Introduction

Speaking about noise we usually mean something that deteriorates the opera-
tion of a system. It is understood as a disturbance, a random and persistent one,
that obscures or reduces the clarity of a signal.

In nonlinear dynamical systems, however, noise may play a very constructive
role. It may enhance a system’s sensitivity to a small periodic deterministic signal
by amplifying it. The optimal amplification of small periodic signals by noise gives
rise to the ubiquitous phenomenon of stochastic resonance (SR) well studied in
a plethora of papers in particular in the physical and biological sciences. This
book presents a mathematical approach to stochastic resonance in a well defined
particular mathematical framework. We consider weakly periodic systems with
additive noise of small amplitude . The systems possess two domains of attraction
of stable equilibria separated by a manifold marking a barrier. Both the geometry
of the attraction domains as well as the barrier height are not subject to scalings
with the amplitude parameter . Therefore, as opposed to other approaches, noise
induced random transitions in our model happen on time scales of Kramers’ law,
i.e. they are exponential in the quotient of barrier height and noise amplitude,
and are due to large deviations. Our analysis is therefore based on a new large
deviations principle of the systems’ exit and transition dynamics between different
domains of attraction in the limit of small . It aims at the description of an
optimal interplay between large period length T of the weak periodic motion and
noise amplitude €, where optimization is done with respect to appropriate measures
of quality of response of the stochastic system to the periodic input. We will
be uniquely concerned with the well founded and self contained presentation of
this mathematical approach mainly based on a space-time extension of Freidlin—
Wentzell’s theory of large deviations of noisy dynamical systems, first on a heuristic
and then on a mathematically rigorous level. The two principal messages of the
book are these. First we show that — already in space dimension one — the
classical physical measures of quality of periodic tuning such as the spectral power
amplification, due to the phenomenon of the small oscillations catastrophe, are not
robust with respect to dimension reduction. Comparing optimal tuning rates for
the diffusion processes and the finite state Markov chains retaining the models’
essentials one gets essentially different results (Chapter 3, Theorems 3.50, 3.53).
We therefore propose — in arbitrary finite space dimension — measures of quality
of periodic tuning based uniquely on the transition dynamics and show that these
measures are robust and, via a crucial large deviations result, are able to explain
stochastic resonance as optimal tuning (Chapter 4, Theorems 4.19, 4.29, 4.31).
Concentrating on these more theoretical themes, the book sheds some light on the
mathematical shortcomings and strengths of different concepts used in theory and
application of stochastic resonance, in a well defined framework. It does not aim at
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a comprehensive presentation of the many facets of stochastic resonance in various
areas of sciences (a sample will be briefly discussed in Chapter 1, Section 1.5). In
particular it does not touch computational aspects relevant in particular in high
dimensions where analytical methods alone are too complex to be of practical use
any more (for an incomplete overview of stochastic resonance from a computational
dynamics perspective see also Chapter 1, Section 1.5).

We now explain briefly our motivation and approach. The most prominent and
one of the first examples in which phenomena related to stochastic resonance were
observed is given by energy balance models of low dimensional conceptual climate
dynamics. It was employed for a qualitative explanation of glacial cycles in earth’s
history, i.e. the succession of ice and warm ages observed in paleoclimatic data,
by means of stochastic transitions between cold and warm meta-stable climates in
a dynamical model. It will be discussed in more detail in Chapter 1. The model
proposed by Nicolis [83] and Benzi et al. [6] is based on the balance between aver-
aged absorbed and emitted radiative energy and leads to a deterministic differential
equation for averaged global temperature 7" of the form

T(t) = b(t, T(t)).

The explicit time dependence of b captures the influence of the solar constant that
undergoes periodic fluctuations of a very small amplitude at a very low frequency.
The fluctuations are due to periodic changes of the earth’s orbital parameters (Mi-
lankovich cycles), for instance a small variation of the axial tilt that arises at a
frequency of roughly 4 x 10~ times per year, and coincide roughly with the ob-
served frequencies of cold and warm periods. For frozen ¢ the nonlinear function
b(t,T) describes the difference between absorbed radiative energy as a piecewise
linear function of the temperature dependent albedo function a(7T") and emitted ra-
diative energy proportional to T* due to the Stefan-Boltzmann law of black body
radiators. In the balance for relevant values of T" it can be considered as negative
gradient (force) of a double well potential, for which the two well bottoms corre-
spond to stable temperature states of glacial and warm periods. The evolution of
temperature in the resulting deterministic dynamical system is analogous to the
motion of an overdamped physical particle subject to the weakly periodic force
field of the potential. Trajectories of the deterministic system relax to the stable
states of the domain of attraction in which they are started. Only the addition of
a stochastic forcing to the system allows for spontaneous transitions between the
different stable states which thus become meta-stable.

In a more general setting, we study a dynamical system in d-dimensional Eu-
clidean space perturbed by a d-dimensional Brownian motion W, i.e. we consider
the solution of the stochastic differential equation
t
T
One of the system’s important features is that its time inhomogeneity is weak in
the sense that the drift depends on time only through a re-scaling by the time
parameter T' = T'(¢) which will be assumed to be exponentially large in €. This
corresponds to the situation in Herrmann and Imkeller [50] and is motivated by
the well known Kramers-Eyring law which was mathematically underpinned by the
Freidlin—Wentzell theory of large deviations [40]. The law roughly states that the
expected time it takes for a homogeneous diffusion to leave a local attractor e.g.

(0.1) de:b( ,Xf) dt + \EdWs, > 0.
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across a potential wall of height § is given to exponential order by T'(¢) = exp(%).
Hence, only in exponentially large scales of the form T'(¢) = exp(f) parametrized by
an energy parameter y we can expect to see effects of transitions between different
domains of attraction. We remark at this place that our approach essentially differs
from the one by Berglund and Gentz [13]. If b represents a negative potential
gradient for instance, their approach would typically not only scale time by T,
but also the depths of the potential wells by a function of €. As a consequence,
transitions even for the deterministic dynamical system become possible, and their
noise induced transitions happen on time scales of intermediate length. In contrast,
in our setting transitions between the domains of attraction of the deterministic
system are impossible, and noise induced ones are observed on very large time scales
of the order of Kramers’ time, typically as consequences of large deviations. The
function b is assumed to be one-periodic w.r.t. time, and so the system described
by (0.1) attains period T by re-scaling time in fractions of T'. The deterministic
system St = b(s, &) with frozen time parameter s is supposed to have two domains of
attraction that do not depend on s > 0. In the “classical” case of a drift derived from
a potential, b(t,z) = —V,U(t,z) for some potential function U, equation (0.1) is
analogous to the overdamped motion of a Brownian particle in a d-dimensional time
inhomogeneous double-well potential. In general, trajectories of the solutions of
differential equations of this type will exhibit randomly periodic behavior, reacting
to the periodic input forcing and eventually amplifying it. The problem of optimal
tuning at large periods T consists in finding a noise amplitude (T (the resonance
point) which supports this amplification effect in a best possible way. During the last
20 years, various concepts of measuring the quality of periodic tuning to provide
a criterion for optimality have been discussed and proposed in many applications
from a variety of branches of natural sciences (see Gammaitoni et al. [43] for an
overview). Its rigorous mathematical treatment was initiated only relatively late.
The first approach towards a mathematically precise understanding of stochas-
tic resonance was initiated by Freidlin [39]. To explain stochastic resonance in the
case of diffusions in potential landscapes with finitely many minima (in the more
general setting of (0.1), the potential is replaced by a quasi-potential related to the
action functional of the system), he goes as far as basic large deviations’ theory can
take. If noise intensity is €, in the absence of periodic exterior forcing, the exponen-
tial order of times at which successive transitions between meta-stable states occur
corresponds to the work to be done against the potential gradient to leave a well
(Kramers’ time). In the presence of periodic forcing with period time scale e%, in
the limit ¢ — 0 transitions between the stable states with critical transition energy
close to p will be periodically observed. Transitions with smaller critical energy
may happen, but are negligible in the limit. Those with larger critical energy are
forbidden. In case the two local minima of the potential have depths % and g,
v < V, that switch periodically at time % (in scale T' accordingly at time %), for
T larger than e= the diffusion will be close to the deterministic periodic function
jumping between the locations of the deepest wells. As T exceeds this exponen-
tial order, many short excursions to the wrong well during one period may occur.
They will not count on the exponential scale, but trajectories will look less and
less periodic. It therefore becomes plausible that physicists’ quality measures for
periodic tuning which always feature some maximal tuning quality of the random
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trajectories to the periodic input signal cannot be captured by this phenomenon of
quasi-deterministic periodicity at very large time scales.

These quality measures, studied in Pavlyukevich [86] and Imkeller and Pavlyuke-
vich [59] assess quality of tuning of the stochastic output to the periodic determin-
istic input. The concepts are mostly based on comparisons of trajectories of the
noisy system and the deterministic periodic curve describing the location of the
relevant meta-stable states, averaged with respect to the equilibrium measure (of
the diffusion as a space-time process with time component given by uniform motion
in the period interval). Again in the simple one-dimensional situation considered
above the system switches between a double well potential state U with two wells of
depths % and 5, v < V, during the first half period, and the spatially opposite one
U(:) for the second half period. If as always time is re-scaled by T, the total period
length is T', and stochastic perturbation comes from the coupling to a white noise
of intensity €. The most important measures of quality studied are the spectral
power amplification and the related signal-to-noise ratio, both playing an eminent
role in the physical literature (see Gammaitoni et al. [43], Freund et al. [41]). They
mainly contain the mean square average in equilibrium of the Fourier component
of the solution trajectories corresponding to the input period T', normalized in dif-
ferent ways. These measures of quality are functions of € and T', and the problem
of finding the resonance point consists in optimizing them in e for fixed (large) T.

Due to the high complexity of original systems, when calculating the resonance
point at optimal noise intensity, physicists usually pass to an effective dynamics
description. It is given by a simple caricature of the system reducing the diffu-
sion dynamics to the pure inter well motion (see e.g. McNamara and Wiesenfeld
[74]). The reduced dynamics is represented by a continuous time two state Markov
chain with transition probabilities corresponding to the inverses of the diffusions’
Kramers’ times. One then determines the optimal tuning parameters (T) for large
T for the approximating Markov chains in equilibrium, a rather simple task. To
see that the Markov chain’s behavior approaches the diffusion’s in the small noise
limit, spectral theory for the infinitesimal generator is used. The latter is seen to
possess a spectral gap between the second and third eigenvalues, and therefore the
closeness of equilibrium measures can be well controlled. Surprisingly, due to the
importance of small intra well fluctuations, the tuning and resonance pattern of
the Markov chain model may differ dramatically from the resonance picture of the
diffusion. Subtle dependencies on the geometrical fine structure of the potential
function U in the minima beyond the expected curvature properties lead to quite
unexpected counterintuitive effects. For example, a subtle drag away from the other
well caused by the sign of the third derivative of U in the deep well suffices to make
the spectral power amplification curve strictly increasing in the parameter range
where the approximating Markov chain has its resonance point.

It was this lack of robustness against model reduction which motivated Her-
rmann and Imkeller [50] to look for different measures of quality of periodic tun-
ing for diffusion trajectories. These notions are designed to depend only on the
rough inter well motion of the diffusion. The measure treated in the setting of
one-dimensional diffusion processes subject to periodic forcing of small frequency
is related to the transition probability during a fixed time window of exponential
length T'(¢) = exp(£) parametrized by a free energy parameter p according to the
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Kramers—Eyring formula. The corresponding exit rate is maximized in p to ac-
count for optimal tuning. The methods of investigation of stochastic resonance in
[50] are heavily based on comparison arguments which are not an appropriate tool
from dimension 2 on. Time inhomogeneous diffusion processes such as the ones
under consideration are compared to piecewise homogeneous diffusions by freezing
the potential’s time dependence on small intervals.

In Herrmann et al. [51] this approach is extended to the general setting of finite
dimensional diffusion processes with two meta-stable states. Since the stochastic
resonance criterion considered in [50] is based on transition times between them,
our analysis relies on a suitable notion of transition or exit time parametrized again
by the free energy parameter u from T'(¢) = exp(£) as a natural measure of scale.
Assume now that the depths of the two equilibria of the potential in analogy to
the scenarios considered before are smooth periodic functions of time of period 1
given for one of them by %, and for the other one by the same function with some
phase delay (for instance by %). Therefore, at time s the system needs energy v(s)
to leave the domain of attraction of the equilibrium. Hence an exit from this set
should occur at time

a, =inf{t > 0: v(t) < p}

in the diffusion’s natural time scale, in the time re-scaled by T'(¢) thus at time
a, - T(e). To find a quality measure of periodic tuning depending only on the
transition dynamics, we look at the probabilities of transitions to the other domain
within a time window [(a, — h)T(¢€), (a, + h)T'(¢)] centered at a, - T'(¢) for small
h > 0. If 7 is the random time at which the diffusion roughly reaches the other
domain of attraction (to be precise, one has to look at first entrance times of small
neighborhoods of the corresponding equilibrium), we use the quantity (again, to be
precise, we use the worst case probability for the diffusion starting in a point of a
small neighborhood of the equilibrium of the starting domain)

M (e, 1) = B(7 € [(ay = W)T(E), (a, + WT()])-

To symmetrize this quality measure with respect to switching of the equilibria, we
refine it by taking its minimum with the analogous expression for interchanged
equilibria. In order to exclude trivial or chaotic transition behavior, the scale
parameter p has to be restricted to an interval Ir of reasonable values which we
call resonance interval. With this measure of quality, the stochastic resonance point
may be determined as follows. We first fix € and the window width parameter h > 0,
and maximize M" (e, i) in p, eventually reached for the time scale po(h). Then the
eventually existing limit limp_,o po(h) will be the resonance point.

To calculate po(h) for fixed positive h we use large deviations techniques. In
fact, our main result consists in an extension of the Freidlin—Wentzell large devia-
tions result to weakly time inhomogeneous dynamical systems perturbed by small
Gaussian noise which states that
lim € 1n (1 - ./\/lh(e,u)) =p—wv(a, —h),

e—0
again in a form which is symmetric for switched equilibria. We show that this
asymptotic relation holds uniformly w.r.t. 1 on compact subsets of I'r, a fact which
enables us to perform a maximization and find po(h). The resulting notion of
stochastic resonance is strongly related to the notions of periodic tuning based
on interspike intervals (see [49]), which describe the probability distribution for
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transitions as functions of time with exponentially decaying spikes near the integer
multiples of the forcing periods. It has the big advantage of being robust for
model reduction, i.e. the passage from the diffusion to the two state Markov chain
describing its reduced dynamics.

The techniques needed to prove this main result feature non-trivial extensions
and refinements of the fundamental large deviations theory for time homogeneous
diffusions by Freidlin-Wentzell [40]. We prove a large deviations principle for the
inhomogeneous diffusion (0.1) and further strengthen this result to get uniformity in
system parameters. Similarly to the time homogeneous case, where large deviations
theory is applied to the problem of diffusion ezit culminating in a mathematically
rigorous proof of the Kramers-Eyring law, we study the problem of diffusion exit
from a domain which is carefully chosen in order to allow for a detailed analysis of
transition times. The main idea behind our analysis is that the natural time scale
is so large that re-scaling in these units essentially leads to an asymptotic freezing
of the time inhomogeneity, which has to be carefully controlled, to hook up to the
theory of large deviations of time homogeneous diffusions.

The material in the book is organized as follows. In Chapter 1 we give a de-
tailed treatment of the heuristics behind our mathematical approach, mostly in
space dimension 1. We start by giving a fairly thorough account of the paradigm
of glacial cycles which was the historical root of physical models exhibiting sto-
chastic resonance. It gives rise to the model equation of a weakly periodically
forced dynamical system with noise that can be interpreted as the motion of an
overdamped physical particle in a weakly periodically forced potential landscape
subject to noise. The heuristics of exit and transition behavior between domains of
attraction (potential wells) of such systems based on the classical large deviations
theory is explained in two steps: first for time independent potential landscapes,
then for potentials switching discontinuously between two anti-symmetric states
every half period. Freidlin’s quasi-deterministic motion is seen to not cover the
concept of optimal periodic tuning between weak periodic input and randomly am-
plified output. They determine stochastic resonance through measures of quality of
periodic tuning such as the spectral power amplification or the signal-to-noise ratio.
The latter concepts are studied first for finite state Markov chains capturing the
dynamics of the underlying diffusions reduced to the meta-stable states, and then
for the diffusions with time continuous periodic potential functions. The robustness
defect of the classical notions of resonance in passing from Markov chain to diffu-
sion is pointed out. Then alternative notions of resonance are proposed which are
based purely on the asymptotic behavior of transition times. Finally, examples of
systems exhibiting stochastic resonance features from different areas of science are
presented and briefly discussed. They document the ubiquity of the phenomenon
of stochastic resonance.

Our approach is based on concepts of large deviations. Therefore Chapter 2 is
devoted to a self-contained treatment of the theory of large deviations for randomly
perturbed dynamical systems in finite dimensions. Following a direct and elegant
approach of Baldi and Roynette [3], we describe Brownian motion in its Schauder
decomposition. It not only allows a direct approach to its regularity properties in
terms of Holder norms on spaces of continuous functions. It also allows a derivation
of Schilder’s large deviation principle (LDP) for Brownian motion from the elemen-
tary LDP for one-dimensional Gaussian random variables. The key to this elegant
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and direct approach is Ciesielski’s isomorphism of normed spaces of continuous
functions with sequence spaces via Fourier representation. The proof of the LDP
for Brownian motion using these arguments is given after recalling general notions
and basic concepts about large deviations, especially addressing their construction
from exponential decay rates of probabilities of basis sets of topologies, and their
transport between different topological spaces via continuous mappings (contrac-
tion principle). Since we only consider diffusion processes with additive noise for
which It6’s map is continuous, an appeal to the contraction principle provides the
LDP for the homogeneous diffusion processes we study. Finally, we follow Dembo
and Zeitouni [25] to derive the exit time laws due to Freidlin and Wentzell [40] for
time homogeneous diffusions from domains of attraction of underlying dynamical
systems in the small noise limit.

Chapter 3 deals with an approach to stochastic resonance for diffusions with
weakly time periodic drift and additive noise in the spirit of the associated Mar-
kovian semigroups and their spectral theory. This approach, presented in space
dimension 1, is clearly motivated by the physical notions of periodic tuning, in
particular the spectral power amplification coefficient. It describes the average
spectral component of the diffusion trajectories corresponding to the frequency of
the periodic input signal given by the drift term. We first give a rigorous account
of Freidlin’s quasi-deterministic limiting motion for potential double well diffusions
of this type. We then follow the paradigm of the physics literature, in particular
NcNamara and Wiesenfeld [74], and introduce the effective dynamics of our weakly
periodically forced double well diffusions given by reduced continuous time Markov
chains jumping between their two meta-stable equilibria. In this setting, different
notions of periodic tuning can easily be investigated. We not only consider the
physicists’ favorites, spectral power amplification and signal-to-noise ratio, but also
other reasonable concepts in which the energy carried by the Markov chain trajecto-
ries or the entropy of their invariant measures are used. Turning to diffusions with
weakly time periodic double well potentials and additive noise again, we then de-
velop an asymptotic analysis of their spectral power amplification coefficient based
on the spectral theory of their infinitesimal generators. It is based on the crucial
observation that in the case of double well potentials its spectrum has a gap be-
tween the second and third eigenvalue. Therefore we have to give the corresponding
eigenvalues and eigenfunctions a more detailed study, in particular with respect to
their asymptotic behavior in the small noise limit. Its results then enable us to give
a related small noise asymptotic expansion both of the densities of the associated
invariant measures as for the spectral power amplification coefficients. We finally
compare spectral power amplification coefficients of the Markov chains describing
the reduced dynamics and the associated diffusions, to find that in the small noise
limit they may be essentially different, caused by the small oscillations catastrophe
near the potential wells’ bottoms.

This motivates us in Chapter 4 to look for notions of periodic tuning for the so-
lution trajectories of diffusions in spaces of arbitrary finite dimension with weakly
periodic drifts and additive small noise which do not exhibit this robustness de-
fect. We aim at notions related to the maximal probabilities that the random exit
or transition times between different domains of attraction of the underlying dy-
namical systems happen in time windows parametrized by free energy parameters
on an exponential scale. For the two-state Markov chains describing the effective
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dynamics of the diffusions with slow and weak time inhomogeneity this optimal
transition rate is readily calculated. This concept moreover has the advantage that
their related transition times, as well as the corresponding ones for diffusions with
a weak noise dependent time inhomogeneity, allow a treatment by methods of large
deviations in the small noise limit. We therefore start with a careful extension of
large deviations theory to diffusions with slow time inhomogeneity. The central
result for the subsequent analysis of their exit times is contained in a large devia-
tions principle, uniform with respect to the energy parameter. It allows us in the
sequel to derive upper and lower bounds for the asymptotic exponential exit rate
from domains of attraction for slowly time dependent diffusions. They combine
to the main large deviations result describing the exact asymptotic exponential
exit rates for slowly and weakly time inhomogeneous diffusions in the small noise
limit. This central result is tailor made for providing the optimal tuning rate re-
lated to maximal probability of transition during an exponential time window. We
finally compare the resulting stochastic resonance point to the ones obtained for
the Markov chains of the reduced dynamics, and conclude that they agree in the
small noise limit, thus establishing robustness.

In two appendices — for easy reference in the text — we collect some standard
results about Gronwall’s lemma and Laplace’s method for integrals with exponential
singularities of the integrand.



