Groundwork

In this chapter we lay the foundation for the computation of the trace
of T,. First we show that Sk(IV,w’) embeds isometrically into L3(w) for an
appropriately chosen Hecke character w. This having been done, the main
result of this chapter is the construction of a function f on G(A) for which
the following diagram commutes:

-]
) 2L g
orthog. proj.
/ 1y /
Sk(N,w) Sk(N,w)

In particular, although L?(w) is infinite-dimensional, ng_lR( f) will be an
operator of finite rank (with rankc R(f) < dimc Sk(N,w’)) and having the
same eigenvalues as Ty,.

12. Cusp forms as elements of L3(w)

12.1. From Dirichlet characters to Hecke characters. Let w’ be
a Dirichlet character modulo N satisfying (3.12):

(12.1) W'(=1) = (=1)k,
Using strong approximation for the ideles
A" = Q*(R% x ZY),
we use w’ to define a Hecke character of A* (trivial on Q* and RY):
(12.2) w:A* — Z* — (Z/NZ)* — C*,

where the first arrow is the canonical projection, the second arrow is the
quotient map, and the last arrow is given by w’. Let

v [ 2, — Z/NZ
pIN

be the canonical surjection. For any idele x € A*, let zx be the idele which
agrees with x at the places p|N, and which is 1 at all other places. Then

(12.3) for v € R} x 7", w(z)=wlay) = w'(ﬂN(H xp)).
pIN
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If d is an integer coprime to IV, then dy € R7 x 2*, so by the above,
(12.4) w(dy) = w'(d).

(However w(d) = 1 since d € Q*). More generally, if d is an arbitrary
nonzero integer, it is not hard to check that

w(dy) = o' (——).

The above procedure can be reversed. A Hecke character w has finite
order if there exists an integer £ such that w(z)’ =1 for all x € A*. Such
a character is necessarily unitary.

LEMMA 12.1. A Hecke character has finite order if and only if it is
unitary and trivial on R .

PROOF. Suppose w has order £ > 1. Define wl : R% — C* by wi (z) =
W(Zoo X 1gn). Such a character must be of the form wi (z) = z* for some
s € C by Proposition 11.6. Now wi (z)¢ = 2% = 1 for all z € R, so we
must have s = 0. Thus w is trivial on R} .

Conversely, suppose w is a (unitary) Hecke character which is trivial on
R’ . Then w defines a continuous homomorphism w : Z* — C*. If O c C*
is a small open neighborhood of 1, then w=!(O) is open, and hence contains
Upr C Z* for some M > 0. Then w(Up) C O is a subgroup of C*, which
must be trivial if O is sufficiently small. Thus each such w factors through
2*/UM & (Z/MZ)* for some positive integer M. O

If in the above proof M > 0 is chosen to be as small as possible, we set
N, = M and call this integer the conductor of w. In this way, there is a
natural bijection

Dirichlet characters - finite order Hecke
of conductor M characters of conductor M | .

We remark that for the character defined in (12.2),
N, = N,.

The character w’ may not be primitive, i.e. N may not be minimal, so we
can only say that N,|N.

A continuous character of Q,, is unramified if its kernel contains Zj.
Every continuous character of A* factorizes as a product of local characters,
all but finitely many of which are unramified. Let w be the character defined
in (12.2). We factorize w in this way as follows. For z, € Q, (p < 00), define

th

wp(xp) d:efw(l, oLz, 11000,
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For p finite, suppose v,(z;,) = j so that z;, = p'u, where u € Z;. Then if
PN,

(125)  wplap) =@, p g, ) = ()

In particular, if j = 0 then w,(u) =1, so wy, is unramiﬁed when pt N. As a
result, the following decomposition holds for any = € A*:

T) = H wp(@p)-

p<oo
Using (12.1) and (12.3), it is easy to show that
(12.6) weo () = sgn(x)k.

Suppose d > 0 and ged(d, N) = 1. Then ws(d) = 1 and wy(d) =1 for
all p{dN since wy, is unramified. Therefore

1=w(d) = [Jwp(d) [Jwp(d) = [[wp(d) '(d
pld pIN pld
by (12.4). Thus
(12.7) [[ep(@ ='(@)"  (@>0,(dN)=1).
pld
12.2. From cusp forms to functions on G(A). We now review the
embedding
Se(N,w') — Li(w).

Recall that we have defined Ko(N) = [[ Ko(N)p, where
p<oo

Ko(N), = {(2 Z) € K,|c=0modN}.

By strong approximation for G(A), we have

);
(12.8) G(A) = G(Q)(GR) x Ko(N)).

d
(12.9) w(ko) = w(dn).

Because w(dy) depends only on dy modulo N Z*, this defines a character of
Ko(N). It kg =~ € Tg(N) C Ko(N), then by (12.4) this agrees with w’(7)
defined in (3.9):

If ko = (Z b) € Ko(N), define

w(y) = w(dy) ='(d) = ' (7).

By identifying Z(A) with A*, we also view w as a character of Z(A).
Suppose z € Z(A), and write z = z2qQ(200 X 20) With zoo € Z(R)™, and
20 € Z(Z) C Ko(N). Then by (12.3),

(12.10) w(z) = w((2e0 X 20)N) = w(20),
where w(zg) is defined as in (12.9).
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For z € Z(Agy) define w(z) = w(le X 2). Then we find by the above
that for

(12.11) z € Z(Agn) N Ko(N),
the value of w(z) is independent of whether we regard z as belonging to
Z(Agy) or Ko(N).

There is a chart in the Appendix which tabulates the various uses of w

and w'.
For h € Wi(N,w'), define a left G(Q)-invariant function ¢, on G(A) by

(12.12) Sn(7(9s0 % ko)) = w(k0)j(go0, 1) “h(g00 (),
for v € G(Q), g0 € G(R)™, and ky € Ko(N). The decomposition
9 =7(9goo X ko)

is not unique, so we will show that ¢,(g) is well-defined. Suppose g =
v (gl % k() is another decomposition. Then

7Ly = gl gzl x Kbk € (GR)™ x Ko(N)) N G(Q) = To(N).

Thus any decomposition of g has the form g = 76! (60 goo X dginko) for some
d € I'g(NV). To check that ¢y, is well-defined, we must check that inserting §
in this manner does not affect the value of ¢,. We have

¢h(7571(5oogoo X 5ﬁnk0)) = w<5ﬁnk0)j(59007 Z)ikh<5goo(z))
= w(0sn) w(ko) 7(8, 900 (1)) ™ 7 (goos ) W' (8) 1 5 (6, goo () P(goo (1))
= w(k0)7(goos ) h(goo (1))

= dn(7(goo X ko)),
as needed.

If g = 7(goo X ko) € G(A) and 2z = 2qQ (200 X 20), then
¢h(29) = w<20k0)j<zoogoo7 Z')7kh<zo<>.go<>(i))
= w(2)on(9),

by equations (12.10), (3.7) and (3.8). Thus ¢}, has central character w, and
our goal is to show that ¢, € L3(w) when h is a cusp form.

(12.13)

12.3. Comparison of classical and adelic Fourier coefficients.
Let h € Wx(N,w'). Fix any g € G(A) and consider the map A — C defined

by
T — ¢h(<1 T) 9)-

By the G(Q)-invariance of ¢, this defines a continuous function on Q\A.
Therefore by Proposition 8.10 it has a Fourier expansion

1 =z
(12.14) (" 7)) = X Wala) o).
BeQ
assuming absolute convergence of the series. The Fourier coefficient Wg(g) is
called the 63-Whittaker function of ¢. Our goal in the next proposition is
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to compute W;3(g) explicitly. In fact the above Fourier expansion is closely
related to the Fourier expansion of h at a certain cusp determined by g.
Consequently, we will see that (12.14) is justified, and we will be able to
prove that ¢, € L3(w) when h is a cusp form.

First we claim that for computing Wg(g), it suffices to consider the

case where det goo > 0. In fact, suppose ¢’ = (_1 1) g. Then Wjs(g) =

W_5(¢'). Indeed, because ¢y, is G(Q)-invariant,

o) =on((* 1) (7)) g’>=¢h<(‘1 ) (! ?)gv:m(nlg’).

Therefore

Wao) = [ onlng)Bstm) / onn 1) 050 T
N(Q)\N(A) N(Q)\N(A
= W—ﬁ(Q ),
as claimed. Here (and below) we regard 3 as a character on N(Q)\N(A)
in the obvious way.

PROPOSITION 12.2. Let h € Wy (N,w'), and let ¢y be the associated
function defined in (12.12). For 6 € G(Q)™ write

z) = Z an(8)q",

nez

where ¢ = e and M = Ms(T'1(N)) is given in Lemma 3.7. Fiz g €
G(R)T x G(Agy), and consider the Fourier expansion (12.14). Then there
erists 6 € G(Q)™, determined by ga, in (12.17) below, such that for any

feq,
X 2minz

e M ap(0) ifB=4 € LZ

0 if B¢ 22,
where 2 = goo(1). (If gan € G(Q)T, then § = ggnl) In particular, taking
8 =0, we see that

(12.15) Wolg) = (¢n)y (9) = 5 (9sc, 1) a0 (6)

is the constant term of ¢y,.

j(gomi)_
Ws(g) =

Before proving the proposition, we highlight two consequences.

COROLLARY 12.3. In the above notation, ) |Wga(g)| < oo, so (12.14) is
justified.

PROOF. Let z = go(i) and g = ¢ By the proposition,

S IWa(9)] = 13(900: )7 Y Jan(0)”),

£eQ nez
which is finite since hs(q) = >_ an(d)q™ is absolutely convergent. O

27rz'z/M
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COROLLARY 12.4. Let h € Sx(N,w’), and write h(z) = > anq", where
n>0

q = e*™2. Then for m € Q,
e ™q,, ifmeZt

Jpen (! Do |

PRrROOF. Apply the proposition with g =1,s0 6 =1, M =1, 8 = m,
and z = 1. O

otherwise.

PROOF OF THE PROPOSITION. Let
Ki(N) = {(‘Z Z) € Ko(N)|d =1 mod NZ}.

Using (12.12) it is immediate that

(12.16) on(gk) = én(9)
for all k € Ki(N).
Note that det K1(NN) = Z*, so by strong approximation we can write

(12.17) Gfin = 0k

1
1

if necessary, we can assume § € G(Q)*. Let z = goo (7). Then using (12.16),
$h(goo X gin) = Sn(goo X 8 k) = Pn(0goc X ln)
(12.18) = (0900, 1) *R(5(2))
= j(9oo, 1) 75 (8, 2) "*h(8(2))
= j(goo, 1) "hs(2).

Let M = Ms(I'1(NN)) be the positive rational number given in Lemma
3.7 (page 15). By definition, M is the positive rational number satisfying

N(Q) N6 Ty (N)§ = N(MZ) = { <(1) ”1”> It e z} .

5{(3) “1W> |t e z}a—l C T'y(N).

In particular, the lower left entry, as a linear function of ¢, is congruent to
0 mod N, and the lower right entry is congruent to 1 mod N. This remains
true if we allow t to range through all of Z instead of Z. Consequently,

§N(MZ)§~ ' c Ki(N).
For n € N(A) and n’ € N(MZ), we have (identifying n with 1o, x 1)
$n(nn'g) = on(ng(9a, 7' 9n)) = dn(ng)

for some § € G(Q) and k € K;(N). Multiplying both § and k by <_

Thus
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since by (12.17) gﬁ_nln’gﬁn = k7 '6n'6~'k € K1(N). By strong approxima-
tion, R

N(A) = N(Q)[N(R) x N(MZ)],
so N(Q)\N(A) = N(MZ)\[N(R) x N(MZ)] Note that the interval [0, M]
is a fundamental domain in R =2 N(R) for N(MZ)\N(R). Thus by the

divorce theorem we have

R
D= [, i, 0

:/o /N(Mz) ¢h(< i) 1'9)08,00(t) 05,60 (n')dn’ dt
:/OM¢h(<1 i) g)ew(gt)dtﬁigﬁnwa)da

Note that the integral over MZ is nonzero if and only if ﬁMz C 2, ie.
if and only if g € %Z (Lemma 8.3). Assume this is the case, and write
B = 7. Then by (12.18), the above is

27r'm,t

M
:meas(MZ)/O 3(goos 1) Fhs(z +t)e™ dt

1M :
— il g [ e e

_k 2minz

= J(goc, i)~ € 3" an(9)
by (3.20) on page 17. O

12.4. Characterizing the image of Si(N,w’) in Li(w).
PROPOSITION 12.5. Let Ax(N,w) be the space of all functions ¢ € LE(w)

satisfying
(a) p(gk) =w(k)p(g) for all k € Ko(N) and g € G(A)

(b) »(g <_C(:HHH ig;g)) = e (g) for all § and all g € G(A)

(¢) The function ¢ satisfies
R(E™ ) =0,

where we take R(E™)p(g) = %‘t:o R(exp(tE™) X 1an)p(g).
Then the map h — ¢, defines an isometry from Sx(N,w') onto Ax(N,w).

Remarks: (i) For any function ¢ that transforms under Z(A) by w, condition
(a) is equivalent to:
(a') o(gk) = p(g) for all k € K1(N).
(ii) Condition (c¢) can be replaced by
k k
S (1=35)e.
This can be seen using Theorem 12.6 below and Theorem 11.44.

R(A)p =
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PROOF. Let h € Sk(N,w'). We begin by showing that ¢, satisfies con-
ditions (a), (b) and (c). Write g = ¥(goo X ko) for v € G(Q), goo € G(R)™T,
and ko € Ko(N). For any k € Ko(N),

On(gk) = én(7(goo X kok))
= w(k)w(ko)j(goo: 1) *P(goo(i))
= w(k)¢n(g)-

Thus ¢}, satisfies condition (a).

cosf sind
Let ko = <— sinf cos@

Sn(gko) = w(k)j(gocko, 1)~ h(gocko(i))
= (k) (900 Ko (1)) 7 (. 8) ™ hlgoe (1)
— 6Zk9¢h (g) )
This proves condition (b) for ¢p,.
Let L denote the left regular representation L(g)f(z) = f(g~'z). It is

clear that L commutes with the right regular action of the Lie algebra, i.e.
L(g)R(X) = R(X)L(g). Therefore for any g € G(A),

R(Ei)(z)h(goo X gﬁn) = L(Eoo X gﬁn)ilR(Ei)Qéh(Eoogoo X 1ﬁn)7
1 sgn(det goo )

-1
suffices to show that R(E™)¢n(goo X 1gan) = 0 for goo € G(R)™. Write

1 1/2
Joo = oo ( :f) (y y_1/2> ]fg € G(R)+

Sn(goo X Ln) = ¥/ 2™ h(x + iy).
Recall from Proposition 11.37 that as an operator on C*°(G(R)™),

: 0 0 0
R(E™) = —2i0 i 19 o
(E7)=e ( TRy +289>
Let z = x + ty. Then using subscripts to denote partial derivatives,
R(E™)$n(goo % 1an) = R(E™ )y %™ n(2)

— e—2i6’( 21y2+1 zké’h ( )_|_2y <y261k0h ( )_|_ 2y5—1 Zkeh(z))—keikeykﬂh(z))

>. Then ky stabilizes i, so for g = Y(goo X k),

where e = Thus in order to verify condition (c¢) it

Note that

— 6—22‘9( %y 5160, (2 )+2y§+1eikeh (2) + ki 2™ R (2) — ke 2p (2 ))
= —2ie® 25+ (b (2) 4 ihy(2))

(12.19) —4ie(k=2)ify 541 gZ( ).

Because h is holomorphic, the above is identically 0. This proves that ¢y
satisfies condition (c).
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Let Dy C H be a fundamental domain for I'g(/V)\H. We identify Dy
in the usual way with a subset of SLy(R) (cf. Proposition 7.43, p. 104). For
the square-integrability of ¢;, we use Proposition 7.43 to compute

Lo Jetolds= [ on(o)Pdg
G(QN\G(A) DN KooxKo(N)

17(goos 1) " h(goo (i) dg

/DNKoo XK()(N)

(12.20) — meas(Ko(N)) / /D |yk/2h(:n+iy)|2dx o

y2

1 // 2 kdzdy
= — h(x +1 —.
Y(N) FO(N)\H‘ ( uly y?

Thus the L?-norm of ¢, equals the Petersson norm of h. (We are using
the fact that meas(Ko(N)) = 1/¢(N). See the beginning of Section 13.) It
follows that ¢, is square-integrable, and because its constant term vanishes
by (12.15) of Proposition 12.2, we see that ¢, € L3(w). Recall that the fact
that ¢n(zg9) = w(z)dp(g) was shown in (12.13) above. This completes the
proof that ¢, € Ax(N,w).

Conversely, suppose ¢ € Ag(N,w). Define a function h on the upper
half plane in the following way. For z € H, choose goo € G(R)" such that
Joo(i) = 2z, and let

7(2) = M(goo(i)) = j(goo: 1) *¢(goo X Lin).
Using the fact that the stabilizer of ¢ € H in G(R)" is Z(R)K, it is

straightforward to check that h(z) is independent of the choice of go. Using
(12.12), define a function ¢ on G(A). Then ¢, = ¢ since

On(7(goo X k) = w (k)5 (goor 1) ™ *M(goo(i)) = w(k)$(goo X Lfin) = ©(¥(goo X k).

Let 1/
(1 =z Y >
Joo ( 1> < y—1/2 :

Then z = goo(i) = z+iy and h(z+1y) = ¥y /20(goo X 1gn). Using condition
(c) and (12.19) with 6 = 0, we have
oh 1 _
FER —WR(E )#(goo X 1gn) = 0.
Thus h is holomorphic.
Write z = goo(i) as above, and let v € I'g(/N). Then
h(y2) = h(7950(1)) = (7950, 1) (7900 X Len)
= 5(7, 90 (1))%5 (950, ) (950 X Vg )
= w'(7) 71 (7, 2)*h(2).
Thus h is weakly modular.
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To show that h € Sx(INV,w’), it remains to check that h vanishes at the
cusps of I'1(N). This is a consequence of the square-integrability of ¢. By
(12.20) we see that the Petersson norm of h is finite. By Proposition 3.39, h
is a cusp form. Hence h — ¢y, is surjective. Because it is a norm-preserving
linear map, it must also be injective, so the proposition is proven. O

As mentioned earlier, the right regular representation of G(A) on L3(w)
decomposes into an orthogonal Hilbert space direct sum of irreducible rep-

resentations
Ry = @ T,

where 7 are (by definition) the cuspidal automorphic representations of
G(A) with central character w.
Each cuspidal representation 7 is isomorphic to a restricted tensor

product
™= ®/ T

p<oo
where 7, is an irreducible admissible representation of G(Qy). For the proof
and a rigorous statement, see Section 3.3.3 of [GGPS]. A more general fac-
torization theorem which applies to all irreducible admissible representations
of G(A) (G any reductive group) was given by Flath, [F1]. See also Section
3.4 of [Bu] for the case of GL,,(A). For the present purpose, it is enough to
know that 7 is a tensor product

T = Too @ Tin

where T, (resp. mqy) is an irreducible unitary representation of G(R) (resp.
G(Afy)). The isomorphism class of 7 is called the infinity type of 7.
When 7o = g, we let v, € Vi denote a lowest weight vector (unique up
to scalars). For any representation g, of G(Ag,) and any subgroup U of
G(Agn), let 7Tﬁn denote the subspace of U-fixed vectors in the space of mgy,.

THEOREM 12.6. With notation as above, we have
(12.21) Ax(N,w) @ Cur, ®7Tﬁn( )
T oo 2Ty
where the sum taken is over all cuspidal representations in L%(w) of the form
T =Tk & Thn-

PROOF. Suppose ¢ = v ® vgy belongs to one of the summands on the
right-hand side of (12.21). To show that ¢ € Ax(N,w), we check that ¢ sat-
isfies conditions (a’), (b) and (c) of Proposition 12.5. This is straightforward,
using Theorem 11.44:

(a') For k € Ki(N),
R(loo X k) = Moo (1)U @ Thin (k) Van = Voo ® van = .
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(b) For kp € K,
R(ke X 1ﬁn)¢ = 7Too(kO)voo & ﬂ-ﬁn(]-)vﬁn = eikevoo & vgn = eik0¢

since v is a lowest weight vector for o, = my (cf. Theorem 11.44).

(c) Lastly,
d
R(E Yo = S| Rlexp(tE™)  1,)o
d
== _ Too(€XP(LE ™)) Voo @ Thin(1)van

- (TFOO(E_)/UOO) ® vgn = 07
again by Theorem 11.44.

Conversely, suppose ¢ € Ax(N,w) is nonzero. We need to show that ¢
belongs to the right-hand side of (12.21). For any cuspidal 7, let V. be the
space of T, so L(w) is the closure of @ V. Let pr : L3(w) — Vi be the
orthogonal projection map. Then p, intertwines the action of R since V; is a

closed stable subspace and R is unitary. Using this fact, it is straightforward
to show that pr(Ax(N,w)) C Ax(N,w), and hence

Pr(Ax(N,w)) = Ax(N,w) N V.

It follows that Ax(N,w) is the closure of @ (Vx N Ax(N,w)). However this
direct sum is finite-dimensional, hence already closed, so

A(N,w) = P (Ve N Ax(N, w)).

™

By this fact, it suffices to consider the case where
¢ € Vﬂ— ﬂAk(N,w)

for some cuspidal .
It remains to show that 7o, = m¢ and ¢ € Cvr ® WQ(N). By linearity,
we can assume that ¢ = v, ®vg, for some nonzero v € Vi, and vay € Vp, .
Let
Vo (k) = {v € Vi [T (kg)v = e™®v}
be the isotypic component in V. of the character kg — e of K. Note
that by property (b),

Too (ko) Voo @ Vin = (kg X Lin)¢b
= ¢ = Xy @ vy
This proves that ve, € Vo(k). By a similar argument, we see easily that
Vfin € ﬂéil(N), and hence ¢ € Vo (k) ® Wéil(N).
Now because ¢ satisfies condition (c),

d _ d
0= 7 m(exp(tE™) X lgp)o = 7

t=0 t=0

= (Too (£ )Vs0) ® Vfip.

Too(eXP(tE ™)) vso © vy
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Thus 7o (E™)vs = 0. We have now shown that v satisfies (2) of Theorem
11.44, and hence 7y, = m; and v is a lowest weight vector. O

Remark: If h € Sx(N,w’) is a Hecke eigenform, the cuspidal representation
7 generated by ¢y, € Ax(N,w) C L(w) is irreducible and has 7o, = m. For
details about the correspondence (1-1 only at the level of newforms) between
h and 7, including a description of the local factors mp, see [G1] or [Ro1l].

13. Construction of the test function f

We now construct a continuous function f € L'(G(A),w™!) such that
the trace of R(f) on L?(w) gives the trace of the Hecke operator T, on
Sk(N,w’). The function f will be a product of local functions on G(Q,), i.e.

f=foo x [?, where [* =T],_ fp-

13.1. The non-archimedean component of f. The idea is to define
f™ using double cosets as in the construction of Ty, using Ko(N) in place of
To(N).

LEMMA 13.1. Suppose p|N. Then

G- U (5 gk U (1)K

6€Zy/NZy repZy/NZyp

a disjoint union.

b
d

(a b) (a_l ad_fbc) - ( / 0>

¢ dj\ 0 % c/a 1)

B further multiply by v °) to obtai LooY)
ecause we can rurther multiply by N 1 O OoDbtaln c/a +N 1) e

PRrOOF. Let (Z
Ko(N)p, and

-1 —b
> € Kp. If ple, then a € Z7, so (ao “dabc> €
ad—bc

entry 7 = c¢/a € pZ, is unique modulo NZ,.

. . o ¢! d . a/c 1
If ¢ is a unit, then multiplying by 0 ad—bc ) gives Y Once
ad—bc
again, 0 = a/c € Z, is unique modulo NZ,,.
This proves the decomposition. To see that it is disjoint, note that

1 0 wooT\ * *
7 1)\Ny 2) \rtw+Ny %)’

which cannot equal (f (1)> since p|(Tw + Ny). O

Define
Yp(N) = [Kp : Ko(N)p)-



