left(\begin{array}{cc}
w & x \\
N y & z
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
\tau w+N y & *
\end{array}\right)
$$

which cannot equal $\left(\begin{array}{ll}\delta & 1 \\ 1 & 0\end{array}\right)$ since $p \mid(\tau w+N y)$.
Define

$$
\psi_{p}(N)=\left[K_{p}: K_{0}(N)_{p}\right] .
$$

