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Councillor Hamann: Almost no one comes down here, unless, of course, there’s

a problem.

– From the movie “The Matrix Reloaded” by the Wachowski brothers.

Chapter 10. In this chapter we discuss the general formulation of the
weak maximum principle for systems on closed manifolds, which applies to
bilinear forms such as curvature tensors. The maximum principle for scalars
may be considered as stating that solutions to a semilinear pde are bounded
by the solutions to the associated ode obtained by dropping the Laplacian
and any gradient terms. In particular for subsolutions/supersolutions to
the heat equation, the maximum/minimum is nonincreasing/nondecreasing.
This last statement has a generalization to symmetric 2-tensors, considered
in Chapter 4 of Volume One, which gives general sufficient conditions to
prove that the nonnegativity of tensor supersolutions to heat-type equations
is preserved. We had previously applied this to the Ricci tensor and also
obtained pinching estimates for the curvatures this way.

To obtain various estimates for the curvatures in Volume One, we found
it convenient to employ a more general formulation of the weak maximum
principle. We prove this version in this chapter. More precisely we consider
sections of vector bundles which satisfy a semilinear heat-type equation.
The maximum principle for systems states that if the initial section lies in
a subset of the vector bundle which is convex in the fibers and invariant
under parallel translation and if the associated ode obtained by dropping
the Laplacian preserves this subset, then the solution to the pde stays inside
this convex set.

The idea of the proof of this maximum principle is as follows. One
can prove the maximum principle for functions by considering the spatial
maximum function, which is Lipschitz in time, and showing that it is nonin-
creasing for subsolutions to the heat equation. In the case of the maximum
principle for systems, one can look at the function of time which is the maxi-
mum distance of the solution to the pde from the subset. Using the support
functions to the convex fibers, one can show that this maximum distance
function s (t), which is again Lipschitz in time, satisfies an ode of the form
ds/dt ≤ Cs. Since s (0) = 0, we conclude that s (t) ≡ 0 and the maximum
principle for systems follows.
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Refinements of the maximum principle include the case when the sub-
sets with convex fibers are time-dependent and also when there is a so-called
avoidance set for the solutions of the pde. In terms of applications, one of
the most important special cases is when the sections of the bundle are bi-
linear forms. We discuss this case and applications to the curvature tensors.
We also discuss the Aleksandrov–Bakelman–Pucci maximum principle for
elliptic equations.

Chapter 11. In this chapter we present Böhm and Wilking’s solu-
tion to the conjecture of Rauch and Hamilton on the classification of closed
Riemannian manifolds with positive curvature operator.1 The flavor of this
chapter is more algebraic with an essential component of the proof being the
irreducible decomposition of (algebraic) curvature tensors. Generally, one
of the ideas is to study when linear transformations of convex preserved sets
(with respect to the ode corresponding to the pde satisfied by Rm) remain
preserved. More specifically, via a 1-parameter family of linear transforma-
tions the cone of 2-nonnegative curvature operators is mapped into the cone
of nonnegative curvature operators. This reduces the classification prob-
lem for Riemannian manifolds with 2-positive curvature operator to that for
manifolds with positive curvature operator. To study the latter problem,
one would hope that the cones of 2-positive curvature operators with arbi-
trary Ricci pinching are preserved. Unfortunately there does not seem to
be any known way to prove this. Instead, one can prove that suitable linear
transformations of the cones of 2-positive curvature operators with arbitrary
Ricci pinching are preserved. This is sufficient to prove the Rauch–Hamilton
conjecture.

Chapter 12. This chapter comprises two main topics: (1) weak max-
imum principles on noncompact manifolds and (2) the strong maximum
principle, which is a local result. In both cases we consider scalar parabolic
equations and systems of parabolic equations.

Since singularity models are often noncompact, it is important to be
able to apply the weak maximum principle on complete, noncompact man-
ifolds. We begin with the heat equation and present the weak maximum
principle of Karp and Li which applies to solutions with growth slower than
exponential quadratic in distance. Using barrier functions, we then give a
weak maximum principle for bounded solutions of heat-type systems. As a
special case, we show that complete solutions to the Ricci flow on noncom-
pact manifolds, with nonnegative curvature operator initially and bounded
curvature on space and time, have nonnegative curvature operator for all
time.

We also discuss mollifiers on Riemannian manifolds with a lower bound
on the injectivity radius. One technical issue we discuss, using the mollifiers
obtained above, is the construction of distance-like functions with bounds on

1They actually obtain the stronger result of classifying closed manifolds with 2-
positive curvature operator.
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their gradients and upper bounds of their Hessians on complete Riemannian
manifolds with bounded curvature. These distance-like functions are used
to construct the barrier functions referred to in the previous paragraph.

Moreover, this construction carries over to the case of the Ricci flow.
The aforementioned mollifiers are not only applicable to the proof of the
compactness theorem in regards to the center of mass (discussed in Chap-
ter 4 of Part I of this volume), but also to constructing a barrier function
used in the proof of Hamilton’s matrix Harnack estimate in Chapter 15
on complete noncompact Riemannian manifolds with bounded nonnegative
curvature operator.

A fundamental property of the heat equation is that a solution which is
initially nonnegative immediately becomes either positive or identically zero.
This property is known as the strong maximum principle. For a solution
to the Ricci flow, the curvature tensor satisfies a heat-type equation. The
strong maximum principle for systems, due to Hamilton based on earlier
work of Weinberger and others, tells us that for solutions to the Ricci flow
with nonnegative curvature operator (such as singularity models in dimen-
sion 3) the curvature operator has a special form after the initial time. In
particular, the image of the curvature operator is independent of time and
invariant under parallel translation in space. Moreover, using the natural
Lie algebra structure on the fibers Λ2

x, x ∈M, of the bundle of 2-forms, the
image of the curvature operator is a Lie subalgebra. It is useful to observe
that the strong maximum principle is a local result and does not require the
solution to be complete or to have bounded curvature. We also formulate
the strong maximum principle in the more general setting of Chapter 10,
i.e., for sections of a vector bundle which solve a pde.

In dimension 3, Λ2
x is isomorphic to so (3) and its only proper nontrivial

Lie subalgebras are isomorphic to so (2) , which is 1-dimensional. Hence,
after the initial time, a solution to the Ricci flow on a 3-manifold with non-
negative sectional curvature either is flat, has positive sectional curvature,
or admits a global parallel 2-form. In the last case, by taking the dual of this
2-form, we have a parallel 1-form and the solution splits locally as the prod-
uct of a surface solution and a line. This classification is useful in studying
the singularities which arise in dimension 3.

Chapter 13. In this chapter we discuss the following two topics in Ricci
flow.

(1) Curvature conditions that are not preserved. The weak positivity
(i.e., nonnegativity) of the following curvatures are preserved: scalar curva-
ture, Ricci curvature in dimension 3, Riemann curvature operator, isotropic
curvature, complex sectional curvature, as well as the 2-nonnegativity of
the curvature operator. On the other hand, in this chapter we discuss some
nonnegativity conditions which are not preserved under the Ricci flow. In
particular, we consider the conditions of nonnegative Ricci curvature and
nonnegative sectional curvature in dimensions at least 4 for solutions of the
Ricci flow on both closed and noncompact manifolds.
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(2) Bando’s result that solutions to the Ricci flow on closed manifolds
are real analytic in the space variables for positive time. The proof of this is
based on keeping track of the constants in the higher derivatives of curvature
estimates and summing these estimates.

Chapter 14. In Chapter 7 of Volume One we encountered the global
derivative of curvature estimates. The idea is to assume a curvature bound
K for the Riemann curvature tensor and, by applying the weak maximum
principle to the appropriate quantities, obtain bounds for the m-th deriva-
tives of the curvatures of the form |∇m Rm| ≤ CKt−m/2. In this chapter, we
present Shi’s local derivative of curvature estimates. The idea of localizing
the derivative estimates is simply to multiply the quantities considered by
a cutoff function.

For the global first derivative of curvature estimate we previously con-
sidered t |∇Rm|2 + C |Rm|2 . This quantity does not seem to adapt well to
localization. Instead we consider ηt

(
16K2 + |Rm|2

)
|∇Rm|2 , where η is a

cutoff function. The local first derivative estimate we prove says that if a
solution is defined on a ball of radius r and time interval [0, τ ] and if it has
curvatures bounded by K, then we have

|∇Rm| ≤ CK

(
1
r2

+
1
τ

+ K

)1/2

on the concentric ball of radius r/2 on the time interval [τ/2, τ ].
Local higher derivative estimates are proven using a similar idea. For

example, to bound the second derivatives, one applies the weak maximum
principle to the quantity

(
4A2 + t |∇Rm|2

)
t2
∣∣∇2 Rm

∣∣2 , where the constant
A is chosen appropriately. We also discuss a version of the local derivative
estimates where bounds on the higher derivatives of the curvatures of the
initial metric are assumed up to some order. In this case we obtain improved
bounds for all higher derivatives of the curvatures. This result is useful in
an approach toward constructing Perelman’s standard solution.

For complete solutions with bounded nonnegative curvature operator,
the local derivative estimates, when combined with Hamilton’s trace Har-
nack estimate, yield instantaneous local derivative bounds. Previously, in
Chapters 7 and 8 of Part I of this volume, we saw applications of the local
derivative estimates to the study of the reduced distance and the reduced
volume.

We also briefly discuss D. Yang’s local Ricci flow. Here the velocity
−2Rc of the metric is multiplied by a nonnegative weight function with
compact support. The local Ricci flow provides another approach to Shi’s
short time existence theorem for the Ricci flow on noncompact manifolds.

Chapter 15. This chapter discusses differential Harnack inequalities
of Li–Yau–Hamilton-type for the Ricci flow. These gradient-type estimates,
which are directly motivated by considering quantities which vanish on the
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(gradient) Ricci solitons as discussed in Chapter 1 of Part I of this vol-
ume, provide useful bounds for the solution. The general form of the main
estimate, which holds for complete solutions with bounded nonnegative cur-
vature operator and which is known as Hamilton’s matrix Harnack estimate,
says that a certain tensor involving two and fewer derivatives of the curva-
ture is nonnegative definite.

The trace Harnack estimate, as the name suggests, is obtained by trac-
ing the matrix inequality. This trace inequality has several important conse-
quences, including the fact that scalar curvature does not decrease too fast
in the sense that for a fixed point, t times the scalar curvature is a nonde-
creasing function of time. More generally, the trace inequality yields a lower
bound for the scalar curvature at a point and time, in terms of the scalar
curvature at any other point and earlier time, and the distance between the
points and the time difference.

We begin the proof of the Harnack estimate with the case of surfaces
(dimension 2), in which case the evolution equation for the Harnack qua-
dratic simplifies (in comparison to higher dimensions) and one can prove the
trace inequality directly. This is unlike the situation in higher dimensions,
where the trace inequality apparently can only be demonstrated by proving
the matrix inequality and then tracing.

In all dimensions, we recall the terms in the matrix Harnack quadratic
obtained in Chapter 1 (p. 9) of Part I of this volume by differentiating
the expanding gradient Ricci soliton equation. The Harnack calculations
simplify when one uses the formalism, given in Appendix F, of considering
tensors as vector-valued functions on the frame bundle. Using the above
formalism, we present the evolution of Harnack calculations which are long
but relatively straightforward. The evolution of the Harnack quantity looks
formally similar to the evolution of the Riemann curvature operator and as
such is amenable to the application of the weak maximum principle when
the solution has nonnegative curvature operator. When the manifold is
noncompact, the techniques used to enable this application are reminiscent
of the techniques used to prove the maximum principle for functions.

We also give a variant on Hamilton’s proof of the matrix Harnack esti-
mate, based on reducing the problem to showing that a symmetric 2-tensor
is nonnegative definite.

Chapter 16. In this chapter we give a proof of Perelman’s differential
Harnack-type inequality for solutions of the adjoint heat equation coupled
to the Ricci flow. We begin by considering entropy and differential Har-
nack estimates for the heat equation. Our approach for proving Perelman’s
differential Harnack-type inequality is to first prove gradient estimates for
positive solutions of the (adjoint) heat equation. Using this and heat kernel
estimates, we give a proof that for solutions to the adjoint heat equation
coupled to the Ricci flow, Perelman’s Harnack quantity (or, geometrically,
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the modified scalar curvature) is nonpositive:

τ
(
R + 2∆f − |∇f |2

)
+ f − n ≤ 0.

Appendix D. In this appendix we review some basic results for the
Ricci flow. In particular, we recall the results on the short time and long time
existence and uniqueness of the Ricci flow on closed and noncompact mani-
folds, convergence results on closed manifolds assuming some sort of positiv-
ity of curvature, the rotationally symmetric neckpinch, curvature pinching
estimates, strong maximum principle, derivative estimates, differential Har-
nack estimates, Perelman’s energy and entropy monotonicity and no local
collapsing, compactness theorems, and the existence of singularity models.

Appendix E. In this appendix we review some basic geometric analysis
related to the Ricci flow with an emphasis on the heat equation. We recall
Duhamel’s principle and its application to basic results for the heat kernel.
We discuss the Cheeger–Yau comparison theorem for the heat kernel, the
Li–Yau differential Harnack estimate, and Hamilton’s gradient estimates.

Appendix F. The material in this appendix is in preparation for Chap-
ter 15 on Hamilton’s matrix Harnack estimate. Given a Riemannian mani-
fold, we describe a formalism for considering tensors as vector-valued func-
tions on the (orthonormal) frame bundle. In the context of the Ricci flow,
where we have a 1-parameter family of metrics, we add to this a modified
time derivative which may be considered as a version of Uhlenbeck’s trick.
We discuss tensor calculus in this setting, including commutator formulas
for the heat operator and covariant derivatives. These calculations are used
for the Harnack calculations in Chapter 15.



CHAPTER 11

Closed Manifolds with Positive Curvature

Yes, there are two paths you can go by.

– From “Stairway to Heaven” by Jimmy Page and Robert Plant of Led Zeppelin

One of the basic problems in Riemannian geometry is to relate curva-
ture and topology. As we saw in Volume One, the Ricci flow may be used
to topologically classify closed 3-manifolds with positive Ricci curvature as
spherical space forms. It is natural to ask if there is a generalization of
this result to all dimensions. Remarkably, the answer is yes. In this chap-
ter we give a presentation of Böhm and Wilking’s remarkable proof that
n-dimensional closed Riemannian manifolds with 2-positive curvature op-
erators are diffeomorphic to spherical space forms, i.e., they admit metrics
with constant positive sectional curvature.1

Let {µα (Rm)}Nα=1, N � n(n−1)
2 , denote the eigenvalues of the curvature

operator Rm.2 Recall that a Riemannian manifold (Mn, g) has positive
curvature operator (PCO) if µα (Rm) > 0 for all α.3

Definition 11.1 (2-positive curvature operator). A Riemannian mani-
fold (Mn, g) has 2-positive curvature operator (2-PCO) if

(11.1) µα (Rm) + µβ (Rm) > 0 for all α �= β.

That is, the sum of the smallest two eigenvalues of the Riemann curvature
operator is positive. If the > in (11.1) is replaced by ≥, we say that (M, g)
has 2-nonnegative curvature operator.

When n = 3, this condition is the same as positive Ricci curvature:
Rc > 0 (see (6.33) on p. 189 of Volume One). For n = 4, this curvature
condition was studied in the context of the Ricci flow by Haiwen Chen
[112], with the earlier seminal work of Hamilton [245] on 4-manifolds with
positive curvature operator. Clearly, in all dimensions, if a metric g has
positive curvature operator, then g has 2-positive curvature operator.

1In even dimensions n = 2m, spherical space forms are either S2m or RP 2m. In
odd dimensions, there are many finite subgroups of O (n + 1) acting freely, linearly, and
isometrically on Sn (see Wolf’s book [502] for what is known about the classification of
these group actions).

2We would like to thank Nolan Wallach for explaining to us many aspects of repre-
sentation theory related to curvature operators.

3We say (Mn, g) has nonnegative curvature operator if µα (Rm) ≥ 0 for all α.

67
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Generalizing Hamilton’s classification of closed 3-manifolds with positive
Ricci curvature and H. Chen’s classification of closed 4-manifolds with 2-
positive curvature operator, we have the following solution of the spherical
space form conjecture of Rauch and Hamilton.

Theorem 11.2 (Böhm and Wilking). If (Mn, g0) is a closed Riemann-
ian manifold with 2-positive curvature operator, then there exists a unique
solution (Mn, g (t)), t ∈ [0,∞), to the initial-value problem for the volume
normalized Ricci flow

∂

∂t
g = −2Rc+

2
n

rg,

g (0) = g0,

where r (t) �
(∫

Rdµ
/ ∫

dµ
)
(t). The solution converges exponentially fast

in each Ck-norm as t→∞ to a constant positive sectional curvature metric.

In particular, a closed Riemannian manifold with 2-positive curvature
operator admits a metric with constant positive sectional curvature.

From the work of Hamilton [244] it follows that a sufficient condition
for the convergence of solutions of the Ricci flow on closed manifolds with
positive scalar curvature is the following ‘effective pinching improves esti-
mate’:

(11.2)
∣∣∣R̃m

∣∣∣ ≤ CR1−δ,

where C <∞ and δ > 0 (see also Theorem 3.1 and §4 in Huisken [280], Def-
inition 5.1 and Convergence Criterion 5.2 in Hamilton [245], and Definition
11.59 below). In [245], the maximum principle for systems is introduced
and applied to the study of (11.27) below, i.e.,

∂

∂t
Rm = ∆ Rm+Rm2 +Rm#,

by relating it to the study of the associated ode (11.31), i.e.,
d

dt
R = R2 + R#.

In particular, in dimension 3 under the positive Ricci curvature condition
and in dimension 4 under the positive curvature operator condition, Hamil-
ton proves the estimate (11.2).

One of the main ideas of Böhm and Wilking’s proof is the following,
quoted from their paper [43].

“By analyzing how the differential equation changes under
linear equivariant transformations, we provide a general method
for constructing new invariant curvature conditions from known
ones.”

The differential equation to which Böhm and Wilking are referring is the
ode (11.31) associated to the pde (11.27) satisfied by the Riemann curva-
ture operator. They exhibit some miraculous properties of this ode. In
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particular, the operator R �→ Q (R) � R2 + R# on the space of algebraic
curvature operators exhibits special behavior under linear transformations
of this space.

In Section 1 we discuss some multilinear algebra related to the study
of algebraic curvature operators. In Section 2 we investigate the properties
of algebraic curvature operators and the operator Q (R). In Section 3 we
define a family of linear transformations �a,b and state crucial properties of
Q (R) under these transformations. In Section 4 we prove these properties
of Q (R). In Section 5 we discuss the convex cone of 2-nonnegative algebraic
curvature operators and both the action of �a,b and the behavior of Q (R)
on this cone. In Section 6 we construct pinching families of algebraic curva-
ture operators. In Section 7 we demonstrate the existence of a generalized
pinching set (in lieu of a set defined by (11.2)) from these pinching families.
This enables us to prove the main result of this chapter, i.e., Theorem 11.2,
based on the maximum principle for systems applied to the evolution of Rm.
In Section 8 we give a summary of the proof of Theorem 11.2. Those read-
ers who would like to first acquaint themselves with the main ideas of the
proof of Theorem 11.2 may wish to first look at this section. In the notes
and commentary we give some historical remarks concerning work related
to Theorem 11.2.

1. Multilinear algebra related to the curvature operator

In this section we recall some basic facts about tensor spaces and their
representations which are needed for our later study of the space of algebraic
curvature operators. Eventually all of these constructions on E

n will be
transplanted to the tangent space TxM and the tangent bundle TM of a
Riemannian manifold (Mn, g) through the identification of TxM with E

n

via an orthonormal frame. The intent of our discussion is to serve as a quick
review rather than as a comprehensive introduction.

1.1. Tensor spaces. Let E
n denote Euclidean n-space with the stan-

dard metric gcan and let (En)∗ denote the dual vector space. In this section
we shall discuss some real tensor spaces formed out of E

n; their equivalent
dual forms will be identified using the metric gcan. Later in this chapter we
will freely use any one of these equivalent forms. Below, {ei}ni=1 denotes the
standard basis for E

n and {e∗i }
n
i=1 denotes the dual standard basis for (En)∗.

1.1.1. Tensor spaces
⊗2

E
n and S2

E
n. The tensor space

⊗2
E

n � E
n⊗

E
n is equipped with the inner product

〈x⊗ y, u⊗ v〉 � 〈x, u〉 · 〈y, v〉 .

The set {ei ⊗ ej}ni,j=1 forms an orthonormal basis. Moreover,
⊗2

E
n can

be identified with the vector space gl(n, R) of linear transformations of E
n,

where for any x⊗ y ∈
⊗2

E
n and z ∈ E

n,

(x⊗ y) (z) � 〈y, z〉x
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defines the corresponding element of gl(n, R). This is equivalent to identify-
ing the second E

n in E
n⊗E

n with its dual (En)∗ using the metric gcan = 〈 , 〉.
Under this identification, the space of symmetric 2-tensors S2

E
n = E

n⊗S E
n

corresponds to the space of self-adjoint transformations S2(En) ⊂ gl(n, R).
1.1.2. The space Λ2 (En)∗ of 2-forms and its Lie bracket. We equip the

wedge product space Λ2En with the standard inner product

〈x ∧ y, u ∧ v〉 � det
(
〈x, u〉 〈x, v〉
〈y, u〉 〈y, v〉

)
.

The set {ei ∧ ej}i<j is an orthonormal basis for Λ2
E

n. Through the iden-
tification of E

n with (En)∗, this induces an inner product on the space of
2-forms Λ2 (En)∗ and e∗i ∧ e∗j � e∗i ⊗ e∗j − e∗j ⊗ e∗i is an orthonormal basis for
Λ2 (En)∗. The pairing of Λ2 (En)∗ with Λ2

E
n via linear functions is given by

e∗i ∧ e∗j (ek ∧ el) � δikδj� − δi�δjk.

The space Λ2 (En)∗ can be identified with the Lie algebra so(n), where
e∗i∧e∗j is identified with the matrix Eij defined to be 1 at the (i, j)-th position,
−1 at the (j, i)-th position, and 0 elsewhere. Note that, with respect to the
identification of so(n) with Λ2 (En)∗, the inner product on so(n) is given by

〈A, B〉 =
1
2

tr(AtB) = −1
2

tr(AB).

Indeed, with respect to this inner product, 〈Eij , Ek�〉 = δikδj� − δi�δjk.
The action of Λ2 (En)∗ as so(n) on E

n is given by(
e∗i ∧ e∗j

)
(ek) = (e∗i ⊗ e∗j − e∗j ⊗ e∗i )(ek)(11.3)

= (δi�δjk − δikδj�)e�.

An element of Λ2 (En)∗ can be considered as a linear function on E
n × E

n:

(11.4) e∗i ∧ e∗j (ek, e�) � 1
2

(δikδj� − δi�δjk) .

This induces the pairing of Λ2 (En)∗ with Λ2
E

n mentioned above.
The action of

⊗2
E

n on E
n induces the following identity:

(11.5) (ei ⊗ ei) ∧ (ej ⊗ ej) =
1
2
(ei ∧ ej)⊗ (ei ∧ ej).

Indeed,

((ei ⊗ ei) ∧ (ej ⊗ ej)) (ek ∧ e�)

=
1
2

((ei ⊗ ei)(ek) ∧ (ej ⊗ ej)(e�) + (ej ⊗ ej)(ek) ∧ (ei ⊗ ei)(e�))

=
1
2

(δikδj� + δjkδi�) (ek ∧ e�)

and (
1
2
(ei ∧ ej)⊗ (ei ∧ ej)

)
(ek ∧ e�) =

1
2

(δikδj� − δjkδi�) (ei ∧ ej)
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are equal.
As usual, for any ϕ ∈ Λ2 (En)∗, we define ϕij � ϕ (ei, ej). From (11.4)

we may write
ϕ =

∑
i,j

ϕije
∗
i ∧ e∗j = 2

∑
i<j

ϕije
∗
i ∧ e∗j .

The identification of Λ2 (En)∗ with the Lie algebra so(n) equips Λ2 (En)∗

with a Lie algebra structure, where the Lie bracket is defined by

(11.6) [φ, ψ]ij � φikψkj − ψikφkj

for φ, ψ ∈ Λ2 (En)∗. From this we have by identifying e∗i ∧e∗j with the matrix
Eij

[e∗i ∧ e∗j , e
∗
k ∧ e∗� ] =

(
e∗i ∧ e∗j

)
· (e∗k ∧ e∗�)− (e∗k ∧ e∗�) · (e∗i ∧ e∗j)

= −δj�e
∗
i ∧ e∗k − δike

∗
j ∧ e∗� + δjke

∗
i ∧ e∗� + δi�e

∗
j ∧ e∗k,(11.7)

where · denotes the matrix product. We also have

〈[ek ∧ e�, es ∧ et], ea ∧ eb〉
= 〈−δ�tek ∧ es − δkse� ∧ et + δ�sek ∧ et + δkte� ∧ es, ea ∧ eb〉
= −δ�t (δkaδsb − δkbδsa)− δks (δ�aδtb − δ�bδta)

+ δ�s (δkaδtb − δkbδta) + δkt (δ�aδsb − δ�bδsa)

and hence

〈[ek ∧ e�, es ∧ et], ea ∧ eb〉〈[ei ∧ ej , es ∧ et], ec ∧ ed〉(11.8)

= 2 (δ�s (δkaδtb − δkbδta) + δkt (δ�aδsb − δ�bδsa))

×
( −δjt (δicδsd − δidδsc)− δis (δjcδtd − δjdδtc)

+δjs (δicδtd − δidδtc) + δit (δjcδsd − δjdδsc)

)
.

Hamilton [245] observed that the Lie algebra structure of Λ2 (En)∗ is
of fundamental importance in the study of the evolution of the curvature
operator under the Ricci flow (see Section 2 below). We now discuss this
Lie algebra in preparation for the study of Rm. For any orthonormal basis
{ϕα}Nα=1 of Λ2 (En)∗, the structure constants for the Lie bracket are given
by

(11.9) [ϕα, ϕβ] �
∑

γ

cαβ
γ ϕγ .

By definition, cαβ
γ is anti-symmetric in α and β. Since the 2-forms ϕα are

orthonormal, cαβ
γ =

〈
[ϕα, ϕβ ], ϕγ

〉
. We claim

〈[φ, ψ], ω〉 = −〈[ω, ψ], φ〉.
Indeed, by relabelling indices and using the anti-symmetry of 2-forms, we
calculate with respect to the orthonormal basis

{
e∗i ∧ e∗j

}
i<j

that

(φikψkj − ψikφkj)ωij = − (ωikψkj − ψikωkj)φij .
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This implies the structure constants cαβ
γ are anti-symmetric in all three

components.
Let {σα}Nα=1 be the orthonormal basis for Λ2

E
n dual to {ϕα}Nα=1. We

may also define the structure constants for the dual Lie algebra Λ2
E

n by

(11.10) [σα, σβ] �
∑

γ

cγ
αβσγ .

From the identification of Λ2
E

n with Λ2 (En)∗, we have

(11.11) cγ
αβ = cαβ

γ .

1.1.3. The tensor space Λ2 (En)∗ ⊗S Λ2 (En)∗. By duality we may write
Λ2 (En)∗ ⊗S Λ2 (En)∗ � S2

(
Λ2 (En)∗

)
. The vector space S2

(
Λ2 (En)∗

)
has

the inner product 〈A, B〉 � tr
(
AtB

)
= tr (AB). This space Λ2 (En)∗ ⊗S

Λ2 (En)∗ may also be identified with S2 (so(n)). An element of Λ2 (En)∗ ⊗S

Λ2 (En)∗ is both a symmetric bilinear form on Λ2
E

n and a self-adjoint en-
domorphism of Λ2

E
n. We are interested in the tensor space Λ2 (En)∗ ⊗S

Λ2 (En)∗ because the Riemann curvature operator Rmx is an element of(
Λ2T ∗

xM
)
⊗S

(
Λ2T ∗

xM
)

(which also satisfies the first Bianchi identity4).
In the next subsection we will discuss operations related to Λ2 (En)∗ ⊗S

Λ2 (En)∗ in detail.

1.2. Algebraic operations on Λ2 (En)∗ ⊗S Λ2 (En)∗. We will discuss
three algebraic operations in this subsection.

1.2.1. The sharp operator. Given A ∈ S2
(
Λ2(En)∗

)
, let Aαβ � A (σα, σβ),

where {σα}Nα=1 is the dual (orthonormal) basis for Λ2
E

n introduced above.
Given A, B ∈ S2

(
Λ2 (En)∗

)
, using the notation in (11.10), we define the

sharp product by

(11.12) (A#B)αβ = (A#B) (σα, σβ) � 1
2
cγη
α cδθ

β AγδBηθ.

We denote A#A � A#. It is easy to see that (A#B)αβ is symmetric in α
and β. Hence

A#B ∈ S2
(
Λ2 (En)∗

)
.

We call the bilinear operator

# : S2
(
Λ2 (En)∗

)
× S2

(
Λ2 (En)∗

)
→ S2

(
Λ2 (En)∗

)
the sharp operator.

From the anti-symmetry of cαβ
γ ,

A#B = B#A.

Let I and 0 be the identity and zero element in S2
(
Λ2 (En)∗

)
, respectively.

Note that A#0 = 0; however A#I is not necessary A.

4The first Bianchi identity says that Rijk� + Rjki� + Rkij� = 0.
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A computation also shows that for φ, ψ ∈ Λ2
E

n,

(11.13) 〈(A#B)(φ), ψ〉 =
1
2

∑
α,β

〈[A(ωα), B(ωβ)], φ〉 · 〈[ωα, ωβ ], ψ〉

for any orthonormal basis {ωα}Nα=1 of Λ2
E

n.

Exercise 11.3 (Formula for A#B). Prove (11.13).

Solution to Exercise 11.3. Let cαβ
γ (cγ

αβ) denote the (dual) structure
constants corresponding to the orthonormal basis {ωα}. We compute using
identity (11.11)

〈(A#B)(φ), ψ〉 =
1
2
cγδ
η cαβ

θ AγαBδβφηψθ

=
1
2

∑
α,β

〈[A(ωα), B(ωβ)], ωη〉 · 〈φ, ωη〉 · 〈[ωα, ωβ], ωθ〉 · 〈ψ, ωθ〉 ,

from which (11.13) follows.

Exercise 11.4. Prove that # : S2(so(n)) × S2(so(n)) → S2(so(n)) is
bilinear and O(n)-equivariant.

1.2.2. Operator Q (A) and a trilinear form. Motivated by the consid-
eration of the ode

d
dtR = R2 + R# (see Section 2 below), we define the

operator

Q : S2
(
Λ2 (En)∗

)
→ S2

(
Λ2 (En)∗

)
,

Q (A) = A ◦A + A#A = A2 + A#.(11.14)

Related to this operator is the bilinear operator defined by

(11.15) Q(A, B) � 1
2

(AB + BA) + A#B,

for A, B ∈ S2
(
Λ2 (En)∗

)
. It is clear that Q(A, A) = Q(A) and that Q(A, I) =

A + A#I.
There is a trilinear form tri on S2

(
Λ2 (En)∗

)
introduced by Huisken and

defined by

(11.16) tri(A, B, C) � tr((AB + BA + 2A#B) ◦ C).

Note that (11.13) implies that tr((A#B) · C) is symmetric in A, B, C since

tr((A#B) · C) =
∑

γ

〈(A#B) · C(ωγ), ωγ〉

=
1
2

∑
α,β,γ

〈[A(ωα), B(ωβ)], C(ωγ)〉〈[ωα, ωβ], ωγ〉.

Hence tri is symmetric in all three variables. We also observe that

tri(A, B, C) = 2 〈Q (A, B) , C〉 ,
where Q (A, B) is defined by (11.15) and 〈A, B〉 � tr (AB).
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The ode
d
dtA = A2 +A# on S2

(
Λ2 (En)∗

)
(compare with (11.31) below)

is the gradient flow for the functional

(11.17) P (A) � 1
3

tr(A3 + A# ◦A) =
1
6

tri(A, A, A).

To see this, we take a variation ∂
∂sA = B and compute

∂

∂s
P (A) =

1
3

tr(BA2 + ABA + A2B + (A#B + B#A) ◦A+A# ◦B)

= tr(
(
A2 + A#

)
·B) =

〈
A2 + A#, B

〉
,

using the fact that tr((A#B)·C) is totally symmetric and using the standard
inner product on S2

(
Λ2 (En)∗

)
.

1.2.3. The wedge product of two elements in S2(En). The sharp opera-
tor enables us to construct a new element in S2

(
Λ2 (En)∗

)
from two given

elements. There is another method to construct an element of S2
(
Λ2 (En)∗

)
from two elements in S2(En). Namely we define the wedge product

A ∧B : Λ2
E

n → Λ2
E

n

of two elements A, B ∈ gl(n, R) by

(11.18) (A ∧B)(v ∧ w) � 1
2

(A(v) ∧B(w) + B(v) ∧A(w)) .

(Note of course that this ‘wedge product’ is not the usual wedge product
defined for differential forms.)

We have the following.

Lemma 11.5. If A, B ∈ S2(En), then
(1) A ∧B = B ∧A,
(2) idEn ∧ idEn = idΛ2En,
(3) A ∧B ∈ S2(so(n)) = S2

(
Λ2 (En)∗

)
.

Proof. It is easy to see (1) and (2). As for (3) we compute

〈(A ∧B)(v ∧ w), t ∧ u〉 =
1
2
〈(A(v) ∧B(w) + B(v) ∧A(w)) , t ∧ u〉

=
1
4

(〈A(v), t〉 〈B(w), u〉 − 〈A(v), u〉 〈B(w), t〉)

+
1
4

(〈B(v), t〉 〈A(w), u〉 − 〈B(v), u〉 〈A(w), t〉)

=
1
4

(〈A(t), v〉 〈B(u), w〉 − 〈A(u), v〉 〈B(t), w〉)

+
1
4

(〈B(t), v〉 〈A(u), w〉 − 〈B(u), v〉 〈A(t), w〉)

=
1
2
〈(A(t) ∧B(u) + B(t) ∧A(u)) , v ∧ w〉

= 〈(A ∧B)(t ∧ u), v ∧ w〉 .
�
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Note that using the wedge product, we can define a natural map from
S2(En) into S2(so(n)) by

A→ A ∧ id .

The wedge product ∧, restricted to the space of symmetric 2-tensors,
which can be identified with S2(En), is equal to −1/2 times the Kulkarni–
Nomizu product � (see p. 176 of Volume One), i.e.,

(A ∧B)(x, y, z, t) = (A ∧B)(x ∧ y, z ∧ t)

=
1
2

(A(x, z)B(y, t) + A(y, t)B(x, z))(11.19)

− 1
2

(A(x, t)B(y, z) + A(y, z)B(x, t))

= −1
2
(A�B)(x, y, z, t).

Alternatively, in terms of an orthonormal frame,

〈(A ∧B)(ei ∧ ej), ek ∧ e�〉 =
1
2
〈AipBjqep ∧ eq + BipAjqep ∧ eq, ek ∧ e�〉

=
1
2

(AikBj� + BikAj� −Ai�Bjk −Bi�Ajk)

= −1
2
(A�B)ijk�.

1.3. Representations and their tensor products. Here we collect
some relevant algebraic representation theory facts concerning the spaces
in which the curvature operator and Ricci curvature belong. We refer the
reader to Fulton and Harris [198] and Goodman and Wallach [209] for the
background material for these results.5

1.3.1. A primer on basic notions in representation theory. Let V be
a finite-dimensional real vector space and let GL (V ) be the Lie group of
invertible linear transformations of V .6 A representation of a Lie group
G on V is a Lie group morphism ρ : G→ GL(V ). When it is clear how the
Lie group morphism ρ is defined, we just say that V is a representation
of G.7 There are several important operations on representations which we
now define.

If ρ : G → GL (V ) and σ : G → GL (W ) are representations, then the
direct sum representation ρ⊕ σ : G→ GL (V ⊕W ) is given by

(ρ⊕ σ) (A) (v ⊕ w) � Av ⊕Aw.

The tensor product representation ρ⊗ σ : G→ GL (V ⊗W ) is

(ρ⊗ σ) (A) (v ⊗ w) � ρ (A) (v)⊗ σ (A) (w)

5For example, related material is given in Lectures 6 and 15 and §26.3 of [198].
6Also called the group of automorphisms and denoted Aut (V ).
7One also says that V is a G-module.
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for A ∈ G, v ∈ V , and w ∈ W . More succinctly, we usually suppress the
morphisms ρ and σ and write this as

A (v ⊗ w) = Av ⊗Aw.

When V = W , we can define the wedge product representation
ρ ∧ σ : G→ GL

(
Λ2V

)
by

(ρ ∧ σ) (A) (v ∧ w) � 1
2
{ρ (A) (v) ∧ σ (A) (w) + σ (A) (v) ∧ ρ (A) (w)}

for A ∈ G and v, w ∈ V .
Given a representation ρ : G → GL(V ), the tensor and wedge product

representations induce representations
⊗r V , SrV (or Symr V ), and ΛrV

of G, which are the r-th tensor product, symmetric tensor product, and
alternating tensor product of V , respectively.

Example 11.6. Given the Euclidean vector space E
n, the Lie group

O(n) � {A ∈ GL(En) : 〈Av, Aw〉 = 〈v, w〉 for all v, w ∈ E
n}

of orthogonal transformations acts on E
n by multiplication on the left. That

is, the inclusion map ι : O(n) ↪→ GL(En) is a representation of O(n) on E
n.

Hence we have induced representations of O(n) on
⊗r

E
n, Sr

E
n, and Λr

E
n.

If a subspace W of V is invariant under G, i.e., Aw ∈ W for all w ∈ W
and A ∈ G, then we call W a subrepresentation of V . (We also say
that W is G-invariant.) We say that W is a proper subrepresentation
if W �= {0} and W �= V . A standard fact is that a representation V is
irreducible, i.e., V does not contain any proper subrepresentations if and
only if V is not a nontrivial direct sum of representations (see Proposition
1.5 on p. 6 of [198]). Hence, any representation V is the direct sum of
irreducible subrepresentations:

V = V1 ⊕ · · · ⊕ Vk.

1.3.2. Irreducible decompositions of tensor product representations. For
the standard representation of O(n) on E

n, we are interested in the tensor
product representations of O(n) and their irreducible subrepresentations.
First we recall the following O(n)-invariant decomposition of tensor space⊗

2
E

n.

Proposition 11.7 (Irreducible decomposition of
⊗2

E
n).

(11.20)
⊗

2
E

n = Λ2
E

n ⊕ S2
0E

n ⊕ Rgcan

is an O(n)-invariant irreducible orthogonal decomposition of the space of 2-
tensors. Here S2

0E
n denotes the space of trace-free symmetric 2-tensors and

gcan = id is the Euclidean metric on E
n.

Using the identification of
⊗

2
E

n with gl(n, R), one can also write this
as ⊗

2
E

n = Λ2
E

n ⊕ S2
0(En)⊕ R id .
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Here S2
0(En) is the space of trace-free symmetric transformations of E

n. The
nontrivial aspect of the proposition is the irreducibility of the decomposition.
In particular, it is easy to see that each of the factors Λ2

E
n, S2

0E
n, and Rgcan

is O(n)-invariant. For example,

A (v ⊗ w − w ⊗ v) = Av ⊗Aw −Aw ⊗Av ∈ Λ2
E

n

for A ∈ O(n) and v, w ∈ E
n. We leave it as an exercise to show that

A ∈ O(n) if and only if A (gcan) = gcan.
We also have the following O(n)-invariant irreducible decomposition of

the tensor space S2
(
Λ2 (En)∗

)
, where the notation shall be defined below

(in particular, see (11.45)). The following proposition is discussed further
in subsection 2.2 below.

Proposition 11.8 (Irreducible decomposition of S2(so(n))).

(11.21) S2(so(n)) = 〈I〉 ⊕ 〈Rc0〉 ⊕ 〈W〉 ⊕ Λ4(En)

is an O(n)-invariant irreducible orthogonal decomposition.

2. Algebraic curvature operators and Rm

In this section first we motivate our discussion of algebraic curvature
operators by reviewing the evolution equation for the Riemann curvature
operator under Ricci flow. We then define the space of algebraic curva-
ture operators and its O(n)-invariant irreducible decomposition. We end
this section with a formula for the Ricci tensor (i.e., trace) of the operator
Q (R) � R2 + R#.

2.1. Motivation for algebraic curvature operator and operator
Q (R). Let (Mn, g) be a Riemannian manifold with Levi-Civita connection
∇.8 Recall that the Riemann curvature tensor is defined by

R(X, Y )Z � ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R(X, Y, Z, W ) � 〈R(X, Y )Z, W 〉(11.22)

for tangent vectors X, Y, Z, W . The curvature operator, denoted by Rm,
is the symmetric bilinear form on Λ2TM (or self-adjoint transformation of
Λ2TM) defined by9

(11.23) Rm(X ∧ Y, Z ∧W ) = 〈Rm(X ∧ Y ), Z ∧W 〉 � 2〈R(X, Y )W, Z〉.

Note that we have Rm = 2I for the standard n-sphere of radius 1.

8The reader familiar with §§1–3 of Chapter 6 of Volume One may skip this subsection
(referring to it only to confirm notation and conventions).

9This definition agrees with the definition of Rm on p. 183 of Volume One. The factor
2 on the rhs of (11.23) is introduced to make our notation (e.g., the definition of Rm)
consistent with Volume One.
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Let x ∈M; if {ei}ni=1 is an orthonormal basis of TxM,10 then {ei ∧ ej}i<j

forms an orthonormal basis of Λ2TxM with its induced inner product.11 So
Rm ∈ S2

(
Λ2T ∗

xM
)

�
(
Λ2T ∗

xM
)
⊗S

(
Λ2T ∗

xM
)

can also be viewed as an
N × N symmetric matrix, where N � n(n−1)

2 . Using {ei}ni=1, we can iden-
tify TxM with E

n and identify S2
(
Λ2T ∗

xM
)

with either S2
(
Λ2 (En)∗

)
or

S2(so(n)).
The sharp operation defined in (11.12) can be used to define the sharp

operator

(11.24) # : S2
(
Λ2T ∗

xM
)
× S2

(
Λ2T ∗

xM
)
→ S2

(
Λ2T ∗

xM
)
.

Because of its O (n)-invariance, the sharp operator is well defined (indepen-
dent of the choice of {ei}ni=1 used in identifying TxM with E

n). Note that
this identification enables us to use the properties of # and the other alge-
braic operations we discussed in the previous section; in particular Λ2T ∗

xM
has the Lie algebra structure of so(n).

Now we consider the Ricci flow ∂
∂tg = −2Ric(g). After pulling back Rm

to a bundle with a fixed metric on the fibers (i.e., using Uhlenbeck’s trick as
in Section 2 of Chapter 6 in Volume One), we have the following evolution
equation for the curvature tensor (see (6.21) of Volume One):

(11.25)
(

∂

∂t
−∆

)
Rabcd = 2 (Babcd −Babdc + Bacbd −Badbc) ,

where12

Babcd � −RapbqRcpdq.

Let {ea}na=1 be an orthonormal basis of local sections of (V, h), a vector
bundle isometric to (TM, g (t)) via a bundle isometry ι (t). From (11.22)
and (11.23), we have

Rabcd � 〈R(ι∗ea, ι∗eb)ι∗ec, ι∗ed〉 =
1
2
〈(ι∗ Rm) (ea ∧ eb), ed ∧ ec〉.

Abusing notation, we shall often write

Rabcd = 〈R(ea, eb)ec, ed〉 =
1
2
〈Rm(ea ∧ eb), ed ∧ ec〉.

We also define

Rmabcd � 〈Rm(ea ∧ eb), ec ∧ ed〉 = −2Rabcd.

Note that

(11.26) Rm(ea ∧ eb) = 2
∑
c<d

Rabcded ∧ ec,

10Our notation, i.e., the use of ei, is redundant with the notation for the standard
basis for E

n.
11We adopt the convention that for X, Y ∈ TxM, X ∧ Y = X ⊗ Y − Y ⊗ X.
12In Volume One on p. 182, the third line from the bottom, a minus sign is missing

in the formula for Babcd.



2. ALGEBRAIC CURVATURE OPERATORS AND Rm 79

so that for any section ψ ∈ Γ
(
Λ2TM

)
Rm(ψ) = 2

∑
a<b

ψab Rm (ea ∧ eb) = 2
∑
a<b,
c<d

Rabcdψabed ∧ ec

and
Rm(ψ)cd = −2

∑
a<b

Rabcdψab.

In terms of the squaring operator and the sharp operator # in (11.24),
the evolution of Rm is given as follows by (6.27) of Volume One; for the
convenience of the reader, we recall its derivation.

Proposition 11.9 (Evolution of Rm).

(11.27)
(

∂

∂t
−∆

)
Rm = Rm2 +Rm#,

where Rm2 � Rm ◦Rm and Rm# � Rm # Rm.

Proof. Thus the lhs of (11.25) is equal to

−1
2

(
∂

∂t
−∆

)
Rmabcd .

Since Rm2 = Rm ◦Rm, we have(
Rm2

)
abcd

� 〈Rm2(ea ∧ eb), ec ∧ ed〉

=

〈
Rm

⎛⎝2
∑
e<f

Rabefef ∧ ee

⎞⎠ , ec ∧ ed

〉

= 4
∑
e<f

RabefRcdef = 2
∑
e,f

RabefRcdef .

On the other hand, by the first Bianchi identity,

RaebfRcdef =
1
2

(RaebfRcdef + RafbeRcdfe)

=
1
2

(RaebfRcdef + RebafRcdef )

= −1
2
RbaefRcdef =

1
2
RabefRcdef(11.28)

and

Babcd −Babdc = −RaebfRcedf + RaebfRdecf

= Raebf (Recdf + Rdecf )
= −RaebfRcdef .

This shows that the first two terms on the rhs of (11.25) may be expressed
as

2 (Babcd −Babdc) = −RabefRcdef = −1
2
(
Rm2

)
abcd

.
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By definition and (11.13),

(Rm#)abcd

(11.29)

= 〈(Rm# Rm)(ea ∧ eb), ec ∧ ed〉

=
1
2

∑
α,β

〈[Rm(ωα), Rm(ωβ)], ea ∧ eb〉 · 〈[ωα, ωβ ], ec ∧ ed〉

=
1
2

∑
e<f,s<t

〈[Rm(ee ∧ ef ), Rm(es ∧ et)], ea ∧ eb〉 〈[ee ∧ ef , es ∧ et], ec ∧ ed〉

=
1
8

∑
Refk�Rstpq〈[e� ∧ ek, eq ∧ ep], ea ∧ eb〉 〈[ee ∧ ef , es ∧ et], ec ∧ ed〉;

here we have used (11.26).
Applying formula (11.7) for the Lie bracket to (11.29), we obtain

(11.30) (Rm#)abcd = 4 (−RapdtRbpct + RapctRbpdt) = 4 (Badbc −Bacbd) ,

which identifies the last two terms on the rhs of (11.25) with Rm#:

2 (Bacbd −Badbc) = −1
2
(Rm#)abcd.

We have proved (11.27). �
Remark 11.10. Equation (11.30) can also be proved as follows:13

4 (RapdtRbpct −RapctRbpdt)

= Rmαβ ϕα
apϕ

β
td Rmγδ ϕγ

bpϕ
δ
tc − Rmαβ ϕα

apϕ
β
tc Rmγδ ϕγ

bpϕ
δ
td

= Rmαβ Rmγδ ϕα
apϕ

γ
bp

(
ϕβ

tdϕ
δ
tc − ϕβ

tcϕ
δ
td

)
= Rmαβ Rmγδ ϕα

apϕ
γ
bp[ϕ

β, ϕδ]cd

= Rmαβ Rmγδ ϕα
apϕ

γ
bpc

βδ
η ϕη

cd

=
1
2

Rmαβ Rmγδ ϕα
apϕ

γ
bpc

βδ
η ϕη

cd −
1
2

Rmαβ Rmγδ ϕγ
apϕ

α
bpc

βδ
η ϕη

cd

= −1
2

Rmαβ Rmγδ cβδ
η ϕη

cd[ϕ
α, ϕγ ]ab

= −(Rm#)abcd,

where in the third line we used [φβ, φδ]cd = φβ
ctφ

δ
td − φβ

dtφ
δ
tc from (11.6).

In view of the Weinberger–Hamilton maximum principle for systems, we
study the ode:

(11.31)
d

dt
R = R2 + R# � Q (R)

13The identification of TxM with E
n enables us to use the orthonormal basis {ϕα}N

α=1

of Λ2T ∗
xM with ϕα

ab � ϕα (ea, eb).
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on S2
(
Λ2T ∗

xM
) ∼= S2

(
Λ2

E
n
)
. In particular, this is the ode corresponding

to the pde for Rm: (
∂

∂t
−∆

)
Rm = Rm2 +Rm# .

We want to find O (n)-invariant convex closed sets preserved by the ode.
We shall study this ode in the subspace of algebraic curvature operators
S2

B(so(n)) ⊂ S2(so(n)) = S2
(
Λ2T ∗

xM
)
.14 Note that if R ∈ S2

B(so(n)), then
R2 + R# ∈ S2

B(so(n)) (see (11.54) below). Now we turn to the discussion
of algebraic curvature operators.

2.2. Algebraic curvature operators. Since the Riemannian curva-
ture operator satisfies the first Bianchi identity, we shall define the space of
algebraic curvature operators to be the subspace of S2(so(n)) consisting of
elements which satisfy the first Bianchi identity.

In the remainder of this section we shall use notation from Section 1 of
this chapter.

2.2.1. The Bianchi map and the space of algebraic curvature operators.
We define the Bianchi map b :

⊗4
E

n →
⊗4

E
n by

(11.32) b(R)(x, y, z, t) � 1
3

(R(x, y, z, t) + R(y, z, x, t) + R(z, x, y, t))

for R ∈
⊗4

E
n. Given a Riemannian manifold (Mn, g), we may analogously

define the Bianchi map b :
⊗4 TM→

⊗4 TM. The first Bianchi identity
then says that b(Rm) = 0.

Lemma 11.11. The Bianchi map has the following properties.

(i) The subspace S2(Λ2
E

n) ⊂
⊗4

E
n is invariant under the action of

b, i.e.,

(11.33) b(S2(Λ2
E

n)) ⊂ S2(Λ2
E

n).

(ii) For R ∈ S2(Λ2
E

n),

(11.34) b(R)(x, z, y, t) = −b(R)(x, y, z, t).

Hence b(R) ∈ Λ4
E

n, i.e.,

b|S2(Λ2En) : S2(Λ2
E

n)→ Λ4
E

n.

For any R ∈ Λ4
E

n, we have b(R) = R, so that the above map is
onto.

(iii) The map b is self-adjoint, i.e., for any R, S ∈
⊗4

E
n,

(11.35) 〈b (R) , S〉 = 〈R, b (S)〉 .

14See (11.36) for the definition of S2
B(so(n)).



82 11. CLOSED MANIFOLDS WITH POSITIVE CURVATURE

Proof. (i) If R ∈ S2(Λ2
E

n), then

b(R)(y, x, z, t) =
1
3

(R(y, x, z, t) + R(x, z, y, t) + R(z, y, x, t))

=
1
3

(−R(x, y, z, t)−R(z, x, y, t)−R(y, z, x, t))

= −b(R)(x, y, z, t).

Similarly one can show b(R)(x, y, t, z) = −b(R)(x, y, z, t). Finally,

b(R)(z, t, x, y) =
1
3

(R(z, t, x, y) + R(t, x, z, y) + R(x, z, t, y))

=
1
3

(R(x, y, z, t) + R(z, y, t, x) + R(z, x, y, t))

= b(R)(x, y, z, t).

(ii) We compute

b(R)(x, z, y, t) =
1
3

(R(x, z, y, t) + R(z, y, x, t) + R(y, x, z, t))

=
1
3

(R(y, x, z, t) + R(z, y, x, t) + R(x, z, y, t))

= −b(R)(x, y, z, t).

(iii) We also compute

〈b (R) , S〉

=
∑

i,j,k,�

b (R) (ei, ej , ek, e�) · S (ei, ej , ek, e�)

=
1
3

∑
(R(ei, ej, ek, e�) + R(ej , ek, ei, e�) + R(ek, ei, ej, e�)) · S (ei, ej, ek, e�)

=
1
3

∑
R (ei, ej , ek, e�) · (S(ei, ej , ek, e�) + S(ek, ei, ej , e�) + S(ej , ek, ei, e�))

= 〈R, b (S)〉 .
�

Note that S2(Λ2
E

n) = S2(so(n)); we define

(11.36) S2
B(so(n)) � ker

(
b|S2(so(n))

)
.

We call any element R ∈ S2
B(so(n)) an algebraic curvature operator. It

is clear that the curvature operator of any Riemannian manifold lies inside
the space S2

B

(
Λ2T ∗M

)
.

Caveat. The sign convention for the notation Rijk� � 〈R(ei ∧ ej), ek ∧
e�〉 for the components of the algebraic curvature operator R (compare with
(11.23)) differs from that for the Riemann curvature tensor

Rijk� � 〈R(ei, ej)e�, ek〉 =
1
2
〈Rm(ei ∧ ej), e� ∧ ek〉
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(see (11.22)). That is, we have the following relation between the compo-
nents of the Riemann curvature tensor and the components of the Riemann
curvature operator

Rijk� = −1
2

Rmijk� .

Remark 11.12. Another way to define the Bianchi map is by

1
2
b(ωα ⊗ ωβ + ωβ ⊗ ωα) � ωα ∧ ωβ .

We have, using (11.5), that

b ((ei ⊗ ei) ∧ (ej ⊗ ej)) =
1
2
b ((ei ∧ ej)⊗ (ei ∧ ej))

=
1
2
(ei ∧ ej) ∧ (ei ∧ ej) = 0.

That is, (ei ⊗ ei) ∧ (ej ⊗ ej) ∈ S2
B(so(n)).

By Lemma 11.11(i) and (ii),

S2(so(n)) = ker(b|S2(Λ2En))⊕ image(b|S2(Λ2En))

= S2
B(so(n))⊕ Λ4

E
n.(11.37)

The following gives examples of algebraic curvature operators.

Lemma 11.13. For any A ∈ S2(En) we have the following.

(i) A ∧ id ∈ S2
B(so(n)). Hence we may define the map

id∧ : S2(En)→ S2
B(so(n)),

id∧ (A) � id∧A.

(ii) A ∧A ∈ S2
B(so(n)).

Proof. (i) We compute using (11.19)

b(A ∧ id)(x, y, z, t)

=
1
3

((A ∧ id) (x, y, z, t) + (A ∧ id) (y, z, x, t) + (A ∧ id) (z, x, y, t))

=
1
6

⎛⎝ A(x, z) 〈y, t〉+ A(y, t) 〈x, z〉 −A(x, t) 〈y, z〉 −A(y, z) 〈x, t〉
+A(y, x) 〈z, t〉+ A(z, t) 〈y, x〉 −A(y, t) 〈x, z〉 −A(x, z) 〈y, t〉
+A(z, y) 〈x, t〉+ A(x, t) 〈z, y〉 −A(z, t) 〈x, y〉 −A(x, y) 〈z, t〉

⎞⎠
= 0.
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(ii) We compute

b(A ∧A)(x, y, z, t)

=
1
3

((A ∧A) (x, y, z, t) + (A ∧A) (y, z, x, t) + (A ∧A) (z, x, y, t))

=
1
6

⎛⎝A(x, z)A (y, t) + A(y, t)A (x, z)−A(x, t)A (y, z)−A(y, z)A (x, t)
+A(y, x)A (z, t) + A(z, t)A (y, x)−A(y, t)A (x, z)−A(x, z)A (y, t)
+A(z, y)A (x, t) + A(x, t)A (z, y)−A(z, t)A (x, y)−A(x, y)A (z, t)

⎞⎠
= 0.

�

We may define the Ricci tensor Rc(R) ∈ S2(En) corresponding to an
algebraic curvature operator R ∈ S2

B(Λ2
E

n) by15

(11.38) 〈Rc(R)(ei), ej〉 =
n∑

k=1

〈R(ei ∧ ek), ej ∧ ek〉 = Rikjk.

That is, the Ricci tensor corresponding to an algebraic curvature operator is
the same trace as is used to obtain the usual Ricci tensor from the Riemann
curvature operator:

〈Rc(Rm)(ei), ej〉 =
n∑

k=1

〈Rm(ei ∧ ek), ej ∧ ek〉 = 2
n∑

k=1

R(ei, ek, ek, ej) = 2Rij .

Caveat. Note that for a Riemannian metric the Ricci tensor of its
curvature operator Rm is twice the Ricci curvature tensor of the metric.

We define the scalar curvature associated to an algebraic curvature
operator R by16

(11.39) Scal(R) � tr(Rc(R)) = Rikik.

Hence, for a Riemannian metric, the scalar curvature of the curvature oper-
ator, i.e., Scal(Rm), is equal to twice the scalar curvature of the metric.

2.2.2. Decomposition of S2
B(so(n)). When studying the curvature oper-

ator on a Riemannian n-manifold, it is important to decompose the Riemann
curvature tensor into the sum of the Weyl tensor, 2

n−2 Rc0 ∧ id and S
n(n−1)I,

where Rc0 and S denote the trace-free Ricci tensor and the scalar curvature,
respectively. Algebraic curvature operators admit the same decomposition,
which we now discuss after some preparation.

The following identities regarding traces (i.e., the Rc operator) are an
immediate consequence of the definition of Rc(R) and (11.19).

15This definition also applies to any R ∈ S2(Λ2
E

n) = S2(so(n)).
16Note that

trace(R) =

N
X

α=1

〈R(ωα), ωα〉 =
1

2
Scal(R),

where ωα � ei ∧ ej .
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Lemma 11.14 (Trace of the wedge product). If A, B ∈ S2(En), then
A ∧B ∈ S2(so(n)) satisfies

(11.40) Rc(A ∧B) =
1
2

(A(tr(B) id−B)) +
1
2

(B(tr(A) id−A)) .

In particular,

(11.41) Rc(A ∧A) = tr(A)A−A2

and

(11.42) Rc(A ∧ id) =
n− 2

2
A +

tr(A)
2

id .

Hence, if tr(A) = 0, then

(11.43) Rc(A ∧A) = −A2 and Rc(A ∧ id) =
n− 2

2
A.

Proof. We compute

〈Rc(A ∧B)(ei), ej〉 =
∑

k

〈(A ∧B) (ei ∧ ek), ej ∧ ek〉

=
1
2

(AijBkk + BijAkk −AikBkj −BikAkj)

=
1
2

(Aij tr(B)−AikBkj + Bij tr(A)−BikAkj) .

�

An important algebraic fact is given by the following.

Lemma 11.15.

(1) If n > 2, then the map

id∧ : S2(En)→ S2
B(Λ2

E
n),

defined by

id∧ (A) � id∧A,

is injective.
(2) The operator id∧ is the adjoint of Rc : S2

B(Λ2
E

n)→ S2(En).

Proof. From tracing (11.42), we have

Scal(A ∧ id) = (n− 1) tr(A).
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Hence if A ∧ id = 0, we then have that tr(A) = 0 and thus A = 0. We
calculate using (11.19)

〈id∧A,R〉 =
∑
i<j

〈(id∧A)(ei ∧ ej),R(ei ∧ ej)〉

=
∑

i<j, k<�

〈(id∧A)(ei ∧ ej), ek ∧ e�〉〈R(ei ∧ ej), ek ∧ e�〉

=
1
8

∑
i,j,k,�

(δikAj� + Aikδj� − δi�Ajk −Ai�δjk)Rijk�

=
1
8

∑
(Riji�Aj� + RijkjAik −RijkiAjk −Rijj�Ai�)

=
1
2

Rc(R)j�Aj� = 〈Rc(R), A〉.

�

With the help of the lemma above, we can decompose S2
B(Λ2

E
n) as

S2
B(Λ2

E
n) = image(id∧) + ker(Rc)

= id∧
(
S2(En)

)
⊕ ker(Rc).

Since S2(En) = S2
0(En)⊕ R id, we finally arrive at the decomposition

S2
B(Λ2

E
n) = id∧(R id)⊕ id∧ S2

0(En)⊕ ker(Rc)

= 〈I〉 ⊕ 〈Rc0〉 ⊕ 〈W〉,(11.44)

where

(11.45) 〈I〉 � R id∧ id , 〈Rc0〉 � id∧ S2
0(En), and 〈W〉 � ker(Rc)

(recall that I ∈ S2
B(so(n)) is the identity map of so(n), which is equal to

id∧ id). Summarizing this discussion, we have the following.

Lemma 11.16 (Irreducible decomposition of S2
B(so(n))). The irreducible

decomposition of S2
B (so(n)) is given by

(11.46) S2
B(so(n)) = 〈I〉 ⊕ 〈Rc0〉 ⊕ 〈W〉.

Combining this lemma with (11.37), we have the decomposition for
S2 (so(n)) claimed before in Proposition 11.8. Again the nontrivial aspect of
the statement of Proposition 11.8 is that this decomposition is irreducible;
however, we do not need this fact for our discussion later.

2.2.3. Algebraic curvature operator decomposition. Now for any alge-
braic curvature operator R ∈ S2

B(so(n)) we denote by RI, RRc0 , and RW

its components with respect to the irreducible decomposition (11.46) so that

R = RI + RRc0 + RW.

One can calculate these components as follows. Let

RI � c id∧ id and RRc0 � id∧A
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for some A ∈ S2
0(En) and c ∈ R. From Lemma 11.14 we have for A ∈ S2

0(En)

Rc(I) = (n− 1) id, Rc(id∧A) =
n− 2

2
A,

Scal(I) = n(n− 1), Scal(id∧A) = 0.

Let
(11.47)

λ̄ � 1
n

Scal(R), Rc 0(R) � Rc(R)− λ̄ id , and σ � 1
n
‖Rc 0(R)‖2.

Then c = λ̄
n−1 , which then implies that A = 2

n−2 Rc0(R). Hence we have for
any algebraic curvature operator

R =
λ̄

n− 1
I +

2
n− 2

id∧Rc0(R) + RW(11.48)

=
Scal(R)
n (n− 1)

I +
2

n− 2
id∧

(
Rc(R)− Scal(R)

n
id
)

+ RW(11.49)

= − Scal(R)
(n− 1) (n− 2)

I +
2

n− 2
id∧Rc(R) + RW.(11.50)

As a consequence of (11.46), we also have the following, which we shall
later apply to A = Rc0.

Corollary 11.17 (Decomposition of A∧A). For any A ∈ S2(En) with
tr(A) = 0, we have

(11.51) A ∧A = −
tr
(
A2
)

n (n− 1)
I− 2

n− 2
(A2)0 ∧ id+(A ∧A)W,

where (A2)0 is the trace-free part of A2 ∈ S2(En).

Proof. Recall that A ∧ A ∈ S2
B(so(n)) by Lemma 11.13. By (11.41)

and (11.49), we have for any A ∈ S2(En)

A ∧A =
2

n− 2
id∧

(
tr(A)A−A2 −

tr
(
tr(A)A−A2

)
n

id

)

+
tr
(
tr(A)A−A2

)
n (n− 1)

I + (A ∧A)W.

The result now follows from the assumption tr(A) = 0. �

2.3. The quadratic R2 + R#. Recall that Q (R) = R2 + R# for any
algebraic curvature operator R ∈ S2

B(so(n)). The calculation in the proof
of Proposition 11.9 only uses the algebraic properties and identities satisfied
by Rm. Hence the quadratic formulas for the curvature operator Rm we
derived still hold for algebraic curvature operators in general. In particular,
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for any algebraic curvature operator R we have17

(R2 + R#)ijk� = RipjqRkp�q −RipjqR�pkq + RipkqRjp�q −Rip�qRjpkq

(11.52)

= −Bijk� + Bij�k −Bikj� + Bi�jk,(11.53)

where Bijk� � −RipjqRkp�q. Also, from (11.28) we have

RaebfRcdef =
1
2
RabefRcdef .

It follows from (11.52) that for any R ∈ S2
B(so(n))

(11.54) Q(R) = R2 + R# ∈ S2
B(so(n)).

Indeed, one readily checks that the right-hand side satisfies the first Bianchi
identity.

Viewing Q(R) as an algebraic curvature operator, we can compute its
Ricci tensor and scalar curvature.

Corollary 11.18 (Trace of R2 + R#). For any algebraic curvature
operator R,

Rc(R2 + R#)ij =
∑
k,�

Rc(R)k�Rikj�,(11.55)

Scal
(
R2 + R#

)
=
∑
k,�

(Rc(R)k�)
2 .(11.56)

In particular if R ∈ 〈W〉, then R2 + R# ∈ 〈W〉. That is, if Rc (R) = 0,
then Rc(R2 + R#) = 0 and Scal

(
R2 + R#

)
= 0.

Remark 11.19. When R = Rm, this can be seen from standard formulas
for the Ricci flow since the evolution for Rc is given by (6.7) and the trace
of (6.27) both in Volume One.

Proof. From (11.52) we have

Rc(R2 + R#)ik = (R2 + R#)ijkj = RipjqRkpjq − 2RipjqRjpkq + RipkqRjpjq.

Using the identity RaebfRcdef = 1
2RabefRcdef , we have

RipjqRjpkq = RipqjRkqpj =
1
2
RiqpjRkqpj =

1
2
RipjqRkpjq.

Hence Rc(R2 +R#)ik = RipkqRjpjq = Ripkq Rc(R)pq, which proves (11.55).
The lemma follows easily. �

With respect to the curvature decomposition we have the following prop-
erties of the bilinear form Q and the trilinear form tri defined in (11.15) and
(11.16), respectively.

Lemma 11.20. If R ∈ 〈Rc 0〉 and S,W ∈ 〈W〉, then

17Again note our sign convention.
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(i)
tri(S,R,W) = tr((SR + RS + 2R#S)W) = 0,

(ii)
tri(S,R, I) = tr((SR + RS + 2R#S)I) = 0,

(iii)

(11.57) Q (S,R) = SR + RS + 2R#S ∈ 〈Rc 0〉.

Proof. To prove (i), we first recall that tri(S,R,W) = tri(W,S,R).
On the other hand, by Corollary 11.18,

(W + S)2 + (W + S)# ∈ 〈W〉
for any W,S ∈ 〈W〉, and hence WS + SW + 2W#S ∈ 〈W〉. Therefore,
since R ∈ 〈Rc 0〉,
0 = 〈WS+SW+2W#S,R〉 = tr((WS+SW+2W#S)R) = tri(W,S,R).

To prove (ii), using the symmetry of tri, we have

tri(S,R, I) = tri(S, I,R) = tr((2S + 2S#I)R) = 0;

the reason for why the last equality holds is that (11.78) below implies
S + S#I = 0.

Part (iii) follows directly from (i) and (ii). �

3. A family of linear transformations and their effect on R2 + R#

As noted earlier, we are looking for families of O(n)-invariant closed
convex sets in S2

B(so(n)) preserved by the ode
d
dtR = R2 + R#. The main

idea is to consider invertible O(n)-invariant linear transformations of known
O(n)-invariant closed convex sets in S2

B(so(n)) preserved by the ode. In
this section we discuss such linear transformations, their properties, and the
conditions under which the transformed convex sets will be preserved.

3.1. O(n)-invariant linear transformations of S2
B(so(n)). We first

discuss some preliminaries. Let L : S2
B(so(n))→ S2

B(so(n)) be a self-adjoint
O(n)-invariant linear transformation, so that

L (g (R)) = g (L (R))

for all g ∈ O(n) and R ∈ S2
B(so(n)). Then L preserves the irreducible

decomposition of S2
B(so(n)), i.e.,

L (〈I〉) ⊂ 〈I〉, L (〈Rc0〉) ⊂ 〈Rc0〉, L (〈W〉) ⊂ 〈W〉,
and furthermore, L is a multiple of the identity on each component. A way
to see this is as follows. Since L is self-adjoint, it has real eigenvalues λ1 <
· · · < λk with corresponding eigenspaces E1, . . . , Ek giving an orthogonal
decomposition of S2

B(so(n)):

S2
B(so(n)) = E1 ⊕ · · · ⊕ Ek.
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Each eigenspace is O(n)-invariant and hence contains one of the irreducible
components 〈I〉, 〈Rc0〉, or 〈W〉 of S2

B(so(n)). Therefore L is a multiple of
the identity on each of the components 〈I〉, 〈Rc0〉, and 〈W〉.

We shall be interested in those invertible linear transformations which
preserve the Weyl parts of algebraic curvature operators. Note that every
O(n)-invariant linear transformation L is a constant multiple of a linear
transformation which preserves the Weyl part.

Exercise 11.21. Show that if L : S2
B(so(n)) → S2

B(so(n)) is an O(n)-
invariant linear transformation and if C is an O (n)-invariant closed convex
cone, then L (C) is an O (n)-invariant closed convex cone.

It is natural to define a 2-parameter family of O(n)-invariant linear trans-
formations on the space of algebraic curvature operators as follows.

Definition 11.22. Given a, b ∈ R, define the O(n)-invariant linear
transformation

�a,b : S2
B(so(n))→ S2

B(so(n))
by

(11.58) �a,b (R) � R + 2(n− 1)aRI + (n− 2)bRRc0 .

Using the decomposition (11.48), we can rewrite this as

�a,b(R) = R + 2aλ̄I + 2b id∧Rc0(R)

= (1 + 2(n− 1)a)RI + (1 + (n− 2)b)RRc0 + RW.

It is easy to see that �0,0(R) = R, �a,b(S2
B(so(n))) ⊂ S2

B(so(n)) and �a,b

is invertible provided both a �= − 1
2(n−1) and b �= − 1

n−2 ; we shall always
make these assumptions on a and b. Each transformation �a,b preserves
the Weyl part and is a multiple of the identity on each of the other two
irreducible components. (In particular, �a,b(R) = R if R ∈ 〈W〉.) Hence
the 2-parameter family {�a,b} consists of all O (n)-invariant linear transfor-
mations of S2

B(so(n)) which preserve the Weyl parts of algebraic curvature
operators.

Remark 11.23. For the linear maps �a,b, as a > 0 gets large, the identity
component (�a,b(R))I = (1 + 2 (n− 1) a)RI also gets large, which increases
the ‘likelihood’ of an algebraic curvature operator R with Scal (R) > 0
having positive curvature operator. In fact, as a → ∞ (while b

a → 0), we
have for R with Scal (R) > 0

�a,b(R)
|�a,b(R)| →

I
|I| .

3.2. Conjugating R2+R# by �a,b and the operator Da,b(R). Using
�a,b, we define two maps Xa,b and Da,b of the space of algebraic curvature
operators to itself. The analysis of Xa,b and Da,b determines when, for a
convex cone C, the transformed cone �a,b (C) is preserved by the ode. The
main result in this section is Theorem 11.27, which gives a decomposition
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for the algebraic curvature operator Da,b(R) and shows that Da,b(R) has
the crucial property that it is independent of the Weyl curvature part RW

of R.

Definition 11.24. We define maps

Xa,b : S2
B(so(n))→ S2

B(so(n)),

Da,b : S2
B(so(n))→ S2

B(so(n))

by

Xa,b(R) � �−1
a,b

(
(�a,b(R))2 + (�a,b(R))#

)
(11.59)

=
(
�−1
a,b ◦Q ◦ �a,b

)
(R)

and

Da,b(R) � Xa,b(R)−R2 −R#(11.60)

=
(
�−1
a,b ◦Q ◦ �a,b

)
(R)−Q (R)

where Q (R) = R2 + R#.

The operator Da,b measures how the map Q (which we think of as a
vector field on S2

B(so(n))) changes under conjugation by �a,b.
We give an example of calculating Da,b(R).

Example 11.25. Recall from Corollary 11.18 that if S ∈ 〈W〉, then
S2 + S# ∈ 〈W〉, which together with �a,b(S) = S implies

(11.61) Da,b(S) = �−1
a,b

(
S2 + S#

)
−
(
S2 + S#

)
= 0.

The following elementary result gives a criterion for when the linear
transformation of a cone is preserved by the ode.

Lemma 11.26 (A criterion for when �a,b (C) is preserved by the ode). An
O (n)-invariant closed convex cone �a,b (C) is preserved by the ode

d
dtR =

Q (R) = R2 + R# if and only if C is preserved by the ode
d
dtR = Xa,b(R).

Proof. We have that R (t) is a solution of the ode
d
dtR = Q (R) if and

only if �−1
a,b (R (t)) is a solution of the ode

d
dtR = Xa,b(R). Indeed,

d

dt
�−1
a,b (R (t)) = �−1

a,b (Q (R (t)))

=
(
�−1
a,b ◦Q ◦ �a,b

)(
�−1
a,b (R (t))

)
= Xa,b(�−1

a,b (R (t))).

We also have R ∈ C if and only if �a,b (R) ∈ �a,b (C). Hence a solution
R (t) of d

dtR = Q (R) stays in �a,b (C) if and only if the solution �−1
a,b (R (t))

of d
dtR = Xa,b(R) stays in C. The lemma follows. �
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In view of the lemma, we want to show that Xa,b(R) = Q (R)+Da,b(R)
lies in the tangent cone of C at R ∈ ∂C. Assuming that C itself is preserved
by the ode

d
dtR = Q (R) and that the tangent cone of C is invariant under

the addition of nonnegative operators (as is the case when C is the cone
of 2-nonnegative curvature operators), it suffices to show that Da,b(R) is
nonnegative for R ∈ ∂C. (More generally, since the tangent cones of C are
invariant under addition by Exercise 10.42, it suffices to show that Da,b(R)
lies in the tangent cone of C at R.) The following gives a fundamental
formula for Da,b(R) (see Theorem 2 in [43]).

3.3. The main formula for Da,b(R). We have the following magical
formula for Da,b(R).

Theorem 11.27 (Main formula for Da,b). For any a, b ∈ R such that
a �= − 1

2(n−1) and b �= − 1
n−2 ,

Da,b(R) =
(
(n− 2)b2 − 2(a− b)

)
Rc 0 ∧Rc 0 + 2aRc∧Rc +2b2 Rc2

0 ∧ id

(11.62)

+
tr(Rc2

0)
n + 2n(n− 1)a

(
nb2(1− 2b)− 2(a− b)(1− 2b + nb2)

)
I,

where Rc0 denotes the trace-free part of Rc (R). We also have

Rc(Da,b(R)) = −2bRc2
0 + 2(n− 2)aλ̄Rc0 + 2(n− 1)aλ̄2 id(11.63)

+
2(n− 1)b + (n− 2)2b2 − 2(n− 1)a(1− 2b)

1 + 2(n− 1)a
σ id .

We will give a proof of Theorem 11.27 in the next section.
The consideration of the quantity Da,b(R) = �−1

a,b (Q (�a,b (R)))−Q(R) is
natural for the following reasons. Suppose we know that a set C ⊂ S2

B(so(n))
is preserved by the ode

d
dtR = Q (R) and we want to construct a new set

preserved by the ode of the form �a,b(C). We then need to check that the
vector Q(�a,b(R)) lies inside the tangent cone of �a,b(C). This is equivalent to
seeing if �−1

a,b(Q(�a,b(R))) lies inside the tangent cone of C. The advantage of
expression (11.62) for Da,b(R) is that it is independent of the Weyl curvature
part RW of R. Furthermore, Da,b(R) may be put into diagonal form and
as we shall see in Corollary 11.29 below, we can compute the eigenvalues of
Da,b(R) : so(n) → so(n) in terms of n, a, b, and the eigenvalues of Rc (R).
This greatly simplifies the task of understanding how R2+R# changes under
the linear map � = �a,b. The above properties of Da,b are key to obtaining
new O(n)-invariant cones and sets in S2

B(so(n)) preserved by the ode from
known ones.

Now we give a simplified expression for Da,b for certain choices of a, b.
By (11.62), if we choose a and b such that

(11.64) (n− 2)b2 = 2(a− b),
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then we have

Da,b(R) = 2aRc∧Rc +2b2 Rc2
0 ∧ id(11.65)

+
σb2

1 + 2(n− 1)a
(
n(1− 2b)− (n− 2)(1− 2b + nb2)

)
I

= 2aRc∧Rc +2b2 Rc2
0 ∧ id(11.66)

+
σb2

1 + 2(n− 1)a
(
−n(n− 2)b2 − 4b + 2

)
I.

Remark 11.28. Note that the roots of the quadratic equation

−n(n− 2)b2 − 4b + 2 = 0

are

b =
−2∓

√
2n(n− 2) + 4

n(n− 2)
.

In particular, −n(n− 2)b2 − 4b + 2 ≥ 0 for b ∈
(

0,

√
2n(n−2)+4−2

n(n−2)

]
.

We end this subsection with a consequence of Theorem 11.27 which gives
the formulas for the eigenvalues of Da,b (R) and Rc (Da,b (R)) in terms of
the eigenvalues of Rc (R).

Corollary 11.29 (Eigenvalues of Da,b and Rc (Da,b)). Let {ei}ni=1 be
an orthonormal basis consisting of the eigenvectors of Rc0 (R) with corre-
sponding eigenvalues λi. Then ei ∧ ej, where i < j, is an eigenvector of
Da,b (R) with eigenvalue

dij =
(
(n− 2)b2 − 2(a− b)

)
λiλj + 2a(λi + λ̄)(λj + λ̄) + b2(λ2

i + λ2
j )

(11.67)

+
σ

1 + 2(n− 1)a
(
nb2(1− 2b)− 2(a− b)(1− 2b + nb2)

)
.

Furthermore, ei is an eigenvector of Rc(Da,b (D)) with eigenvalue

ri = −2bλ2
i + 2a(n− 2)λ̄λi + 2a(n− 1)λ̄2(11.68)

+
σ

1 + 2(n− 1)a
(
n2b2 − 2(n− 1)(a− b)(1− 2b)

)
.

Proof of the corollary. Let ωα � ei ∧ ej . By Remark 11.12, ωα ⊗
ωα is an algebraic curvature operator. From (11.5) we have

Rc2
0 ∧ id =

1
2

∑
i<j

(
λ2

i + λ2
j

)
(ei ⊗ ei) ∧ (ej ⊗ ej)

=
1
2

∑
i<j

(
λ2

i + λ2
j

)
ωα ⊗ ωα.
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Since Rc = Rc0 + λ̄ id, we have

Rc∧Rc =
∑
i,j

(Rc iiei ⊗ ei) ∧ (Rc jjej ⊗ ej) =
∑
i<j

Rc ii Rc jjωα ⊗ ωα

=
∑
i<j

(
λi + λ̄

) (
λj + λ̄

)
ωα ⊗ ωα.

Similarly we have
Rc 0 ∧ Rc 0 =

∑
i<j

λiλjωα ⊗ ωα.

Note also that I =
∑

i<j ωα ⊗ ωα.
Hence, by (11.62) we have, for i < j, that ωα = ei ∧ ej is an eigenvector

of Da,b (D) with eigenvalue dij given by (11.67).
From (11.63) we have

ri = −2bλ2
i + 2(n− 2)aλ̄λi + 2(n− 1)aλ̄2

+
2(n− 1)b + (n− 2)2b2 − 2(n− 1)a(1− 2b)

1 + 2(n− 1)a
σ,

which simplifies to (11.68). �

Remark 11.30. A motivation for considering the relation (11.64), i.e.,
2a = 2b + (n− 2)b2 is that it eliminates a term in (11.67).

4. Proof of the main formula for Da,b(R)

In this section we give a proof of Theorem 11.27. Since the proof is long,
first we give a proof of the theorem modulo the proof of two formulas used
in the proof and then we give a proof of these two formulas. For the sake of
simplifying notation, let D � Da,b and let � � �a,b.

4.1. Proof of Theorem 11.27 assuming formulas (11.78) and
(11.81). We divide the proof of the theorem into three steps. In Step 1
we use (11.78) to reduce the theorem to the case where RW = 0. In Step
2, assuming that RW = 0, we use a consequence of (11.81) to show that
both sides of formula (11.62) have the same projection to 〈W〉. In Step 3,
again assuming RW = 0, we use another consequence of (11.81) to show
that both sides of (11.62) have the same Rc. Formulas (11.78) and (11.81)
will be proved in the next subsection.

Step 1. Reduction of proof of Theorem 11.27 to the case where
RW = 0. We shall prove the following.

Proposition 11.31. The algebraic curvature operator D(R) is indepen-
dent of the Weyl part RW of R ∈ S2

B(so(n)). Equivalently,

D(R + S) = D(R)

for all R ∈ S2
B(so(n)) and S ∈ 〈W〉.
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Note that by replacing R by R−S and S by 2S, proving the proposition
is equivalent to showing that

(11.69) B(R,S) � 1
4

(D(R + S)−D(R− S))

vanishes for all R ∈ S2
B(so(n)) and S ∈ 〈W〉.

The following exercise, which gives a formula for D(R+S)−D(R), will
be used in the proof of the proposition.

Exercise 11.32. Show that for all R,S ∈ S2
B(so(n)),

D(R + S)−D(R)

= �−1
(
�(S)2 + �(R)�(S) + �(S)�(R) + �(S)# + 2�(R)#�(S)

)
(11.70)

− S2 −RS− SR− S# − 2R#S.

Show also that if S ∈ 〈W〉, then the above expression may be rewritten as

D(R + S)−D(R)

= �−1 (�(R)S + S�(R) + 2�(R)#S)−RS− SR− 2R#S

= 2B(R,S).

Hint: By Corollary 11.18, if S ∈ 〈W〉, then S2 + S# ∈ 〈W〉.
From the exercise it is clear that B(R,S) is bilinear in R and S.

Proof of Proposition 11.31. Suppose S ∈ 〈W〉; it suffices to show
that B(R,S) = 0 for each R in any one of the O (n)-irreducible components
of S2

B(so(n)).
(1) B(R,S) = 0 if R ∈ 〈W〉. Since R+S, R−S ∈ 〈W〉, it follows from

(11.61) that

B(R,S) =
1
4

(D(R + S)−D(R− S)) = 0.

(2) B(I,S) = 0. By definition (11.58),

� (I) = (1 + 2(n− 1)a) I �
(
1 + a′

)
I

and by (11.78) and S ∈ 〈W〉,

(11.71) S + S#I = (n− 1)SI +
n− 2

2
SRc0 = 0,

so that

B(I,S) = �−1

(
1
2
(�(I)S + S�(I)) + �(I)#S

)
− 1

2
(IS + SI)− I#S

= �−1

(
1
2
(
(1 + a′)IS + S(1 + a′)I

)
+ (1 + a′)I#S

)
− S− I#S

= (1 + a′)�−1 (S + S#I)− (S + S#I) = 0.
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(3) B(R,S) = 0 for R ∈ 〈Rc0〉. Since

B(R,S) = �−1

(
1
2
(�(R)S + S�(R)) + �(R)#S

)
− 1

2
(RS + SR)−R#S,

it suffices to show that

(11.72) �(RS + SR + 2R#S) = �(R)S + S�(R) + 2�(R)#S

for all R ∈ 〈Rc0〉. This follows from (11.57)18 and the fact that

�(R̃) = (1 + (n− 2)b) R̃ � (1 + b′)R̃

for any R̃ ∈ 〈Rc0〉. The proposition is proved. �

This completes Step 1.

Since D(R) is independent of the Weyl part RW, we only need to prove
formula (11.62) for R = λ̄

n−1I + R0, where R0 � RRc0 ∈ 〈Rc0〉. Moreover,
as for any algebraic curvature operator, it suffices to check that both sides
of (11.62) have the same Rc and the same projection to 〈W〉.

Step 2. Both sides of (11.62) have the same projection to 〈W〉
for R = λ̄

n−1I + R0. First we note that the Weyl part of the lhs of (11.62)
is

(D (R))W =
(
�−1
(
�(R)2 + �(R)#

))
W
− (R2 + R#)W

=
(
�(R)2 + �(R)#

)
W
− (R2 + R#)W

since for any S ∈ S2
B(so(n)) we have

(
�−1 (S)

)
W

= SW. Since RW = 0, by
definition (11.58),

(11.73) �(R) = (1 + 2(n− 1)a)
λ̄

n− 1
I + (1 + (n− 2)b)

2
n− 2

Rc0 ∧ id,

so that

Rc(�(R)) = (1 + 2(n− 1)a)λ̄ id+(1 + (n− 2)b) Rc0.

Therefore

Rc0 (�(R)) = (1 + (n− 2)b) Rc0.

18Note that (11.57) is also a consequence of (11.78).
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Since we have RW = 0 and �(R)W = 0, we can apply (11.36) to conclude
that

(D (R))W =
(
�(R)2 + �(R)#

)
W
− (R2 + R#)W

=
1

n− 2
(Rc0 (�(R)) ∧Rc0 (�(R)))W

− 1
n− 2

(Rc0(R) ∧Rc0(R))W

=
1

n− 2
(
(1 + (n− 2)b)2 − 1

)
(Rc0 ∧ Rc0)W

= ((n− 2)b2 + 2b) (Rc0 ∧ Rc0)W .

On the other hand, since (Rc∧Rc)W = (Rc0 ∧Rc0)W (the operator
id∧A is orthogonal to 〈W〉) and IW = 0, the Weyl part of the right-hand
side of equation (11.62) is((

(n− 2)b2 − 2(a− b)
)
Rc 0 ∧ Rc 0 + 2aRc∧Rc

)
W

=
((

(n− 2)b2 + 2b)
)
Rc 0 ∧ Rc 0

)
W

= DW.

Thus the Weyl part of equation (11.62) holds.

Step 3. Both sides of (11.62) have the same Rc for R = λ̄
n−1I+R0.

For the Rc part of (11.62), we notice that

λ̄(�(R)) = (1 + 2(n− 1)a)λ̄ and σ(�(R)) = (1 + (n− 2)b)2σ,

where λ̄ (R) and σ(R) are defined in (11.47). Hence, by (11.83), we have

Rc(�(R)2 + �(R)#) = − 2
n− 2

(1 + (n− 2)b)2(Rc2
0)0

+
n− 2
n− 1

(1 + 2(n− 1)a)λ̄(1 + (n− 2)b) Rc0(11.74)

+
(
((1 + 2(n− 1)a)λ̄)2 + (1 + (n− 2)b)2σ

)
id

since
Rc0(�(R)) = (1 + (n− 2)b) Rc0(R)

and (
Rc2

0

)
0
(�(R)) = (1 + (n− 2)b)2

(
Rc2

0

)
0
(R).

In particular,

Rc 0(�(R)2 + �(R)#) = − 2
n− 2

(1 + (n− 2)b)2(Rc2
0)0

+
n− 2
n− 1

(1 + 2(n− 1)a)λ̄(1 + (n− 2)b) Rc0.

For any R̃ ∈ S2
B(so(n)),

�−1(R̃) = R̃W +
1

1 + 2(n− 1)a
R̃I +

1
1 + (n− 2)b

R̃Rc0 ,
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which implies

Rc(�−1(R̃)) =
λ̄(R̃)

1 + 2(n− 1)a
id+

1
1 + (n− 2)b

Rc0(R̃)

since Rc
(
R̃I

)
= λ̄(R̃) id and Rc

(
R̃Rc0

)
= Rc0(R̃). Applying this to R̃ =

�(R)2 + �(R)#, we have

Rc(�−1(�(R)2 + �(R)#)) = − 2
n− 2

(1 + (n− 2)b)
(
Rc2

0

)
0

+
n− 2
n− 1

(1 + 2(n− 1)a)λ̄Rc0(11.75)

+
(1 + 2(n− 1)a)2λ̄2 + (1 + (n− 2)b)2σ

1 + 2(n− 1)a
id

since (11.74) implies

λ̄(�(R)2 + �(R)#) =
(
(1 + 2(n− 1)a)λ̄

)2 + (1 + (n− 2)b)2σ.

Combining (11.83) and (11.75), we have

Rc(D (R)) = Rc
(
�−1
(
�(R)2 + �(R)#

))
−Rc

(
R2 + R#

)
= −2b

(
Rc2

0

)
0
+ 2(n− 2)aλ̄Rc0 −

(
λ̄2 + σ

)
id

+
(1 + 2(n− 1)a)2λ̄2 + (1 + (n− 2)b)2σ

1 + 2(n− 1)a
id

= −2b
(
Rc2

0

)
0
+ 2(n− 2)aλ̄Rc0 + 2(n− 1)aλ̄2 id

+
2(n− 2)b + (n− 2)2b2 − 2(n− 1)a

1 + 2(n− 1)a
σ id .

Converting
(
Rc2

0

)
0

to Rc2
0 in the first term and simplifying, formula (11.63)

then follows.
Let E denote the right-hand side of (11.62). We shall show that Rc (E) =

Rc (D (R)), from which Step 3 follows. Indeed, we compute using (11.41),
(11.42), and Rc = Rc0 + λ̄ id,

Rc(E) = −((n− 2)b2 − 2(a− b)) Rc2
0 + 2anλ̄

(
Rc0 + λ̄ id

)
− 2a(Rc2

0 + 2λ̄Rc0 + λ̄2 id) + b2(n− 2) Rc2
0 + b2nσ id(11.76)

+ σ
nb2(1− 2b)− 2(a− b)(1− 2b + nb2)

1 + 2(n− 1)a
(n− 1) id .

By combining terms in (11.76), we obtain

Rc(E) = −((n− 2)b2 − 2(a− b) + 2a− b2(n− 2)) Rc2
0

+ 2a
(
nλ̄− 2λ̄

)
Rc0 +

(
2anλ̄2 − 2aλ̄2 + b2nσ

)
id

+ σ
nb2(1− 2b)− 2(a− b)(1− 2b + nb2)

1 + 2(n− 1)a
(n− 1) id,
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which is the same as (11.63), i.e., Rc (E) = Rc (D (R)). Step 3 and hence
Theorem 11.27 are now proved.

4.2. Two formulas for the decomposition of some algebraic cur-
vature operators. Recall that if A ∈ S2(En), then A ∧ id ∈ S2

B(so(n));
if R ∈ S2

B(so(n)), then Rc(R) ∈ S2(En). As we have seen, the following
identity for Q (R, I) = R+R#I holds a key to the proof of Theorem 11.27.

Lemma 11.33 (Formula for R + R#I). If R ∈ S2
B(so(n)), then

(11.77) R + R#I = Rc(R) ∧ id .

Hence,

(11.78) R + R#I = (n− 1)RI +
n− 2

2
RRc0 .

Remark 11.34. Note that by definition (11.15), Q (R, I) = R + R#I.
The proof we give of the lemma is via a direct calculation. For the original
proof by Böhm and Wilking, see the proof of Lemma 2.1 in [43].

Proof. For the sake of simplicity, we shall denote Rc � Rc(R) and
Rc0 � Rc 0(R). By the identities Rc∧ id =

(
Rc0 +λ̄ id

)
∧ id, RI = λ̄

n−1I,
and RRc0 = 2

n−2 id∧Rc0, the second stated identity in the lemma follows
from the first one. Given an orthonormal basis {ea}, denote rab � Rc(R)ab =
Rc (ea, eb). We have by (11.18),

(Rc∧ id)abcd = 〈(Rc∧ id)(ea ∧ eb), ec ∧ ed〉

=
1
2
〈Rc (ea) ∧ eb + ea ∧ Rc (eb) , ec ∧ ed〉

=
1
2

(racδbd − radδbc + rbdδac − rbcδad) .(11.79)

On the other hand, by (11.13) we have

(R#I)abcd = 〈(R#I) (ea ∧ eb) , ec ∧ ed〉

=
1
2

∑
α,β

〈[R(ωα), ωβ], ea ∧ eb〉〈[ωα, ωβ], ec ∧ ed〉

=
1
8

∑
i,j,s,t

〈[R(ei ∧ ej), es ∧ et], ea ∧ eb〉〈[ei ∧ ej , es ∧ et], ec ∧ ed〉

=
1
16

∑
Rijk�〈[ek ∧ e�, es ∧ et], ea ∧ eb〉〈[ei ∧ ej , es ∧ et], ec ∧ ed〉

=
1
2

(racδbd − radδac + rbdδac − rbcδad)−Rabcd.(11.80)
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We now justify the last equality. From (11.8), we have

Rijk�〈[ek ∧ e�, es ∧ et], ea ∧ eb〉〈[ei ∧ ej , es ∧ et], ec ∧ ed〉
= 4Rijk� (δ�s (δkaδtb − δkbδta) + δkt (δ�aδsb − δ�bδsa))

× (−δjt (δicδsd − δidδsc) + δjs (δicδtd − δidδtc))

= 8Rijk� (δ�s (δkaδtb − δkbδta)− δ�t (δkaδsb − δkbδsa))

× δjs (δicδtd − δidδtc)

= 8Rijk�

(
δ�j (δkaδdb − δkbδda) δic − δ�d (δkaδjb − δkbδja) δic

−δ�j (δkaδcb − δkbδca) δid + δ�c (δkaδjb − δkbδja) δid

)
= 8

(
δdbrca − δdarcb − (Rcbad −Rcabd)
−δcbrda + δcardb + (Rdbac −Rdabc)

)
= 8 (δdbrca − δdarcb − δcbrda + δcardb + 2Rbacd) ,

where we used the first Bianchi identity to obtain the last equality. From
this we obtain (11.80). The lemma follows from combining formulas (11.79)
and (11.80). �

Note that from Step 1 of the proof of Theorem 11.27, we know that D(R)
is independent of RW. We now focus on understanding how the operator
R �→ R2 + R# acts on the orthogonal complement of 〈W〉.

Lemma 11.35 (R2+R# when RW = 0). Let R be an algebraic curvature
operator such that RW = 0. Then

R2 + R# =
1

n− 2
Rc0 ∧Rc0 +

2λ̄

n− 1
Rc0 ∧ id(11.81)

− 2
(n− 2)2

(
Rc2

0

)
0
∧ id+

(
λ̄2

n− 1
+

σ

n− 2

)
I,

where λ̄ = 1
n Scal(R) and σ = 1

n |Rc0|2.

As a consequence, we have the following.

Corollary 11.36 (Weyl component and trace of R2+R# when RW = 0).
If RW = 0, then(

R2 + R#
)
W

=
1

n− 2
(Rc0 ∧ Rc0)W ,(11.82)

Rc(R2 + R#) = − 2
n− 2

(
Rc2

0

)
0
+

n− 2
n− 1

λ̄ Rc0 +
(
λ̄2 + σ

)
id,(11.83)

where Rc2
0 � (Rc0)2.

Proof of the corollary. Since 〈W〉 is orthogonal to id∧ S2(En) (see
(11.44)), the first formula follows directly from (11.81).



4. PROOF OF THE MAIN FORMULA FOR Da,b(R) 101

For the second formula, from (11.81) we can compute Rc(R2 + R#)
using (11.41) and (11.42) as follows:

Rc(R2 + R#)

=
1

n− 2
Rc (Rc0 ∧Rc0) +

2λ̄

n− 1
Rc (Rc0 ∧ id)

− 2
(n− 2)2

Rc
((

Rc2
0

)
0
∧ id

)
+

λ̄2

n− 1
Rc (I) +

σ

n− 2
Rc (I)

= − 1
n− 2

Rc2
0 +

n− 2
n− 1

λ̄Rc0 −
1

n− 2
(
Rc2

0

)
0
+
(

λ̄2 +
n− 1
n− 2

σ

)
id

= − 2
n− 2

(
Rc2

0

)
0
− σ

n− 2
id+

(n− 2)
n− 1

λ̄ Rc0 +
(

λ̄2 +
n− 1
n− 2

σ

)
id

since Rc2
0 =

(
Rc2

0

)
0
+ σ id, which implies (11.83). �

We return to the

Proof of Lemma 11.35. Let R0 � RRc0 = 2
n−2 id∧Rc0. Since RW =

0, we then have

(11.84) R =
λ̄

n− 1
I + R0

and

R2 + R#

= R2
0 +

2λ̄

n− 1
R0 +

(
λ̄

n− 1

)2

I + R#
0 +

2λ̄

n− 1
R0#I +

(
λ̄

n− 1

)2

I#I

= R2
0 + R#

0 +
2λ̄

n− 1
(R0 + R0#I) +

(
λ̄

n− 1

)2

(I + I#I) .

Observe that by (11.42),

Rc(R0) =
2

n− 2
Rc (Rc0 ∧ id) = Rc0

and
Rc(I) = (n− 1) id,

so that by (11.77) we have

R2 + R# = R2
0 + R#

0 +
2λ̄

n− 1
Rc0 ∧ id+

λ̄2

n− 1
id∧ id .

Comparing this with (11.81), we see that to prove the lemma it suffices to
show that

(11.85) R2
0 + R#

0 =
1

n− 2
Rc0 ∧ Rc0 −

2
(n− 2)2

(
Rc2

0

)
0
∧ id+

σ

n− 2
I.

The rest of the proof is devoted to establishing this equation by a direct
calculation.
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Choose an orthonormal basis {ei}ni=1 of eigenvectors of Rc0 with corre-
sponding eigenvalues {λi}ni=1. It is easy to see that(

1
n− 2

Rc0 ∧Rc0

)
(ei ∧ ej) =

λiλj

n− 2
ei ∧ ej

and (
Rc2

0

)
(ei) = λ2

i ei,(
Rc2

0

)
0
(ei) =

(
λ2

i − σ
)
ei,

so that

− 2
(n− 2)2

((
Rc2

0

)
0
∧ id

)
(ei ∧ ej) = −

λ2
i + λ2

j − 2σ

(n− 2)2
ei ∧ ej .

Combining these formulas, we have(
1

n− 2
Rc0 ∧ Rc0 −

2
(n− 2)2

(
Rc2

0

)
0
∧ id+

σ

n− 2
I
)

(ei ∧ ej)

=

(
λiλj

n− 2
+

nσ − λ2
i − λ2

j

(n− 2)2

)
ei ∧ ej .

Thus, to prove (11.85), we need to show that

(11.86)
(
R2

0 + R#
0

)
(ei ∧ ej) =

(
λiλj

n− 2
+

nσ − λ2
i − λ2

j

(n− 2)2

)
ei ∧ ej.

First,

R0(ei ∧ ej) =
2

n− 2
(id∧Rc0) (ei ∧ ej) =

λi + λj

n− 2
ei ∧ ej ,

so that

(11.87) R2
0(ei ∧ ej) =

(
λi + λj

n− 2

)2

ei ∧ ej.

As in the proof of Lemma 11.33, using equations (11.13), (11.7), and (11.8),
we compute

〈(R0#R0)(ea ∧ eb), ec ∧ ed〉

=
1
2

∑
α,β

〈[R0(ωα),R0(ωβ)], ea ∧ eb〉〈[ωα, ωβ], ec ∧ ed〉

=
1
8

∑
i	=j, p	=q

λi + λj

n− 2
λp + λq

n− 2
〈[ei ∧ ej , ep ∧ eq], ea ∧ eb〉

× 〈[ei ∧ ej , ep ∧ eq], ec ∧ ed〉

=
∑
j 	=a,b

λa + λj

n− 2
λj + λb

n− 2
〈ea ∧ eb, ec ∧ ed〉.
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We then have

(11.88) (R0#R0)(ea ∧ eb) =
∑
j 	=a,b

λa + λj

n− 2
λj + λb

n− 2
ea ∧ eb.

Combining (11.87) and (11.88), we have

(
R2

0 + R#
0

)
(ei ∧ ej) =

⎛⎝(λi + λj

n− 2

)2

+
∑
k 	=i,j

λi + λk

n− 2
λk + λj

n− 2

⎞⎠ ei ∧ ej

=

(
λiλj

n− 2
+

nσ − λ2
i − λ2

j

(n− 2)2

)
ei ∧ ej ,

which proves (11.86) and the equivalent (11.85); to obtain the second equal-
ity above, we used the fact that

∑
k 	=i,j

λk = −λi − λj and
∑
k 	=i,j

λ2
k = nσ − λ2

i − λ2
j

(since
∑n

k=1 λk = 0) implies

(
λi + λj

n− 2

)2

+
∑
k 	=i,j

λi + λk

n− 2
λk + λj

n− 2

=
1

(n− 2)2
(
(λi + λj)

2 + (n− 2) λiλj + λk (λi + λj) + λ2
k

)
=

1
(n− 2)2

(
(n− 2) λiλj + nσ − λ2

i − λ2
j

)
.

The lemma is proved. �

4.3. Theorem 11.27 revisited. Equation (11.63) in Theorem 11.27
is rather remarkable and the result hinges on Lemma 11.33. The following
alternate proof shows how to determine the expression on the right-hand side
of (11.63). Recall that Q(R) = R2 +R#; for simplicity we let α � 2(n−1)a
and β � (n− 2)b, so that by (11.73),

�(R) = (1 + α)
λ̄

n− 1
I + (1 + β)R0.
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By a direct calculation and Lemma 11.33,

D(R) = �−1

((
(1 + α)

λ̄

n− 1
I + (1 + β)R0

)2
)(11.89)

+ �−1

((
(1 + α)

λ̄

n− 1
I + (1 + β)R0

)#
)
−Q(R)

= �−1

((
(1 + α)

λ̄

n− 1

)2 (
I2 + I#I

)
+ (1 + β)2

(
R2

0 + R#
0

))

+ �−1

(
2(1 + α)(1 + β)

λ̄

n− 1
(R0 + I#R0)

)
−Q(R)

= �−1

(
(1 + α)2λ̄2

n− 1
I + (1 + β)2Q(R0) +

2(1 + α)(1 + β)λ̄
n− 1

Rc0 ∧ id
)

−Q(R)

since I2 + I#I = (n− 1)I and R0 + I#R0 = n−2
2 R0 = Rc0 ∧ id.

On the other hand, recall from (11.85) that

Q(R0) = R2
0 + R#

0

=
1

n− 2
Rc0 ∧Rc0 −

2
(n− 2)2

(
Rc2

0

)
0
∧ id+

σ

n− 2
I.

By the curvature decomposition formula and (11.43), we have

(11.90) Rc0 ∧ Rc0 = − σ

n− 1
I− 2

n− 2
(
Rc2

0

)
0
∧ id+ (Rc0 ∧ Rc0)W ,

so that Q(R0) may be rewritten as

Q(R0) =
σ

n− 1
I− 4

(n− 2)2
(
Rc2

0

)
0
∧ id+

1
n− 2

(Rc0 ∧ Rc0)W .

Thus, by (11.89) and

�−1(R) =
1

1 + α

λ̄

n− 1
I +

1
1 + β

R0,
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we have

D(R) =
(1 + α)2λ̄2

n− 1
�−1 (I) +

2(1 + α)(1 + β)λ̄
n− 1

�−1 (Rc0 ∧ id)

−Q(R) + (1 + β)2�−1 (Q(R0))

=
(1 + α)λ̄2

n− 1
I +

2(1 + α)λ̄
n− 1

Rc0 ∧ id− 1
n− 2

Rc0 ∧ Rc0

− 2λ̄

n− 1
Rc0 ∧ id+

2
(n− 2)2

(
Rc2

0

)
0
∧ id−

(
λ̄2

n− 1
+

σ

n− 2

)
I

+
(1 + β)2

1 + α

σ

n− 1
I− 4(1 + β)

(n− 2)2
(
Rc2

0

)
0
∧ id+

(1 + β)2

n− 2
(Rc0 ∧ Rc0)W .

Simplifying this expression for D(R) and applying (11.51) to get

(Rc0 ∧Rc0)W = Rc0 ∧ Rc0 +
σ

n− 1
I +

2
n− 2

(Rc2
0)0 ∧ id,

we obtain

D(R) =
αλ̄2

n− 1
I +

2αλ̄

n− 1
Rc0 ∧ id+

(
(1 + β)2

1 + α
− 1 +

2β + β2

n− 2

)
σ

n− 1
I

+
2β + β2

n− 2
Rc0 ∧Rc0 +

2β2

(n− 2)2
(Rc2

0)0 ∧ id .

Noticing that the first two terms may be rewritten as

α

n− 1
(Rc∧Rc−Rc0 ∧ Rc0) ,

we then have (while substituting a and b back into α and β)

D(R) = 2aRc∧Rc+
(
(n− 2)b2 + 2b− 2a

)
Rc0 ∧Rc0 + 2b2(Rc2

0)0 ∧ id

+
(

(1 + (n− 2)b)2

1 + 2(n− 1)a
− 1 + b (2 + (n− 2)b)

)
σ

n− 1
I.

Noting that (Rc2
0)0 = Rc2

0 − σ id and tr(Rc2
0) = nσ, we obtain (11.62) in

Theorem 11.27.

5. The convex cone of 2-nonnegative algebraic curvature
operators

In this section we discuss various properties of the curvature operator
condition of 2-nonnegativity. We show that the convex cone of 2-nonnegative
algebraic curvature operators is preserved by the ode. Then we show that a
family of O(n)-invariant linear transformations of this cone is also preserved
by the ode. This is the main result of this section.
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5.1. Definition and properties of 2-nonnegative curvature oper-
ator. Analogous to the definition of positive Riemann curvature operator,
we say that an algebraic curvature operator R ∈ S2

B(so(n)) is nonnegative
(positive) if the eigenvalues of R are all nonnegative (positive). Next we
consider the following notion, which was first studied in the context of Ricci
flow by H. Chen [112] (compare with Definition 11.1).

Definition 11.37 (2-nonnegative curvature operator). We say that an
algebraic curvature operator R ∈ S2

B(so(n)) is 2-nonnegative if

µα + µβ ≥ 0

for any α �= β, where {µγ}Nγ=1, N � n(n−1)
2 , denote the eigenvalues of R.

We say that R is 2-positive if the inequality above is strict.

Clearly this condition only makes sense when n ≥ 3. When n = 3, the
condition of 2-nonnegativity is equivalent to the Ricci curvature Rc (R) be-
ing nonnegative. The cone C of 2-nonnegative algebraic curvature operators
is an O (n)-invariant convex cone.

Another curvature condition related to 2-nonnegativity is the following.

Definition 11.38. We say that an algebraic curvature operator R is
a nonnegative curvature operator of rank 1 if R = ω ⊗ ω for some
ω ∈ Λ2

E
n. An algebraic curvature operator is called geometrically non-

negative if it can be written as the linear combination, with positive coef-
ficients, of nonnegative curvature operators of rank 1.

If R is geometrically nonnegative, then R =
∑

α cαηα⊗ηα, where cα > 0.
Thus, for any 2-form ξ we have

R (ξ, ξ) =
∑
α

cα (ηα (ξ))2 ≥ 0,

so that R is a nonnegative curvature operator.
Note that if ω ⊗ ω is an algebraic curvature operator, then the first

Bianchi identity implies ω ∧ ω = 0 and hence there exist v, w ∈ E
n such

that19

ω = v ∧ w.

19Indeed, the first Bianchi identity applied to ω ∧ ω implies

(ω ∧ ω)ijk� =
1

3
(ωijωk� + ωkiωj� + ωjkωi�) = 0.

We may prove, by induction on n, that ω ∧ ω = 0 implies there exist v, w ∈ R
n such that

ω = v ∧ w. The result is clearly true for n = 1, 2. Now suppose the result is true for
dimension n − 1, where n ≥ 4. Let {ei}n

i=1 be a basis for R
n. We may write

ω = e1 ∧ x + η,

where x =
P

i≥2 xiei and η =
P

i,j≥2 ηijei ∧ ej . From ω ∧ ω = 0 we find that

e1 ∧ x ∧ η = 0 and η ∧ η = 0.

By our induction assumption, η = y ∧ z, where y =
P

i≥2 yiei and z =
P

i≥2 ziei. Now
since n ≥ 3, e1 ∧ x ∧ η = 0 implies x ∧ y ∧ z = 0, so that the vectors x, y, z are linearly
dependent. Without loss of generality, we may assume that x = c1y + c2z for some
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Note also that the Riemann curvature operator of S
2×R

n−2 is a nonnegative
curvature operator of rank 1.

We have the following properties of 2-nonnegative algebraic curvature
operators R.

Lemma 11.39. If an algebraic curvature operator R is 2-nonnegative,
then we have the following.

(i) If we order the eigenvalues of R so that µ1 ≤ · · · ≤ µN , then the
eigenvalues µβ are nonnegative for β ≥ 2 and

(11.91) µ1 ≥ −µ2 ≥ −
trace(R)
N − 2

= − 2 trace(R)
n(n− 1)− 4

.

(ii) The scalar curvature Scal (R) is nonnegative, with equality if and
only if R = 0.

(iii) The Ricci curvature Rc (R) is nonnegative.
Moreover, the cone C of 2-nonnegative curvature operators contains the cone
of geometrically nonnegative operators.

Proof. (i) Let {ω̃α}Nα=1 be an orthonormal basis for so(n) which satis-
fies R (ω̃α) = µαω̃α. Since R is 2-nonnegative, µα + µβ ≥ 0 for any α �= β.
Hence µα ≥ 0 for α ≥ 2 and the only possible negative eigenvalue is µ1.
Since

trace(R) =
N∑

α=1

µα ≥
∑
α≥3

µα ≥ (N − 2)µ3,

formula (11.91) follows.
(ii) Let {ωα}Nα=1 � {ei ∧ ej}i<j be an orthonormal basis for so(n), where

each α corresponds to a pair (i, j) with i < j. From definition (11.39) we
have

Scal(R) =
∑
i,j

Rijij =
∑
α

Rαα.

On the other hand, since R is 2-nonnegative,

0 ≤
∑
α 	=β

(Rαα + Rββ) = (N − 1) Scal(R).

Hence, if Scal(R) = 0, then Rαα + Rββ = 0 for all pairs (α, β) with α �= β,
which implies that Rαα = 0 for all α, i.e., R = 0.

(iii) From definition (11.38) we have

Rc(R)ii =
∑
k 	=i

〈R(ei ∧ ek), ei ∧ ek〉 =
∑
β∈B
〈R(ωβ), ωβ〉,

c1, c2 ∈ R. We conclude

ω = (y + c2e1) ∧ (z − c1e1) � v ∧ w.
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where

B � {(1, i), (2, i) , . . . , (i− 1, i), (i, i + 1), (i, i + 2) , . . . , (i, n)}.

Since R is 2-nonnegative, Rαα + Rββ ≥ 0 for any α �= β and Rγγ < 0 for
at most one γ ∈ {1, . . . , N}. This is enough to conclude that Rc(R)ii ≥ 0
for any orthonormal basis {ej}nj=1. In fact,

Rc(R)ii ≥ inf
{ηk}

n−1∑
k=1

〈R(ηk), ηk〉 ≥ µ1 + µ2 + · · ·+ µn−1,

where the infimum on the right-hand side is taken over all orthonormal
bases {ηk}n−1

k=1 for span {ωβ : β ∈ B} and where µ1 ≤ µ2 ≤ · · · ≤ µN are the
ordered eigenvalues of R. Hence we have

(11.92) Rc(R)ii ≥ (n− 3)µ3 ≥ (n− 3)|µ1|,

which completes the proof of (iii).
Finally, the last statement in the lemma is clear since the cone of non-

negative curvature operators contains the cone of geometrically nonnegative
operators. �

The next lemma gives a relation between the algebraic curvature oper-
ator Da,b (R) and the cone of geometrically nonnegative operators.

Lemma 11.40.

(i) Suppose that A ∈ S2 (En) is a nonnegative symmetric 2-tensor, let
A0 denote the trace-free part of A, and let A2

0 � (A0)2. Then the
algebraic curvature operators A∧A, A2

0∧ id, and I are all contained
in the cone of geometrically nonnegative operators.

(ii) Suppose that the algebraic curvature operator R has nonnegative

Ricci curvature. If constants a, b ∈ [0,

√
2n(n−2)+4)−2

n(n−2) ] satisfy the
relation (11.64), then the algebraic curvature operator Da,b (R) lies
in the cone of geometrically nonnegative operators.

Proof. (i) Let {λi}ni=1 be the eigenvalues of A0 and let {ei}ni=1 be an
orthonormal basis of E

n satisfying A0 (ei) = λiei. Then A (ei) = λ̄ + λi,
where λ̄ � tr(A)

n . By Lemma 11.13, A ∧ A, A ∧ id, and A2
0 ∧ id belong to
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S2
B(so(n)). Letting ωα � ei ∧ ej , we compute using (11.5) that

A ∧A =
∑
i,j

((
λ̄ + λi

)
ei ⊗ ei

)
∧
((

λ̄ + λj

)
ej ⊗ ej

)
(11.93)

=
∑
i<j

(
λ̄ + λi

) (
λ̄ + λj

)
ωα ⊗ ωα,

A∧ id =
1
2

∑
i<j

(λi + λj) (ei ∧ ej)⊗ (ei ∧ ej)(11.94)

=
1
2

∑
i<j

(λi + λj)ωα ⊗ ωα

and

A2
0 ∧ id =

1
2

∑
i<j

(
λ2

i + λ2
j

)
(ei ∧ ej)⊗ (ei ∧ ej) =

1
2

∑
i<j

(
λ2

i + λ2
j

)
ωα ⊗ ωα.

Hence both A ∧ A and A2
0 ∧ id are contained in the cone of geometrically

nonnegative operators since λ̄+λi ≥ 0. Since I =
∑

i<j(ei∧ej)⊗(ei∧ej), we
know that I also belongs to the cone of geometrically nonnegative operators.

(ii) This follows easily from (i), which shows that each of the terms in
(11.66) is geometrically nonnegative. �

Remark 11.41. Note that as a special case of the lemma we have that

Rc∧Rc =
∑
i<j

Rc ii Rc jjωα ⊗ ωα,

Rc2
0 ∧ id =

1
2

∑
i<j

(
λ2

i + λ2
j

)
(ei ∧ ej)⊗ (ei ∧ ej)

are contained in the cone of geometrically nonnegative operators provided
Rc ≥ 0.

The O (n)-invariant convex cone C is preserved by the ode
d
dtR =

Q (R).

Proposition 11.42 (2-nonnegativity is preserved by the ode). The con-
vex cone C of 2-nonnegative algebraic curvature operators is preserved by the
ode

d
dtR = R2 + R#.20

Proof. We only need to show that R2+R# lies inside the tangent cone
of the convex cone C for R ∈ ∂C. Let {ωα}Nα=1 be an orthonormal basis of
eigenvectors of R in so(n) with corresponding eigenvalues µ1 ≤ µ2 ≤ · · · ≤
µN . Given S ∈ S2

B(so(n)), let Sαβ � S (ωα, ωβ). If R ∈ ∂C, then a vector
S at the point R lies in the tangent cone of C if Sαα + Sββ ≥ 0 for all α, β
with α < β such that Rαα + Rββ = 0.

20By the proof it is clear that the same result holds on S2(so(n)) (i.e., if we do not
assume that R satisfies the Bianchi identity).
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If R has nonnegative curvature operator, then R2+R# has nonnegative
curvature operator and we are done. Otherwise, since the eigenvalues of R
are ordered, the set of all pairs (α, β) with α < β and Rαα + Rββ = 0 is
equal to {(1, 2) , . . . , (1, k)} for some k ≥ 2 and we have −R11 = R22 =
· · · = Rkk > 0. We then have for 2 ≤ α ≤ k,
(11.95)

(R2 + R#)11 + (R2 + R#)αα = µ2
1 + µ2

α + 2
∑
β<γ

((
cβγ
1

)2
+
(
cβγ
α

)2
)

µβµγ .

Since µ1 + µ2 ≥ 0, we have µγ > 0 for all γ ≥ 2. Hence for 2 ≤ α ≤ k,∑
β<γ

((
cβγ
1

)2
+
(
cβγ
α

)2
)

µβµγ

=
∑

2≤β<γ

(
cβγ
1

)2
µβµγ +

∑
1≤β<γ

(
cβγ
α

)2
µβµγ

≥
∑
γ>α

(cαγ
1 )2 µαµγ +

∑
2≤β<α

(
cβα
1

)2
µβµα +

∑
γ≥2

(
c1γ
α

)2
µ1µγ

=
∑
γ≥2

(cαγ
1 )2 (µα + µ1)µγ

≥ 0,(11.96)

where we used c1γ
1 = cαα

1 = 0. Therefore (R2 + R#)11 + (R2 + R#)αα ≥ 0
for 2 ≤ α ≤ k, i.e., R2 + R# lies in the tangent cone of C; the proposition
follows.21 �

Exercise 11.43. Show that if R ∈ ∂C, then the cone of geometrically
nonnegative operators lies in the tangent cone of C at R.

Hint: See the proof of Proposition 11.42.

5.2. Ricci flow preserves 2-nonnegative curvature operator. Us-
ing Hamilton’s weak and strong maximum principles for Rm, one can prove
the following two results concerning the 2-nonnegativity of Rm (see H. Chen
[112] for the consequence of the weak maximum principle on closed man-
ifolds and see B. Wu and one of the authors [391] for the complete non-
compact with bounded curvature case). The weak maximum principle for
systems tells us the following.

Let C0 ⊂ S2
B(so(n)) be an O (n)-invariant closed convex set of algebraic

curvature operators. Using the identification of (TMx, g) with E
n for x ∈

M, we can define a closed convex set K ⊂ V � Sym2
(
Λ2T ∗M

)
(which is

invariant under parallel translation and independent of time) by

C0 = Kx ⊂ Sym 2
(
Λ2T ∗

xM
)

= S2(so(n))

21In the proof we actually have µ1 + µ2 = 0 and µα + µ1 = 0 .
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for all x ∈ M. In the remainder of this chapter we shall call K the subset
of V corresponding to C0.

Proposition 11.44 (Weak maximum principle and 2-nonnegativity). If
(Mn, g(t)) is a complete solution to the Ricci flow with bounded curvature
such that the curvature operator Rm(g(0)) is 2-nonnegative, then for any
t ≥ 0 the curvature operator Rm(g(t)) is 2-nonnegative.

Proof. Recall that by using Uhlenbeck’s trick, the evolution equation
for the curvature operator Rm is

(11.97)
∂

∂t
Rm−∆ Rm = Rm2 +Rm# .

By Proposition 11.42 the convex cone C of 2-nonnegative operators R ∈
S2(so(n)) is preserved by the ode corresponding to the pde (11.97). LetK ⊂
V = Sym2

(
Λ2T ∗M

)
be the corresponding set of 2-nonnegative operators on

M (which is invariant under parallel translation and independent of time).
By the weak maximum principle for systems, i.e., Theorem 10.13 when M
is closed and Theorem 12.34 in the next chapter when M is noncompact,
we conclude that if Rm(g(0)) ⊂ K, then Rm(g(t)) ⊂ K, i.e., Rm(g(t)) is
2-nonnegative for t ≥ 0. �

The strong maximum principle for systems implies the following.

Proposition 11.45 (Strong maximum principle and 2-nonnegativity).
Let (Mn, g(t)) be a complete solution to the Ricci flow with bounded curva-
ture such that Rm(g(0)) is 2-nonnegative.

(1) Then for any t > 0 the curvature operator Rm(g(t)) is either non-
negative or 2-positive.

(2) If in addition g (0) has 2-positive curvature operator at some point
in M, then g (t) has 2-positive curvature operator everywhere for
t > 0.

Remark 11.46. In the proof below of part (2) we are essentially proving
a special case of the strong maximum principle for systems (for a more
general version, see Proposition 12.47 and Proposition 12.49 in Chapter
12).22

Proof. First recall that by Proposition 11.44 we have

µ1 (Rm(g (t))) + µ2 (Rm (g (t))) ≥ 0

for all t ≥ 0. We prove the parts of the proposition in reverse order.
(2) Let x0 ∈ M be a point such that (µ1 + µ2) Rm(x0, 0) > 0. Given

any point y ∈ M, let Ω ⊂ M be a connected open set such that Ω̄ is a
compact manifold with smooth boundary and Ω contains both x0 and y.
Let ϕ1 to be a smooth nonnegative function satisfying

ϕ1(x) ≤ 1
2

(µ1 + µ2) Rm (x, 0)

22The reader may wish to first read the proof of Proposition 12.47.
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for all x ∈ Ω̄, ϕ1(x0) ≥ 1
4 (µ1 + µ2) Rm(x0, 0) > 0, and ϕ1 = 0 on ∂Ω.

Given a large constant A > 0 to be chosen later, there exists a solution
f : Ω̄× [0, T )→ R of

∂f

∂t
= ∆f −Af

with f(x, 0) = ϕ1(x) and f |∂Ω×[0,T ] = 0. By the strong maximum principle
for scalars (Theorem 12.40), we have f (x, t) > 0 on Ω× (0, T ]. By the weak
maximum principle we have

f (x, t) ≤ 1
2

sup
x∈Ω̄

(µ1 + µ2) Rm (x, 0) on Ω̄× [0, T ] .

Define

Rm (x, t) � Rm (x, t) +
(
εeAt − f (x, t)

)
id Λ2 (x) ,

where ε > 0. For A sufficiently large we have that for ε ∈ (0, e−AT ],

∂

∂t
Rm > ∆Rm + Rm2 + Rm#

.

This implies that Rm is 2-positive on Ω̄ × [0, T ] for any ε ∈ (0, e−AT ] (we
leave this as an exercise for the reader). Taking the limit as ε → 0, we
conclude that Rm−f id Λ2 is 2-nonnegative on Ω̄× [0, T ]. Since f(y, t) > 0,
this implies that Rm is 2-positive at (y, t). This completes the proof of part
(2).

(1) By part (2), if g (t1) is 2-nonnegative everywhere inM and 2-positive
at a point in M, then g (t) is 2-positive everywhere for t > t1. Hence, if for
some t0 > 0 we have µ1 (Rm(g (t0))) + µ2 (Rm(g (t0))) = 0 at some point
(i.e., if Rm(g(t0)) is not 2-positive for some t0 > 0), then

µ1 (Rm(g (t))) + µ2 (Rm (g (t))) = 0

everywhere for t < t0 (which by continuity implies the same for t = t0). We
claim that

µ1 (Rm(g (t))) = µ2 (Rm (g (t))) = 0

everywhere for t ≤ t0. (The theorem then follows since this implies that
Rm ≥ 0 on M× [0, t0], which in turn implies Rm(g (t)) ≥ 0 for all t ≥ 0
since Rm ≥ 0 is preserved under the Ricci flow.)

To prove the claim, consider any (x2, t2) ∈M× (0, t0] and let ω1 and ω2

be unit 2-forms at (x2, t2) which are eigenvectors for Rm (g (x2, t2)) corre-
sponding to µ1 (Rm) and µ2 (Rm), respectively. Parallel translate ω1 and ω2

along geodesics emanating from x2 with respect to g (t2) to define ω1 and ω2

in a space-time neighborhood of (x2, t2), where ω1 and ω2 are independent
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of time. We have at (x2, t2)

0 ≥ ∂

∂t
(Rm(ω1, ω1) + Rm(ω2, ω2))

=
(

∂

∂t
Rm
)

(ω1, ω1) +
(

∂

∂t
Rm
)

(ω2, ω2)

=
(
∆ Rm + Rm2 +Rm#

)
(ω1, ω1)

+
(
∆ Rm+Rm2 +Rm#

)
(ω2, ω2)

= ∆ (Rm (ω1, ω1) + Rm (ω2, ω2))

+ µ1 (Rm)2 + µ2 (Rm)2

+
(
Rm#

)
(ω1, ω1) +

(
Rm#

)
(ω2, ω2)

≥ µ1 (Rm)2 + µ2 (Rm)2 ,

where to obtain the last inequality we used (11.96) with R replaced by Rm
and we used the fact that Rm (ω1, ω1)+Rm (ω2, ω2) ≥ 0 while at (x2, t2) we
have = 0. Hence

µ1 (Rm (g (x2, t2))) = µ2 (Rm(g (x2, t2))) = 0.

�

5.3. Invariance under the ODE of �a,b(C). The following is the main
result of this section. This result establishes a 1-parameter family of O (n)-
invariant closed convex cones preserved by the ode starting with the cone
of 2-nonnegative algebraic curvature operators and ending with a cone con-
tained in the cone of positive algebraic curvature operators.

Proposition 11.47 (�a,b of the cone of 2-nonnegative operators is pre-
served by the ode). Let C denote the cone of 2-nonnegative curvature oper-

ators and let b̄ �
√

2n(n−2)+4−2

n(n−2) . Assume n ≥ 4,

(11.98) b ∈
[
0, b̄
]
, and 2a = 2b + (n− 2)b2.

Then we have the following.

(i) �a,b(C) is preserved by the ode
d
dtR = R2 + R#.

(ii) If in addition b > 0, then the vector field R2 + R# is transverse to
the boundary of �a,b(C) at points where R �= 0.

(iii) The cone �a,b̄(C \ {0}) lies inside the cone of positive curvature
operators. Note that �0,0(C) = C.

Remark 11.48. Regarding the b = 0 case in relation to part (ii), note
that it is easy to see that Q (R) = R2 + R# is not in general transverse to
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∂C. For example, when n = 3, if

R =

⎛⎝ 1 0 0
0 0 0
0 0 0

⎞⎠ ,

then Q (R) = R, which is not transverse to ∂C.

Proof. We again adopt the convention of omitting the subscripts a, b
of �a,b, Da,b, and Xa,b.

(i) By Lemma 11.26, in order to show that �(C) is preserved by the ode,
we need to show that for any R ∈ ∂C the vector

X (R) = �−1(�(R)2 + �(R)#) = R2 + R# + D(R)

is contained in the tangent cone of C. Since, by Proposition 11.42, R2 +R#

lies inside the tangent cone of C, it suffices to show that D(R) also lies in-
side the tangent cone of C. However this is true for the following reasons.
It follows from Lemma 11.40(ii) that D (R) lies in the cone of geometri-
cally nonnegative operators.23 By Exercise 11.43, D (R) is contained in the
tangent cone of C.

(ii) First observe that R2 +R# being transverse to the boundary of �(C)
is equivalent to

X (R) = R2 + R# + D (R)
being transverse to ∂C. We have R2 + R# is contained in the tangent cone
of C. Thus, to show that X (R) is transverse to ∂C, it suffices to show that
D(R) is a positive curvature operator.

Recall that by (11.66),

D(R) = 2aRc∧Rc +2b2 Rc2
0 ∧ id

+
σb2

1 + 2(n− 1)a
(
−n(n− 2)b2 − 4b + 2

)
I,

where σ = 1
n‖Rc 0(R)‖2.24 We first assume that 0 < b < b̄ so that

−n(n− 2)b2 − 4b + 2 > 0.

Case 1. σ > 0. Then D(R) is a positive curvature operator since
2aRc∧Rc and 2b2 Rc2

0 ∧ id are nonnegative and the coefficient in front of I
is positive. This implies X (R) is transverse to ∂C.

Case 2. σ = 0. Then Rc0 = 0, so that Rc = 1
n Scal · id > 0 since R �= 0

implies Scal > 0. Hence

D(R) = 2aRc∧Rc =
2a

n2
(Scal)2 id∧ id

is a positive curvature operator.
Hence X (R) is transverse to ∂C when b < b̄.

23Hence D(R) lies in the cone of nonnegative curvature operators.
24Note that D(R) is geometrically nonnegative.
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Now we consider the case where b = b̄. In this case, by part (iii) of
the present proposition (whose proof is independent of part (ii)), we have
�a,b̄(R) is a positive curvature operator since R �= 0. This implies

Xa,b̄ (R) = �−1
a,b̄

(�a,b̄(R)2 + �a,b̄(R)#)

is a positive curvature operator and hence transverse to ∂C.
(iii) Finally we show that �a,b(R) is a positive algebraic curvature oper-

ator when R �≡ 0 and b takes the end value b̄. We divide the proof of this
statement into two cases. Let µ1 be the smallest eigenvalue of R. Recall

�a,b̄(R) = R + 2(a− b̄)λ̄I + 2b̄ Rc∧ id .

Case (iii-a). Suppose µ1 ≥ 0. Then

�a,b̄(R) > 0

since a > b̄, b̄ > 0, and Rc∧ id is nonnegative.
Case (iii-b). Suppose µ1 < 0. Let µ1(R̃) denote the smallest eigenvalue

of the algebraic curvature operator R̃. From formula (11.92) we have Rc ≥
(n− 3) |µ1|. Hence from (11.94) we have µ1 (Rc∧ id) ≥ (n− 3) |µ1|. Now
we have

µ1(�a,b̄(R)) > µ1 + 2(a− b̄)λ̄ + 2b̄(n− 3)|µ1|
≥ µ1 + 2b̄|µ1|+ 2(a− b̄)λ̄

= (2b̄− 1)|µ1|+ (n− 2)b̄2 2 trace(R)
n

,

where here we have used that n ≥ 4 and λ̄ = Scal(R)
n = 2 trace(R)

n . By ele-
mentary computations we have b̄ <

√
2√

n(n−2)
≤ 1

2 . We may further estimate

using (11.91) that

µ1(�a,b̄(R)) > −(1− 2b̄)
2 trace(R)

n(n− 1)− 4
+ (n− 2)b̄2 2 trace(R)

n

=
(

2
n2
− 1

n(n− 1)− 4

)
(1− 2b̄)2 trace(R)

since
(
n(n− 2)b̄ + 2

)2 = 2n(n−2)+4, so that 2(1−2b̄) = n(n−2)b̄2. That
�a,b̄(R) is a positive algebraic curvature operator now follows from the fact
that 2

n2 − 1
n(n−1)−4 ≥ 0 if n ≥ 4. �

Problem 11.49. Determine a larger set of values of a and b for which
the sets �a,b(C), where C is the cone of 2-nonnegative curvature operators,
are preserved by the ode.
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6. A pinching family of convex cones in the space of algebraic
curvature operators

In this section we show that there exists a continuously changing 1-
parameter family of closed convex cones in the space of algebraic curvature
operators which are preserved by the ode

d
dtR = R2 + R# and which

join the cone of 2-nonnegative curvature operators to the half-line R+I.
(See Corollary 11.52 below, which hinges on Theorem 11.51 below.) The
geometric significance of R+I is that since it is the set of positive multiples
of the identity operator, it corresponds to Riemannian metrics with constant
positive sectional curvature.

In this section we again let b̄ �
√

2n(n−2)+4−2

n(n−2) be the end value and let
C be the cone of 2-nonnegative curvature operators.

6.1. Definition of two pinching families of convex cones. The
following generalizes a notion of Hamilton used to prove his convergence
theorem for closed 3-manifolds with positive Ricci curvature.

Definition 11.50 (Pinching family of convex cones). We call a contin-
uous family C(s) ⊂ S2

B(so(n)), s ∈ [0, 1), of top-dimensional closed convex
cones a pinching family (with respect to the ode

d
dtR = R2 + R#) if

(1) C(s) is O (n)-invariant for every s ∈ [0, 1);
(2) each R ∈ C(s) \ {0} has positive scalar curvature;
(3) R2 + R# lies in the interior of the tangent cone of C(s) at R for

all R ∈ C(s) \ {0} and s ∈ (0, 1);
(4) the cones C(s) converge in the pointed Hausdorff topology to the

1-dimensional cone R+I as s → 1 (where the base points are the
origin).25

The following is the main result of Böhm and Wilking [43].

Theorem 11.51 (Existence of a pinching family of convex cones). There
exists a pinching family {C♠(s)}s∈[0,1) of closed convex cones so that C♠(0)
is the cone of nonnegative curvature operators.

We first show how to obtain, from the theorem, a pinching family start-
ing at the cone of 2-nonnegative curvature operators. For this purpose, in
view of (11.98), let

a0 (b) � b +
n− 2

2
b2

and note that the intersection of two O (n)-invariant closed convex cones is
also an O (n)-invariant closed convex cone.26 By Proposition 11.47, �a0(b̄),b̄(C)
is an O (n)-invariant closed convex cone preserved by the ode and contained

25For the definition of pointed Hausdorff convergence see [54] for example.
26Note that if a = a0 (b), then a and b are related as in (11.98) of Proposition 11.47.
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in the cone of nonnegative curvature operators. We define for s ∈ [0, 1) the
family of O (n)-invariant closed convex cones

(11.99) C♥(s) � C♠(s) ∩ �a0(b̄),b̄(C),

where the sets C♠ (s) are given by Theorem 11.51. Since C♠(0) is the cone
of nonnegative curvature operators, we have �a0(b̄),b̄(C) ⊂ C♠(0), and hence

C♥(0) = �a0(b̄),b̄(C).

Using this identification to concatenate the family {C♥(s)}s∈[0,1) with the
family

{
�a0(b),b(C)

}
b∈[0,b̄] given by Proposition 11.47, we obtain a pinching

family where �a0(0),0(C) = �0,0 (C) = C is the cone of 2-nonnegative curvature
operators. Hence we obtain the following.

Corollary 11.52 (Existence of a pinching family starting at 2-positive).
There exists a pinching family {C(s)}s∈[0,1) of O (n)-invariant closed convex
cones such that C(0) is the cone of 2-nonnegative curvature operators.

In the case of n = 3, both of the above results follow from the previous
work of Hamilton. We describe this case first. Let µ1 ≤ µ2 ≤ µ3 denote the
ordered eigenvalues of the curvature operator R. Then the system of ode

d
dtR = R2 + R# reduces to the diagonal case:

d µ1

dt
= µ2

1 + µ2µ3,

d µ2

dt
= µ2

2 + µ1µ3,

d µ3

dt
= µ2

3 + µ1µ2.

Lemma 11.53 (Preserved cones in dimension 3). The following closed
convex cones are preserved by the ode:

(1) µ1 + µ2 ≥ 0,

(2) µ2 + µ3 ≤ C(µ1 + µ2) for any given C > 0,

(3) µ3 − µ1 ≤ K1(µ1 + µ2 + µ3) for any given K1 > 0.

Proof. The preservation of the cones follows from showing that the
time-derivatives d

dt of µ1 +µ2, log
(

µ1+µ2

µ2+µ3

)
, and log

(
µ1+µ2+µ3

µ3−µ1

)
are nonneg-

ative. The details can be found in [245]. �
The family of closed convex cones

C(s) � {R : µ1 + µ2 ≥ 0, µ3 − µ1 ≤ (1− s) (µ1 + µ2 + µ3)},
where s ∈ [0, 1), is a pinching family. Note that

C(0) � {R : µ1 + µ2 ≥ 0, 2µ1 + µ2 ≥ 0}
contains the cone of nonnegative curvature operators {R : µ1 ≥ 0}.
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Remark 11.54. The construction of {C(s)}s∈[0,1) in dimension 4 can be
found in [245].

6.2. Proof of Theorem 11.27 assuming Propositions 11.55 and
11.56. We now proceed to give the proof of Theorem 11.51. Given b ∈ [0, 1

2 ],
let

(11.100) p1 (b) � (n− 2)b2

1 + (n− 2)b2
.

Note that p1(0) = 0, p1

(
1
2

)
= n−2

n+2 , and p1(b) < 1 for all b. Define

(11.101) Cb �
{
R ∈ S2

B(so(n)) : R ≥ 0, Rc(R) ≥ p1(b)
tr (Rc (R))

n

}
to be the O (n)-invariant closed convex cone of nonnegative algebraic curva-
ture operators with pinched Ricci curvatures. In particular,C0 � {R : R ≥ 0}
is the cone of nonnegative curvature operators.

Next we let27

(11.102) a1 (b) � (n− 2)b2 + 2b

2 + 2(n− 2)b2
.

Here we note that a1(0) = 0 and a1

(
1
2

)
= 1

2 . Hence the family of O (n)-
invariant closed convex cones{

�a1(b),b(Cb)
}

b∈[0, 1
2
]

joins the cone of nonnegative curvature operators �0,0(C0) = {R : R ≥ 0}
with the cone � 1

2
, 1
2
(C 1

2
).

To summarize our discussion above, we have constructed a 1-parameter
family of O(n)-invariant closed convex cones in S2

B(so(n)) by taking the cone
of nonnegative curvature operators with a Ricci pinching condition depend-
ing on the parameter and starting from no pinching with pinching increasing
in the parameter and then conjugating these cones by linear transformations
of S2

B(so(n)) which start at the identity and push the cones more toward
the ray R+I. To obtain the family we desire, we shall actually concatenate
two families of cones.

The following two delicate propositions give the construction of the fam-
ily C♠ (s) in Theorem 11.51 for general dimensions. These two propositions
will be proved in the next two subsections. First we have

Proposition 11.55 (The cone �a1(s),s (Cs) is preserved by the ode).
Suppose n ≥ 4. For s ∈ [0, 1

2 ] the sets

�a1(s),s (Cs) are preserved by the ode

d

dt
R = R2 + R#.

Moreover, for s ∈ (0, 1
2 ], the vector field R2 +R# is transverse to the bound-

ary of �a1(s),s (Cs), provided R ∈ ∂�a1(s),s (Cs)− {0}.

27Note that our previous choice of a, in (11.98), was a = (n−2)b2+2b
2

.
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Second, we have the following. Let

(11.103) a2 (s) � 1 + s

2
and p2 (s) � 1− 4

n + 2 + 4s

for s ≥ 0 and let b = 1
2 . Clearly p2 (s) ∈ [n−2

n+2 , 1). Define

(11.104) C ′
s �

{
R ∈ S2

B(so(n)) : R ≥ 0, Rc (R)≥ p2(s)
tr (Rc (R))

n

}
.

Notice that

a2(0) =
1
2

= a1

(
1
2

)
, p2(0) =

n− 2
n + 2

= p1

(
1
2

)
,

lims→∞ a2(s) =∞, and lims→∞ p2(s) = 1. Let Rc� Rc (R). Hence

C ′
0 =

{
R ∈ S2

B(so(n)) : R ≥ 0, Rc≥ n− 2
n + 2

tr (Rc)
n

}
= C1/2

and

lim
s→∞

C ′
s =

{
R ∈ S2

B(so(n)) : R ≥ 0, Rc=
tr (Rc)

n

}
.

Proposition 11.56. For each s̄ ∈ [0,∞), the set

�a2(s̄),
1
2

(
C ′

s̄

)
is preserved by the ode

d

dt
R = R2 + R#.

Moreover, R2+R# is transverse to the boundary of �a2(s̄),
1
2
(Cs̄) at all points

on the boundary with R �= 0.

Remark 11.57. Apparently it is unknown whether any cones of the form{
R : R ≥ 0, Rc≥ p tr(Rc)

n

}
, where p > 0, are preserved by the ode. Apply-

ing an appropriate linear transformation to this set solves this problem.

Problem 11.58. Determine sufficient conditions on a, b, p so that the
set �a,b

({
R : R ≥ 0, Rc≥ p tr(Rc)

n

})
is preserved by the ode.

Hint: First read the proofs of the two propositions (see subsections 6.3
and 6.4).

Assuming the above two propositions, we give the

Proof of Theorem 11.51. We consider the concatenated family

(11.105)
{
�a1(s),s(Cs)

}
s∈[0, 1

2
]
∪
{

�a2( 2s−1
1−s ), 1

2

(
C ′

2s−1
1−s

)}
s∈[ 1

2
,1)

,

where a1 and a2 are defined by (11.102) and (11.103). Since

�a1( 1
2), 1

2
(C 1

2
) = � 1

2
, 1
2
(C 1

2
) = �a2(0), 1

2

(
C ′

0

)
,

this family is continuous. Moreover the family joins the cone of nonnegative
curvature operators {R : R ≥ 0} = �0,0(C0) to the limit of �a2(s̄),

1
2
(C ′

s̄) as

s̄→∞ (which corresponds to s→ 1 provided s̄ = 2s−1
1−s ).
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Observing that for any R ≥ 0,
1

a2 (s̄)
�a2(s̄),

1
2
(R)

=
1

a2 (s̄)
RW +

(
1

a2 (s̄)
+ 2(n− 1)

)
RI +

1 + 1
2(n− 2)
a2 (s̄)

RRc0

→ 2(n− 1)RI

as s̄ → ∞, we see that �a2(s̄),
1
2
(C ′

s̄) converges to R+I as s̄ → ∞. Therefore
the combination of the two propositions implies the theorem. �

6.3. Proof of Proposition 11.55. We now prove Proposition 11.55.
For simplicity, let a1 = a1 (b) and p1 = p1 (b). Clearly the sets Cb defined
in (11.101) are O (n)-invariant closed convex cones. For each b, Cb is the
intersection of two O (n)-invariant closed convex cones: {R : R ≥ 0} and{
R : Rc (R)≥ p1

tr(Rc(R))
n

}
. By Lemma 11.26, it suffices to show that for

any R ∈ ∂Cb, the vector

Xa1,b(R) = �−1
a1,b(�a1,b(R)2 + �a1,b(R)#)

defined by (11.59) lies in the tangent cone of Cb at R. The boundary ∂Cb

consists of those R ∈ Cb such that
(1) there exists φ ∈ so(n) such that R (φ) = 0 or
(2) there exists V ∈ R

n with |V | = 1 such that

Rc (R)(V ) = p1
tr (Rc (R))

n
.

For R ∈ ∂Cb, the tangent cone of Cb at R is the set of S such that

S ≥ 0 and Rc (S)(V ) ≥ p1
tr (Rc (S))

n

for all V ∈ R
n with |V | = 1 and Rc (R)(V ) = p1

tr(Rc(R))
n .

We shall show, using Corollary 11.29, that for R ∈ ∂Cb − {0} we have
(11.106)

(I) Xa1,b(R) > 0 and (II) Rc (Xa1,b(R))(V ) > p1
tr (Rc (Xa1,b(R)))

n

for all V ∈ R
n with |V | = 1 and Rc (R)(V ) = p1

tr(Rc(R))
n . Hence Xa1,b(R)

lies in the interior of the tangent cone of Cb at R.
Proof of (I). Xa1,b(R) > 0. Noticing that R ≥ 0 implies R2 + R# ≥ 0,

it suffices to show that Da1,b > 0. By (11.67), the eigenvalues of Da1,b are
given by

dij = Iij +IIij ,
where

Iij �
(
(n− 2)b2 − 2(a1 − b)

)
λiλj + 2a1(λi + λ̄)(λj + λ̄) + b2(λ2

i + λ2
j )

(11.107)

=
(
(n− 2)b2 + 2b

)
λiλj + 2a1λ̄

2 + 2a1(λi + λj)λ̄ + b2(λ2
i + λ2

j )



6. A PINCHING FAMILY OF CONVEX CONES IN S2
B(so(n)) 121

and

(11.108) IIij � σ

1 + 2(n− 1)a1

(
nb2(1− 2b)− 2(a1 − b)(1− 2b + nb2)

)
.

We shall show that Iij > 0 and IIij ≥ 0 for all i �= j. By (11.102),

2(a1 − b) =
1− 2b

1 + (n− 2)b2
(n− 2)b2,

so that (11.108) implies

IIij =
(1− 2b)σ

1 + 2(n− 1)a1

(
nb2 − 1− 2b + nb2

1 + (n− 2)b2
(n− 2)b2

)
=

(1− 2b)b2σ

1 + 2(n− 1)a1

2 + 2(n− 2)b
1 + (n− 2)b2

≥ 0.

Now we show the positivity of Iij . Note that from the definition (11.100) of
p1,

1− p1 =
1

1 + (n− 2)b2
=

2a1

(n− 2)b2 + 2b

(or, equivalently, (n−2)b2 +2b = 2a1
1−p1

). Note also that b > 0 implies a1 > 0
and p1 > 0. Hence if R �= 0 (which implies λ̄ > 0), then (11.107) implies

Iij =
2a1

1− p1
λiλj + 2a1λ̄

2 + 2a1(λi + λj)λ̄ + b2(λ2
i + λ2

j )

= 2a1

(
1

1− p1
λiλj + (1− p1)λ̄2 + (λi + λj)λ̄

)
+ 2a1p1λ̄

2 + b2(λ2
i + λ2

j )

>
2a1

1− p1

(
λi + (1− p1)λ̄

) (
λj + (1− p1)λ̄

)
≥ 0

since Rc≥ p1
tr(Rc)

n implies λi + λ̄ ≥ p1λ̄ for all i.

Proof of (II). Now we prove that the Rc pinching condition in (11.106)
holds. Suppose that

(11.109) Rc (R)ii = p1
tr (Rc (R))

n
, i.e., λi = −(1− p1)λ̄

for some i. (Otherwise there is nothing to prove. For convenience of notation
we have arbitrarily chosen i such that the i-th basis vector is a vector V as
in (11.106).) We need to show that

(11.110) Rc(Xa1,b)ii − p1
Scal(Xa1,b)

n
> 0.

By (11.108) and

Iij ≥ 2a1p1λ̄
2 + b2(λ2

i + λ2
j ),
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we have

Rc (Da1,b)ii = ri =
∑
j 	=i

dij =
∑
j 	=i

(Iij +IIij)

≥ 2a1(n− 1)p1λ̄
2 + (n− 2)b2λ2

i + nb2σ

+
(n− 1)σ

1 + 2(n− 1)a1

(
nb2(1− 2b)− 2(a1 − b)(1− 2b + nb2)

)
.

Also, since R ≥ 0 (actually we only need R to have nonnegative sectional
curvature) and Rckk ≥ p1λ̄,

(11.111) Rc
(
R2 + R#

)
ii

=
∑

k

RckkRikik ≥ p1λ̄
∑

k

Rikik ≥ p2
1λ̄

2.

Since Xa1,b = Da1,b(R) + R2 + R#, by combining the above formulas, we
have

Rc (Xa1,b)ii ≥ p2
1λ̄

2 + 2a1(n− 1)p1λ̄
2 + (n− 2)b2λ2

i + nb2σ

(11.112)

+
(n− 1)σ

1 + 2(n− 1)a1

(
nb2(1− 2b)− 2(a1 − b)(1− 2b + nb2)

)
= p2

1λ̄
2 + 2a1(n− 1)p1λ̄

2 + (n− 2)b2λ2
i(11.113)

+
(n− 2)2b2 + 2(n− 1) (2a1b− a1 + b)

1 + 2(n− 1)a1
σ

= p2
1λ̄

2 + 2a1(n− 1)p1λ̄
2 + (n− 2)b2λ2

i(11.114)

+
(

(1 + (n− 2)b)2

1 + 2(n− 1)a1
+ 2b− 1

)
σ.

We next compute the scalar curvature of the algebraic curvature operator
Xa1,b. By (11.55), i.e., Rc

(
R2 + R#

)
ii

=
∑

k RckkRikik, we have that

Scal(R2 + R#) =
∑

k

|Rckk|2 =
∑

k

(λk + λ̄)2

=
∑

k

λ2
k + nλ̄2 = nσ + nλ̄2.(11.115)
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Using (11.68), we compute

Scal(Da1,b) =
∑

i

ri

=
∑

i

(
−2bλ2

i + 2a1(n− 2)λ̄λi + 2a1(n− 1)λ̄2
)

+
nσ

1 + 2(n− 1)a1

(
n2b2 − 2(n− 1)(a1 − b)(1− 2b)

)
= −2bnσ + 2a1n(n− 1)λ̄2(11.116)

+
nσ

1 + 2(n− 1)a1

(
n2b2 − 2(n− 1)(a1 − b)(1− 2b)

)
= 2a1n(n− 1)λ̄2 − nσ +

n(1 + (n− 2)b)2

1 + 2(n− 1)a1
σ.(11.117)

Combining this with (11.115), we have

(11.118)
Scal(Xa1,b)

n
= (1 + 2(n− 1)a1)λ̄2 +

(1 + (n− 2)b)2

1 + 2(n− 1)a1
σ.

Note that both formulas (11.116) and (11.118) hold for any a1 �= − 1
2(n−1)

and do not use the relation (11.102).
Combining (11.114) and (11.118), we have

Rc(Xa1,b)ii − p1
Scal(Xa1,b)

n

≥ p2
1λ̄

2 + 2a1(n− 1)p1λ̄
2 + (n− 2)b2λ2

i +
(

(1 + (n− 2)b)2

1 + 2(n− 1)a1
+ 2b− 1

)
σ

− p1(1 + 2(n− 1)a1)λ̄2 − p1
(1 + (n− 2)b)2

1 + 2(n− 1)a1
σ

= p1 (p1 − 1) λ̄2 + (n− 2)b2λ2
i +
(

(1− p1)
(1 + (n− 2)b)2

1 + 2(n− 1)a1
+ 2b− 1

)
σ.

By the definition (11.100) of p1,

p1 (p1 − 1) λ̄2 + (n− 2)b2λ2
i = (n− 2)b2

(
− (1− p1)

2 λ̄2 + λ2
i

)
.

On the other hand, by (11.102) and (11.100), we have

(1− p1)
(1 + (n− 2)b)2

1 + 2(n− 1)a1
+ 2b− 1

=
(1 + (n− 2)b)2

(nb + 1) ((n− 2) b + 1)
+ 2b− 1

=
2nb2

nb + 1
.
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Hence

Rc(Xa1,b)ii − p1
Scal(Xa1,b)

n

≥ (n− 2)b2
(
− (1− p1)

2 λ̄2 + λ2
i

)
+

2nb2

nb + 1
σ.

By (11.109) we have λi = −(1− p1)λ̄ and hence

Rc(Xa1,b)ii − p1
Scal(Xa1,b)

n
≥ 2nb2

nb + 1
σ > 0.

This proves (11.110) and therefore completes the proof of Proposition 11.55.

6.4. Proof of Proposition 11.56. We now prove Proposition 11.56.
That is, we prove �a2(s̄),

1
2
(C ′

s̄) is preserved by the ode
d
dtR = R2 + R# for

s̄ ∈ [0,∞). By the same reasoning as in Proposition 11.55 it suffices to show
that for s ≥ 0 and R ∈ ∂C ′

s − {0} , we have
(I) Da2(s),

1
2
(R) > 0 and

(II) if i is such that Rc (R)ii = p2(s)
tr(Rc(R))

n , we have

Rc
(
Xa2(s),

1
2
(R)
)

ii > p2(s)
tr
(
Rc
(
Xa2(s),

1
2
(R)
))

n
.

Proof of (I). Da2(s),
1
2

> 0. Using Corollary 11.29 with a = 1+s
2 and

b = 1
2 (so that 2(a− b) = s and 1− 2b = 0), we have that the eigenvalues of

Da2(s),
1
2

are given by

dij =
(

n− 2
4
− s

)
λiλj + (1 + s)(λi + λ̄)(λj + λ̄) +

1
4
(λ2

i + λ2
j )

− ns

4n + 4(n− 1)s
σ

=
n + 2

4
λiλj + (1 + s)λ̄2 + (1 + s)(λi + λj)λ̄ +

1
4
(λ2

i + λ2
j )(11.119)

− ns

4n + 4(n− 1)s
σ.

Since λj + λ̄ ≥ p2λ̄ for all j, we can estimate σ = 1
n

∑
j λ2

j from above
in terms of λ̄2. In particular, consider the optimization problem for σ =
σ (λ1, . . . , λn) under the constraint

∑
j λj = 0. Since the functional σ has

strictly positive Hessian, it achieves its maximum on the boundary of the
set ⎧⎨⎩(λ1, . . . , λn) : λj + λ̄ ≥ p2λ̄ for all j and

∑
j

λj = 0

⎫⎬⎭
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and furthermore at the vertices. Therefore the extremal points of σ are
(−(1− p2)λ̄, . . . ,−(1− p2)λ̄, (n− 1)(1− p2)λ̄) and its permutations. Hence

(11.120) σ ≤ (n− 1)(1− p2 (s))2λ̄2 =
16(n− 1)

(n + 2 + 4s)2
λ̄2.

Now also recall that 1− p2 (s) = 4
n+2+4s , so that

(11.121) λi +
4λ̄

n + 2
≥ λi +

4λ̄

n + 2 + 4s
≥ 0,

where the second inequality follows from Da2(s),
1
2
(R) > 0. Motivated by

this, we have by (11.119) and (11.120),

dij ≥
n + 2

4

(
λi +

4λ̄

n + 2

)(
λj +

4λ̄

n + 2

)
+

1
4
(λ2

i + λ2
j )

+
(

n− 2
n + 2

+ s

)
λ̄2 + s(λi + λj)λ̄

− 4(n− 1)ns

(n + (n− 1)s) (n + 2 + 4s)2
λ̄2.

Therefore, throwing away the first two terms on the rhs above and using
(11.121), we have

dij ≥
(

n− 2
n + 2

+ s− 8s

n + 2 + 4s
− 4(n− 1)ns

(n + (n− 1)s) (n + 2 + 4s)2

)
λ̄2

(11.122)

� C (n, s) λ̄2.

Since n ≥ 3 ≥ 1 and s ≥ 0,

C (n, s) ≥ n− 2
n + 2

+ s− 8s

n + 2 + 4s
− 4(n− 1)s

(n + 2) (n + 2 + 4s)

=
4s2 +

(
n− 6− 4

n+2

)
s + n− 2

n + 2 + 4s
.

In particular, if n = 3, then 4s2+
(
n− 6− 4

n+2

)
s+n−2 = 4s2− 19

5 s+1 > 0

so that C (3, s) > 0. Now, given s ≥ 0, the function 4s2 +
(
n− 6− 4

n+2

)
s+

n − 2 is monotone increasing in n. Hence C (n, s) > 0 for all n ≥ 3 and
s ≥ 0. Therefore dij > 0; this completes the proof of (I).

Proof of (II). By formula (11.118) in the proof of Proposition 11.55
with a1 replaced by a2 (s) and b = 1

2 (see the comment after formula



126 11. CLOSED MANIFOLDS WITH POSITIVE CURVATURE

(11.118)), we have

Scal
(
Xa2(s),

1
2

)
n

= (1 + 2(n− 1)a2 (s))λ̄2 +

(
1 + (n− 2)1

2

)2
1 + 2(n− 1)a2 (s)

σ

= (n + (n− 1)s)λ̄2 +
n2σ

4n + 4(n− 1)s
.

Using Corollary 11.29 with a = a2 (s) = 1 + s
2 and b = 1

2 , we have

ri = −λ2
i + (1 + s)(n− 2)λ̄λi + (1 + s)(n− 1)λ̄2 +

n2σ

4n + 4(n− 1)s
.

Using the estimate (note that R has nonnegative sectional curvature and
Rckk ≥ p2 (s) λ̄)

(11.123) Rc(R2 + R#)ii =
∑

k

RckkRikik ≥ p2 (s) λ̄ Rcii ≥ p2
2 (s) λ̄2,

to prove the Rc pinching condition

Rc
(
Da2(s),

1
2

)
ii

+ Rc(R2 + R#)ii

= Rc
(
Xa2(s),

1
2

)
ii

> p2

Scal
(
Xa2(s),

1
2

)
n

,

where i is such that λi = −(1− p2)λ̄, it is suffices to show that

− λ2
i + (1 + s)(n− 2)λ̄λi + (1 + s)(n− 1)λ̄2 +

n2σ

4n + 4(n− 1)s
+ p2

2λ̄
2

> p2

(
(n + (n− 1)s)λ̄2 +

n2σ

4n + 4(n− 1)s

)
.

We leave it to the reader to carry out this easy verification. This completes
the proof of Proposition 11.56.

7. Obtaining a generalized pinching set from a pinching family
and the proof of Theorem 11.2

In this section we use the pinching families of convex cones constructed in
the previous section to obtain a generalized pinching set. From the existence
of this generalized pinching set we provide the proof of Böhm and Wilking
of the convergence of the Ricci flow for solutions with 2-positive curvature
operator.

7.1. Generalized pinching sets and its existence. The following
concept was introduced by Hamilton in §5 of [245].

Definition 11.59 (Pinching set). We say that a subset Z ⊂ S2
B(so(n))

is a pinching set if
(1) Z is closed and convex,
(2) Z is O(n)-invariant,
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(3) Z is preserved by the ode
d
dtR = R2 + R#,

(4) there exist δ > 0 and K <∞ such that∣∣∣R̃∣∣∣ ≤ K |R|1−δ

for all R ∈ Z, where R̃ � R− 1
N traceR · I is the trace-free part of

R.

As we discussed in the paragraph before Proposition 11.44, if Z ⊂
S2

B(so(n)) is a pinching set, then for any Riemannian manifold (Mn, g0)
we may define a corresponding subset Z̄ of S2

BΛ2T ∗M via the isometries
ιx : E

n → (TxM, g0 (x)) for x ∈ M. Since Z is O(n)-invariant, the subset
Z̄ is independent of the choice of isometries ιx. Furthermore, Z̄ is O(n)-
invariant, closed, invariant under parallel translation, and fiberwise convex.

Remark 11.60. In this regard we note that given a solution (Mn, g (t)),
t ∈ [0, T ), to the Ricci flow, one way to consider Uhlenbeck’s trick (see
Section 2 of Chapter 6 in Volume One) is to define time-dependent bundle
isometries

ι (t) : (TM, g (0))→ (TM, g (t))

by

(11.124)
d

dt
ι (t) = Rcg(t) ◦ι (t) and ι (0) = id TM,

where we raise an index on the Ricci tensor so that Rcg(t) : TM→ TM.

By the Weinberger–Hamilton maximum principle for systems, if we have
Rm (g0) ⊂ Z̄, then the solution of the Ricci flow g (t), with g (0) = g0,
satisfies

ι (t)∗ Rm(g (t)) ⊂ Z̄

for t ≥ 0, where the ι (t) are defined by (11.124). In particular, we then have
the pinching estimate

(11.125)
∣∣∣R̃m

∣∣∣ ≤ K |Rm|1−δ .

This estimate is sufficient (but, as we shall see below, not necessary) to prove
convergence of the normalized Ricci flow to a constant positive sectional
curvature metric.

In dimension 3 Hamilton proved that for any compact subset Ω inside
the cone of curvature operators with positive Ricci curvature (i.e., inside the
cone of 2-positive curvature operators), there exists a pinching set contain-
ing Ω. In fact, a simpler proof of the following result in §§9–10 of [244],
using the Weinberger–Hamilton maximum principle for systems, was given
as Theorem 5.3 of [245].

Theorem 11.61 (Existence of a pinching set in dimension 3). Let

µ1 ≤ µ2 ≤ µ3
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denote the ordered eigenvalues of R. For any constant C < ∞ there exists
δ > 0 such that for any K <∞, the closed, convex, and O(n)-invariant set
Z defined by:

(a) µ1 + µ2 ≥ 0,
(b) µ2 + µ3 ≤ C(µ1 + µ2),
(c) µ3 − µ1 ≤ K(µ1 + µ2 + µ3)1−δ

is preserved by the ode
d
dtR = R2 + R#.

Remark 11.62. Note that limC,K→∞ Z is the cone of curvature opera-
tors with nonnegative Ricci curvature. (What do we mean by limC,K→∞ Z
given that δ depends on C?)

However, Hamilton’s notion of pinching set does not seem to be suffi-
ciently general in higher dimensions to prove the convergence of the Ricci
flow under the assumption of 2-positivity.

Remark 11.63. On the other hand, we learned from Burkhard Wilking
that in principle one can always construct from a pinching family a pinching
set in the sense of Hamilton. The difference of the latter from a generalized
pinching set is just related to the speed of convergence. However this in turn
is just related to the behavior of the ode in a neighborhood of the identity.

The following general result (see Theorem 4.1 of [43]) enables one to
obtain a generalized pinching set from a pinching family of closed convex
cones, which suffices to prove Theorem 11.2.28

Theorem 11.64 (Existence of a generalized pinching set). Let

C♣(s)s∈[0,1) ⊂ S2
B(so(n))

be a continuous family of closed convex O(n)-invariant cones of maximum
dimension, such that C♣(s) \ {0} is contained in the half-space of curvature
operators with positive scalar curvature for all s ∈ [0, 1). Suppose that for
R ∈ ∂C♣(s) \ {0} the vector field Q(R) = R2 + R# lies in the interior of
the tangent cone of C♣(s) at R for all s ∈ (0, 1). Then for any ε ∈ (0, 1)
and h0 ∈ (0,∞) there exists a closed convex O(n)-invariant subset F ⊂
S2

B(so(n)) with the following properties:
(1) F is preserved by the ode

d
dtR = R2 + R#;

(2) C♣(ε) ∩ {R : trace(R) ≤ h0} ⊂ F ⊂ C♣ (ε);
(3) F \ C♣(s) is compact (i.e., bounded) for all s ∈ [ε, 1).

Remark 11.65. We call the set F in Theorem 11.64 a generalized
pinching set. The motivation for property (2) is given by (11.126) below.
When lims→1 C♣ (s) = R+I, property (3) implies that the asymptotic cone
of F is R+I; it is in this sense that F is a generalized pinching set.

28One should distinguish between the notions of pinching set (see Definition 11.59),
generalized pinching set (see Remark 11.65), and pinching family (see Definition 11.50).
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For example, when n = 3, Theorem 11.61(a), (b) can be applied to
obtain the pinching family

C(s) � {R : µ1 + µ2 ≥ 0; µ3 − µ1 ≤ (1− s) (µ1 + µ2 + µ3)},
which by Theorem 11.64 yields a generalized pinching set F . In other words,
to prove Theorem 11.2 in dimension 3, one does not need the ‘Ricci pinching
is improved ’ estimate, one only needs the ‘Ricci pinching is preserved ’ esti-
mate and Theorem 11.64. In higher dimensions, we shall apply Corollary
11.52.

In any dimension, we have obtained a pinching family {C (s)}, where
C (0) is the cone of 2-nonnegative curvature operators and lims→1 C (s) =
R+I. From this we obtain a generalized pinching set which serves the pur-
pose of (11.125). In particular, assuming the theorem above, i.e., the exis-
tence of a generalized pinching set, which we prove below, we may now give
a proof of Theorem 11.2.

7.2. Proof of the convergence of the Ricci flow under 2-PCO
assuming Theorem 11.64.

Proof of Theorem 11.2. By Corollary 11.52, for the ode
d
dtR =

R2+R# on S2
B (so (n)), there exists a pinching family {C(s)}s∈[0,1) of O (n)-

invariant closed convex cones (in the sense of Definition 11.50) such that
C (s) \ {0} ⊂ {R : trace (R) > 0} and C(0) is the cone of 2-nonnegative
curvature operators. In particular, C(s) converges in the pointed Hausdorff
topology to the 1-dimensional cone R+I as s→ 1.

Now let (Mn, g0) be a closed Riemannian manifold with 2-positive cur-
vature operator and let g (t), t ∈ [0, T ), be the solution to the Ricci flow
on M with g (0) = g0 and defined on a maximal time interval. Since M
is compact and Rm (g0) is strictly 2-positive, there exists ε ∈ (0, 1) and
h0 ∈ (0,∞) such that

(11.126) Rm(g0 (x)) ∈ C(ε) ∩ {R : trace(R) ≤ h0}
for all x ∈M (here we have used an isometry between (TxM, g0 (x)) and E

n

to consider C(ε) ∩ {R : trace(R) ≤ h0} as contained in S2
BΛ2T ∗

xM, which
is well-defined and independent of the choice of isometry since it is O (n)-
invariant). By Theorem 11.64, there exists a closed convex O(n)-invariant
subset F ⊂ S2

B(so(n)) preserved by the ode such that

C(ε) ∩ {R : trace(R) ≤ h0} ⊂ F

and F \ C(s) is compact for all s ∈ [ε, 1). Let F ⊂ S2
BΛ2T ∗M denote

the closed fiberwise convex set which is invariant under parallel transla-
tion and such that Fx is equal to F for all x ∈ M (again, since F is
O (n)-invariant, F is well-defined, i.e., independent of the isometries used
to identify (TxM, g0 (x)) with E

n). By the Weinberger–Hamilton maximum
principle for systems (Theorem 10.13), we have

ι (t)∗ Rm (g (x, t)) ∈ F for all x ∈M and t ≥ 0,
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where ι (t) is defined by (11.124).
Since the scalar curvature of g0 is positive, a singularity to the Ricci flow

forms in finite time, i.e., the singularity time T is finite. Choose a sequence
of points and times {(xi, ti)}i∈N

with ti → T such that

Ki � |Rm (xi, ti)| = max
M×[0,ti]

|Rm|

(note Ki → ∞) and consider the sequence of dilated and time-translated
solutions (Mn, gi (t) , xi) , where

gi (t) � Kig
(
ti + K−1

i t
)
.

By Perelman’s no local collapsing theorem and Hamilton’s Cheeger–
Gromov-type compactness theorem (Theorem 6.58 on p. 256 and Theorem
3.10 on p. 131 in Part I of this volume), there exists a subsequence such that
{(Mn, gi (t) , xi)} converges to a complete ancient solution (Mn

∞, g∞ (t) , x∞)
to the Ricci flow with 2-nonnegative curvature operator and |Rm∞ (x∞, 0)| =
1. This implies that |Rm∞ (x, 0)| ≥ c, where c > 0, for all x contained in
an open neighborhood U of x∞ in M∞. Since F \ C(s) is compact for all
s ∈ [ε, 1) and lims→1 C (s) = R+I, we conclude that

(11.127) Rm (g∞ (x, 0)) ∈ R+ id Λ2T ∗M for all x ∈ U .

Indeed, sweeping under the rug the need to use diffeomorphisms in the
compactness theorem (we leave it to the reader to make the argument, in
particular, the next displayed equation, rigorous), since x ∈ U , we have

K−1
i |Rm(x, ti)| → |Rm (g∞ (x, 0))| ≥ c > 0,

so that |Rm (x, ti)| → ∞ as i→ ∞. Hence for every s ∈ [ε, 1), Rm (x, ti) ∈
C (s) for i sufficiently large. This implies K−1

i Rm (x, ti) ∈ C (s), which in
turn implies Rm (g∞ (x, 0)) ∈ C (s) for all s ∈ [ε, 1). We conclude (11.127).

Now by (11.127) and Schur’s lemma g∞ (0) has constant positive sec-
tional curvature in U . From this we can deduce that g∞ (0) has constant
positive sectional curvature in all of M (since, wherever |Rm (g∞ (0))| > 0,
we have that the sectional curvature of g∞ (0) is locally constant). We have
established sequential convergence of the Ricci flow. Finally, by the Huisken–
Margerin–Nishikawa pinching theorem, we obtain exponential convergence
of the Ricci flow in each Ck-norm. �

Finally we give the proof of the existence of a generalized pinching set
assuming the existence of a pinching family. This proof is nonconstructive.

7.3. Proof of the existence of a generalized pinching set.

Proof of Theorem 11.64. Fix any ε ∈ (0, 1) and h0 ∈ (0,∞). Define
the set F to be the intersection of all closed convex O(n)-invariant subsets
of S2

B(so(n)) satisfying properties (1) and (2) in the statement of Theorem
11.64. We want to show that F is the desired generalized pinching set. Since
C♣(ε) is such a set, F is a well-defined closed convex O(n)-invariant subset
contained in C♣ (ε).
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(I) Suppose R0 ∈ F and R (t) is a solution of the ode
d
dtR = Q (R)

with R (0) = R0. Then for any closed convex O(n)-invariant subset G of
S2

B(so(n)) satisfying properties (1) and (2),29 we have R (t) ∈ G. Hence, by
definition, R (t) ∈ F . Thus property (1) holds for F .

(II) It is also clear that property (2) holds for F , i.e.,

C♣(ε) ∩ {R : trace(R) ≤ h0} ⊂ F.

(III) It remains to prove property (3). Suppose, with the goal of ob-
taining a contradiction, that property (3) is false for F for some s ∈ [ε, 1).
Let s0 ∈ [ε, 1) be the infimum of all s ∈ [ε, 1) for which property (3) is false
for F , i.e.,

s0 � inf {s ∈ [ε, 1) : F \ C♣(s) is unbounded} .

Then there exists a sequence {si}i∈N
with si → s0 such that F \ C♣(si) is

unbounded for all i. We shall obtain the contradiction from showing that
F \ C♣(s) is bounded for any s sufficiently close to s0.

For s ∈ [0, 1) and δ > 0 define

Cδ(s) � the cone over the set
{R ∈ C♣(s) : trace(R) = 1, dist (R, ∂C♣ (s)) ≥ δ},

which is a slightly smaller cone contained in C♣(s) (with limδ→0 Cδ(s) =
C♣(s)). For δ, h > 0 define

ThCδ(s) � {R : R + I ∈ Cδ(s), trace(R) ≥ h},
which is, as noted in [43], a ‘truncated shifted cone’. We leave it to
the reader to show that both Cδ(s) and ThCδ(s) are closed, convex, and
O(n)-invariant (convexity is the main issue).30

(1) When δ is sufficiently small, the cones Cδ(s) are preserved by the
ode. For any s ∈ (0, 1) there exists δ0 = δ0 (s) > 0 such that for all δ ∈ [0, δ0]
and R ∈ ∂Cδ(s) − {0} the vector Q (R) lies in the interior of the tangent
cone of Cδ(s).

This fact follows from
(i) limδ→0 ∂Cδ(s) = ∂C♣(s),
(ii) the continuity of Q,
(iii) our assumption that for R ∈ ∂C♣(s)\{0}, Q(R) lies in the interior

of tangent cone of C♣(s) at R, and
(iv) the fact that Q (R) is homogeneous of degree 2, i.e., Q (cR) =

c2Q (R) for all c ≥ 0 (which addresses the issue of the noncompactness of
the cones).

29Note that we do not use property (2) here.
30Note that the set Σ � {R ∈ C♣(s) : trace(R) = 1} is convex. To prove the

convexity of Cδ(s), one just needs to show that

{R ∈ Σ : dist (R, ∂Σ) ≥ δ}
is convex. The convexity of ThCδ(s) also follows easily.
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(2) Truncated shifted cones are preserved by the ode. There exists
h̄ ∈ (0,∞) (in particular, for h̄ sufficiently large) such that the set

Th̄Cδ(s0) = {R : R + I ∈ Cδ(s0)} ∩ {R : trace(R) ≥ h̄}

is preserved by the ode
d
dtR = Q (R) for all δ ∈ [0, δ0(s0)].

First note that

∂ (Th̄Cδ(s0)) ⊂ {R : R + I ∈ ∂Cδ(s0)} ∪ {R : trace(R) = h̄}.
We have

trace Q(R) = |Rc (R)|2 ≥ 4
n

(trace(R))2 ≥ 4
n

h̄2 > 0

for R ∈ Th̄Cδ(s0) (note that trace(R) = 1
2 tr (Rc (R))).

Case (a). Hence for R with trace(R) = h̄ the vector Q(R) lies in the
interior of the tangent cone of

{
R : trace(R) ≥ h̄

}
. This implies that for

R ∈ ∂ (Th̄Cδ(s0)) \ {R : R + I ∈ ∂Cδ(s0)} ⊂ {R : trace(R) = h̄},
the vector Q(R) lies in the interior of the tangent cone of Th̄Cδ(s0) at R,
which is the half-space {R : trace(R) ≥ 0}.

Case (b). Now assume

R ∈ ∂ (Th̄Cδ(s0)) \ {R : trace(R) = h̄}
⊂ ∂ (Th̄Cδ(s0)) ∩ {R : R + I ∈ ∂Cδ(s0)},

so that in particular trace(R) > h̄. In this case the tangent cone of Th̄Cδ(s0)
at R is the same as the tangent cone of Cδ(s0) at R + I (after shifting the
vertex by I).

Let η0 be the infimum of the distance from Q(R′) to the boundary of
the tangent cone of Cδ(s0) among R′ ∈ ∂Cδ(s0) with trace(R′) = 1. Since
by part (1), η0 > 0, we have that the distance from Q(R′) to the boundary
of the tangent cone of Cδ(s0) grows quadratically; in particular, it is at least

(11.128) η0

(
trace(R′)

)2 ≥ cη0|R′|2

for all R′ ∈ ∂Cδ(s0), where c > 0. For R ∈ ∂ (Th̄Cδ(s0)) ∩ {R : R + I ∈
∂Cδ(s0)},

(i) let d1(R) be the distance of Q(R) to the boundary of the tangent
cone of Th̄Cδ(s0) at R and

(ii) let d2(R) be the distance of Q(R+I) to the boundary of the tangent
cone of Cδ(s0) at R + I, so that by (11.128)

d2(R) ≥ cη0 |R + I|2 ≥ 1
2
cη0 |R|2

(with the last inequality holding for h̄ large enough). Next observe that

|Q(R + I)−Q(R)| = |2R + I + 2R#I + I#I|
≤ A1 |R|
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for some constant A1 <∞. Hence, by the triangle inequality and the above
estimates,

d1(R) ≥ d2(R)− |Q(R)−Q(R + I)|

≥ 1
2
cη0 |R|2 −A1 |R| ,

so that d1(R) > 0 provided that |R| is sufficiently large. Thus Q(R) lies in
the interior of the tangent cone of Th̄Cδ(s0) at R.

Case (c). Finally, if

R ∈ {R : R + I ∈ ∂Cδ(s0)} ∩ {R : trace(R) = h̄} ⊂ ∂ (Th̄Cδ(s0)) ,

then by the arguments in proving Cases (a) and (b), it follows that Q(R)
lies in the interior of the tangent cone of Th̄Cδ(s0) at R.

By Cases (a), (b), and (c), we have shown that for all R ∈ ∂ (Th̄Cδ(s0)),
the vector Q(R) lies in the interior of the tangent cone of Th̄Cδ(s0).

(3) Given any h̄ ∈ (0,∞), there exists δ > 0 (in particular, for δ suffi-
ciently small) such that the set C♣(s0)∩{R : trace(R) = h̄} is contained in
the interior of Th̄Cδ(s0) ∩ {R : trace(R) = h̄} as subsets of the hyperplane
{R : trace(R) = h̄}. This is geometrically clear from considering the limit
as δ → 0.

(4) By part (3), for δ > 0 sufficiently small and for s close enough to s0,
C♣(s) ∩ {R : trace(R) = h̄} is contained in the interior of Th̄Cδ(s0) ∩ {R :
trace(R) = h̄}. We claim that by the definition of s0, for δ > 0 sufficiently
small there exists s̄ ∈ [ε, s0) (except when s0 = ε, where we let s̄ = s0) and
k ∈ (0,∞) large enough such that
(11.129)
F ∩

{
R : trace(R) = kh̄

}
⊂ C♣(s̄) ∩

{
R : trace(R) = kh̄

}
⊂ k · Th̄Cδ(s0),

that is,
1
k
F ∩

{
R : trace(R) = h̄

}
⊂ C♣(s̄) ∩

{
R : trace(R) = h̄

}
⊂ Th̄Cδ(s0).

(a) If s0 = ε = s̄, then the claim is clear since F ⊂ C♣ (ε).
(b) If s0 > ε, then F \ C♣(s̄) is compact for all s̄ ∈ [ε, s0). Therefore,

for each s̄ ∈ [ε, s0), there exists k0 ∈ (0,∞) such that the first inclusion in
(11.129) holds for all k ≥ k0.

(5) By part (4), for δ > 0 sufficiently small and k ∈ (0,∞) large enough,
the set

F ′ �
(
F ∩ {R : trace(R) ≤ kh̄}

)
∪ (F ∩ k · Th̄Cδ(s0))

is closed, convex, O(n)-invariant, and preserved by the ode
d
dtR = Q (R).

In particular, the convexity of F ′ follows from the inclusion (11.129). Now
clearly F ′ ⊂ F . On the other hand, by the definition of F (in particular,
its minimality), we have F ⊂ F ′. Hence for δ > 0 sufficiently small and
k ∈ (0,∞) large enough,

F = F ′.
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(6) Since the set k ·Th̄Cδ(s0)\Cδ/2(s0) is bounded, we have that the set
F ′ \ Cδ/2(s0) is bounded. On the other hand, clearly

F ′ \ C♣(s) ⊂ F ′ \ Cδ/2(s0)

for any s close enough to s0. Hence the set F \C♣(s) = F ′\C♣(s) is bounded
for any s close enough to s0. This contradicts the definition of s0 since there
exists a sequence {si}i∈N

with si → s0 such that F \C♣(si) is not bounded
for all i. �

8. Summary of the proof of the convergence of Ricci flow

In this section we summarize the proof of Theorem 11.2.
The goal is to prove sequential convergence to a metric of constant posi-

tive sectional curvature (exponential convergence then follows from previous
work). Since the condition of 2-nonnegative curvature operator is preserved
under the Ricci flow, by Hamilton’s compactness theorem and Perelman’s no
local collapsing theorem, we have sequential convergence to a complete an-
cient solution with bounded 2-nonnegative curvature operator. By Schur’s
lemma, it suffices to show that this limit solution has the property that the
curvature operator is a multiple of the identity wherever the scalar curvature
is positive.

Hamilton proved that on closed 3-manifolds the condition Rc ≥ s
3Rg,

where R ≥ 0, is preserved under the Ricci flow for any s ∈ [0, 1]. By
the Weinberger–Hamilton maximum principle for systems, this follows from
showing that the ode

d

dt
R = R2 + R# � Q (R)

preserves the O (3)-invariant closed convex cone

C (s) �
{
R ∈ S2

B(so(3)) : µ1 (R) + µ2 (R) ≥ s

3
Scal (R)

}
for any s ∈ [0, 1]. Note that C (0) is the cone of algebraic curvature operators
with nonnegative Ricci curvature and C (1) is the cone (in particular, half-
line) of algebraic curvature operators which are nonnegative multiples of the
identity.

Abstracting this construction in higher dimensions, Böhm and Wilking
prove the existence of a continuous 1-parameter family of O (n)-invariant
closed convex cones {C (s)}s∈[0,1), called a ‘pinching family’, with the fol-
lowing properties:

(1) except for 0, their elements have positive scalar curvature;
(2) the ode

d
dtR = Q (R) preserves the cones;

(3) the cones limit to R+I as s→ 1;
(4) C (0) is the cone of 2-nonnegative algebraic curvature operators.

We now outline how the existence of this family is proved and why it is
sufficient to establish the main theorem.
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One proves the existence of
(i) a continuous family of convex cones {C♠ (s)}s∈[0,1) joining the cone

of nonnegative algebraic curvature operators {R : R ≥ 0} to the
half-line R+I and

(ii) a continuous family of convex cones {C♦ (s)}s∈[−1,0] joining the
cone of 2-nonnegative algebraic curvature operators to a convex
cone inside {R : R ≥ 0}.31

By concatenating the two families, more specifically, by considering

{C♦ (s)}s∈[−1,0] ∪ {C♥(s)}s∈[0,1) ,

where C♥(s) � C♠ (s) ∩ C♦ (0) (note that since C♦ (0) ⊂ C♠ (0), we have
C♦ (0) = C♥ (0), so that the concatenated family is continuous), we obtain
a pinching family.

The idea in proving both (i) and (ii) is to consider O (n)-invariant lin-
ear transformations of S2

B(so(n)) which preserve the Weyl parts of algebraic
curvature operators. Since O (n)-invariant linear transformations are mul-
tiples of the identity on each irreducible component of S2

B(so(3)), they are
parameterized by two real numbers and we denote these transformations by
�a,b (where �0,0 = id).

Let C denote the cone of 2-nonnegative algebraic curvature operators.
For certain values of a and b, the O (n)-invariant closed convex cone �a,b (C)
is preserved by the ode (Proposition 11.47).32 The proof of this hinges on
computing

D (R) � �−1
a,b (Q (�a,b (R)))−Q (R) .

The surprising facts are that (see Theorem 11.27, Corollary 11.29, and part
(i) of the proof of Proposition 11.47)

(A) the eigenvalues of D (R) are computable in terms of n, a, b , and
the eigenvalues of Rc (R) and

(B) D (R) is nonnegative for certain values of a and b.
Using �a,b (C) for certain values of a and b, one proves (ii) above.

Remark 11.66. It is rather clear that one can stretch the cone C a
little, i.e., for values of a and b close to zero we have �a,b (C) is preserved
by the ode. However, without a computable method, it is not clear how
to determine for which values of a and b we have that �a,b (C) is preserved
by the ode (see also Problem 11.49). Fortunately, Theorem 11.27 and its
consequences provide a computable method.

To prove (i), we first consider a 1-parameter family of cones {Cb}b∈[0,1/2]

obtained by intersecting the cone of nonnegative curvature operators with
those satisfying a Ricci pinching condition, where the coefficient in the pinch-
ing condition depends on the parameter. Here C0 is the cone of nonnegative

31Here {C♦ (s)}s∈[−1,0] �
˘

�a0(b),b(C)
¯

b∈[0,b̄], where s is linear in b say.

32These values include (a, b) = (0, 0); note that �0,0 (C) = C.
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curvature operators, e.g., for b = 0 the Ricci pinching condition just says
Rc ≥ 0. For b ∈ [0, 1/2] and a certain function a = a1 (b) we have that
�a,b (Cb) is preserved by the ode (see Remark 11.57). We concatenate this
family with a similar family �a2(s),

1
2
(C ′

s), where C ′
s is defined analogously to

Cb except that the coefficient in the pinching condition depends differently
on the parameter. It is this concatenated family which provides a pinching
family joining the cone of nonnegative algebraic curvature operators to the
half-line R+I.

Finally, the reason for why the existence of a pinching family is sufficient
to prove the theorem is as follows. By a contradiction argument, given a
pinching family C (s) such that C (0) is the cone of 2-nonnegative curvature
operators and lims→1 C (s) = R+I and given any compact subset Ω of the
set of 2-positive curvature operators, we can construct a generalized pinch-
ing set F which contains Ω. The set F is closed, convex, O (n)-invariant,
and its asymptotic cone is R+I. (See the proof of Theorem 11.64.) By the
Weinberger–Hamilton maximum principle for systems, Rm (g (t)) is con-
tained in the corresponding subset of S2

BΛ2T ∗M. Then by applying the
compactness theorem and the no local collapsing theorem, we can deduced
that a limit of rescalings of the solution g (t) produces a constant positive
sectional curvature metric on M.

9. Notes and commentary

9.1. Sphere theorems and spherical space form theorems. The
seminal work of Hamilton [245] on closed 4-manifolds with positive curva-
ture operator led him to conjecture that the normalized Ricci flow on any
closed n-manifold with initial metric g0 having positive curvature operator
converges exponentially in every Ck-norm to a metric of constant sectional
curvature. Rauch first conjectured that any closed n-manifold admitting a
metric with positive curvature operator is diffeomorphic to a spherical space
form. This conjecture is sometimes known as the Rauch–Hamilton spherical
space form conjecture.

We should remark that in terms of geometrically characterizing the
sphere, there is the well-known Rauch–Berger–Klingenberg 1/4-pinching
topological sphere theorem [417], [35], [304], [305] which says that a simply-
connected complete Riemannian n-manifold M with sectional curvatures
satisfying 1/4 < sect ≤ 1 is homeomorphic to the n-sphere.

Earlier, assuming that the sectional curvatures are sufficiently pinched,
i.e., 0.76 < sect ≤ 1, it was previously proved that M is diffeomorphic
to the n-sphere (see Grove, Karcher, and Ruh [231]; see pp. 239–240 of
Klingenberg’s book [306] for a discussion of pinching theorems).

Let Kmax (p) and Kmin (p) denote the maximum and minimum sectional
curvatures at a point p ∈M. Using the Ricci flow, Huisken [280], Margerin
[343], [344], and Nishikawa [392], [393] (independently) proved that under
the pointwise condition that Kmax (p) ≤ (1 + δn)Kmin (p) for all p ∈ M,
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where δn > 0 depends only on n, and without assuming M is simply con-
nected, we have that M is diffeomorphic to a spherical space form.

Recently, using the Ricci flow, Brendle and Schoen [48] proved that
positive isotropic curvature (PIC) is preserved and used this to prove
the long-standing pointwise 1/4-pinching spherical space form theorem. We
remark that the curvature condition of PIC originally appeared in Micallef
and Moore [347]. By relating this condition to the stability of minimal 2-
spheres, they proved that a simply-connected closed Riemannian n-manifold
with PIC is homeomorphic to the n-sphere.

Without assuming M is simply connected but assuming M has no es-
sential incompressible 3-dimensional spherical space forms, Hamilton [255]
originally used the Ricci flow with surgery to approach the classification
of closed Riemannian 4-manifolds with positive isotropic curvature.33 As
pointed out by Perelman,34 there was a gap in Hamilton’s proof. The work
of Chen and Zhu [110] uses Perelman’s techniques [402], [403] to address
the issue of this gap.

See also Micallef and Wang [348] and Fraser and Wolfson [193] for
further work on (weakly) positive isotropic curvature.

9.2. Generalized pinching sets. It is unclear what the precise ge-
ometries of the sets F defined in the proof of Theorem 11.64 are. However,
for heuristic purposes (i.e., to develop some intuition) it is perhaps useful
to revisit the example of the paraboloid P in R

n+1 defined to be the set of
points (x0, �x) = (x0, x1, . . . , xn) such that x0 = |�x|2 = x2

1 + · · ·+ x2
n, which

dimension reduces to (and has asymptotic cone) the half-line R+×�0, where
�0 is the origin in R

n. Note that if (x0, �x) ∈ P , then

�x

|�x|2
=
(

1,
x1

|�x|2
, . . . ,

xn

|�x|2
)

.

In particular, limx0→∞
�x

|�x|2 = (1, 0, . . . , 0) ∈ R+×�0. An example of a closed
convex set with asymptotic cone equal to the half-line but which is closer
to being like a cone, i.e., where x0 grows more slowly and more linearly
as a function of |�x|, is given by the set of points (x0, �x) ∈ Rn+1 such that
x0 =

(
|�x|+ 1

e

)
ln
(
|�x|+ 1

e

)
+ 1

e , defined so that the origin is its vertex.

33See the first section of [255] for definitions and statements of the main theorem and
corollary.

34See the introduction to [403].
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