Contents

Preface	xi
Background and overview	1
Chapter 0. Introduction	3
0.1. The Classification Theorem	3
0.2. Principle I: Recognition via local subgroups	4
0.3. Principle II: Restricted structure of local subgroups	7
0.4. The finite simple groups	16
0.5. The Classification grid	19
Chapter 1. Overview: The classification of groups of Gorenstein-Walter typ	e 25
The Main Theorem for groups of Gorenstein-Walter type	25
1.1. A strategy based on components in centralizers	26
1.2. The Odd Order Theorem	28
1.3. (Level 1) The Strongly Embedded Theorem	
and the Dichotomy Theorem	29
1.4. The 2-Rank 2 Theorem	33
1.5. (Level 1) The Sectional 2-Rank 4 Theorem	
and the 2-Generated Core Theorem	35
1.6. The <i>B</i> -Conjecture and the Standard Component Theorem	41
1.7. The Unbalanced Group Theorem, the $2A_n$ -Theorem,	4.4
and the Classical Involution Theorem	44
1.8. Finishing the Unbalanced Group Theorem and the <i>B</i> -Theorem	48
1.9. The Odd Standard Component Theorem	50
and the Aschbacher-Seitz reduction	00 55
Summary, Statements of the major subtheorems	50
Summary. Statements of the major subtheorems	-09
Chapter 2. Overview: The classification of groups of characteristic 2 type	63
The Main Theorem for groups of characteristic 2 type	63
2.1. The Quasithin Theorem covering $e(G) \leq 2$	65
2.2. The trichotomy approach to treating $e(G) \ge 3$	66
2.3. The Trichotomy Theorem for $e(G) \ge 4$	69
2.4. The $e(G) = 3$ Theorem (including trichotomy)	75
2.5. The Standard Type Theorem	77
2.6. The $GF(2)$ Type Theorem	77
2.7. The Uniqueness Case Theorem	78
Conclusion: The proof of the Characteristic 2 Type Theorem	80

CONTENTS

Outline of the classification	on of groups of characteristic 2 type	83
Chapter 3. $e(G) \leq 2$: The cl	assification of quasithin groups	85
3.1. Introduction: The Tl	hompson Strategy	86
3.2. Preliminaries: Struct	ure theory for quasithin 2-locals	
(SQTK-groups $)$		88
3.3. More preliminaries: S	Some general techniques	90
3.4. The degenerate case:	A Sylow T in a unique maximal 2-local	98
3.5. The Main Case Divis	sion	
(Possibilities for a s	suitable group \overline{L} and module V)	100
3.6. The Generic Case—v	where $\overline{L} = L_2(2^n)$ with $n > 1$	103
3.7. Reducing to V an FI	F-module for \overline{L}	106
3.8. Cases with \overline{L} over \mathbf{F}_2	2^n for $n > 1$	109
3.9. Cases with \overline{L} over \mathbf{F}_2	(but not $L_3(2)$)	111
3.10. Cases with $\overline{L} = L_3($	2), and analogues for $L_2(2)$	117
3.11. The final case where	$\mathcal{L}_f(G,T)$ is empty	120
3.12. Bonus: The Even T	ype (Quasithin) Theorem	
for use in the GLS	program	123
Chapter 4. $e(G) = 3$: The cl	assification of rank 3 groups	127
4.1. The case where $\sigma(G)$	contains a prime $p \ge 5$	128
The Signalizer Anal	ysis	128
The Component An	alysis	130
4.2. The case $\sigma(G) = \{3\}$		133
The Signalizer Anal	ysis	134
The Component An	alysis	142
Chapter 5. $e(G) \ge 4$: The P	retrichotomy and Trichotomy Theorems	149
5.1. Statements and Defin	nitions	149
5.2. The Signalizer Analy	sis	152
5.3. The Component Ana	lysis (leading to standard type)	159
	-)	
Chapter 6. The classification	n of groups of standard type	173
6.1. The Gilman-Griess T	Theorem on standard type for $e(G) \ge 4$	173
Identifying a large I	$Jie-type$ subgroup G_0	174
The final step: $G =$	G_0	177
6.2. Odd standard form p	problems for $e(G) = 3$ (Finkelstein-Frohardt)	180
Chapter 7 The classification	a of groups of $GF(2)$ type	183
Introduction	1 of groups of of (2) type	184
7.1 Aschbacher's reduction	on of $GF(2)$ type to the large-extraspecial case	185
7.2 The treatment of son	ne fundamental extraspecial cases	188
7.3 Timmesfeld's reducti	on to a list of possibilities for \overline{M}	100
7.4 The final treatment of	of the various cases for \overline{M}	100
7.5 Chapter appendix: T	The classification of groups of $CF(2^n)$ type	204
1.0. Onapter appendix. I	ne crassification of groups of Gr (2) type	204

CONTENTS

Chapter 8. The final contradiction: Eliminating the Uniqueness Case	213
8.1. Prelude: From the Preuniqueness Case to the Uniqueness Case	215
8.2. Introduction: General strategy	
using weak closure and uniqueness theorems	223
8.3. Preliminary results and the weak closure setup	226
8.4. The treatment of small $n(H)$	230
8.5 The treatment of large $n(H)$	234
	201
Appendices	249
Appendix A. Some background material related to simple groups	251
A.1. Preliminaries: Some notation and results	-01
from general group theory	251
A 2 Notation for the simple groups	254
Λ 3 Properties of simple groups and $K_{\rm e}$ groups	254
Λ A Properties of representations of simple groups	200
A.5. Recognition theorems for identifying simple groups	201
A.6. Transportion means and transportion means theory	202
A.o. Transvection groups and transposition-group theory	204
Appendix B. Overview of some techniques used in the classification	267
B.1. Coprime action	267
B.2. Fusion and transfer	269
B.3. Signalizer functor methods and balance	272
B.4. Connectivity in commuting graphs and <i>i</i> -generated cores	280
B.5. Application: A short elementary proof of the Dichotomy Theorem	287
B 6 Failure of factorization	290
B 7 Pushing-up and the Local and Global $C(G,T)$ Theorems	200
B 8 Weak closure	202
B.9. Klinger-Mason analysis of hicharacteristic groups	302
B 10 Some details of the proof of the Uniqueness Case Theorem	305
D.10. Some details of the proof of the Oniqueness Case Theorem	305
References and Index	313
References used for both GW type and characteristic 2 type	315
References mainly for GW type (see [Gor82][Gor83] for full list)	317
References used primarily for characteristic 2 type	321
Expository references mentioned	329
Index	333
	500

 $\mathbf{i}\mathbf{x}$