
CHAPTER 5

Energy, Monotonicity, and Breathers

Truth is ever to be found in the simplicity, and not in the multiplicity and

confusion of things. – Sir Isaac Newton

The most beautiful thing we can experience is the mysterious. It is the source

of all true art and science. – Albert Einstein

Much of the ‘classical’ study of the Ricci flow is based on the maximum
principle. In large part, this is the point of view we have taken in Volume
One. As we have seen in Section 8 in Chapter 5 of Volume One, a notable
exception to this is Hamilton’s entropy estimate, which holds for closed sur-
faces with positive curvature.1 Even in this case, the time-derivative of the
entropy is the space integral of Hamilton’s trace Harnack quantity, which
satisfies a partial differential inequality amenable to the maximum princi-
ple.2 Indeed, this fact is the basis for Hamilton’s original proof by contra-
diction of the entropy estimate which uses the global in time existence of the
Ricci flow on surfaces.3 Originally, Hamilton’s entropy was a crucial compo-
nent of the proofs for the convergence of the Ricci flow on surfaces and the
classification of ancient solutions on surfaces. Via dimension reduction, the
latter result has applications to singularity analysis in Hamilton’s program
on 3-manifolds.

An interesting direction is that of finding monotonicity formulas for
integrals of local geometric quantities. Beautiful recent examples of this
are Perelman’s energy and entropy estimates in all dimensions. We briefly
touched upon these estimates in Section 8 of Chapter 1 (Theorems 1.72 and
1.73) to motivate the study of gradient Ricci solitons. Perelman’s energy is
the time-derivative of a classical entropy ((5.64) in Section 4 below). Ob-
serve how the resulting calculation in Perelman’s proof of the upper bound
for the maximum time interval of existence of the gradient flow (Proposition
5.34) is reminiscent of Hamilton’s proof of his entropy formula. In fact this
upper bound says that a modified classical entropy is increasing (see (5.67)).

Monotonicity formulas usually have geometric applications. In partic-
ular, Perelman proved that any breather on a closed manifold is a Ricci
soliton of the same type. This statement includes the shrinking case which
remained open until his work; previously, we have seen the proofs of the

1See [108], Proposition 5.44, for the case of curvature changing sign.
2See (5.70).
3See Theorem 5.38.
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190 5. ENERGY, MONOTONICITY, AND BREATHERS

expanding and steady cases in Proposition 1.13. To prove the nonexistence
of nontrivial breathers, Perelman needed to do a separate study of each type
of breather. However, in each case, the method is the same: introduce a new
functional, study its properties, and apply them to the proof that there are
no nontrivial breathers of each type. All such functionals have three basic
characteristics:

• they are nondecreasing along systems of equations including the
Ricci flow,

• they are invariant under diffeomorphisms and/or homotheties,
• their critical points are gradient Ricci solitons (of a different type

in each case).
Moreover, Perelman’s functionals are successive modifications of his ini-

tial functional F and are motivated by the consideration of gradient Ricci
solitons of each type. So it is important to study the cases of the proofs suc-
cessively in order to see how the evolutions of the functionals are used and
how to modify the functionals gradually to define the entropy functional,
which is the key to proving the shrinking case and where the proof follows
essentially the same steps as the other two cases but uses the new functional.

In this chapter, we shall discuss in detail the energy functional, its geo-
metric applications and its relation with classical entropy; in the next chap-
ter we study Perelman’s entropy and some of its geometric applications. The
style of this chapter is that of filling in the details of §§1–2 of Perelman [297]
in the hopes of aiding the reader in their perusal of [297]. Throughout this
chapter Mn is a closed n-manifold.

1. Energy, its first variation, and the gradient flow

The Ricci flow is not a gradient flow of a functional on the space Met

of smooth metrics on a manifold Mn with respect to the standard L2-inner
product.4 On the other hand, variational methods have played major roles in
geometric analysis, partial differential equations, and mathematical physics.
It was unusual that the Ricci flow, a natural geometric partial differential
equation, should appear to be an exception to this. Perelman’s introduction
of the F functional (defined below) solved the important question of whether
the Ricci flow can be seen as a gradient flow. More precisely, as we shall see
in this and the following section, the Ricci flow is a gradient-like flow ; it is a
gradient flow when we enlarge the system. The key to solving the question
above is to look for functionals whose critical points are Ricci solitons, that
is, fixed points of the Ricci flow modulo diffeomorphisms and homotheties
(so that the ambient space in which we consider Ricci flow is Met/Diff×R+

instead of Met). This is consistent with the point of view we adopted in
Chapter 1 on Ricci solitons.

4An exception is when n = 2 (see Appendix B of [111]), and more generally, for the
Kähler-Ricci flow.
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1.1. The energy functional F . Let C∞(M) denote the set of all
smooth functions on a closed manifold Mn. We define the energy func-
tional F : Met × C∞(M) → R by

(5.1) F (g, f) �
∫
M

(
R + |∇f |2

)
e−fdµ.

Note, in addition to the metric, the introduction of a function f. This embeds
the space of metrics in a larger space. We shall sometimes follow the physics
literature and call f the dilaton.

Since ∆
(
e−f

)
=

(
−∆f + |∇f |2

)
e−f , we see from

∫
M ∆

(
e−f

)
dµ = 0

that

(5.2)
∫
M

|∇f |2 e−fdµ =
∫
M

∆fe−fdµ.

So we have two other expressions for the energy:

F(g, f) =
∫
M

(R + ∆f)e−fdµ(5.3)

=
∫
M

(R + 2∆f − |∇f |2)e−fdµ.(5.4)

The second way of expressing the energy is motivated by the pointwise
formula (5.43) in subsection 2.3.2 below.

Lemma 5.1 (Elementary properties of F).

(1) Dirichlet-type energy. The geometric aspect of F is reflected by
F (g, 0) =

∫
M Rdµ being the total scalar curvature and the function

theory aspect of F is reflected by expressing it as

(5.5) F (g, f) =
∫
M

(
4 |∇w|2 + Rw2

)
dµ � G (g, w) ,

where w = e−f/2, which is a Dirichlet energy with a potential term.
(2) Diffeomorphism invariance. For any diffeomorphism ϕ of M, we

have

F (ϕ∗g, f ◦ ϕ) = F (g, f) .

(3) Scaling. For any c > 0 and b

F
(
c2g, f + b

)
= cn−2e−bF (g, f) .

Exercise 5.2. Prove the properties for the energy in the lemma above.

1.2. The first variation of F . We use the symbol δ to denote the
variation of a tensor. We shall denote the variations of the metric and
dilaton as δg = v ∈ C∞ (T ∗M⊗S T ∗M) and δf = h ∈ C∞ (M) , and we
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define V � gijvij . Routine calculations give

δvΓk
ij (g) =

1
2
gkl (∇ivjl + ∇jvil −∇lvij) ,(5.6)

δvΓ
p
pj =

1
2
∇jV,(5.7)

δ(v,h)

(
e−fdµ

)
=

(
V

2
− h

)
e−fdµ.(5.8)

We calculate the last one, for example,

(5.9) δ(v,h)

(
e−fdµ

)
= −e−fh dµ + e−f 1

2
gijvij dµ =

(
V

2
− h

)
e−fdµ.

Lemma 5.3 (First variation of F). Then the first variation of F can
be expressed as

δ(v,h)F (g, f) = −
∫
M

vij(Rij + ∇i∇jf)e−fdµ(5.10)

+
∫
M

(
V

2
− h

)(
2∆f − |∇f |2 + R

)
e−fdµ,

where δ(v,h)F (g, f) denotes the variation of F at (g, f) in the direction
(v, h) , i.e.,

δ(v,h)F (g, f) � d

ds

∣∣∣∣
s=0

F (g + sv, f + sh) .

Proof. Recall (V1-p. 92), i.e.,

Rij = Rp
pij = ∂pΓ

p
ij − ∂iΓ

p
pj + Γq

ijΓ
p
pq − Γq

pjΓ
p
iq,

so that
δRij = ∇p

(
δΓp

ij

)
−∇i

(
δΓp

pj

)
.

Since ∇i∇j = ∂i∂j − Γk
ij∂k as an operator acting on functions, we have

δ (∇i∇jf) = ∇i∇j (δf) −
(
δΓp

ij

)
∇pf.

Hence, using (5.7),

δ (Rij + ∇i∇jf) = ∇p

(
δΓp

ij

)
−

(
δΓp

ij

)
∇pf + ∇i

(
∇j (δf) − δΓp

pj

)
= ef∇p

(
e−fδΓp

ij

)
+ ∇i∇j

(
h − V

2

)
.

We then compute

δ
[
(Rij + ∇i∇jf) e−fdµ

]
(5.11)

=

[
∇p

(
e−fδΓp

ij

)
+ e−f∇i∇j

(
h − V

2

)
+(Rij + ∇i∇jf) e−f

(
V
2 − h

) ]
dµ.



1. ENERGY, ITS FIRST VARIATION, AND THE GRADIENT FLOW 193

So using (5.8),

δ
[
(R + ∆f) e−fdµ

]
= gijδ

[
(Rij + ∇i∇jf) e−fdµ

]
− δgij · (Rij + ∇i∇jf) e−fdµ

=
[
∇p

(
e−fgijδΓp

ij

)
+ e−f∆

(
h − V

2

)
+ (R + ∆f) e−f

(
V

2
− h

)]
dµ

− vij · (Rij + ∇i∇jf) e−fdµ.

Note that δΓp
ij is a tensor and we do not need an explicit formula for it in

the rest of the proof.
By the Divergence Theorem, we have

δ(v,h)F (g, f) =
∫
M

δ
[
(R + ∆f) e−fdµ

]
=

∫
M

(
−∆

(
e−f

)
+ (R + ∆f) e−f

) (
V

2
− h

)
dµ

−
∫
M

vij · (Rij + ∇i∇jf) e−fdµ,

from which the lemma follows. �
Remark 5.4. By (5.11), the variation of (Rij + ∇i∇jf) e−fdµ is a di-

vergence when h = V
2 :

δ
[
(Rij + ∇i∇jf) e−fdµ

]
= ∇p

(
e−fδΓp

ij

)
dµ.

Note also the factor V
2 −h in front of the second term in the rhs of (5.10).

The significance of when this factor vanishes will be seen in subsection 1.4
below. By (5.8) we have

Lemma 5.5. Define the measure

dm � e−fdµ.

If the variations of g and f keep the measure dm fixed, that is, δ(v,h) (dm) =
0, then

(5.12) V = 2h.

As a consequence of Lemma 5.3, we have

Corollary 5.6 (Measure-preserving first variation of F). For varia-
tions (v, h) with δ(v,h)

(
e−fdµ

)
= 0, we have

(5.13) δ(v,h)F (g, f) = −
∫
M

vij (Rij + ∇i∇jf) e−fdµ.

Notice in formula (5.10) for δ(v,h)F (g, f) the occurrence of the terms

Rm
ij � (Rcm)ij � Rij + ∇i∇jf,(5.14)

Rm � R + 2∆f − |∇f |2 .(5.15)
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The first quantity vanishes on steady gradient solitons flowing along ∇f,
whereas the second appeared in (5.4).5 We call Rm

ij and Rm the modified
Ricci curvature and modified scalar curvature, respectively; they are
natural quantities from the perspective of the Ricci flow. We can rewrite

F (g, f) =
∫
M

gijRm
ij e

−fdµ =
∫
M

Rme−fdµ

and
δ(v,h)F (g, f) = −

∫
M

vijR
m
ij e−fdµ

when V = 2h.

1.3. The modified Ricci and scalar curvatures. In this subsection
we digress by showing Rm

ij and Rm are natural quantities. Consider a closed

Riemannian manifold (Mn, g) and a metric ḡ = e−
2
n

fg conformal to g. Let
R̄ij = Rc (ḡ)ij , Rij = Rc (g)ij , R̄ = R (ḡ) , and R = R (g) . The Ricci and
scalar curvatures are related by (see for example subsection 7.2 of Chapter
1 in [111] or (A.2) and (A.3) in this volume)
(5.16)

R̄ij = Rij +
(

1 − 2
n

)
∇i∇jf +

1
n

∆fgij +
n − 2
n2

∇if∇jf − n − 2
n2

|∇f |2 gij .

Tracing this yields

(5.17) R̄ = e
2
n

f

(
R +

2 (n − 1)
n

∆f − (n − 1) (n − 2)
n2

|∇f |2
)

.

The volume forms are related by dµḡ = e−fdµ and the total scalar curvature
of ḡ is given by∫

M
R̄dµḡ =

∫
M

e−
n−2

n
f

(
R +

(n − 1) (n − 2)
n2

|∇f |2
)

dµ,

where we integrated by parts, i.e., we used∫
M

e−
n−2

n
f∆fdµ =

n − 2
n

∫
M

e−
n−2

n
f |∇f |2 dµ.

Now consider the Riemannian product (Mn, g)×(T q, hq) , where (T q, hq)
is a flat unit volume q-dimensional torus. The formulas for the Ricci cur-
vature and scalar curvature of metric e

− 2
n+q

f (g + hq) are given by (5.16)
and (5.17), respectively, where we replace n by n + q. If we take the limit
as q → ∞ while fixing (Mn, g) , then we obtain Perelman’s modified Ricci
tensor:

(5.18) lim
q→∞

Rc
(
e
− 2

n+q
f (g + hq)

)
= Rc +∇∇f

and Perelman’s modified scalar curvature:

(5.19) lim
q→∞

R
(
e
− 2

n+q
f (g + hq)

)
= R + 2∆f − |∇f |2 ,

5Earlier we also encountered these quantities in Chapter 1.
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where we think of Rc
(
e
− 2

n+q
f (g + hq)

)
and R

(
e
− 2

n+q
f (g + hq)

)
as quan-

tities on M since they are independent of the point in T q. The total scalar
curvatures of

(
M× T q, e

− 2
n+q

f (g + hq)
)

limit to Perelman’s F functional:

lim
q→∞

∫
M×T q

R
(
e
− 2

n+q
f (g + hq)

)
dµ

e
− 2

n+q f
(g+hq)

= lim
q→∞

∫
M

∫
T q

R
(
e
− 2

n+q
f (g + hq)

)
e−2fdµhqdµg

=
∫
M

(
R + |∇f |2

)
e−fdµ

= F (g, f) .

Note that
gijRm

ij = R + ∆f = Rm − ∆f + |∇f |2 .

There is an analogue of the contracted second Bianchi identity for Rm
ij and

Rm. In particular we compute

∇iR
m
ij = ∇iRij + ∇i∇j∇if =

1
2
∇jR + ∇j∆f + Rjk∇kf

and
1
2
∇jR

m = ∇j∆f − 1
2
∇j |∇f |2 +

1
2
∇jR =

1
2
∇jR + ∇j∆f −∇j∇kf∇kf,

which imply

(5.20) ∇iR
m
ij =

1
2
∇jR

m + Rm
jk∇kf.

To understand this formula further, we define

∇∗m : C∞ (T ∗M⊗S T ∗M) → C∞ (T ∗M)

by
(∇∗ma)j � ∇iaij − aji∇if.

Lemma 5.7. The operator ∇∗m is the adjoint of −∇ with respect to the
measure dm = e−fdµ.

Proof. For any symmetric 2-tensor aij and 1-form bi,∫
M

aij (−∇i) bje
−fdµ =

∫
M

bj∇i

(
aije

−f
)

dµ

=
∫
M

bj (∇iaij − aij∇if) e−fdµ

=
∫
M

bj (∇∗ma)j e−fdµ.

�
Thus (5.20) implies the following, which is the analogue of the contracted

second Bianchi identity.
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Lemma 5.8 (Modified contracted second Bianchi identity).

(5.21) ∇∗m
i Rm

ij � (∇∗m Rcm)j =
1
2
∇jR

m.

1.4. The functional Fm and its gradient flow. Unlike F (g, f) , we
can obtain a functional of just the metric g by fixing a measure dm on a
closed manifold Mn; by a measure we mean a positive n-form on M.6

Define Fm : Met → R by

(5.22) Fm(g) � F(g, f) =
∫
M

(R + |∇f |2)dm,

where

(5.23) f � log
(

dµ

dm

)
.

Remark 5.9. The expression (5.23) makes sense because, given a fixed
measure dm on Mn, we can define the bijection

C∞ (ΛnT ∗M) → C∞ (M) ,

ω �→ ϕ,

where ϕ is defined so that ω = ϕdm (here we have used the fact that
ΛnT ∗

xM ∼= R). Thanks to this, it is possible to define the quotient of two
n-forms; e.g., if ω1 = ϕ1dm and ω2 = ϕ2dm, where ϕ2 > 0, then we set

ω1

ω2
� ϕ1

ϕ2
.

Without using the notation f, we can write the energy of the metric g
as

Fm(g) =
∫
M

(
R +

∣∣∣∣∇ log
(

dµ

dm

)∣∣∣∣2
)

dm.

Using the modified Ricci and scalar curvatures, we can rewrite

Fm (g) =
∫
M

gijRm
ij dm =

∫
M

Rmdm.

Remark 5.10. Let ϕ : M → M be a diffeomorphism. Note that in
general

Fm (ϕ∗g) 	= Fm (g) .

That is, by fixing the measure dm, we get Fm (g) , which breaks the diffeo-
morphism invariance of F (g, f) . In subsection 3.1 of this chapter we shall
solve this problem by considering a functional λ (g) which is diffeomorphism-
invariant.

6For a calculational motivation for fixing the measure, see the notes and commentary
at the end of this chapter.
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From (5.13) we have

(5.24) δvFm (g) = −
∫
M

vij (Rij + ∇i∇jf) dm,

where f is given by (5.23). The L2-inner product on Met, using the metric
g and the measure dm, is defined by

〈aij , bij〉m (g) �
∫
M

〈aij , bij〉g dm.

Then by (5.24) we have

∇Fm (g) = −(Rij + ∇i∇jf),

where f is given by (5.23). Hence (twice) the positive gradient flow of Fm

is
∂

∂t
gij = −2 (Rij + ∇i∇jf) ,(5.25)

f = log
(

dµ

dm

)
.(5.26)

We can also write the above system as

(5.27)
∂

∂t
gij = −2

[
Rij + ∇i∇j log

(
dµ

dm

)]
.

We shall call an equation of the form (5.25) by itself, for some function f, a
modified Ricci flow.

It is clear from taking vij = −2 (Rij + ∇i∇jf) in (5.13) that we obtain
the following.

Proposition 5.11 (Fm evolution under modified Ricci flow). Suppose
g (t) is a solution of (5.25)–(5.26). Then

(5.28)
d

dt
Fm(g(t)) = 2

∫
M

|Rij + ∇i∇jf |2 e−fdµ.

This is Perelman’s monotonicity formula for the gradient flow of
Fm. We may rewrite (5.28) as

d

dt
Fm =

d

dt

∫
M

Rmdm = 2
∫
M

∣∣Rm
ij

∣∣2 dm.

Note that for a general measure dm, solutions to the initial-value problem
for the gradient flow may not exist even for a short time; however, as we
shall see, this will not cause us problems in applications.

2. Monotonicity of energy for the Ricci flow

For monotonicity formula (5.28) to be useful, we need a corresponding
version for solutions of the Ricci flow. In this section we show that solutions
to equations (5.25) and (5.26), if they exist, differ from solutions of the Ricci
flow by the pullback by time-dependent diffeomorphisms. Thus this gives a
monotonicity formula for the energy of the Ricci flow.
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2.1. A coupled system equivalent to the gradient flow of Fm.
There is a coupled system, i.e., (5.29)–(5.30), induced from the gradient
flow (5.25)–(5.26) obtained simply by computing the evolution equation for
f = log (dµ/dm) . As we shall see, this coupled system is equivalent to the
gradient flow.

Lemma 5.12 (Measure-preserving evolution of f under modified RF).
The function f(t) in a solution (g (t) , f (t)) of the gradient flow of Fm (5.25)
and (5.26) satisfies the following equation:

∂f

∂t
= −∆f − R.

Proof. We calculate
∂f

∂t
=

∂

∂t
log

(
dµ

dm

)
=

1
2
gij ∂gij

∂t
= −gij (Rij + ∇i∇jf) .

�
Related to the above calculation, we have the following.

Exercise 5.13. Show that if ω1 (t) and ω2 (t) are time-dependent n-
forms, then

∂

∂t
log

(
ω1

ω2

)
=

∂
∂tω1

ω1
−

∂
∂tω2

ω2
,

where the quotient of two n-forms is defined as in Remark 5.9.

Hence we consider the coupled modified Ricci flow
∂

∂t
gij = −2(Rij + ∇i∇jf),(5.29)

∂f

∂t
= −∆f − R.(5.30)

Note that the first equation is a modified Ricci flow equation whereas the
second equation is a backward heat equation.

Lemma 5.14. The coupled modified Ricci flow equations (5.29)–(5.30)
are equivalent to the gradient flow (5.27).

Proof. If g (t) is a solution to (5.27), then by Lemma 5.12, (g (t) , f (t)) ,
where f = log (dµ/dm) , is a solution to the system (5.29)–(5.30).

Conversely, if (g (t) , f (t)) is a solution to the system (5.29)–(5.30), then
dm � e−fdµ satisfies

∂

∂t
(dm) =

(
−∂f

∂t
− R − ∆f

)
e−fdµ = 0;

that is, g (t) is a solution to (5.27) with dm as defined above. �
Hence, by (5.28), if (g (t) , f (t)) is a solution to (5.29)–(5.30), then

(5.31)
d

dt
F(g(t), f (t)) = 2

∫
M

|Rij + ∇i∇jf |2 e−fdµ.
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2.2. Correspondence between solutions of the gradient flow
and solutions of the Ricci flow.

2.2.1. Converting a solution of the gradient flow to a solution of Ricci
flow. We first show that solutions of the gradient flow, if they exist, give
rise to solutions of the Ricci flow with the same initial data (Lemma 5.15).
In particular, suppose we have a solution

(
ḡ (t) , f̄ (t)

)
of the flow (5.25) and

(5.26) on [0, T ]; then we can obtain a solution g(t) of the Ricci flow on [0, T ]
by modifying ḡ (t) by diffeomorphisms generated by the gradient of f̄ (t) .

Lemma 5.15 (Perelman’s coupling for Ricci flow). Let
(
ḡ(t), f̄(t)

)
be a

solution of (5.25) and (5.26) on [0, T ]. We define a 1-parameter family of
diffeomorphisms Ψ(t) : M → M by

d

dt
Ψ(t) = ∇ḡ(t)f̄(t),(5.32)

Ψ(0) = idM .(5.33)

Then the pullback metric g(t) = Ψ(t)∗ḡ(t) and the dilaton f(t) = f̄ ◦ Ψ(t)
satisfy the following system:

∂g

∂t
= −2Rc,(5.34)

∂f

∂t
= −∆f + |∇f |2 − R.(5.35)

Remark 5.16. Basically we can see this from the facts that L∇fg =
2∇∇f and L∇ff = |∇f |2 . For the sake of completeness we give the detailed
calculations below.

Proof. First note that by Lemma 3.15 of Volume One the system of
ode (5.32)–(5.33) is always solvable. We compute

∂g

∂t
= Ψ∗

(
∂ḡ

∂t

)
+ Ψ∗

(
L∇ḡ f̄ ḡ

)
= −2Ψ∗ (Rc (ḡ)) = −2Rc (g) .

To obtain the equation for ∂f
∂t , we compute

∂f

∂t
=

∂
(
f̄ ◦ Ψ

)
∂t

=
∂f̄

∂t
◦ Ψ +

〈(
∇̄f̄

)
◦ Ψ,

∂Ψ
∂t

〉
ḡ

=
(
−∆̄f̄ − R̄

)
◦ Ψ +

∣∣(∇̄f̄
)
◦ Ψ

∣∣2
ḡ

= −∆f − R + |∇f |2 ,

where barring a quantity indicates that it corresponds to ḡ (t) . �

So a solution to the gradient flow (5.25)–(5.26) yields a solution to the
Ricci flow-backward heat equation system (5.34)–(5.35). Note that we can
first solve the Ricci flow (5.34) forward in time and then solve (5.35) back-
ward in time to get a solution of (5.34)–(5.35); this will be useful in appli-
cations.
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2.2.2. Converting a solution of Ricci flow to a solution of the gradient
flow. Now we show the converse of Lemma 5.15 by reversing the procedure
of the last subsection. Given a solution g (t) of the Ricci flow (5.34) on [0, T ],
we can construct a solution

(
ḡ(t), f̄(t)

)
of the gradient flow (5.25) and (5.26)

on [0, T ] by modifying the solution g(t) by diffeomorphisms. In doing so, we
also need to solve a backward heat equation with initial data at time T.

Lemma 5.17. Let g(t) be a solution of the Ricci flow ∂g
∂t = −2Rc on

[0, T ] and let fT be a function on M.
(i) We can solve the backward heat equation backwards in time

∂f

∂t
= −∆f + |∇f |2 − R, t ∈ [0, T ],

f(T ) = fT .

(ii) Given a solution f (t) to the equation above, define the 1-parameter
family of diffeomorphisms Φ(t) : M → M by

(5.36)
d

dt
Φ(t) = −∇g(t)f(t), Φ(0) = idM,

which is a system of ode and hence is solvable on [0, T ].7 Then the pulled-
back metrics ḡ(t) = Φ(t)∗g(t) and the pulled-back dilaton f̄(t) = f ◦ Φ(t)
satisfy (5.29) and (5.30).

Proof. (i) Let τ = T − t. To get the existence of solutions to equation
(5.35), we simply set

(5.37) u � e−f

and compute that

(5.38)
∂u

∂τ
= ∆u − Ru,

which is a linear parabolic equation and has a solution on [0, T ] with initial
data at τ = 0. Indeed, (5.38) follows from

∂u

∂τ
= −∂u

∂t
= u

∂f

∂t
= u

(
−∆f + |∇f |2 − R

)
= ∆u − Ru.

(ii) Let g(t) be a solution of the Ricci flow and let f(t) be a solution of
equation (5.35). One can verify that they satisfy (5.29) and (5.30) as in the
proof of Lemma 5.15. �

2.2.3. The adjoint heat equation. Let g (t) be a solution of Ricci flow
and let � � ∂

∂t −∆ be the heat operator acting on functions on M× [0, T ] ,
where M× [0, T ] is endowed with the volume form dµdt. Its adjoint is

(5.39) �∗ � − ∂

∂t
− ∆ + R

7Again see Lemma 3.15 of Volume One.
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since ∫ T

0

∫
M

b�adµdt =
∫ T

0

∫
M

b

(
∂

∂t
− ∆

)
adµdt

=
∫ T

0

∫
M

[
a

(
− ∂

∂t
− ∆

)
bdµ − ab

∂

∂t
dµ

]
dt

=
∫ T

0

∫
M

a�∗bdµdt

for C2 functions a and b on M× [0, T ] with compact support in M× (0, T ) ,
where we used ∂

∂tdµ = −Rdµ.

By (5.38), if (g (t) , f (t)) is a solution to (5.34)–(5.35), then u = e−f

satisfies the adjoint heat equation (also known as the conjugate heat
equation)

(5.40) �∗u =
(
− ∂

∂t
− ∆ + R

)
u = 0.

It is often better to think in terms of u than in terms of f since u satisfies
the adjoint heat equation. In particular, the fundamental solution to the
adjoint heat equation is important.

2.3. Monotonicity of F for the Ricci flow. In this subsection we
give two proofs of the monotonicity of energy for Ricci flow. In the next sec-
tion we give an application of this formula to the nonexistence of nontrivial
breather solutions.

2.3.1. Deriving the monotonicity of F from the monotonicity of Fm.
By the diffeomorphism invariance of all the quantities under consideration,
the monotonicity formula for the gradient flow implies a monotonicity
formula for the Ricci flow. This involves a function f (t) obtained by
solving the backward heat equation (5.35).

Lemma 5.18 (F energy monotonicity). If (g (t) , f(t)) is a solution to
(5.34)–(5.35) on a closed manifold Mn, then

(5.41)
d

dt
F (g (t) , f(t)) = 2

∫
M

|Rij + ∇i∇jf |2 e−fdµ.

Proof. Since (g (t) , f(t)) is a solution to (5.34)–(5.35),
(
ḡ (t) , f̄ (t)

)
,

defined by ḡ(t) � Φ∗(t)g(t) and f̄(t) = f(t) ◦ Φ(t), where Φ(t) satisfies
(5.36), is a solution to (5.29)–(5.30). Now F (g, f) = F

(
ḡ, f̄

)
, so that by

(5.31), we have
d

dt
F (g (t) , f (t)) =

d

dt
F

(
ḡ (t) , f̄ (t)

)
= 2

∫
M

∣∣R̄ij + ∇̄i∇̄j f̄
∣∣2
ḡ
e−f̄dµ̄

= 2
∫
M

|Rij + ∇i∇jf |2 e−fdµ.
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�

2.3.2. Deriving the monotonicity of F from a pointwise estimate. This
second approach to the energy monotonicity formula is based on the point-
wise formula (5.43), which is a simpler version of the evolution equation for
Perelman’s backward Harnack quantity (6.22).

Let (g (t) , f (t)) be a solution to (5.34)–(5.35). Let u = e−f and

(5.42) V � (2∆f − |∇f |2 + R)u = Rmu,

where Rm is the modified scalar curvature defined by (5.15),8 so that

F =
∫
M

V dµ.

Lemma 5.19 (Bochner-type formula for V ). If (g (t) , f (t)) is a solution
to (5.34)–(5.35) and if u = e−f , then we have the pointwise differential
equality:

(5.43) �∗V = −2|Rij + ∇i∇jf |2u.

This calculation, which we carry out below, is in a similar spirit to that
of the calculations for the differential Harnack quantities considered in §10
of Chapter 5 in Volume One and Part II of this volume. To obtain (5.41)
from the lemma, we compute

d

dt
F (g (t) , f (t)) =

d

dt

∫
M

V dµ

=
∫
M

(
∂

∂t
V − RV

)
dµ

=
∫
M

2|Rij + ∇i∇jf |2udµ.

Proof of the lemma. Using definition (5.42) and gij ∂
∂tΓ

k
ij = 0, a di-

rect calculation shows that
∂

∂t
Rm =

∂

∂t
(2∆f − |∇f |2 + R)

= 4Rij∇i∇jf + 2∆
(

∂f

∂t

)
− 2Rij∇if∇jf − 2∇

(
∂f

∂t

)
· ∇f +

∂R

∂t

= 4Rij∇i∇jf − ∆(2∆f − |∇f |2 + R) + ∆|∇f |2 + 2∇∆f · ∇f

− 2Rij∇if∇jf − 2∇(|∇f |2 − R)∇f +
∂R

∂t
− ∆R.

From the above we have(
∂

∂t
+ ∆

)
Rm = 2|Rij + ∇i∇jf |2 + 2∇Rm · ∇f.

8The above V is not to be confused with our earlier V, which was the trace of the
variation v of g.
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On the other hand,

∂V

∂t
+∆V −RV =

(
∂Rm

∂t
+ ∆Rm

)
u+

(
∂u

∂t
+ ∆u − Ru

)
Rm +2∇Rm ·∇u.

Plugging in the equation for
(

∂
∂t + ∆

)
Rm and using (5.40), we have

∂V

∂t
+ ∆V − RV = 2|Rij + ∇i∇jf |2u + 2u∇Rm · ∇f + 2∇Rm · ∇u.

The last two terms cancel each other since ∇f = −∇u/u, which yields the
lemma. �

Remark 5.20 (Backward heat-type equation for modified scalar curva-
ture). From the proof of the lemma, we have

(5.44)
∂

∂t
Rm = −∆Rm + 2∇Rm · ∇f + 2|Rm

ij |2.

Note the similarity to the equation ∂R
∂t = ∆R+2 |Rc|2 , except now we have

a backward heat-type equation.

3. Steady and expanding breather solutions revisited

A solution g(t) of the Ricci flow on a manifold Mn is called a Ricci
breather if there exist times t1 < t2, a constant α > 0 and a diffeomorphism
ϕ : M → M such that

g(t2) = αϕ∗g(t1).

When α = 1, α < 1, or α > 1, we call g(t) a steady, shrinking, or
expanding Ricci breather, respectively. Recall that g(t) is a Ricci soliton
(or trivial Ricci breather) if for each pair of times t1 < t2 there exist α > 0
and a diffeomorphism ϕ : M → M (α and ϕ will in general depend on t1
and t2) such that g(t2) = αϕ∗g(t1).

Note that if we consider the Ricci flow as a dynamical system on the
space of Riemannian metrics modulo diffeomorphisms and homotheties, the
Ricci breathers correspond to the periodic orbits whereas the Ricci solitons
correspond to the fixed points. Since the Ricci flow is a heat-type equation,
we expect that there are no periodic orbits except fixed points.

A nice application of the energy monotonicity formula is the nonexis-
tence of nontrivial steady or expanding breather solutions on closed man-
ifolds (§2 of [297]). This was first proved by one of the authors in [218]
(see Proposition 1.66 in this volume). In the next chapter we shall see the
application of Perelman’s entropy formula to prove shrinking breather solu-
tions on closed manifolds are gradient Ricci solitons (§3 of [297]). Hence we
confirm the above expectation.
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3.1. The infimum λ of F . Suppose we have a steady breather solu-
tion to the Ricci flow with g (t2) = ϕ∗g (t1) for some t1 < t2 and diffeo-
morphism ϕ. One drawback of the energy monotonicity formula is that in
general the solution f to (5.35) has f (t2) 	= f (t1) ◦ ϕ, so that in general,
F (g (t2) , f (t2)) 	= F (g (t1) , f (t1)). By taking the infimum of F among f ,
we obtain an invariant of the Riemannian metric g which avoids this trouble.

Definition 5.21 (λ-invariant). Given a metric g on a closed manifold
Mn, we define the functional λ : Met → R by

(5.45) λ(g) � inf
{
F(g, f) : f ∈ C∞(M),

∫
M

e−fdµ = 1
}

.

Taking w = e−f/2, we have

(5.46) λ(g) = inf
{
G(g, w) :

∫
M

w2dµ = 1, w > 0
}

,

where, as in (5.5),9

(5.47) G(g, w) �
∫
M

(
4 |∇w|2 + Rw2

)
dµ.

Thus, when we fix g and minimize F (g, f) among f, we are minimizing a
Dirichlet-type functional and we get an eigenfunction-type equation for w.
Aspects of this point of view are discussed in the next two lemmas.

Note that the variation of G (g, ·) is given by

1
2
δ(0,h)G (g, w) =

∫
M

(4∇w · ∇h + Rwh) dµ =
∫
M

(−4∆w + Rw) hdµ,

where h = δw. Hence the Euler–Lagrange equation for (note that we dropped
the positivity condition on w)

λ (g) � inf
{
G (g, w) :

∫
M

w2dµ = 1
}

is

(5.48) Lw � −4∆w + Rw = λ (g) w.

Lemma 5.22 (Existence and regularity of minimizer of G). There exists
a unique minimizer w0 (up to a change in sign) of

(5.49) inf
{
G(g, w) :

∫
M

w2dµ = 1
}

.

The minimizer w0 is positive and smooth. Moreover,

9In view of Lemma 5.1(1), the monotonicity of F exhibits a dichotomy, it is analogous
to both the monotonicty of the total scalar curvature under its gradient flow, ∂

∂t
g =

−2
`

Rc− 1
2
g
´

, and the monotonicity of the Dirichlet energy under its gradient flow, the

backward heat equation ∂
∂t

w = −∆w. In this sense, the monotonicity of F exhibits a

beautiful synthesis of geometry and analysis.
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(1) the minimum value λ (g) of G(g, w) is equal to λ1(g), where λ1 (g)
is the lowest eigenvalue of the elliptic operator −4∆ + R, and

(2) w0 is the unique positive eigenfunction of

(5.50) −4∆w0 + Rw0 = λ1 (g) w0

with L2-norm equal to 1.

Proof. To establish the existence of a minimizer w0 of (5.46), one takes
a minimizing sequence {wi}∞i=1 of (5.46) in W 1,2 (M) . There then exists a
subsequence {wi}∞i=1 which converges to w0 ∈ W 1,2 (M) weakly in W 1,2 (M)
and strongly in L2 (M) (by the Sobolev embedding theorem). Since

0 ≤
∫
M

|∇ (wi − w0)|2 dµ

=
∫
M

|∇wi|2 dµ +
∫
M

|∇w0|2 dµ − 2
∫
M

〈∇wi,∇w0〉 dµ,

by the weak convergence in W 1,2, we have limi→∞
∫
M 〈∇wi,∇w0〉 dµ =∫

M |∇w0|2 dµ exists, hence∫
M

|∇w0|2 dµ ≤ lim inf
i→∞

∫
M

|∇wi|2 dµ.

On the other hand, by the strong convergence of {wi}∞i=1 in L2, we have

lim
i→∞

∫
M

Rw2
i dµ =

∫
M

Rw2
0dµ,∫

M
w2

0dµ = lim
i→∞

∫
M

w2
i dµ = 1.

Hence w0 is a minimizer of (5.46) in W 1,2 (M) , and w0 is a weak solution to
the eigenfunction equation (5.48). By standard regularity theory, w0 ∈ C∞.
We also have that any minimizer is either nonnegative or nonpositive, since
otherwise ± |w0| is a distinct smooth minimizer which agrees with w0 on
an open set, contradicting the unique continuation property of solutions to
second-order linear elliptic equations.

We now prove w0 is unique up to a sign. Without loss of generality,
we may assume below that w0 is nonnegative. Call a minimizer w of G
with

∫
M w2dµ = 1 a normalized minimizer. If the nonnegative normalized

minimizer is not unique, then there exist two normalized minimizers w0 ≥ 0
and w1 ≥ 0 with

∫
M w0w1dµ = 0. Then w2 = aw0 +bw1 is also a normalized

minimizer for all a, b ∈ R such that a2 + b2 = 1. Indeed, since w0 and w1

satisfy the linear equation (5.50), so does w2 = aw0+bw1, and
∫
M w2

2dµ = 1.
Now it not hard to see that there exist a and b such that w2 changes

sign. In particular, if there are points x and y such that w1 (x) = cw0 (x)
and w1 (y) = dw0 (y) , where c 	= d and w0 (x) > 0 < w0 (y) , then by
choosing a and b with a2 + b2 = 1 such that a + bc and a + bd have opposite
signs, we have that w2 (x) = (a + bc) w0 (x) and w2 (y) = (a + bd)w0 (y)
have opposite signs, which is a contradiction. Hence w0 is unique.
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Finally we show w0 > 0. By the Hopf boundary point lemma (see Lemma
3.4 of Gilbarg and Trudinger [155]), if w0 = 0 somewhere, then there exists
a point x0 ∈ ∂Ω, where Ω = {x ∈ M : w0 (x) > 0} , such that ∂Ω satisfies
the interior sphere condition at x0, so that w (x0) = 0 and |∇w (x0)| 	= 0,
which is a contradiction to w0 ≥ 0.

Finally, properties (1) and (2) follow easily. �
The existence of a unique positive smooth minimizer w0 of G(g, w) un-

der the constraint
∫
M w2dµ = 1 implies the existence of a unique smooth

minimizer f0 of F(g, ·) under the constraint
∫
M e−fdµ = 1. From (5.50) we

see the following.

Lemma 5.23 (Euler–Lagrange equation for minimizer of F). The mini-
mizer f0 = −2 log w0 of F (g, ·) is unique, C∞, and a solution to

(5.51) λ (g) = 2∆f0 − |∇f0|2 + R.

That is, the modified scalar curvature is a constant, i.e., Rm ≡ λ (g) .
Note that from setting v = 0 in (5.10), for the minimizer f of (5.45), we
have

δ(0,h)F (g, f) = −
∫
M

h
(
2∆f − |∇f |2 + R

)
e−fdµ

for all h such that
∫
M he−fdµg = 0. We can also obtain (5.51) directly from

this.
We summarize the properties of the functional λ on a closed manifold

Mn.

(i) (Lower bound for λ) λ(g) is well defined (i.e., finite) since

F(g, f) ≥ min
x∈M

R (x) ·
∫
M

e−fdµ = min
x∈M

R (x) � Rmin.

In particular,
λ (g) ≥ Rmin.

(ii) (Diffeomorphism invariance) If ϕ : M → M is a diffeomorphism,
then

λ(ϕ∗g) = λ(g).

(iii) (Existence of a smooth minimizer) There exists f ∈ C∞ (M) with∫
M e−fdµ = 1 such that λ(g) = F(g, f), i.e.,

(5.52) λ(g) =
∫
M

(R + |∇f |2)e−fdµ.

(iv) (Upper bound for λ) We have

(5.53) λ(g) ≤ 1
Vol (M)

∫
M

Rdµ.

This can be seen by choosing f = log Vol(M), which satisfies∫
M

e−fdµg = 1 and λ(g) ≤
∫
M

(R + |∇f |2)e−fdµ.
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(v) (Scaling)
λ (cg) = c−1λ (g) .

3.2. The monotonicity of λ. Let (Mn, g (t)) , t ∈ [0, T ] , be a solu-
tion of the Ricci flow on a closed manifold. In this subsection we discuss
some properties related to the continuity and monotonicity of λ(g(t)). Such
properties are key to the proof of the nonexistence of nontrivial expanding
or steady breathers. First we show that λ(g(t)) is a continuous function on
[t1, t2]. This is a consequence of the following elementary result (see also
Craioveanu, Puta, and Rassias [118] or Chapter XII of Reed and Simon
[310]).10

Lemma 5.24 (Effective estimate for continuous dependence of λ on g).
If g1 and g2 are two metrics on M which satisfy

1
1 + ε

g1 ≤ g2 ≤ (1 + ε) g1 and R (g1) − ε ≤ R (g2) ≤ R (g1) + ε,

then11

λ (g2) − λ (g1)

≤
(
(1 + ε)

n
2
+1 − (1 + ε)−n/2

)
(1 + ε)n/2 (λ (g1) − minRg1)

+ ((1 + δ) max |Rg2 − Rg1 | + 2δ max |Rg1 |) (1 + ε)n/2 ,

where δ → 0 as ε → 0.12 In particular, λ : Met → R is a continuous function
with respect to the C2-topology.

Proof. The proof is straightforward but slightly tedious. First note
that (1 + ε)−n/2 dµg1 ≤ dµg2 ≤ (1 + ε)n/2 dµg1 . If w is a positive function
on M, then in view of (5.46), we compute (writing a · b− c · d = a (b − d) +
(a − c) d) ∫

M
w2dµg1G(g2, w) −

∫
M

w2dµg2G(g1, w)

= 4
∫
M

w2dµg1

(∫
M

|∇w|2g2
dµg2 −

∫
M

|∇w|2g1
dµg1

)
+ 4

(∫
M

w2dµg1 −
∫
M

w2dµg2

)∫
M

|∇w|2g1
dµg1

+
∫
M

w2dµg1

(∫
M

Rg2w
2dµg2 −

∫
M

Rg1w
2dµg1

)
+

(∫
M

w2dµg1 −
∫
M

w2dµg2

)∫
M

Rg1w
2dµg1 ,

10Thanks to [231] for this last reference.
11To denote the dependence on gi, we use the subscript gi instead of (gi) . So Rg1 =

R (g1) .
12See the proof for an explicit dependence of δ on ε.
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so that∫
M

w2dµg1G(g2, w) −
∫
M

w2dµg2G(g1, w)

≤ 4
(
(1 + ε)

n
2
+1 − 1

)∫
M

w2dµg1

∫
M

|∇w|2g1
dµg1

+ 4
(
1 − (1 + ε)−n/2

) ∫
M

w2dµg1

∫
M

|∇w|2g1
dµg1

+
∫
M

w2dµg1

∫
M

w2

(∣∣∣∣(Rg2 − Rg1)
dµg2

dµg1

∣∣∣∣ +
∣∣∣∣(dµg2

dµg1

− 1
)

Rg1

∣∣∣∣) dµg1

+
∣∣∣∣∫

M
w2

(
1 − dµg2

dµg1

)
dµg1

∣∣∣∣ ∣∣∣∣∫
M

Rg1w
2dµg1

∣∣∣∣ .
(In the above estimates we took into account that R may change sign.) Let
δ � max

{
(1 + ε)n/2 − 1, 1 − (1 + ε)−n/2

}
, so that δ → 0 as ε → 0. Since∣∣∣1 − dµg2

dµg1

∣∣∣ ≤ δ, we have

∫
M

w2dµg1

∫
M

w2dµg2

(
G(g2, w)∫
M w2dµg2

− G(g1, w)∫
M w2dµg1

)
≤ 4

(
(1 + ε)

n
2
+1 − (1 + ε)−n/2

) ∫
M

w2dµg1

∫
M

|∇w|2g1
dµg1

+ ((1 + δ) max |Rg2 − Rg1 | + δ max |Rg1 |)
(∫

M
w2dµg1

)2

+ δ max |Rg1 |
(∫

M
w2dµg1

)2

.

Hence

G(g2, w)∫
M w2dµg2

− G(g1, w)∫
M w2dµg1

≤ 4
(
(1 + ε)

n
2
+1 − (1 + ε)−n/2

) ∫
M |∇w|2g1

dµg1∫
M w2dµg2

+ ((1 + δ) max |Rg2 − Rg1 | + 2δ max |Rg1 |) (1 + ε)n/2 .

Taking w to be a minimizer for G(g1, ·), we have

λ (g2) − λ (g1)

≤ 4
(
(1 + ε)

n
2
+1 − (1 + ε)−n/2

)
(1 + ε)n/2

∫
M |∇w|2g1

dµg1∫
M w2dµg1

+ ((1 + δ)max |Rg2 − Rg1 | + 2δ max |Rg1 |) (1 + ε)n/2 .
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The result now follows from

4

∫
M |∇w|2g1

dµg1∫
M w2dµg1

=
G(g1, w)∫
M w2dµg1

−
∫
M Rg1w

2dµg1∫
M w2dµg1

≤ λ (g1) − minRg1 .

�
The monotonicity of F (g (t) , f (t)) under the system (5.34)–(5.35) im-

plies the monotonicity of λ (g (t)) under the Ricci flow.

Lemma 5.25 (λ monotonicity). If g (t) , t ∈ [0, T ], is a solution to the
Ricci flow, then

d

dt
λ(g(t)) ≥ 2

n
λ2(g(t)),

and λ(g(t)) is nondecreasing in t ∈ [0, T ]. Here the derivative d
dt is in the

sense of the lim inf of backward difference quotients.

Remark 5.26. See the next subsection for the case where λ(g(t)) is not
strictly increasing.

Proof. Given t0 ∈ [0, T ], let f0 be the minimizer of F (g (t0) , f) , so
that λ (g (t0)) = F (g (t0) , f (t0)) . Solve

(5.54)
∂

∂t
f = −R − ∆f + |∇f |2 , f (t0) = f0,

backward in time on [0, t0] . Then d
dtF (g (t) , f (t)) ≥ 0 for all t ≤ t0. Since

the constraint
∫
M e−fdµ is preserved under (5.54), we have λ (g (t)) ≤

F (g (t) , f (t)) for t ≤ t0. This, (5.41), and λ (g (t0)) = F (g (t0) , f (t0))
imply both

(5.55) λ (g (t)) ≤ F (g (t) , f (t)) ≤ F (g (t0) , f (t0)) = λ (g (t0))

and the following:
d

dt
λ (g (t))

∣∣∣∣
t=t0

≥ d

dt
F (g (t) , f (t))

∣∣∣∣
t=t0

= 2
∫
M

|Rij + ∇i∇jf |2 e−fdµg(t0)(5.56)

≥ 2
∫
M

1
n

(R + ∆f)2 e−fdµg(t0)

≥ 2
n

(∫
M

(R + ∆f) e−fdµg(t0)

)2

=
2
n

λ2(g(t0)),

where f = f0 is the minimizer. Hence, from either (5.55) or (5.56), we see
that λ (g (t)) is nondecreasing under the Ricci flow. �

Exercise 5.27. Prove (5.56).
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Solution to Exercise 5.27. We compute13

d

dt−
λ (g (t))

∣∣∣∣
t=t0

� lim inf
h→0+

λ (g (t0)) − λ (g (t0 − h))
h

≥ lim inf
h→0+

F (g (t0) , f0) −F (g (t0 − h) , f (t0 − h))
h

,

where f0 is the minimizer for F (g (t0) , ·) and f (t) is the solution to (5.54).
On the other hand, we conclude by (5.41) that the last expression is equal
to 2

∫
M |Rij + ∇i∇jf0|2 e−f0dµg(t0).

3.3. There are no nontrivial steady breathers. As an application
of the monotonicity of the diffeomorphism-invariant functional λ we prove
the nonexistence of nontrivial steady breathers.

Lemma 5.28 (No nontrivial steady breathers on closed manifolds). If
(Mn, g (t)) is a solution to the Ricci flow on a closed manifold such that
there exist t1 < t2 with λ (g (t1)) = λ (g (t2)) , then g (t) is a steady gradient
Ricci soliton, which must be Ricci flat. In particular, a steady Ricci breather
on a closed manifold is Ricci flat.

Proof. Note that if g (t) is a steady Ricci breather with g(t2) = ϕ∗g(t1)
for some t1 < t2 and diffeomorphism ϕ : M → M, then λ(g (t2)) = λ(g (t1)).
Hence we only need to prove the first part of the lemma.

Suppose that for a solution g (t) to the Ricci flow there exist times t1 <
t2 such that λ(g (t2)) = λ(g (t1)). Let f2 be the minimizer for F at time
t2 so that F (g (t2) , f2) = λ (g (t2)) . Take f (t) to be the solution to the
backward heat equation (5.35) on the time interval [t1, t2] with the initial
data f (t2) = f2. By the monotonicity formula (5.41) and the definition of λ
we have14

λ (g (t1)) ≤ F (g (t1) , f (t1)) ≤ F (g (t) , f (t)) ≤ F (g (t2) , f2) = λ (g (t2))

for all t ∈ [t1, t2] . Since λ (g (t1)) = λ (g (t2)) and λ (g (t)) is monotone, we
have

F (g (t) , f (t)) = λ (g (t)) ≡ const
for t ∈ [t1, t2] . Therefore the solution f (t) is the minimizer for F (g (t) , ·)
and d

dtF (g (t) , f (t)) ≡ 0, so by (5.41) we have∫
M

|Rij + ∇i∇jf |2 e−fdµ (t) ≡ 0

for all t ∈ [t1, t2] . Thus

(5.57) Rij + ∇i∇jf = 0 for t ∈ [t1, t2].

In particular, g(t) is a steady gradient Ricci soliton flowing along ∇f (t) .15

13Here d
dt−

denotes the lim inf of backward difference quotients.
14This is the same as (5.55).
15See (1.9), where a gradient soliton is steady if ε = 0.
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Note by (5.51) that f satisfies the equation

2∆f − |∇f |2 + R = λ (g) .

On the other hand, R + ∆f = 0, so that

|∇f |2 + R = −λ (g) .

However, integrating, we have

−λ (g) =
∫
M

(
|∇f |2 + R

)
e−fdµ = λ (g) ,

so that λ (g) = 0 and ∆f = |∇f |2 = −R. Note that then

0 =
∫
M

(
∆f − |∇f |2

)
efdµ = −2

∫
M

|∇f |2 efdµ

implies that f is constant and hence g is Ricci flat by (5.57). Alternatively,
we could have argued that since ∆f = |∇f |2 ≥ 0, f is subharmonic and
hence constant. �

Remark 5.29. Even when M is noncompact, we have |∇f |2 + R is
constant for gradient Ricci solitons; see Proposition 1.15.

3.4. Nonexistence of nontrivial expanding breathers. Recall that
λ (g) is not scale-invariant, e.g., λ (cg) = c−1λ (g) . Thus we define the nor-
malized λ-invariant:

(5.58) λ̄ (g) � λ (g) · Vol (M)2/n .

It is easy to see that λ̄ (cg) = λ̄ (g) for any c > 0, so the invariant λ̄ is
potentially useful for expanding and shrinking breathers. We shall prove
the monotonicity of λ̄ (g (t)) under Ricci flow when it is nonpositive. For
this reason it is most useful for expanding breathers.

Recall that by (5.56), we have

(5.59)
d

dt
λ (g (t)) ≥ 2

∫
M

|Rij + ∇i∇jf |2 e−fdµ,

where d
dtλ (g (t)) is defined as the lim inf of backward difference quotients.16

Let V � V (t) � Volg(t) (M) . From (5.59), we compute

d

dt
λ̄ (g (t)) =

d

dt

[
λ (g (t)) · V (t)2/n

]
= V 2/n dλ

dt
+

2
n

V
2
n
−1λ

dV

dt

≥ 2V 2/n

∫
M

|Rij + ∇i∇jf |2 e−fdµ +
2
n

λV
2
n
−1

∫
M

(−R) dµ,

16This also applies to the time derivatives below in this argument.
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where f = f (t) is the minimizer of F (g (t) , ·) . From this we obtain
1
2
V −2/n d

dt
λ̄ (g (t)) ≥

∫
M

|Rij + ∇i∇jf |2 e−fdµ

− 1
n

∫
M

(R + ∆f) e−fdµ · 1
V

∫
M

Rdµ.

Hence
1
2
V −2/n d

dt
λ̄ (g (t)) ≥

∫
M

∣∣∣∣Rij + ∇i∇jf − 1
n

(R + ∆f) gij

∣∣∣∣2 e−fdµ

+
∫
M

1
n

(R + ∆f)2 e−fdµ

− 1
n

∫
M

(R + ∆f) e−fdµ · 1
V

∫
M

Rdµ.

Recall from (5.53) that∫
M

(R + ∆f) e−fdµ ≤
∫

Rdµ

V
.

Assuming λ (t) ≤ 0, so that
∫
M (R + ∆f) e−fdµ ≤ 0, we have

1
2
V −2/n d

dt
λ̄ (g (t)) −

∫
M

∣∣∣∣Rij + ∇i∇jf − 1
n

(R + ∆f) gij

∣∣∣∣2 e−fdµ(5.60)

≥ 1
n

∫
M

(R + ∆f)2 e−fdµ − 1
n

(∫
M

(R + ∆f) e−fdµ

)2

≥ 0

since
∫
M e−fdµ = 1. Hence

Lemma 5.30. Let g (t) be a solution to the Ricci flow on a closed manifold
Mn. If at some time t, λ̄ (t) ≤ 0, then

d

dt
λ̄ (g (t))(5.61)

≥ 2V 2/n

∫
M

∣∣∣∣Rij + ∇i∇jf − 1
n

(R + ∆f) gij

∣∣∣∣2 e−fdµ ≥ 0,

where V = Volg(t) (M) , f (t) is the minimizer for F (g (t) , ·) , and the time-
derivative is defined as the lim inf of backward difference quotients. By
(5.61), if d

dt λ̄ (g (t)) = 0, then g (t) is a gradient Ricci soliton.

This is reminiscent of the fact that under the normalized Ricci flow,
the minimum scalar curvature is nondecreasing as long as it is nonpositive,
whereas under the unnormalized Ricci flow, the minimum scalar curvature
is always nondecreasing (see Lemma A.20). However these two facts appear
to be quite different in nature.

To apply the above monotonicity to the expanding breather case, we
need to produce a time t0 where λ̄ (g (t0)) < 0. This is accomplished by
looking at the evolution of the volume. Below we also give another proof of
Lemma 5.28 using λ̄ (g (t)) .
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Lemma 5.31. Expanding or steady breathers on closed manifolds are
Einstein.

Proof. Let (Mn, g (t)) be an expanding or steady breather with g(t2) =
αϕ∗g(t1) for some t1 < t2 and α ≥ 1. We have λ̄ (g (t2)) = λ̄ (g (t1)) . Let
V (t) � Volg(t) (M) . Since V (t2) ≥ V (t1) , we have for some t0 ∈ (t1, t2) ,

0 ≤ d

dt

∣∣∣∣
t=t0

log V (t) = −
∫
M Rdµ

V (t0)
(t0) ≤ −λ (g (t0)) .

By Lemma 5.30, if g (t) is not a gradient Ricci soliton, then d
dt λ̄ (g (t0)) >

0 and we have λ̄ (g (t′0)) < 0 for some t′0 < t0. Now since λ̄ (g (t)) is increasing
whenever it is negative, we have

λ̄ (g (t2)) = λ̄ (g (t1)) ≤ λ̄
(
g

(
t′0

))
< 0,

which implies λ (g (t)) ≤ λ (g (t2)) < 0 for all t ∈ [t1, t2] . Hence λ̄ (g (t)) is
nondecreasing, which implies λ̄ (g (t)) is constant. By (5.61), we have

Rij + ∇i∇jf − 1
n

(R + ∆f) gij ≡ 0,

and since we are in the equality case of (5.60), we also have

(5.62) R + ∆f = C1 (t) = const (depending on time).

That is, we still conclude that g (t) is an expanding or steady gradient Ricci
soliton.

Now let (Mn, g (t)) be an expanding or steady gradient Ricci soliton.
Recall

2∆f + R − |∇f |2 = C2 (t) = const .

This, combined with (5.62), implies

∆f − |∇f |2 = const .

Since ∫
M

(
∆f − |∇f |2

)
e−fdµ = 0,

we have ∆f − |∇f |2 ≡ 0. Thus, by the strong maximum principle (or since
now 0 =

∫
M

(
∆f − |∇f |2

)
efdµ = −2

∫
M |∇f |2 efdµ), we conclude that

f ≡ const . Hence Rij − 1
nRgij ≡ 0 and gij is Einstein. (When n = 2, our

conclusion is vacuous.) �

Remark 5.32. As a corollary of the above result, we again see that
expanding or steady solitons on closed manifolds are Einstein. In the case
of shrinking solitons on closed manifolds, using the entropy functional, we
shall see in the next chapter that they are necessarily gradient shrinking
solitons.
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Note that on a shrinking breather we have V (t2) < V (t1) for t2 > t1.
In particular, it is possible that λ (g (t)) > 0 for all t ∈ [t1, t2] (on the other
hand, if λ (g (t′0)) < 0 for some t′0 ∈ [t1, t2], then the proof above implies
that a shrinking breather is Einstein), which causes difficulty in extending
the proof above to the shrinking case; in the next chapter this problem is
solved by the introduction of Perelman’s entropy. (Note that for an Einstein
manifold with R ≡ r = const, under the constraint

∫
e−fdµ = 1 we have

F (g, f) = r +
∫
M

|∇f |2 e−fdµ ≥ r

with equality if and only if f ≡ log Vol (g) = const . Hence, if r > 0, then
λ̄ (g) = r Vol (g)2/n > 0.)

Exercise 5.33 (Behavior of λ̄ on products). Compute λ̄ of spheres and
products of spheres. Show that λ̄ (t) of a shrinking S2 × S1 under the Ricci
flow approaches ∞ as t approaches the singularity time. What happens if
we start with S2 × S2, where the S2’s have different radii? What is the
behavior of λ̄ for the product of Einstein spaces (or Ricci solitons)?

4. Classical entropy and Perelman’s energy

Define the classical entropy on a closed manifold Mn by

(5.63) N �
∫
M

fe−fdµ = −
∫
M

u log u dµ,

where u � e−f . Under the gradient flow (5.29)–(5.30), we have
dN
dt

=
∫
M

∂f

∂t
e−fdµ = −

∫
M

(R + ∆f) e−fdµ

= −F .(5.64)

That is, the classical entropy is the anti-derivative of the negative of Perel-
man’s energy.

In this section we show that, by an upper bound for F , a modification
of N is monotone. For comparison, we discuss Hamilton’s original proof of
surface entropy monotonicity, the entropy formula for Hamilton’s surface en-
tropy, the fact that the gradient of Hamilton’s surface entropy is the matrix
Harnack, and Bakry–Emery’s logarithmic Sobolev-type inequality.

4.1. Monotonicity of the classical entropy. The following gives
us an upper bound for the time interval of existence of the Ricci flow in
terms of

∫
M dm and the initial value of Fm. Equivalently, it also implies the

monotonicity of the classical entropy (see also [356], pp. 74–75).

Proposition 5.34 (Upper bound for F in terms of time to blow up).
Suppose that (g(t), f (t)) is a solution on a closed manifold Mn of the gra-
dient flow for Fm, (5.25)–(5.26), for t ∈ [0, T ). Then we have

(5.65) Fm(g(0)) ≤ n

2T

∫
M

dm,
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that is,

T ≤ n

2Fm(g(0))

∫
M

dm.

The proposition is a consequence of the following.

Lemma 5.35 (Monotonicity formula for the classical entropy N ). If
(g (t) , f (t)) , t ∈ [0, T ), is a solution of the gradient flow (5.29)–(5.30) on a
closed manifold Mn, then

d

dt
Fm (g(t)) ≥ 2

n

(∫
M

dm

)−1

Fm (g(t))2 ,

Fm(g(t)) ≤ n

2 (T − t)

∫
M

e−fdµ.(5.66)

By (5.64), this implies the following entropy monotonicity formula:

(5.67)
d

dt

(
N −

(
n

2

∫
M

e−fdµ

)
log (T − t)

)
≥ 0.

Remark 5.36. Following §6.5 of [356], we may adjust the entropy quan-
tity on the lhs of (5.67) by adding a constant and define

Ñ � N−
(

n

2

∫
M

e−fdµ

)
(log [4π (T − t)] + 1) .

Then we still have d eN
dt ≥ 0, whereas Ñ has the property that for a funda-

mental solution u = e−f limiting to a δ-function as t → T, we have Ñ → 0
as t → T.

Proof of the lemma. From (5.28), we have
d

dt
Fm (g(t)) = 2

∫
M

|Rij + ∇i∇jf |2 dm ≥ 2
n

∫
M

(R + ∆f)2 dm

≥ 2
n

(∫
M

(R + ∆f) dm

)2
/∫

M
dm

=
2
n

(∫
M

dm

)−1

Fm (g(t))2 .

The solution of the ode

dx

dt
= cx2

with limt→T x (t) = ∞ is

x (t) =
1

c (T − t)
.

Hence, taking c = 2
n

(∫
M dm

)−1
, we get

Fm (g(t)) ≤ n

2 (T − t)

∫
M

dm.

�
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Remark 5.37.
(1) The formula above for d

dtFm is somewhat reminiscent of Hamilton’s
formula for the evolution of the time-derivative dN/dt of his entropy
N (g) �

∫
M2 R log RdA on a positively curved surface evolving by

Ricci flow (see [180]).
(2) We can rewrite (5.66) as∫

M

(
2∆f − |∇f |2 + R − n

2τ

)
e−fdµ ≤ 0,

where τ � T − t.

4.2. Hamilton’s surface entropy. Recall that the normalized surface
entropy for a closed surface

(
M2, g

)
with positive curvature is defined by

N(g) �
∫
M

log (RA) Rdµ,

where A is the area. Let
(
M2, g (t)

)
, t ∈ [0, T ), be a solution, on a maximal

time interval of existence, of the Ricci flow on a closed surface with R > 0. In
this subsection we give two proofs of the monotonicity of N(g (t)) � N (t) .

4.2.1. Hamilton’s original proof of surface entropy monotonicity. The
time-derivative of N (t) is given by

(5.68)
dN

dt
=

∫
M

QRdµ,

where
Q � ∆ log R + R − r

and r is the average scalar curvature. On the other hand, since dr
dt = r2 and

by a similar computation to (V1-5.38),

∂

∂t
Q ≥ ∆Q + 2 〈∇ log R,∇Q〉 + Q2 + 2rQ.

By the long-time existence theorem (Proposition 5.19 of Volume One), r =
1

T−t and Area (g (t)) = 4πχ (T − t) , where χ denotes the Euler characteristic
of M. Differentiating (5.68) with respect to time, we compute that Z � dN

dt
satisfies

dZ

dt
=

∫
M

(
∂

∂t
Q

)
Rdµ +

∫
M

Q
∂

∂t
(Rdµ)

≥
∫
M

(
Q2 + 2rQ

)
Rdµ

≥ 1∫
M Rdµ

(∫
M

QRdµ

)2

+ 2rZ

=
1

4πχ
Z2 +

2
T − t

Z,
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where we integrated by parts and used Hölder’s inequality and the Gauss-
Bonnet formula. Thus

(5.69)
d

ds

(
s−2Z

)
≥ 1

4πχ

(
s−2Z

)2
,

where s � 1
T−t . From this we conclude that if s−2

0 Z (s0) > 0 for some s0 < ∞,

then s−2Z (s) → ∞ as s → s1 for some s1 < ∞. In other words, if Z (t0) > 0
for some t0 < T, then Z (t) → ∞ as t → t1 for some t1 < T. This contradicts
our assumption that the solution exists on [0, T ). Hence Z (t) ≤ 0 for all t
and we have proved the following.

Theorem 5.38 (Hamilton’s surface entropy monotonicity). For a solu-
tion of the Ricci flow on a closed surface with R > 0, we have

dN

dt
(t) ≤ 0

for all t ∈ [0, T ).

Note that, from (5.69), we have t �→ (T − t)2 Z (t) is nondecreasing (since
χ > 0) and hence there is a constant C > 0 such that (T − t)2 Z (t) ≥ −C
for all t ∈ [0, T ). By (5.68),

Z =
dN

dt
= −

∫
M

|∇R|2

R
dA +

∫
M

(R − r)2 dA,

and we have ∫
M

|∇R|2

R
dA ≤

∫
M

(R − r)2 dA + C (T − t)−2 .

Remark 5.39. An inequality of the above type is often referred to as a
reverse Poincaré inequality.

4.2.2. Entropy formula for Hamilton’s surface entropy. Define the po-
tential function f (up to an additive constant) by ∆f = r − R. In [97]
the monotonicity of the entropy was proved by relating its time-derivative
to Ricci solitons via an integration by parts using the potential function
(Proposition 5.39 in Volume One). In particular, we have

dN

dt
(t) = −2

∫
M

∣∣∣∣Rij + ∇i∇jf − 1
2 (T − t)

gij

∣∣∣∣2 dA

−
∫
M

∣∣∣∇ log
(
R · e−f

)∣∣∣2 RdA.

Note that Rij = 1
2Rgij and r = 1

A

∫
M RdA = (T − t)−1 . We have purposely

written this formula to more resemble Perelman’s formulas (5.41) and (6.17).
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4.2.3. The gradient of Hamilton’s surface entropy is the matrix Harnack
quantity. A less well-known fact is that the gradient of Hamilton’s entropy in
the space of all metrics with the L2-metric is the matrix Harnack quantity:

(5.70) δvN (g) =
∫
M

vij

(
−∆ log R · gij + ∇i∇j log R − 1

2
Rgij

)
dA,

where δg = v (see Lemma 10.23 of [111] and use N (g) − E (g) is a con-
stant). In the space of metrics in a fixed conformal class, the gradient is
the trace Harnack quantity. Note that the same relation is true relating
the entropy and the trace Harnack quantity for the Gauss curvature flow of
convex hypersurfaces in Euclidean space [96].

4.3. Bakry–Emery’s logarithmic Sobolev-type inequality. The
proofs of Hamilton’s surface entropy formula and Perelman’s energy formu-
las are formally similar to the proof of Bakry and Emery of their logarithmic
Sobolev-type inequality [18].

Proposition 5.40. Let (Mn, g) be a closed Riemannian manifold with
Rc ≥ K for some constant K > 0. If u is a positive function on M, then∫

M
u log udµ ≤ 1

2K

∫
M

u |∇ log u|2 dµ + log
(

1
Vol (M)

∫
M

udµ

)∫
M

udµ.

Proof. (See [104] for more details of the computations.) Consider the
solution v to the heat equation ∂v

∂t = ∆v with v (0) = u. The solution v
exists for all time and

lim
t→∞

v =
1

Vol (M)

∫
M

udµ.

Define E (t) �
∫
M v log vdµ. Then

(5.71) lim
t→∞

E (t) =
∫
M

udµ · log
(

1
Vol (M)

∫
M

udµ

)
.

We have
dE

dt
= −

∫
M

〈∇v,∇ log v〉 dµ = −
∫
M

v |∇ log v|2 dµ ≤ 0.

Note that limt→∞
dE
dt (t) = 0.

Using ∂
∂t log v = ∆ log v + |∇ log v|2 , we compute

d2E

dt2
= 2

∫
M

v
(
|∇∇ log v|2 + Rc (∇ log v,∇ log v)

)
dµ.

Using our assumption Rc ≥ K, we find

d2E

dt2
≥ −2K

dE

dt
.
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By limt→∞
dE
dt (t) = 0 and (5.71), we have

dE

dt
(0) = −

∫ ∞

0

d2E

dt2
(t) dt ≤ 2K

∫ ∞

0

dE

dt
(t) dt

= 2K log
(

1
Vol (M)

∫
M

udµ

)∫
M

udµ − 2KE (0) .

Hence

−
∫
M

u |∇ log u|2 dµ ≤ 2K log
(

1
Vol (M)

∫
M

udµ

)∫
M

udµ

− 2K

∫
M

u log udµ

and the proposition follows. �

5. Notes and commentary

Subsection 1.1. As we remarked earlier, the function f is also known as
the dilaton; in the physics literature there are numerous references to Perel-
man’s energy functional (see Green, Schwarz, and Witten [162], Polchinksi
[307], Strominger and Vafa [341] for example), although Perelman is the
first to consider it in the context of Ricci flow. The Ricci flow is the 1-loop
approximation of the renormalization group flow (see Friedan [145]).

Subsection 1.2. For a computational motivation for fixing the mea-
sure, see also §4 in Chapter 2 of [111], where Perelman’s functional is moti-
vated starting from the total scalar curvature functional. In particular, let
δg = v. The variation of the total scalar curvature is

δ

∫
M

Rdµ =
∫
M

(
div (div v) − ∆V − Rc ·v + R

V

2

)
dµ

= −
∫
M

(
Rc−R

2
g

)
· vdµ.

This says that ∇
(∫

M Rdµ
)

= −Rc+R
2 g, where the gradient is calculated

with respect to the standard L2-metric. To try to find a functional F with
∇F = −Rc, we want to get rid of the R

2 g term. Now this term is due to
the variation of dµ. So we consider the distorted volume form e−fdµ and
assume its variation is 0. Hence

δ

∫
M

Re−fdµ =
∫
M

(δR) e−fdµ =
∫
M

(div (div v) − ∆V − Rc ·v) e−fdµ

and now we have the extra terms
∫
M (div (div v) − ∆V ) e−fdµ. We compen-

sate for this by considering

δ

∫
M

|∇f |2 e−fdµ =
∫
M

(
δ |∇f |2

)
e−fdµ

=
∫
M

(−v (∇f,∇f) + ∇f · ∇V ) e−fdµ,
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using V
2 = h � δf. Integrating by parts yields

δF = δ

∫
M

Re−fdµ + δ

∫
M

|∇f |2 e−fdµ = −
∫
M

vij (Rij + ∇i∇jf) e−fdµ.

Although the Ricci tensor is not strictly elliptic in g, one can ask if the
rhs of equation (5.27)

∂

∂t
gij = −2

[
Rij + ∇i∇j log

(
dµ

dm

)]
is elliptic in g. The answer is still no. In particular, if δg = v, then

δ

[
log

(
dµ

dm

)]
=

V

2
.

Hence

δ

[
∇i∇j log

(
dµ

dm

)]
=

1
2
∇i∇jv − δ

(
Γk

ij

)
· ∇k log

(
dµ

dm

)
.

Since
δ (−2Rij) = −∇i∇kvjk −∇j∇kvik + ∇i∇jv + ∆vij,

we have

δ

(
−2

[
Rij + ∇i∇j log

(
dµ

dm

)])
= ∆vij −∇i∇kvjk −∇j∇kvik

+ lower-order terms,

where the last pair of terms form a Lie derivative of the metric term. How-
ever the second-order operator on the rhs is still not elliptic in v.


