
CHAPTER 3

Mutual intersection: large deviations

3.1. High moment asymptotics

One of the major goals of this chapter is to provide a precise estimate to the
tail probability

P

{
α
(
[0, 1]p

)
≥ t
}

as t → ∞. By Theorem 1.2.8, the problem is in connection to the study of the high
moment asymptotics posted as

E

[
α([0, 1]p

)m]
(m → ∞).

By comparing (2.2.8) and (2.2.19), it seems that the high moment asymptotics for

E

[
α
(
[0, τ1]× · · · × [0, τp]

)m]
more tractable. The question is: What can we say about the quantity∫

(Rd)m
dx1 · · · dxm

[ ∑
σ∈Σm

m∏
k=1

G(xσ(k) − xσ(k−1))

]p
when m → ∞?

We generalize this problem to the study of∫
Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
where (E, E , π) is a measure space, K(x, y) is a non-negative measurable function
on E × E, and xσ(0) = x0 is an arbitrary but fixed point in E.

Theorem 3.1.1. Let p > 1 be fixed. Assume that the kernel satisfies:

(1) Irreducibility: K(x, y) > 0 for every (x, y) ∈ E × E.
(2) Symmetry: K(x, y) = K(y, x) for every (x, y) ∈ E × E.
(3) Integrability:

� ≡ sup
f

∫ ∫
E×E

K(x, y)f(x)f(y)π(dx)π(dy) < ∞

where the supremum is taken over all f satisfying∫
E

|f(x)|
2p

2p−1 π(dx) = 1.
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60 3. MUTUAL INTERSECTION: LARGE DEVIATIONS

Then

lim inf
m→∞

1

m
log

1

(m!)p

∫
Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
≥ p log �.(3.1.1)

Proof. Let f ∈ L
2p

2p−1 (E, E , π) be a bounded, non-negative function such that

(3.1.2) δ ≡ inf
x; f(x)>0

K(x0, x) > 0

and that ∫
E

f
2p

2p−1 (x)π(dx) = 1.

Let g(x) = f
2(p−1)
2p−1 (x) and h(x) = f

p
2p−1 (x). Then f(x) =

√
g(x)h(x) and∫

E

g
p

p−1 (x)π(dx) =

∫
E

h2(x)π(dx) = 1.

By boundedness of f(x), there is ε > 0 such that g(x) ≥ εh2(x). By Hölder
inequality, we get{∫

Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p}1/p

(3.1.3)

≥
∫
Em

π(dx1) · · ·π(dxm)
( m∏

k=1

g(xk)
) ∑

σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

= m!

∫
Em

π(dx1) · · ·π(dxm)
( m∏

k=1

g(xk)
) m∏

k=1

K(xk−1, xk)

= m!

∫
Em

π(dx1) · · ·π(dxm)K(x0, x1)
√
g(x1)

×
[ m∏
k=2

√
g(xk−1)K(xk−1, xk)

√
g(xk)

]√
g(xm)

≥ δεm!

∫
Em

π(dx1) · · ·π(dxm)h(x1)

×
[ m∏
k=2

√
g(xk−1)K(xk−1, xk)

√
g(xk)

]
h(xm)

= δεm!〈h, Tm−1h〉
where the linear operator T : L2(E, E , π) −→ L2(E, E , π) is defined as

(T h̃)(x) =
√
g(x)

∫
E

K(x, y)
√
g(y)h̃(y)π(dy) h̃ ∈ L2(E, E , π).

For any h1, h2 ∈ L2(E, E , π) with ||h1|| = ||h2|| = 1, we get

〈h1, Th2〉 =
∫ ∫

E×E

K(x, y)
√
g(x)h1(x)

√
g(y)h2(y)π(dx)π(dy)

=

∫ ∫
E×E

K(y, x)
√
g(x)h1(x)

√
g(y)h2(y)π(dx)π(dy) = 〈Th1, h2〉.



3.1. HIGH MOMENT ASYMPTOTICS 61

That is, T is symmetric. In addition,

〈h1, Th2〉 =
1

4

{
〈h1 + h2, T (h1 + h2)〉 − 〈h1 − h2, T (h1 − h2)〉

}
.

Notice that∣∣∣〈h1 ± h2, T (h1 ± h2)〉
∣∣∣

≤
∫ ∫

E×E

K(x, y)
√
g(x)
∣∣h1(x)± h2(x)

∣∣√g(y)
∣∣h1(y)± h2(y)

∣∣π(dx)π(dy).
By Hölder inequality, we get∫

E

∣∣√g(x)
(
h1(x)± h2(x)

)∣∣ 2p
2p−1 π(dx)

≤
{∫

E

g
p

p−1 (x)π(dx)

} p−1
2p−1
{∫

E

|h1(x)± h2(x)|2π(dx)
} p

2p−1

=

{∫
E

f
2p

2p−1 (x)π(dx)

} p−1
2p−1
{∫

E

|h1(x)± h2(x)|2π(dx)
} p

2p−1

=

{∫
E

|h1(x)± h2(x)|2π(dx)
} p

2p−1

.

Consequently, ∣∣∣〈h1 ± h2, T (h1 ± h2)〉
∣∣∣ ≤ �

∫
E

|h1(x)± h2(x)|2π(dx).

Hence,

〈h1, Th2〉 ≤
1

4
�
{
||h1 + h2||2 + ||h1 − h2||2

}
=

�

2

(
||h1||2 + ||h2||2

)
= �.

Therefore, T is a bounded linear operator. This, together with symmetry, implies
that T is self-adjoint.

According to Theorem E.2 in the Appendix, the self-adjoint operator T admits
the spectral integral representation

T =

∫ ∞

−∞
λE(dλ).(3.1.4)

Using Corollary E.5 in the Appendix, we have

Tm−1 =

∫ ∞

−∞
λm−1E(dλ).(3.1.5)

By (E.15) in the Appendix, the above representations lead to

〈h, Th〉 =
∫ ∞

−∞
λµh(dλ),(3.1.6)

〈h, Tm−1h〉 =
∫ ∞

−∞
λm−1µh(dλ)(3.1.7)

where µh is a measure on R with

µh(R) =

∫
E

h2(x)π(dx) = 1

(i.e., µh is a probability measure).
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When m is odd (so m− 1 is even), by Jensen inequality, we have

〈h, Tm−1h〉 ≥
(∫ ∞

−∞
λµh(dλ)

)m−1

=
(
〈h, Th〉

)m−1

=

(∫ ∫
E×E

K(x, y)
√
g(x)h(x)

√
g(y)h(y)π(dx)π(dy)

)m−1

=

(∫ ∫
E×E

K(x, y)f(x)f(y)π(dx)π(dy)

)m−1

.

Summarizing our argument, when m is odd, we have∫
Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p

≥ (δε)p(m!)p
(∫ ∫

E×E

K(x, y)f(x)f(y)π(dx)π(dy)

)p(m−1)

.

When m is even, a slight modification of (3.1.3) gives us{∫
Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p}1/p

≥ c(δ, ε)m!〈h, Tm−2h〉

for some c(δ, ε) > 0. So the argument based on spectral representation leads to the
lower bound∫

Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p

≥ cp(δ, ε)(m!)p
(∫ ∫

E×E

K(x, y)f(x)f(y)π(dx)π(dy)

)p(m−2)

.

Thus, we conclude that

lim inf
m→∞

1

m
log

1

(m!)p

∫
Em

π(dx1) · · ·π(dxm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
≥ p log

∫ ∫
E×E

K(x, y)f(x)f(y)π(dx)π(dy).

Finally, the desired conclusion follows from the following two facts:

First, the supremum in the definition of � can be taken over the non-negative
f .

Second, by irreducibility assumption the set of functions f satisfying (3.1.2) is

dense in non-negative functions in L
2p

2p−1 (E, E , π).

The upper bound is much more difficult. Indeed, we are able to establish the
upper bound only in the case when E is a finite set.
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Theorem 3.1.2. Fix p > 1, let E be a finite set and let K: E × E −→ R+ be
non-negative function such that K(x, y) = K(y, x) for any x, y ∈ E. Let π be a
non-negative function on E. Then

lim sup
m→∞

1

m
log

1

(m!)p

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

×
[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
(3.1.8)

≤ p log sup
f

∑
x,y∈E

K(x, y)f(x)f(y)π(x)π(y)

where the supremum is taken over all functions f on Ω satisfying∑
x∈E

|f(x)|
2p

2p−1 π(x) = 1.

Proof. We may assume that π(x) > 0 for every x ∈ E, for otherwise we can
remove all zero points of π from E. Let

µ = Lx
m =

1

m

m∑
k=1

δxk

be the empirical measure generated by x = (x1, · · · , xm). Notice that for each
σ ∈ Σm, we have ∑

y1,··· ,ym∈E

1{Ly
m=µ}1{x◦σ=y} = 1.

We have ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

=
∑

y1,··· ,ym∈E

1{Ly
m=µ}

∑
σ∈Σm

1{x◦σ=y}

m∏
k=1

K(xσ(k−1), xσ(k))

=
∑

y1,··· ,ym∈E

1{Ly
m=µ}

m∏
k=1

K(yk−1, yk)
∑

σ∈Σm

1{x◦σ=y}.

We claim that ∑
σ∈Σm

1{x◦σ=y} =
∏
x∈E

(
mµ(x)

)
!.

Indeed, for each x ∈ E there are, respectively, exactly mµ(x) of x1, · · · , xm and
exactly mµ(x) of y1, · · · , ym which are equal to x. Therefore, there are

(
mµ(x)

)
!

ways to match each x-valued component of y with each x-valued component of x.
Thus, the claim follows from multiplication principle.
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Consequently,∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

=
∏
x∈E

(
mµ(x)

)
!
∑

y1,··· ,ym∈E

1{Ly
m=µ}

m∏
k=1

K(yk−1, yk).

Let q > 1 be the conjugate number of p and define ϕµ(x) = µ(x)1/qπ(x)1/p.
Then ∑

y1,··· ,ym∈E

ϕµ(y1) · · ·ϕµ(ym)

m∏
k=1

K(yk−1, yk)

≥
∑

y1,··· ,ym∈E

ϕµ(y1) · · ·ϕµ(ym)1{Ly
m=µ}

m∏
k=1

K(yk−1, yk)

=
( ∏

x∈E

ϕµ(x)
mµ(x)

) ∑
y1,··· ,ym∈E

1{Ly
m=µ}

m∏
k=1

K(yk−1, yk)

where the last step follows from the fact that when Ly
m = µ, there are mµ(x) factors

in the product ϕµ(x1) · · ·ϕµ(xm) which are equal to ϕµ(x) for any x ∈ E.

Summarizing the above steps, we have

1

(m!)p

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
≤

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[
1

m!

( ∏
x∈E

(
mµ(x)

)
!
)( ∏

x∈E

ϕµ(x)
mµ(x)

)−1
]p

×
[ ∑
y1,··· ,ym∈E

ϕµ(y1) · · ·ϕµ(ym)

m∏
k=1

K(yk−1, yk)

]p
.

Define gµ(x) = µ(x)1/qπ(x)−1/q. Then ϕµ(x) = gµ(x)π(x) for every x ∈ E and∑
x∈E

gqµ(x)π(x) =
∑
x∈E

µ(x) = 1, sup
x∈E

gµ(x) ≤ sup
x∈E

π(x)−1/q.

Consequently,

1

(m!)p

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[ ∑
σ∈Σm

m∏
k=1

K(xσ(k−1), xσ(k))

]p
(3.1.9)

≤
∑

x1,··· ,xm∈E

π(x1) · · ·π(xm)

[
1

m!

( ∏
x∈E

(
mµ(x)

)
!
)( ∏

x∈E

ϕµ(x)
mµ(x)

)−1
]p

×
[
sup
g

∑
y1,··· ,ym∈E

π(y1) · · ·π(ym)
( m∏

k=1

g(yk)
) m∏

k=1

K(yk−1, yk)

]p
where the supremum on the right hand side is taken for all non-negative functions
g on E satisfying ∑

x∈E

gq(x)π(x) = 1, sup
x∈E

g(x) ≤ c
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and where c = sup
x∈E

π(x)−1/q.

For each g,∑
y1,··· ,ym∈E

π(y1) · · ·π(ym)
( m∏

k=1

g(yk)
) m∏

k=1

K(yk−1, yk)

=
∑

y1,··· ,ym∈E

π(y1) · · ·π(ym)K(x0, y1)
√
g(y1)

×
[√

g(yk−1)
m∏

k=2

K(yk−1, yk)
√
g(xk)

]√
g(xm)

≤ c
(

sup
x,y∈E

K(x, y)
)(∑

x∈E

π(x)
) ∑

y1,··· ,ym∈E

π(y1) · · ·π(ym)h0(y1)

×
[√

g(yk−1)
m∏

k=2

K(yk−1, yk)
√
g(xk)

]
h0(xm)

= c
(

sup
x,y∈E

K(x, y)
)(∑

x∈E

π(x)
)
〈h0, T

m−1h0〉

where h0(y) ≡
(∑

x∈E π(x)
)−1/2

on E and the bounded self-adjoint linear operator

T : L2(E, E , π) −→ L2(E, E , π) is defined by

(Th)(x) =
√
g(x)
∑
y∈E

K(x, y)
√
g(y)h(y)π(y) h ∈ L2(E, E , π).

Similarly to (3.1.7), we have

〈h0, T
m−1h0〉 =

∫ ∞

−∞
λm−1µh0

(dλ).

By the fact that ||h0|| = 1, µh0
is a probability measure on R. By Theorem E.3 in

the Appendix, µh0
is supported on the interval[

inf
||h||=1

〈h, Th〉, sup
||h||=1

〈h, Th〉
]
.

Thus,

〈h0, T
m−1h0〉 ≤

(
max

{∣∣∣ inf
||h||=1

〈h, Th〉
∣∣∣, ∣∣∣ sup

||h||=1

〈h, Th〉
∣∣∣})m−1

= sup
||h||=1

∣∣∣∣ ∑
x,y∈E

K(x, y)
√
g(x)h(x)

√
g(y)h(y)π(x)π(y)

∣∣∣∣m−1

.

Write f(x) =
√
g(x)h(x). Then f(x) ≥ 0 and∑

x∈E

f
2p

2p−1 (x)π(x) ≤
{∑

x∈E

gq(x)π(x)

} p−1
2p−1
{∑

x∈E

h2(x)π(x)

} p
2p−1

= 1.

Consequently,

〈h0, T
m−1h0〉 ≤ �m−1
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where

� = sup

{ ∑
x,y∈E

K(x, y)f(x)f(y)π(x)π(y);
∑
x∈E

|f(x)|
2p

2p−1π(x) = 1

}
.

Summarizing our argument, we have

lim sup
m→∞

1

m
log sup

g

∑
y1,··· ,ym∈E

π(y1) · · ·π(ym)(3.1.10)

×
( m∏

k=1

g(yk)
) m∏

k=1

K(yk−1, yk) ≤ log �.

In view of (3.1.9), it remains to show that

lim sup
m→∞

1

m
log

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)(3.1.11)

×
[
1

m!

( ∏
x∈E

(
mµ(x)

)
!
)( ∏

x∈E

ϕµ(x)
mµ(x)

)−1
]p

≤ 0.

Let Pm(E) be the set of the probability measures ν on E such that for each
x ∈ E, ν(x) = k/n for some integer 0 ≤ k ≤ m.

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[
1

m!

( ∏
x∈E

(
mµ(x)

)
!
)( ∏

x∈E

ϕµ(x)
mµ(x)

)−1
]p

=
∑

ν∈Pm(E)

1{µ=ν}
∑

x1,··· ,xm∈E

π(x1) · · ·π(xm)

×
[
1

m!

( ∏
x∈E

(
mν(x)

)
!
)( ∏

x∈E

ϕν(x)
mν(x)

)−1
]p

≤
∑

ν∈Pm(E)

∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

×
[
1

m!

( ∏
x∈E

(
mν(x)

)
!
)( ∏

x∈E

ϕν(x)
mν(x)

)−1
]p
.

By Stirling formula, we get

m! ∼
√
2πmmme−m and

(
mν(x)

)
! ≤ C

√
mν(x)

(
mν(x)

)mν(x)
e−mν(x)

where x ∈ E. Hence,

1

m!

( ∏
x∈E

(
mν(x)

)
!
)
≤ Cm#(E)/2

∏
x∈E

ν(x)mν(x).
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Recall that ϕν(x) = ν(x)1/qπ(x)1/p. Therefore,∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[
1

m!

( ∏
x∈E

(
mν(x)

)
!
)( ∏

x∈E

ϕν(x)
mν(x)

)−1
]p

≤ Cpmp#(E)/2
∑

x1,··· ,xm∈E

π(x1) · · ·π(xm)
∏
x∈E

(ν(x)
π(x)

)mν(x)

= Cpmp#(E)/2
∑

x1,··· ,xm∈E

ν(x1) · · · ν(xm) = Cpmp#(E)/2.

Consequently,∑
x1,··· ,xm∈E

π(x1) · · ·π(xm)

[
1

m!

( ∏
x∈E

(
mµ(x)

)
!
)( ∏

x∈E

ϕµ(x)
mµ(x)

)−1
]p

≤ Cpmp#(E)/2#{Pm(E)}.

Finally, (3.1.11) follows from the fact that #{Pm(E)} is equal to the number of
the non-negative lattice solutions (k(x); x ∈ E) of the equation∑

x∈E

k(x) = m

and that the latter is equal to (
m+#(E)− 1

#(E)− 1

)
.

3.2. High moment of α([0, τ1]× · · · × [0, τp])

We now return to the intersection local time α(A) of independent d-dimensional
Brownian motions W1(t), · · · ,Wp(t). Throughout we assume that p(d − 2) < d.
Define

(3.2.1) ρ = sup

{∫∫
Rd×Rd

G(x− y)f(x)f(y)dxdy;

∫
Rd

|f(x)|
2p

2p−1 dx = 1

}
.

Lemma 3.2.1. Under p(d− 2) < d, we get

0 < ρ ≤
(∫

Rd

Gp(x)dx

)1/p

< ∞.

Proof. The lower bound ρ > 0 is obvious. We now prove the upper bound. Let
the non-negative f on Rd satisfy∫

Rd

f
2p

2p−1 (x)dx = 1.
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We finally reach the bound(∫ M

0

|ḡ(x)|2pdx
)1/p

− 1

2

∫ ∞

−∞
|g′(x)|2dx

≤ εM + (M−1/2 + 1)2θ
2p

p+1

M sup
f∈F

{(∫ ∞

−∞
|f(x)|2pdx

)1/p

− 1

2

∫ ∞

−∞
|f ′(x)|2dx

}
uniformly over g ∈ F , which leads to the desired conclusion.

In the case d ≥ 2, the local time L(t, x) no longer exists. We may introduce

L(t, x, ε) =

∫ t

0

pε
(
W (s)− x

)
ds

instead. With some slight modification on the proof of (4.2.3), we can prove the
following.

Theorem 4.2.3. For each d ≥ 1, p > 1 and ε, θ > 0,

lim
t→∞

1

t
logE exp

{
θ

(∫
Rd

Lp(t, x, ε)dx

)1/p}
= sup

g∈Fd

{
θ

(∫
Rd

[
g(x, ε)

]2p
dx

)1/p

− 1

2

∫
Rd

|∇g(x)|2dx
}

where Fd is defined in (4.1.22) and

g(x, ε) =

{∫
Rd

pε(y)g
2(x− y)dx

}1/2

x ∈ Rd.

4.3. Two-dimensional case

Recall that in Section 2.4 we constructed the renormalized self-intersection local
time γ

(
[0, t]2<

)
(formally written in (2.4.1)) run by a 2-dimensional Brownian motion

W (t). The discussion naturally leads to the “renormalized” polymer models

(4.3.1) P̂λ(A) = Ĉ−1
λ E

(
exp
{
λγ
(
[0, 1]2<

)}
1{W (·)∈A}

)
A ⊂ C

{
[0, 1],R2

}
,

(4.3.2) P̃λ(A) = C̃−1
λ E

(
exp
{
− λγ

(
[0, 1]2<

)}
1{W (·)∈A}

)
A ⊂ C

{
[0, 1],R2

}
where

Ĉλ = E exp
{
λγ
(
[0, 1]2<

)}
and C̃λ = E exp

{
− λγ

(
[0, 1]2<

)}
are normalizers.

In view of Theorem 2.4.2, C̃λ < ∞ for all λ > 0. In the term of physics, it
shows that there is no phase transition in the self-repelling polymer model given in

(4.3.2). On the other hand, we shall show that there is a λ0 > 0 such that Ĉλ = ∞
for sufficiently large λ > 0. An important question is to find the λ0 > 0 such that

E exp
{
λγ
(
[0, 1]2<

)}⎧⎨⎩ < ∞ λ < λ0,

= ∞ λ > λ0.
(4.3.3)
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In physics, the value λ0 is critical to the “melt-down” of a self-attracting polymer.
We shall identify λ0 in terms of the Gagliardo-Nirenberg constant.

Theorem 4.3.1. Let κ(2, 2) > 0 be the best constant of the Gagliardo-Nirenberg
inequality

||f ||4 ≤ C
√
||∇f ||2

√
||f ||2 f ∈ W 1,2(R2)(4.3.4)

where

W 1,2(R2) =
{
f ∈ L2(R2); ∇f ∈ L2(Rd)

}
.

Then

lim
t→∞

1

t
logP
{
γ
(
[0, 1]2<

)
≥ t
}
= −κ(2, 2)−4.

Proof. Let 0 ≤ λ0 ≤ ∞ be defined by (4.3.3). Then

lim sup
t→∞

1

t
logP
{
γ
(
[0, 1]2<

)
≥ t
}
= −λ0.

Theorem 2.4.2 implies that λ0 > 0. To establish the upper bound, we need to show
that λ0 ≥ κ(2, 2)−4. For this purpose we may assume that λ0 < ∞.

Consider the decomposition

γ
(
[0, 1]2<

)
= γ
(
[0, 1/2]2<

)
+ γ
(
[1/2, 1]2<

)
+ γ
(
[0, 1/2]× [1/2, 1]

)
.

It gives that for each ε > 0,

−λ0 ≤ max

{
lim sup
t→∞

1

t
logP
{
γ
(
[0, 1/2]2<

)
+ γ
(
[1/2, 1]2<

)
≥ 1 + ε

2
t
}
,

lim sup
t→∞

1

t
logP
{
γ
(
[0, 1/2]× [1/2, 1]

)
≥ 1− ε

2
t
}}

.

By Proposition 2.3.4,

γ
(
[0, 1/2]× [1/2, 1]

) d
=

1

2

{
α
(
[0, 1]2

)
− Eα

(
[0, 1]2

)}
.

Taking d = p = 2 in (3.3.4),

lim
t→∞

1

t
logP
{
α
(
[0, 1]2

)
≥ t
}
= −κ(2, 2)−4.

Consequently,

lim
t→∞

1

t
logP
{
γ
(
[0, 1/2]× [1/2, 1]

)
≥ 1− ε

2
t
}
= −(1− ε)κ(2, 2)−4.

Observe that γ
(
[0, 1/2]2<

)
and γ

(
[1/2, 1]2<

)
are independent and have the same

law as (1/2)γ
(
[0, 1]2<

)
. According to the definition of λ0,

E exp

{
2λ
[
γ
(
[0, 1/2]2<

)
+ γ
(
[1/2, 1]2<

)]}
=

(
E exp

{
λγ
(
[0, 1]2<

)})2

< ∞

for every λ < λ0. A standard application of Chebyshev inequality leads to

lim sup
t→∞

1

t
log P
{
γ
(
[0, 1/2]2<

)
+ γ
(
[1/2, 1]2<

)
≥ 1 + ε

2
t
}
≤ −(1 + ε)λ0.
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Summarizing our argument, we have

−λ0 ≤ max
{
− (1 + ε)λ0, −(1− ε)κ(2, 2)−4

}
.

By the fact that λ0 > 0, we must have λ0 ≥ (1 − ε)κ(2, 2)−4. Letting ε → 0+ we
have proved the upper bound

(4.3.5) lim sup
t→∞

1

t
logP
{
γ
(
[0, 1]2<

)
≥ t
}
≤ −κ(2, 2)−4.

To establish the lower bound, recall that

L(t, x, ε) =

∫ t

0

pε
(
W (s)− x

)
ds

and notice that∫
R2

L2(t, x, ε)dx = 2

∫ ∫
{0≤r<s≤t}

p2ε
(
W (r)−W (t)

)
drds.

By Theorem 4.2.7 (with p = 2) for any θ > 0,

lim
t→∞

1

t
logE exp

{
θ

(∫ ∫
{0≤r<s≤t}

p2ε
(
W (r)−W (t)

)
drds

)1/2}
= sup

g∈F2

{
θ√
2

(∫
R2

g4(x, ε)dx

)1/2

− 1

2

∫
Rd

|∇g(x)|2dx
}
.

Let t = n be a positive integer and write∫ ∫
{0≤r<s≤n}

p2ε
(
W (r)−W (t)

)
drds(4.3.6)

=
n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)
+

n∑
k=1

βε

(
[k − 1, k]2<

)
.

Here we recall that

βε(A) =

∫
A

p2ε
(
W (r)−W (s)

)
drds,

β(A) =

∫
A

δ0
(
W (r)−W (s)

)
drds

are the random measures discussed in Section 2.3 (with p = d = 2). By Theorem
2.3.2 and by a treatment similar to the one used in Proposition 2.3.4 we conclude
that for any fixed n,

n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

) ε→0+−→
n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)
in Lm(Ω,A,P) for all m > 0.
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Notice that the second term on the right hand side of (4.3.6) is bounded by Cεn
for some constant Cε > 0. So we have

lim
n→∞

1

n
logE exp

{
θ

( n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

))1/2}

= sup
g∈F2

{
θ√
2

(∫
R2

g4(x, ε)dx

)1/2

− 1

2

∫
Rd

|∇g(x)|2dx
}
.

By Lemma 1.2.6, this leads to

lim
n→∞

1

n
log

∞∑
m=0

θm

m!

{
E

[ n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)]m}1/2

(4.3.7)

=
1

2
sup
g∈F2

{√
2θ

(∫
R2

g4(x, ε)dx

)1/2

− 1

2

∫
Rd

|∇g(x)|2dx
}
.

We now claim that for any ε > 0, integers m,n ≥ 1,

(4.3.8) E

[ n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)]m
≤ E

[ n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)]m
.

Indeed, write

D =
n−1⋃
k=1

[0, k]× [k, k + 1].

By Fourier inversion (Theorem B.1, Appendix), we get

p2ε(x) = (2π)−2

∫
R2

e−iλ·x exp
{
− ε|λ|2

}
dλ.

Thus,

n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)
=

∫
D

drdsp2ε
(
W (r)−W (s)

)
drds

=

∫
R2

dλ exp
{
− ε|λ|2

}∫
D

drds exp
{
− iλ ·

(
W (r)−W (s)

)}
.

Consequently,

E

[ n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)]m
=

∫
(R2)m

dλ1 · · · dλm exp
{
− ε

m∑
k=1

|λk|2
}

×
∫
Dm

dr1ds1 · · · drmdsm exp
{
− 1

2
Var
( m∑

k=1

λk ·
(
W (rk)−W (sk)

))}
.

Therefore, for any 0 < ε′ < ε,

E

[ n−1∑
k=1

βε

(
[0, k]× [k, k + 1]

)]m
≤ E

[ n−1∑
k=1

βε′
(
[0, k]× [k, k + 1]

)]m
,

which leads to (4.3.8) by letting ε′ → 0.
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By (4.3.7) and (4.3.8),

lim inf
n→∞

1

n
log

∞∑
m=0

θm

m!

{
E

[ n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)]m}1/2

≥ 1

2
sup
g∈F2

{√
2θ

(∫
R2

g4(x, ε)dx

)1/2

− 1

2

∫
Rd

|∇g(x)|2dx
}
.

When ε → 0+, the right hand side converges to

1

2
sup
g∈F2

{√
2θ

(∫
R2

|g(x)|4dx
)1/2

− 1

2

∫
Rd

|∇g(x)|2dx
}

=
1

2
θ2κ(2, 2)4

where the equality follows from Theorem C.1, Appendix (with d = p = 2). Thus,

lim inf
n→∞

1

n
log

∞∑
m=0

θm

m!

{
E

[ n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)]m}1/2

(4.3.9)

≥ 1

2
θ2κ(2, 2)4 (θ > 0).

Notice that (4.3.9) alone is not enough for the lower bound of the large deviation.
In the following effort, we strengthen (4.3.9) into an equality.

By the scaling property, (4.3.5) can be rewritten as

lim sup
n→∞

1

n
logP
{
γ
(
[0, n]2<

)
≥ λn2

}
≤ −λκ(2, 2)−4 (λ > 0).

Similarly to the decomposition (4.3.6), we have

γ
(
[0, n]2<

)
=

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)
−

n−1∑
k=1

Eβ
(
[0, k]× [k, k + 1]

)
(4.3.10)

+

n∑
k=1

γ
(
[k − 1, k]2<

)
.

Notice that
n−1∑
k=1

Eβ
(
[0, k]× [k, k + 1]

)
=

1

2π

n−1∑
k=1

∫ k

0

∫ k+1

k

1

s− r
dsdr(4.3.11)

=
1

2π

n−1∑
k=1

{
log(k + 1)− log k

}
=

1

2π
n logn.

The random variables γ
(
[k − 1, k]2<

)
(k = 1, 2 · · · ) form an i.i.d. exponentially

integrable sequence. By a standard application of Chebyshev inequality, we get

lim
n→∞

1

n
logP
{∣∣∣ n∑

k=1

γ
(
[k − 1, k]2<

)∣∣∣ ≥ εn2
}
= −∞.(4.3.12)

Summarizing our argument, we have

lim sup
n→∞

1

n
logP
{ n−1∑

k=1

β
(
[0, k]× [k, k + 1]

)
≥ λn2

}
≤ −λκ(2, 2)−4.
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By Lemma 1.2.9 (part (2)) and Lemma 1.2.10, this leads to

lim sup
n→∞

1

n
log

∞∑
m=0

θm

m!

{
E

[ n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)]m}1/2

≤ sup
λ>0

{
θλ1/2 − 1

2
λκ(2, 2)−4

}
=

1

2
θ2κ(2, 2)4.

Combining this with (4.3.9) gives us

lim
n→∞

1

n
log

∞∑
m=0

θm

m!

{
E

[ n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)]m}1/2

=
1

2
θ2κ(2, 2)4.

Applying Theorem 1.2.7, we get

lim
n→∞

1

n
logP
{ n−1∑

k=1

β
(
[0, k]× [k, k + 1]

)
≥ λn2

}
= −λκ(2, 2)−4.

We bring this back to the decomposition (4.3.10). By (4.3.11) and (4.3.12),

lim
n→∞

1

n
logP
{
γ
(
[0, n]2<

)
≥ λn2

}
= −λκ(2, 2)−4,

which ends the proof.

Comparing Theorem 4.3.1 with (3.3.4) (with d = p = 2), one can see that
the intersection local time α

(
[0, 1/2]2

)
obeys the same large deviation principle as

γ
(
[0, 1]2<

)
. This observation is crucial in our proof of the upper bound part of

Theorem 4.3.1, since α
(
[0, 1/2]2

) d
= 2−1α

(
[0, 1]2

)
; so the tail of α

(
[0, 1/2]2

)
is given

by Theorem 3.3.2. We try to turn our mathematical argument into the following
intuitive explanation:

Cut the Brownian path
{
W (t); 0 ≤ t ≤ 1

}
into two paths at the middle point

W (1/2) and shift the whole system so the cutting point W (1/2) becomes the origin
after shifting. If we reverse the direction of the path before the time t = 1/2,
then the resulted two paths are trajectories of two independent Brownian motions
running up to time 1/2.

The total self-intersection of the original path
{
W (t); 0 ≤ t ≤ 1

}
is the sum of

the intersection within each sub-path and the intersection between two sub-paths.
When d = 2, the first type intersection out-numbers the second type intersection
(that is the main reason why β

(
[0, 1]2<

)
= ∞ (Proposition 2.3.6)). The renor-

malization subdues the short range intersection so that these two intersections are
comparable. By chance, the ratio is 1 to 1 here in the sense of large deviations.
That is to say, about half of γ

(
[0, 1]2<

)
is made of a random quantity distributed as

α
(
[0, 1/2]2

)
. As for another half, it is equal to the sum of the (renormalized) self-

intersection local times of two independent paths and each of them can be analyzed
in the way proposed above.

The proportion between these two types of intersection varies in different set-
tings. From later development, we shall see that finding the ratio is an important
part of establishing the large deviations related to self intersections.

The following theorem shows a completely different tail asymptotic behavior.
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Theorem 4.3.2. There is a constant 0 < L < ∞ such that for any θ > 0,

lim
t→∞

t−2πθ log P
{
− γ
(
[0, 1]2<

)
≥ θ log t

}
= −L.

Proof. One needs only to prove Theorem 4.3.2 in the case θ = (2π)−1. That is,

(4.3.13) lim
t→∞

1

t
logP
{
− γ
(
[0, 1]2<

)
≥ (2π)−1 log t

}
= −L

for some 0 < L < ∞. Indeed, the general statement will follows from (4.3.13) if we
substitute t by t2πθ.

The argument for (4.3.13) is based on sub-additivity. Define

(4.3.14) Zt = − 1

2π
t log t− γ

(
[0, t]2<

)
t ≥ 0.

For any s, t > 0,

Zs+t = − 1

2π
(s+ t) log(s+ t)− γ

(
[0, s]2<

)
− γ
(
[s, s+ t]2<

)
− β
(
[0, s]× [s, s+ t]

)
+ Eβ

(
[0, s]× [s, s+ t]

)
≤ − 1

2π
(s+ t) log(s+ t)− γ

(
[0, s]2<

)
− γ
(
[s, s+ t]2<

)
+ Eβ

(
[0, s]× [s, s+ t]

)
.

By Proposition 2.3.4, we get

Eβ
(
[0, s]× [s, s+ t]

)
= Eα

(
[0, s]× [0, t]

)
=

∫
R2

dx

[ ∫ s

0

pu(x)du

][ ∫ t

0

pu(x)du

]
=

∫ s

0

∫ t

0

pu+v(0)dudv

where the second equality follows from Le Gall’s moment formula in the special
case d = p = 2 and m = 1. By a straightforward calculation, we have∫ s

0

∫ t

0

pu+v(0)dudv =
1

2π

∫ s

0

∫ t

0

1

u+ v
dudv

=
1

2π

[
(s+ t) log(s+ t)− s log s− t log t

]
.

Summarizing our argument gives us

(4.3.15) Zs+t ≤ Zs + Z ′
t

where

Z ′
t = − 1

2π
t log t− γ

(
[s, s+ t]2<

)
is independent of Zs and Z ′

t
d
= Zt. This means that Zt is sub-additive.

By Theorem 2.4.7, and the fact γ
(
[0, δ]2<

) d
= δγ
(
[0, 1]2<

)
, for any λ > 0, one can

take δ > 0 sufficiently small so that

E exp
{
λZδ

}
< ∞.
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By sub-additivity given in (4.3.15), therefore, we conclude that1

(4.3.16) E exp
{
λZt

}
< ∞ ∀λ, t > 0.

By (4.3.15) again, for any s, t > 0,

E exp
{
2πZs+t

}
≤ E exp

{
2πZs

}
E exp

{
2πZt

}
or,

(s+ t)−(s+t)E exp
{
− 2πγ

(
[0, s+ t]2<

)}
≤
(
s−sE exp

{
− 2πγ

(
[0, s]2<

)})(
t−tE exp

{
− 2πγ

(
[0, t]2<

)})
.

By Lemma 1.3.1, the limit

lim
t→∞

1

t
log

(
t−tE exp

{
− 2πγ

(
[0, t]2<

)})
= A(4.3.17)

exists with A < ∞. By Lemma 4.3.3 below, A > −∞. Let t = n be integer. By
Stirling formula and by scaling, we get

lim
n→∞

1

n
log

1

n!
E exp

{
− 2πnγ

(
[0, 1]2<

)}
= A+ 1.

Finally, applying Theorem 1.2.8 to the non-negative random variable

Y = exp
{
− 2πγ

(
[0, 1]2<

)}
leads to (4.3.13) with

L = exp{−1−A}.(4.3.18)

We end this section by establishing the following lemma.

Lemma 4.3.3.

lim inf
n→∞

1

n
log

(
n−nE exp

{
− 2πγ

(
[0, n]2<

)})
> −∞.

Proof. By (4.3.10) and (4.3.11)

n−nE exp
{
− 2πγ

(
[0, n]2<

)}
= exp

{
− 2π

n∑
k=1

γ
(
[k − 1, k]2<

)
− 2π

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)}

≥ e−2πMnE exp

{
− 2π

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)}

− e−2πMnP

{ n∑
k=1

γ
(
[k − 1, k]2<

)
≥ Mn

}
.

1Here we are not allowed to apply Theorem 1.3.5 directly for lack of monotonicity.
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By Chebyshev inequality, for any 0 < λ < κ(2, 2)−4,

P

{ n∑
k=1

γ
(
[k − 1, k]2<

)
≥ Mn

}
≤ e−nλM

(
E exp

{
λγ
(
[0, 1]2<

)})n

and the right hand side can be exponentially small to a requested level by choosing
sufficiently large M . To complete the proof, therefore, we need only to establish
the lower bound

(4.3.19) E exp

{
− 2π

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)}
≥ cn1

for some constant c1 > 0 and sufficiently large n.

Let the 1-dimensional Brownian motion W0(t) be the first component of W (t)
and write

Dn =
{

sup
0≤s≤n

|W0(s)− s| ≤ δ
}

where 0 < δ < 1/2 is fixed. Notice that on Dn,

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)
=

n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
.

Consequently, for any N > 0,

E exp

{
− 2π

n−1∑
k=1

β
(
[0, k]× [k, k + 1]

)}
(4.3.20)

≥ E

[
exp

{
− 2π

n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)}
1Dn

]

≥ e−2πNn

{
P(Dn)− P

{ n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
≥ Nn

}}
.

Write
n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
=
∑
k

β
(
[2(k − 1), 2k − 1]× [2k − 1, 2k]

)
+
∑
k

β
(
[2k − 1, 2k]× [2k, 2k + 1]

)
.

Observe that

P

{ n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
≥ Nn

}
≤ P

{∑
k

β
(
[2(k − 1), 2k − 1]× [2k − 1, 2k]

)
≥ 2−1Nn

}
+ P

{∑
k

β
(
[2k − 1, 2k]× [2k, 2k + 1]

)
) ≥ 2−1Nn

}
.
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By the fact that the sequence

β
(
[2(k − 1), 2k − 1]× [2k − 1, 2k]

)
k = 1, 2, · · ·

is an i.i.d. with common distribution the same as α([0, 1]2),

P

{∑
k

β
(
[2(k − 1), 2k − 1]× [2k − 1, 2k]

)
≥ 2−1Nn

}
≤ e−2−1nλN

(
E exp

{
λα
(
[0, 1]2

)})n

where λ > 0 is chosen in order that

E exp
{
λα
(
[0, 1]2

)}
< ∞.

Similarly,

P

{∑
k

β
(
[2k − 1, 2k]× [2k, 2k + 1]

)
≥ 2−1Nn

}
≤ e−2−1nλN

(
E exp

{
λα
(
[0, 1]2

)})n

.

Thus, by triangular inequality, we get

P

{ n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
≥ Nn

}
≤ 2e−2−1nλN

(
E exp

{
λα
(
[0, 1]2

)})n

.

On the other hand,

Dn =
{

sup
0≤s≤n−1

|W0(s)− s| ≤ δ
}

∩
{

sup
0≤s≤1

∣∣(W0(n− 1 + s)−W0(n− 1)
)
− s+

(
W0(n− 1)− (n− 1)

)∣∣ ≤ δ
}
.

By independence of increments,

P(Dn) ≥ P(Dn−1) inf
|x|≤δ

Px

{
sup

0≤s≤1

∣∣W0(s)− s| ≤ δ
}
.

Repeating our argument,

P(Dn) ≥
(

inf
|x|≤δ

Px

{
sup

0≤s≤1

∣∣W0(s)− s| ≤ δ
})n

= cn2 ,

where

c2 ≡ inf
|x|≤δ

Px

{
sup

0≤s≤1

∣∣W0(s)− s| ≤ δ
}
> 0.

Thus, one can take N > 0 sufficiently large so that

P

{ n−1∑
k=1

β
(
[k − 1, k]× [k, k + 1]

)
≥ Nn

}
≤ 1

2
P(Dn).

Hence, (4.3.19) follows from (4.3.20).
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