
CHAPTER 1

Heuristics of noise induced transitions

1.1. Energy balance models of climate dynamics

The simple concept of energy balance models stimulated research not only in
the area of conceptual climate models, but was at the cradle of a research direc-
tion in physics which subsequently took important examples from various domains
of biology, chemistry and neurology: it was one of the first examples for which
the phenomenon of stochastic resonance was used to explain the transition dynam-
ics between different stable states of physical systems. For a good overview see
Gammaitoni et al. [43] or Jung [62].

In the end of the 70’s, Nicolis [83] and Benzi et al. [5] almost simultaneously
tried stochastic resonance as a rough and qualitative explanation for the glaciation
cycles in earth’s history. They were looking for a simple mathematical model appro-
priate to explain experimental findings from deep sea core measurements according
to which the earth has seen ten glacial periods during the last million years, alter-
nating with warm ages rather regularly in periods of about 100 000 years. Mean
temperature shifts between warm age and glacial period are reported to be of the
order of 10 K, and relaxation times, i.e. transition times between two relatively
stable mean temperatures as rather short, of the order of only 100 years. Math-
ematically, their explanation was based on an equation stating the global energy
balance in terms of the average temperature T (t), where the global average is taken
meridionally (i.e. over all latitudes), zonally (i.e. over all longitudes), and annually
around time t. The global radiative power change at time t is equated to the differ-
ence between incoming solar (short wave) radiative power Rin and outgoing (long
wave) radiative power Rout.

The power Rin is proportional to the global average of the solar constant Q(t)
at time t. To model the periodicity in the glaciation cycles, one assumes that Q
undergoes periodic variations due to one of the so-called Milankovich cycles, based
on periodic perturbations of the earth’s orbit around the sun. Two of the most
prominent cycles are due to a small periodic variation between 22.1 and 24.5 degrees
of the angle of inclination (obliquity) of the earth’s rotation axis with respect to
its plane of rotation, and a very small periodic change of only about 0.1 percent of
the eccentricity, i.e. the deviation from a circular shape, of the earth’s trajectory
around the sun. The obliquity cycle has a duration of about 41 000 years, while
the eccentricity cycle corresponds to the 100 000 years observed in the temperature
proxies from deep sea core measurements mentioned above. They are caused by
gravitational influences of other planets of our solar system. In formulas, Q was
assumed to be of the form

Q(t) = Q0 + b sinωt,

with some constants Q0, b and a frequency ω = 10−5[ 1y ].

1



2 1. HEURISTICS

The other component determining the absorbed radiative power Rin is a rough
and difficult to model averaged surface albedo of the earth, i.e. the proportion of the
solar power absorbed. It is supposed to be just (average) temperature dependent.
For temperatures below T , for which the surface water on earth is supposed to have
turned into ice, and the surface is thus constantly bright, the albedo is assumed to
be constantly equal to a, for temperatures above T , for which all ice has melted, and
the surface constantly brown, it is assumed to be given by a constant a < a. For
temperatures between T and T , the two constant values a and a are simply linearly
interpolated in the most basic model. The rough albedo function has therefore the
ramp function shape depicted in Figure 1.1.
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Figure 1.1. The albedo function a = a(T ).

To have a simple model of Rout, the earth is assumed to behave approximately
as a black body radiator, for which the emitted power is described by the Stefan–
Boltzmann law. It is proportional to the fourth power of the body’s temperature
and is given by γ T 4(t), with a constant γ proportional to the Stefan constant.

Hence the simple energy balance equation with periodic input Q on which the
model is built is given by

(1.1) c
d

dt
T (t) = Q(t)

(
1− a(T (t))

)
− γ T (t)4,

where the constant c describes a global thermal inertia. According to (1.1), (qua-
si-) stationary states of average temperature should be given by the solutions of

the equation dT (t)
dt = 0. If the model is good, they should reasonably well interpret

glacial period and warm age temperatures. Graphically, they are given by the
intersections of the curves of absorbed and emitted radiative power, see Figures 1.2
and 1.3.

As we shall more carefully explain below, the lower (T1(t)) and upper (T3(t))
quasi-equilibria are stable, while the middle one (T2(t)) is unstable. The equilibrium
T1(t) should represent an ice age temperature, T3(t) a warm age, while T2(t) is
not observed over noticeably long periods. In their dependence on t they should
describe small fluctuations due to the variations in the solar constant. But here
one encounters a serious problem with this purely deterministic model. If the
fluctuation amplitude of Q is small, then we will observe the two disjoint branches
of stable solutions T1 and T3 (Figure 1.4).
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Figure 1.2. Incoming vs. outgoing power.

Figure 1.3. Difference of the powers of incoming and outgoing radiation.
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Figure 1.4. Equilibrium temperatures T1(t) and T3(t) for small
fluctuation amplitude b.

However for both branches alone — besides being unrealistically low or high —
the difference between minimal and maximal temperature can by no means account
for the observed shift of about 10 K, and also the relaxation times are much too
long. But the most important shortcoming of the model is the lacking possibility
of transitions between the two branches.

If we allow the fluctuation amplitude b to be large, the picture is still very
unrealistic: There are intervals during which one of the two branches T1 or T3
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Figure 1.5. Unrealistic equilibrium temperatures T1(t) and T3(t)
for large fluctuation amplitude b.

vanishes completely, and transitions are still impossible, unless one is willing to
accept discontinuous behavior (Figure 1.5).

For this reason, Nicolis [83] and Benzi et al. [5] proposed to add a noise term
in (1.1). Despite the fact that then negative temperatures become possible, they
worked with the equation

(1.2) cṪ ε(t) = Q(t)
(
1− a(T ε(t))

)
− γ T ε(t)4 +

√
ε Ẇt,

ε > 0, where Ẇ is a white noise. In passing to (1.2), stable equilibria of the
deterministic system become — approximately at least — meta-stable states of the
stochastic system. And more importantly, the unbounded noise process W makes
spontaneous transitions (tunneling) between the meta-stable states T1(t) and T3(t)
possible. In fact, the random hopping between the meta-stable states immediately
exhibits two features which make the model based on (1.2) much more attractive for
a qualitative explanation of glaciation cycles: a) the transitions between T1 and T3

allow for far more realistic temperature shifts, b) relaxation times are random, but
very short compared to the periods the process solving (1.2) spends in the stable
states themselves.

But now a new problem arises, which actually provided the name stochastic
resonance.

If, seen on the scale of the period of Q, ε is too small, the solution may be
trapped in one of the states T1 or T3. By the periodic variation of Q, there are
well defined periodically returning time intervals during which T1(t) is the more
probable state, while T3(t) takes this role for the rest of the time. So if ε is small,
the process, initially in T1, may for example fail to leave this state during a whole
period while the other one is more probable. The solution trajectory may then look
as in Figure 1.6.

If, on the other hand, ε is too large, the big random fluctuation may lead to
eventual excursions from the actually more probable equilibrium during its domina-
tion period to the other one. The trajectory then typically looks like in Figure 1.7.

In both cases it will be hard to speak of a random periodic curve. Good tuning
with the periodic forcing by Q is destroyed by a random mechanism being too slow
or too fast to follow. It turned out in numerous simulations in a number of similar
systems that there is, however, an optimal parameter value ε for which the solution
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Figure 1.6. A typical solution trajectory of equation (1.2) for the
small noise amplitude.
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Figure 1.7. A typical solution trajectory of equation (1.2) for
the large noise amplitude.
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Figure 1.8. A typical solution trajectory of equation (1.2), the
noise amplitude well tuned.

curves are well tuned with the periodic input. A typical well tuned curve is shown
in Figure 1.8.
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The optimally tuned system is then said to be in stochastic resonance. Nicolis
[83] and Benzi et al. [5], by tuning the noise parameter ε to appropriate values, were
able to give qualitative explanations for glaciation cycles based on this phenomenon.

Stochastic resonance proved to be relevant in other elementary climate models
than the energy balance models considered so far. In Penland et al. [87], Wang
et al. [107, 106], a two-dimensional stochastic model for a qualitative explanation
of the ENSO (El Niño Southern Oscillation) phenomenon also leads to stochastic
resonance effects: for certain parameter ranges the model exhibits random tuned
transitions between two stable sea surface temperatures. New evidence for the pres-
ence of stochastic resonance phenomena in paleo-climatic time series was added by
Ganopolski and Rahmstorf [45]. Their paper interprets the GRIP ice core record
representing temperature proxies from the Greenland glacier that extend over a
period of roughly 90 000 years, and showing the fine structure of the temperature
record of the last glacial period. The time series shows about 20 intermediate warm-
ings during the last glacial period commonly known under the name of Dansgaard–
Oeschger events. These events are clearly marked by rapid spontaneous increases
of temperature by about 6K followed by slower coolings to return to the initial
basic cold age temperature. It was noted in [45] that a histogram of the number of
Dansgaard–Oeschger events with a duration of k · 1480 years, with k = 1, 2, 3, . . .
exhibits the typical shape of a stochastic resonance spike train consistent for in-
stance with the results of Herrmann and Imkeller [49] for Markov chains describing
the effective diffusion dynamics, or Berglund and Gentz [13] for diffusion processes
with periodic forcing.

1.2. Heuristics of our mathematical approach

The rigorous mathematical elaboration of the concept of stochastic resonance
is the main objective of this book. We start its mathematically sound treatment
by giving a heuristical outline of the main stream of ideas and arguments based on
the methods of large deviations for random dynamical systems in the framework of
the Freidlin–Wentzell theory. Freidlin [39] is able to formulate Kramers’ [65] very
old seminal approach mathematically rigorously in a very general setting, and this
way provides a lower estimate for the good tuning (see also the numerical results
by Milstein and Tretyakov [77]). To obtain an upper estimate, we finally argue by
embedding time discrete Markov chains into the diffusion processes that describe
the effective dynamics of noise induced transitions. Optimal tuning results obtained
for the Markov chains will then be transferred to the original diffusion processes.

To describe the idea of our approach, let us briefly return to our favorite ex-
ample explained in the preceding section. Recall that the function

f(t, T ) = Q(t)
(
1− a(T )

)
− γ T 4, T, t ≥ 0,

describes a multiple of Rin − Rout, and its very slow periodicity in t is initiated
by the assumption on the solar constant Q(t) = Q0 + b sin(ωt). Let us compare
this quantity, sketched in Figure 1.9 schematically for two times, say t1, t2 such
that Q takes its minimum at t1 and its maximum at t2. The graph of f moves
periodically between the two extreme positions. Note that in the one-dimensional
situation considered, f(t, ·) can be seen as the negative gradient of a potential
function U(t, ·) which depends periodically on time t.
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Figure 1.9. Schematical form of radiation power difference at
times t1 and t2

Figure 1.10. Potential function U at time instants t1 and t2.

We now turn to a more general context. For simplicity of the heuristical exposi-
tion still sticking to a one-dimensional scenario, we start by considering a temporally
varying potential function U and set

f(t, ·) = − ∂

∂x
U(t, ·), t ≥ 0.

We assume that U oscillates in time between the two extreme positions depicted
schematically in Figure 1.10.

In Figure 1.10 (l.), the potential well on left hand side is deeper than on the
right hand side, in Figure 1.10 (r.) the role of the deeper well has changed. As
t varies, we will observe a smoothly time dependent potential with two wells of
periodically and smoothly fluctuating relative depth. Just the function describing
the position of the deepest well will in general be discontinuous. It will play a
crucial role in the analysis now sketched.

We assume in the sequel for simplicity that U(t, x), t ≥ 0, x ∈ R, is a smooth
function such that for all t ≥ 0, U(t, ·) has exactly two minima, one at −1, the
other at 1, and that the two wells at −1 and 1 are separated by the saddle 0, where
U(t, 0) is assumed to take the value 0. Two moment pictures of the potential may
look as in Figure 1.10.

We further assume time periodicity for U , more formally that

U(t, ·) = U(t+ 1, ·).
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The variable period of the input will be denoted by some positive number T . We
therefore consider the stochastic differential equation

(1.3)
d

dt
Xε

t = f
( t
T
,Xε

t

)
+
√
ε Ẇt,

with a one-dimensional Wiener process W (white noise Ẇ ). We may circumscribe
a more mathematical concept of stochastic resonance like this: given T (ω = 1

T ),
find the parameter ε = ε(T ) such that Xε is optimally tuned with the periodic
input f( t

T , ·). We pose the problem in the following (almost equivalent) way: given
ε > 0, find the good scale T = T (ε) such that optimal tuning of Xε with the
periodic input is given, at least in the limit ε → 0.

1.2.1. Random motion of a strongly damped Brownian particle. The
analogy with the motion of a physical particle in a periodically changing double
well potential landscape alluded to in (1.3) (see also Mazo [72] and Schweitzer [97])
motivates us to pause for a moment and give it a little more thought. As in the
previous section, let us concentrate on a one-dimensional setting, remarking that
our treatment easily generalizes to a finite-dimensional setting. Due to Newton’s
law, the motion of a particle is governed by the impact of all forces acting on it.
Let us denote F the sum of these forces, m the mass, x the space coordinate and
v the velocity of the particle. Then

mv̇ = F.

Let us first assume the potential to be turned off. In their pioneering work at the
turn of the twentieth century, Marian Smoluchowski and Paul Langevin introduced
stochastic concepts to describe the Brownian particle motion by claiming that at
time t

F (t) = −γv(t) +
√
2kTγẆt.

The first term results from friction γ and is velocity dependent. An additional sto-
chastic force represents random interactions between Brownian particles and their
simple molecular random environment. The white noise Ẇ (the formal derivative
of a Wiener process) plays the crucial role. The diffusion coefficient (standard
deviation of the random impact) is composed of Boltzmann’s constant k, friction
and environmental temperature T . It satisfies the condition of the fluctuation-
dissipation theorem expressing the balance of energy loss due to friction and energy
gain resulting from noise. The equation of motion becomes⎧⎨⎩ẋ(t) = v(t),

v̇(t) = − γ

m
v(t) +

√
2kTγ

m
Ẇt.

In equilibrium, the stationary Ornstein–Uhlenbeck process provides its solution:

v(t) = v(0) e−
γ
m t +

√
2kTγ

m

∫ t

0

e−
γ
m (t−s) dWs.

The ratio β := γ
m determines the dynamic behavior. Let us focus on the over-

damped situation with large friction and very small mass. Then for t � 1
β = τ

(relaxation time), the first term in the expression for velocity can be neglected,
while the stochastic integral represents a Gaussian process. By integrating, we
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obtain in the over-damped limit (β → ∞) that v and thus x is Gaussian with
almost constant mean

m(t) = x(0) +
1− e−βt

β
v(0) ≈ x(0)

and covariance close to the covariance of white noise, see Nelson [82]:

K(s, t) =
2kT

γ
min(s, t) +

kT

γβ

(
− 2 + 2e−βt + 2e−βs − e−β|t−s| − e−β(t+s)

)
≈ 2kT

γ
min(s, t), s, t ≥ 0.

Hence the time-dependent change of the velocity of the Brownian particle can be
neglected, the velocity rapidly converges to thermal equilibrium (v̇ ≈ 0), while the
spatial coordinate remains far from it. In the so-called adiabatic transformation,
the evolution of the particle’s position is thus given by the transformed Langevin
equation

ẋ(t) =

√
2kT

γ
Ẇt.

Let us next suppose that we face a Brownian particle in an external field of force,
associated with a potential U(t, x), t ≥ 0, x ∈ R. This then leads to the Langevin
equation ⎧⎨⎩ẋ(t) = v(t),

mv̇(t) = −γ v(t)− ∂U

∂x
(t, x(t)) +

√
2kTγ Ẇt.

In the over-damped limit, after relaxation time, the adiabatic elimination of the
fast variables (see Gardiner [46]) then leads to an equation similar to the one
encountered in the previous section, namely

ẋ(t) = − 1

γ

∂U

∂x
(t, x(t)) +

√
2kT

γ
Ẇt.

1.2.2. Time independent potential. We now continue discussing the heuris-
tics of stochastic resonance for systems described by equations of the type encoun-
tered in the previous two sections. To motivate the link to the theory of large
deviations, we first study the case in which U(t, ·) is given by some time inde-
pendent potential function U for all t. Following Freidlin and Wentzell [40], the
description of the asymptotics contained in the large deviations principle requires
the crucial notion of action functional. It is defined for T > 0 and absolutely
continuous functions ϕ : [0, T ] → R with derivative ϕ̇ by

S0T (ϕ) =
1

2

∫ T

0

[
ϕ̇s −

(
− ∂

∂x
U
)
(ϕs)
]2

ds.

By means of the action functional we can define the quasipotential function

V (x, y) = inf{S0T (ϕ) : ϕ0 = x, ϕT = y, T > 0},
for x, y ∈ R. Intuitively, V (x, y) describes the minimal work to be done in the
potential landscape given by U to pass from x to y. Keeping this in mind, the
relationship between U and V is easy to understand (for a more formal argument
see Chapter 3). If x and y are in the same potential well, we have

(1.4) V (x, y) = 2(U(y)− U(x))+,
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where a+ = a ∨ 0 = max{a, 0} denotes the positive part of a real number a. In
particular, if U(y) < U(x), then V (x, y) = 0, i.e. going downhill in the landscape
does not require work. If, however, x and y are in different potential wells, we have
(recall U(0) = 0)

(1.5) V (x, y) = −2U(x).

This equation reflects the fact that the minimal work to do to pass to y consists in
reaching the saddle 0, since then one can just go downhill.

Rudiments of the following arguments can also be found in the explanation of
stochastic resonance by McNamara and Wiesenfeld [74]. The main ingredient is
the exit time law by Freidlin and Wentzell [40] (see also Eyring [37], Kramers [65]
and Bovier et al. [14]). For y ∈ R, ε > 0 the first time y is visited is defined by

τ εy = inf{t ≥ 0: Xε
t = y}.

If Px denotes the law of the diffusion (Xε
t )t≥0 started at x ∈ R, the exit time law

states that for any δ > 0, x ∈ R we have

(1.6) Px

(
e

V (x,y)−δ
ε ≤ τ εy ≤ e

V (x,y)+δ
ε

)
→ 1

as ε → 0.
In other words, in the limit ε → 0, the process started at x takes approximately

time exp(V (x,y)
ε ) to reach y, or more roughly

ε ln τ εy
∼= V (x, y)

as ε → 0. As a consequence, one finds that as ε → 0, on time scales T (ε) at least

as long as exp(V (x,y)
ε ) or such that

ε lnT (ε) > V (x, y),

we may expect with Px-probability close to 1 that the process Xε
tT (ε) has reached

y by time 1. Remembering (1.4) and (1.5) one obtains the following statement
formulated much more generally by Freidlin. Suppose

(1.7) lim
ε→0

ε lnT (ε) > 2max{−U(−1),−U(1)},

and U(−1) < U(1). Then the Lebesgue measure of the set

(1.8)
{
t ∈ [0, 1] : |Xε

tT (ε) − (−1)| > δ
}

tends to 0 in Px-probability as ε → 0, for any δ > 0.
In other words, the process Xε, run in a time scale T (ε) large enough, will

spend most of the time in the deeper potential well. Excursions to the other well
are exponentially negligible on this scale, as ε → 0. The picture is roughly as
deployed in Figure 1.11.

1.2.3. Periodic step potentials and quasi-deterministic motion. As a
rough approximation of temporally continuously varying potential functions we may
consider periodic step function potentials such as

(1.9) U(t, ·) =
{
U1(·), t ∈ [k, k + 1

2 ),

U2(·), t ∈ [k + 1
2 , k + 1), k ∈ N0.

We assume that both U1 and U2 are of the type described above, that U1(x) =
U2(−x), x ∈ R, and that U1 has a well of depth V

2 at −1, and a well of depth v
2 at
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Figure 1.11. Solution trajectory of the diffusion Xε
tT (ε) in the

time independent double-well potential U .

1, with V > v (and U2 wells with respectively opposite roles). Let us briefly point
out the main features of the transition times for periodic step potentials described
in (1.6). According to (1.6) the exponential rate of the transition time from −1 to
1 in U1 in the small noise limit is asymptotically given by exp(Vε ), as long as the
time scale T of the diffusion allows no switching of the potential states before, i.e.
as long as T = T (ε) > exp(Vε ). Accordingly, the transition time from 1 to −1 in
U1 is given by exp( vε ), as long as T = T (ε) > exp( vε ). Similar statements hold for
transitions between states of U2. It is therefore also plausible that (1.8) generalizes
to the following statement due to Freidlin [39, Theorem 2].

Suppose

(1.10) lim
ε→0

ε lnT (ε) > V.

Define

φ(t) =

{
−1, t ∈ [k, k + 1

2 ),

1, t ∈ [k + 1
2 , k + 1), k ∈ N0.

Then the Lebesgue measure of the set

(1.11)
{
t ∈ [0, 1] : |Xε

t T (ε) − φ(t)| > δ
}

tends to 0 as ε → 0 in Px-probability, for any δ > 0, x ∈ R.
Again, this just means that the process Xε, run in a time scale T (ε) large

enough, will spend most of the time in the minimum of the deepest potential well
which is given by the time periodic function φ. Excursions to the other well are
exponentially negligible on this scale, as ε → 0. The picture is typically the one
depicted in Figure 1.12.

1.2.4. Periodic potentials and quasi-deterministic motion. Since the
function φ appearing in the previous theorem is already discontinuous, it is plausible
that the step function potential is in fact a reasonable approximation of the general
case of continuously and (slowly) periodically changing potential functions. It is
intuitively clear how the result has to be generalized to this situation. We just have
to replace the periodic step potentials by potentials frozen along a partition of the
period interval on the potential state taken at its starting point, and finally let the
mesh of the partition tend to 0. To continue the discussion in the spirit of the
previous section and with the idea of instantaneously frozen potential states, we
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Figure 1.12. Solution trajectory of the diffusion Xε
tT (ε) in the

double-well periodic step potential.

have to explain the asymptotics of the minimal time a Brownian particle needs to
exit from the (frozen) starting well, say the left one. Freezing the potential at some
time s, the asymptotics of its exit time is derived from the classical large deviation
theory of randomly perturbed dynamical systems, see Freidlin and Wentzell [40].
Let us assume that U is locally Lipschitz continuous. We recall that for any t ≥ 0
the potential U(t, ·) has its minima at −1 and 1, separated by the saddle point
0. The law of the first exit time τ ε1 = inf{t ≥ 0: Xε

t > 0} is described by some
particular functional related to large deviation. For t > 0, we introduce the action
functional on the space of real valued continuous functions C([0, t],R) on [0, t] by

Ss
t (ϕ) =

⎧⎨⎩
1

2

∫ t

0

(
ϕ̇u +

∂

∂x
U(s, ϕu)

)2
du if ϕ is absolutely continuous,

+∞ otherwise,

which is non-negative and vanishes on the set of solutions of the ordinary differential
equation ϕ̇ = − ∂

∂xU(s, ϕ). Let x and y be real numbers. With respect to the
(frozen) action functional, we define the (frozen) quasipotential

Vs(x, y) = inf{Ss
t (ϕ) : ϕ ∈ C([0, t],R), ϕ0 = x, ϕt = y, t ≥ 0}

which represents the minimal work the diffusion with a potential frozen at time
s and starting in x has to do in order to reach y. To switch wells, the Brownian
particle starting in the left well’s bottom −1 has to overcome the barrier. So we let

V s = Vs(−1, 0).

This minimal work needed to exit from the left well can be computed explicitly,
and is equal to twice its depth at time s. The asymptotic behavior of the exit time
is expressed by

lim
ε→0

ε lnExτ
ε
1 = V s

or in generalization of (1.6)

lim
ε→0

Px

(
e

V s−δ
ε < τ ε1 < e

V s+δ
ε

)
= 1 for any δ > 0 and x < 0.

Let us now assume that the left well is the deeper one at time s. If the Brownian

particle has enough time to cross the barrier, i.e. if T (ε) > e
V s
ε , then, generalizing
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(1.8), Freidlin in [39, Theorem 1] proves that independently of the starting point
x it should stay near −1 in the following sense. The Lebesgue measure of the set{

t ∈ [0, 1] : |Xε
tT (ε) − (−1)| > δ

}
converges to 0 in probability as ε → 0. If T (ε) < e

V s
ε , the time left is not long

enough for any crossing: the particle, starting at x, stays in the starting well, near
the stable equilibrium point. In other words, the Lebesgue measure of the set{

t ∈ [0, 1] : |Xε
tT (ε) − (−I(−∞,0)(X

ε
tT (ε)) + I[0,∞)(X

ε
tT (ε)))| > δ

}
converges to 0 in the small noise limit. This observation is at the basis of Freidlin’s
law of quasi-deterministic periodic motion discussed in the subsequent section. The
lesson it teaches is this: to observe switching of the position to the energetically

most favorable well, T (ε) should be larger than some critical level e
λ
ε , where λ =

infs≥0 V s. Measuring time in exponential scales by μ through the equation T (ε) =

e
μ
ε , the condition translates into μ > λ. Continuing the reasoning of the preceding

subsection, if this condition is satisfied, we may define a periodic function φ denoting
the deepest well position in dependence on t. Then, in generalization of (1.11), the
process Xε will spend most of the time, measured by Lebesgue’s measure, near φ
for small ε.

1.2.5. Quality of periodic tuning and reduced motion. Do the mani-
festations of quasi-deterministic motion in instantaneously frozen potentials just
discussed explain stochastic resonance? The problem is obvious. They just give
lower bounds for the scale T (ε) = e

μ
ε for which noise strength ε leads to random

switches between the most probable potential wells near the (periodic) deterministic
times when the role of the deepest well switches. But if μ is too big, occasional
excursions into the higher well will destroy a truly periodic tuning with the po-
tential (see Figure 1.12). Just the duration of the excursions, being exponentially
smaller than the periods of dwelling in the deeper well, will not be noticed by
the residence time criteria discussed. We therefore also need an upper bound for
possible scales. In order to find this optimal tuning scale μR > λ, we first have
to measure goodness of periodic tuning of the trajectories of the solution. In the
huge physics literature on stochastic resonance, two families of criteria can be dis-
tinguished. The first one is based on invariant measures and spectral properties of
the infinitesimal generator associated with the diffusion Xε. Now, Xε is not time
autonomous and consequently does not admit invariant measures. By taking into
account deterministic motion of time in the interval of periodicity and considering
the time autonomous process Zε

t = (tmodT (ε), Xε
t ), t ≥ 0, we obtain a Markov

process with an invariant measure νεt (x) dt dx. In particular, for t ≥ 0 the law of
Xε

t ∼ νεt (x) dx and the law of Xε
t+T (ε) ∼ νεt+T (ε)(x) dx, under this measure are the

same for all t ≥ 0. Let us present the most important notions of quality of tuning
(see Jung [62], or Gammaitoni et al. [43]):

• the spectral power amplification (SPA) which plays an eminent role in
the physics literature and describes the energy carried by the spectral
component of the averaged trajectories of Xε corresponding to the period
of the signal:

ηX(ε, T ) =
∣∣∣ ∫ 1

0

EνX
ε
sT · e2πis ds

∣∣∣2, ε > 0, T > 0.
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• the total energy of the averaged trajectories

EnX(ε, T ) =

∫ 1

0

∣∣∣EνXsT

∣∣∣2 ds, ε > 0, T > 0.

The second family of criteria is more probabilistic. It refers to quality measures
purely based on the location of transition times between domains of attraction of
the local minima, and residence time distributions measuring the time spent in one
well between two transitions, or interspike times. This family, to be discussed in
more detail in Section 1.4 below is certainly less popular in the physics community.

As will turn out later, these physical notions of quality of periodic tuning
of random trajectories exhibit one important drawback: they are not robust with
respect to model resolution. It is here that an important concept of model reduction
enters the stage. It is based on the conjecture that the effective dynamical properties
of periodically forced diffusion processes as given by (1.3) can be traced back to
finite state Markov chains periodically hopping between the stable equilibria of
the potential function underlying the diffusion, for which the smallness parameter
of the noise intensity is simply reflected in the transition matrix. These Markov
chains should be designed to capture the essential information about the inter-well
dynamics of the diffusion, while intra-well small fluctuations of the diffusion near
the potential minima are neglected. Investigating goodness of tuning according to
the different physical measures of quality makes sense both for the Markov chains
as for the diffusions. This idea of model reduction was captured and followed in the
physics literature in Eckmann and Thomas [32], McNamara and Wiesenfeld [74],
and Nicolis [83]. In fact, theoretical work on the concept of stochastic resonance
in the physics literature is based on the model reduction approach, see the surveys
Anishchenko et al. [1], Gammaitoni et al. [43, 44], Moss et al. [79], and Wellens
et al. [108].

As we shall see in Chapter 3, the optimal tuning relations between ε and T
do not necessarily agree for Markov chains and diffusions. Even in the small noise
limit discrepancies may persist that are caused by very subtle geometric properties
of the potential function. It is our goal to present a notion of quality of periodic
tuning which possesses this robustness property when passing from the Markov
chains capturing the effective dynamics to the original diffusions. For this reason
we shall study the different physical notions of quality of tuning first in the context
of typical finite state Markov chains with periodically forced transition matrices.

1.3. Markov chains for the effective dynamics and the physical
paradigm of spectral power amplification

To keep this heuristic exposition of the main ideas of our mathematical ap-
proach as simple as possible, besides allowing only two states for our Markov chain
that play the role of the stable equilibria of the potential −1 and 1, let us also dis-
cretize time. We continue to assume as in the discussion of periodically switching
potential states above that U1(−1) = U2(1) = −V

2 , and U1(1) = U2(−1) = − v
2 .

In a setting better adapted to our continuous time diffusion processes, in Chapter
3 time continuous Markov chains switching between two states will capture the
effective diffusion dynamics. Hence, we follow here Pavlyukevich [86] and Imkeller
and Pavlyukevich [58] and shall assume in this section that the parameter T in
our model describing the period length, is an even integer. So for T ∈ 2N, ε > 0,
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consider a Markov chain Y ε = (Y ε(k))k≥0 on the state space S = {−1, 1}. Let
PT (k) be the matrix of one-step transition probabilities at time k. If we denote
p−T (k) = P(Y ε(k) = −1), p+T (k) = P(Y ε(k) = 1), and write P ∗ for the transposed
matrix, we have (

p−T (k + 1)
p+T (k + 1)

)
= P ∗

T (k)

(
p−T (k)
p+T (k)

)
.

In order to model the periodic switching of the double-well potential in our
Markov chains, we define the transition matrix PT to be periodic in time with
period T . More precisely,

PT (k) =

{
Q1, 0 ≤ kmodT ≤ T

2 − 1,

Q2,
T
2 ≤ kmodT ≤ T − 1,

with

(1.12)
Q1 =

(
1− ϕ ϕ
ψ 1− ψ

)
, Q2 =

(
1− ψ ψ
ϕ 1− ϕ

)
,

ϕ = pe−V/ε, ψ = qe−v/ε,

where 0 ≤ p, q ≤ 1, 0 < v < V < +∞, 0 < ε < ∞.
The entries of the transition matrices clearly are designed to mimic transition

rates between −1 and 1 or vice versa that correspond to the transition times of
the diffusion processes between the meta-stable equilibria, given according to the
preceding section by exp(Vε ) resp. exp(

v
ε ). The exponential factors in the one-step

transition probabilities are just chosen to be the inverses of those mean transition
times. This is exactly what elementary Markov chain theory requires in equilibrium.
The phenomenological prefactors p and q, chosen between 0 and 1, add asymmetry
to the picture.

It is well known that for a time-homogeneous Markov chain on {−1, 1} with
transition matrix PT one can talk about equilibrium, given by the stationary distri-
bution, to which the law of the chain converges exponentially fast. The stationary
distribution can be found by solving the matrix equation π = P ∗

Tπ with norming
condition π− + π+ = 1.

For time non homogeneous Markov chains with time periodic transition matrix,
the situation is quite similar. Enlarging the state space S to ST = {−1, 1} ×
{0, 1, . . . , T − 1}, we recover a time homogeneous chain by setting

Zε(k) = (Y ε(k), kmodT ), k ≥ 0,

to which the previous remarks apply. For convenience of notation, we assume ST

to be ordered in the following way:

ST =
(
(−1, 0), (1, 0), (−1, 1), (1, 1), . . . , (−1, T − 1), (1, T − 1)

)
.

Writing AT for the matrix of one-step transition probabilities of Zε, the station-
ary distribution R = (r(i, j))∗ is obtained as a normalized solution of the matrix
equation (A∗

T − E)R = 0, E being the identity matrix. We shall be dealing with
the following variant of stationary measure, which is not normalized in time. Let
πT (k) = (π−

T (k), π
+
T (k))

∗ = (r(−1, k), r(1, k))∗, 0 ≤ k ≤ T − 1. We call the family
πT = (πT (k))0≤k≤T−1 the stationary distribution of the Markov chain Y ε.



16 1. HEURISTICS

The matrix AT of one-step transition probabilities of Zε is explicitly given by

AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 Q1 0 0 · · · 0 0 0
0 0 Q1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 Q2 0
0 0 0 0 · · · 0 0 Q2

Q2 0 0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix AT has block structure. In this notation 0 means a 2×2-matrix with all
entries equal to zero, Q1, and Q2 are the 2-dimensional matrices defined in (1.12).

Applying some algebra we see that the equation (A∗
T − E)R = 0 is equivalent

to A′
TR = 0, where

A′
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q̂− E 0 0 0 · · · 0 0 0
Q∗

1 −E 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −E 0 0
0 0 0 0 · · · P ∗

2 −E 0
0 0 0 0 · · · 0 Q∗

2 −E

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Q̂ = Q∗

2Q
∗
2 · · ·Q∗

1Q
∗
1 = (Q∗

2)
T
2 (Q∗

1)
T
2 . But A′

T is a block-wise lower diagonal
matrix, and so A′

TR = 0 can be solved in the usual way resulting in the following
formulas.

For every T ∈ 2N, the stationary distribution πT of Y ε with matrices of one-
step probabilities defined in (1.12) is given by

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π−
T (l) =

ψ

ϕ+ ψ
+

ϕ− ψ

ϕ+ ψ
· (1− ϕ− ψ)l

1 + (1− ϕ− ψ)
T
2

,

π+
T (l) =

ϕ

ϕ+ ψ
− ϕ− ψ

ϕ+ ψ
· (1− ϕ− ψ)l

1 + (1− ϕ− ψ)
T
2

,

π−
T (l +

T
2 ) = π+

T (l),

π+
T (l +

T
2 ) = π−

T (l), 0 ≤ l ≤ T
2 − 1.

The proof of (1.13) is easy and instructive, and will be contained in the following
arguments. Note that πT (0) satisfies the matrix equation(

(Q∗
2)

T
2 (Q∗

1)
T
2 − E

)
πT (0) = 0

with additional condition π−
T (0) + π+

T (0) = 1. To calculate (Q∗
2)

T
2 (Q∗

1)
T
2 , we use a

formula for the k-th power of 2× 2-matrices Q =

(
1− a a
b 1− b

)
, a, b ∈ R, proved

in a straightforward way by induction on k which reads(
1− a a
b 1− b

)k

=
1

a+ b

(
b a
b a

)
+

(1− a− b)k

a+ b

(
a −a
−b b

)
.
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Using some more elementary algebra we find

(Q∗
2)

T
2 (Q∗

1)
T
2 =
(
(Q1)

T
2 (Q2)

T
2

)∗
=

(
1− ψ ψ
ϕ 1− ϕ

)T
2
(
1− ϕ ϕ
ψ 1− ψ

)T
2

=
1

ϕ+ ψ

(
ϕ ϕ
ψ ψ

)
+ (1− ϕ− ψ)

T
2
ϕ− ψ

ϕ+ ψ

(
−1 −1
1 1

)
+

(1− ϕ− ψ)T

ϕ+ ψ

(
ϕ −ψ
−ϕ ψ

)
,

from which another straightforward calculation yields⎧⎪⎪⎪⎨⎪⎪⎪⎩
π−
T (0) =

ϕ

ϕ+ ψ
+

ψ

ϕ+ ψ
· (1− ϕ− ψ)

T
2

1 + (1− ϕ− ψ)
T
2

,

π+
T (0) =

ψ

ϕ+ ψ
+

ϕ

ϕ+ ψ
· (1− ϕ− ψ)

T
2

1 + (1− ϕ− ψ)
T
2

.

To compute the remaining entries, we use πT (l) = (Q∗
1)

lπT (0) for 0 ≤ l ≤ T
2 − 1,

and πT (l) = (Q∗
2)

l(Q∗
1)

T
2 πT (0) for T

2 ≤ l ≤ T − 1 to obtain (1.13). Note also the

symmetry π−
T (l +

T
2 ) = π+

T (l) and π+
T (l +

T
2 ) = π−

T (l), 0 ≤ l ≤ T
2 − 1.

To motivate the physical quality of tuning concept of spectral power amplifica-
tion, we first remark that our Markov chain Y ε can be interpreted as amplifier of
the periodic input signal of period T . In the stationary regime, i.e. if the law of
Y ε is given by the measure πT , the power carried by the output Markov chain at
frequency a/T is a random variable

ξT (a) =
1

T

T−1∑
l=0

Y ε(l)e
2πia
T l.

We define the spectral power amplification (SPA) as the relative expected power
carried by the component of the output with (input) frequency 1

T . It is given by

ηY (ε, T ) =
∣∣∣EπT

ξT (1)
∣∣∣2, ε > 0, T ∈ 2N.

Here EπT
denotes expectation w.r.t. the stationary law πT .

The explicit description of the invariant measure now readily yields an explicit
formula for the spectral power amplification. In fact, using (1.13) one immediately
gets

EπT
ξT (1) =

1

T

T−1∑
k=0

EπT
Y ε(k)e

2πi
T k =

1− eπi

T

T
2 −1∑
k=0

(π+
T (k)− π−

T (k))e
2πi
T k

=
4

T

ϕ− ψ

ϕ+ ψ

( 1

1− e
2πi
T

− 1

1− (1− ϕ− ψ)e
2πi
T

)
.

Elementary algebra then leads to the following description of the spectral power
amplification coefficient of the Markov chain Y ε for ε > 0, T ∈ 2N:

(1.14) ηY (ε, T ) =
4

T 2 sin2( πT )
· (ϕ− ψ)2

(ϕ+ ψ)2 + 4(1− ϕ− ψ) sin2( πT )
.

Note now that the one-step probabilities Q1 and Q2 depend on the parameters
noise level ε. Our next goal is to tune this parameter to a value which maximizes
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the amplification coefficient ηY (ε, T ) as a function of ε. So the stochastic resonance
point is marked by the maximum of the spectral power amplification coefficient as
a function of ε. To calculate it, substitute e−1/ε = x, and differentiate the explicit
formula (1.14). The resulting relationship between period length T (ε) and noise
intensity ε marking the stochastic resonance point can be recast in the formula

T (ε) ∼=
1

2π

√
pq

V − v

v
exp
(V + v

2ε

)
.

The maximal value of spectral power amplification is given by

lim
ε→0

ηY (ε, T (ε)) =
4

π2

0 ε

1 2

ηY (ε, T )
4
π 2

Figure 1.13. The coefficient of the spectral power amplification
ε 
→ ηY (ε, T ) for p = q = 0.5, V = 2, v = 1, T = 10 000.

We also see that the spectral power amplification as a measure of quality of sto-
chastic resonance allows to distinguish a unique time scale, and find its exponential
rate V+v

2 together with the pre-exponential factor. The optimal exponential rate
is therefore given by the arithmetic mean of the two potential barriers marked by
the deep and shallow well of our double well potential. This basic relationship will
appear repeatedly at different stages of our mathematical elaboration of concepts
of optimal tuning.

We may summarize our findings so far for discrete Markov chains that capture
the effective dynamics of the potential diffusions which are our main subject of in-
terest. Following the physics literature (e.g. Gammaitoni et al. [43] and McNamara
and Wiesenfeld [74]) we understand stochastic resonance as optimal spectral power
amplification. The closely related notion of signal-to-noise ratio and other reason-
able concepts based on quality measures such as the relative entropy of invariant
laws are discussed for Markov chains in Chapter 3 (see Section 3.2). The spectral
power amplification coefficient measures the power carried by the expected Fourier
coefficient in equilibrium of the Markov chain switching between the stable equilib-
ria of the potential landscape of the diffusion which corresponds to the frequency
of the underlying periodic deterministic signal.

1.4. Diffusions with continuously varying potentials

The concept of spectral power amplification is readily extended to Markov
chains in continuous time, still designed to capture the effective diffusion dynamics
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in higher dimensions, as well as to potential diffusions themselves. This will be done
in detail in Chapter 3. However, it will turn out that diffusions and their reduced
dynamics Markov chains are not as similar as expected. Indeed, in a reasonably
large time window around the resonance point for Y ε, the tuning picture of the
spectral power amplification for the diffusion is different. Under weak regularity
conditions on the potential, it exhibits strict monotonicity in the window. Hence
optimal tuning points for diffusion and Markov chain differ essentially. In other
words, the diffusion’s SPA tuning behavior is not robust for passage to the reduced
model (see Chapter 3, subsection 3.4.4). This strange deficiency is difficult to
explain. The main reason of this subtle effect appears to be that the diffusive
nature of the Brownian particle is neglected in the reduced model. In order to
point out this feature, we may compute the SPA coefficient of g(Xε) where g is
a particular function designed to cut out the small fluctuations of the diffusion in
the neighborhood of the bottoms of the wells, by identifying all states there. So
g(x) = −1 (resp. 1) in some neighborhood of −1 (resp. 1) and otherwise g is the
identity. This results in

η̃X(ε, T ) =
∣∣∣ ∫ 1

0

Eνg(X
ε
sT ) e

2πis ds
∣∣∣2, ε > 0, T ≥ 0.

In the small noise limit this quality function admits a local maximum close to the
resonance point of the reduced model: the growth rate of Topt(ε) is also given by
the arithmetic mean of the wells’ depths. So the lack of robustness seems to be due
to the small fluctuations of the particle in the wells’ bottoms.

In any case, this clearly calls for other quality measures to be used to transfer
properties of the reduced model to the original one. Our discussion indicates that
due to their emphasis on the pure transition dynamics, a second more probabilis-
tic family of quality measures should be used. This will be made mathematically
rigorous in Chapter 4. The family is composed of quality measures based on tran-
sition times between the domains of attraction of the local minima, residence times
distributions measuring the time spent in one well between two transitions, or inter-
spike times. To explain its main features there is no need to restrict to landscapes
frozen in time independent potential states on half period intervals. So from now
on the potential U(t, x) is a continuous function in (t, x). For simplicity — remain-
ing in the one-dimensional case — we further suppose that its local minima are
given by ±1, and its only saddle point by 0, independently of time. So the only

meta-stable states on the time axis are ±1. Let us denote by v−(t)
2 (resp. v+(t)

2 the
depth of the left (resp. right) well. These function are continuous and 1-periodic.
We shall assume that they are strictly monotonous between their global extrema.
Let us now consider the motion of the Brownian particle in this landscape. As
in the preceding case, according to Freidlin’s law of quasi-deterministic motion its
trajectory gets close to the global minimum, if the period is large enough. The
exponential rate of the period should be large enough to permit transitions: if
T (ε) = eμ/ε with μ ≥ maxi=± supt≥0 vi(t) meaning that μ is larger than the max-
imal work needed to cross the barrier, then the particle often switches between
the two wells and should stay close to the deepest position in the landscape. By
defining φ(t) = 2I{v+(t)>v−(t)} − 1, in the small noise limit the Lebesgue measure
of the set

{t ∈ [0, 1] : |XtT − φ(t)| > δ}
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converges to 0 in probability for any δ > 0. But in this case many transitions occur
in practice, and the trajectory looks chaotical instead of periodic. So we have to
choose smaller periods even if we cannot assure that the particle stays close to the
global minimum since it needs some time to cross the barrier. Let us study the
transition times. For this we assume that the starting point is −1 corresponding
to the bottom of the deepest well. If the depth of the well is always larger than
μ = ε lnT (ε), then the particle does not have enough time during one period to
climb the barrier and should therefore stay in the starting well. On the contrary if
the depth of the starting well becomes smaller than μ, the transition can and will
happen. More precisely, for μ ∈ (inft≥0 v−(t), supt≥0 v−(t)) we define

a−μ (s) = inf{t ≥ s : v−(t) ≤ μ}.
The first transition time from −1 to 1 denoted τ+ has the following asymptotic
behavior in the small noise limit: τ+/T (ε) → a−μ (0). The second transition which
lets the particle return to the starting well will appear near the deterministic time
a+μ (a

−
μ (s))T (ε). The definitions of the coefficients a−μ and a+μ are similar, the depth

of the left well just being replaced by that of the right well. In order to observe
periodic behavior of the trajectory, the particle has to stay a little time in the right
well before going back. This will happen under the assumption v+(aμ(0)) > μ,
that is, the right well is the deepest one at the transition time. In fact we can then
define the resonance interval IR, the set of all values μ such that the trajectories
look periodic in the small noise limit:

IR =
(
max
i=±

inf
t≥0

vi(t), inf
t≥0

max
i=±

vi(t)
)
.

On this interval trajectories approach some deterministic periodic limit. We now
outline the construction of a quality measure that is based on these observations, to
be optimized in order to obtain stochastic resonance as the best possible response
to periodic forcing. The measure we consider is based on the probability that a
random transition of the diffusion happens during a small time window around the
limiting deterministic transition time. Recall the transition times τ ε±1 of Xε to ±1.
For h > 0, ε > 0, T ≥ 0 let

Mh(ε, T ) = min
i=±

Pi

( τ ε∓1

T (ε)
∈ [aiμ − h, aiμ + h]

)
.

In the small noise limit, this quality measure tends to 1 and optimal tuning can be
obtained due to its asymptotic behavior described by the formula

lim
ε→0

ε ln(1−Mh(ε, T )) = max
i=±

{μ− vi(a
i
μ − h)}

for μ ∈ IR, uniformly on each compact subset. This property results from classical
large deviation techniques applied to an approximation of the diffusion which is
supposed to be locally time homogeneous, and will be derived in Chapter 4. Now
we minimize the term on the left hand side in the preceding equality. In fact, if
the window length 2h is small then μ− vi(a

i
μ − h) ≈ 2hv′i(a

i
μ) since vi(a

i
μ) = μ by

definition. The value v′i(a
i
μ) is of course negative. Thus the position in which its

absolute value is maximal should be identified. At this position the depth of the
starting well drops most rapidly below the level μ.

It is clear that for h small the eventually existing global minimizer μR(h) is a
good candidate for the resonance point. To get rid of the dependence on h, we shall
consider the limit of μR(h) as h → 0 denote by μR. This limit, if it exists, is called
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the resonance point of the diffusion with time periodic landscape U . Let us note
that for v−(t) = V+v

4 + V−v
4 cos(2πt) and v+(t) = v−(t + π), which corresponds

to the case of periodically switching wells’ depths between v
2 to V

2 as in the frozen
landscape case described above. Then the optimal tuning is T (ε) = exp(μR

ε ) with

μR = v+V
2 . This optimal rate is equivalent to the optimal rate given by the SPA

coefficient.
The big advantage of the quality measure based on the transition times is its

robustness. Let us therefore consider the reduced model consisting in a two-state
Markov chain with the infinitesimal generator

Q(t) =

(
−ϕ(t) ϕ(t)
ψ(t) −ψ(t)

)
,

where ϕ(t) = exp(−v−(t/T )
ε ) and ψ(t) = exp(− v+(t/T )

ε ). The distribution of transi-
tion times of this Markov chain is well known (see Chapter 4) and, divided by the
period length, converges to aiμ. The reduced dynamics of the diffusion is captured

by the Markov chain, and the optimization of the quality measure Mh(ε, T ) for the
Markov chain and the diffusion leads to the same resonance points.

Our investigation focuses essentially on two criteria: one concerning the family
of spectral measures, especially the spectral power amplification coefficient, and the
other one dealing with transitions between the local minima of the potential. Many
other criteria for optimal tuning between weak periodic signals in dynamical systems
and stochastic response can be employed (see Chapter 3). The relation between long
deterministic periods and noise intensity usually is expressed in exponential form
T (ε) = exp(με ), since the particle needs exponentially large times to cross the barrier
separating the wells. This approach relies on the basic assumption that the barrier
height is bounded below uniformly in time. This assumption which seems natural in
the simple energy balance model of climate dynamics may be questionable in other
situations. If the barrier height becomes small periodically on a scale related to the
noise intensity, the Brownian particle does not need to wait an exponentially long
time to climb it. In this scaling trajectories may appear periodic in the small noise
limit. The modulation is assumed to be slow, but the time dependence does not
have to be assumed exponentially slow in the noise intensity. In a series of papers
[8, 9, 10, 11, 12] and in a monograph [13], Berglund and Gentz study the case in
which the barrier between the wells becomes low twice per period: at time zero the
right-hand well becomes almost flat and at the same time the bottom of the well
and the saddle approach each other; half a period later, the scenario with the roles
of the wells switched occurs. Even in this situation, there is a threshold value for
the noise intensity under which transitions are unlikely and, above this threshold,
trajectories typically exhibit two transitions per period. In this particular situation,
optimal tuning can be described in terms of the concentration of sample paths in
small space-time sets.

1.5. Stochastic resonance in models from electronics to biology

As described in the preceding sections, the paradigm of stochastic resonance
can quite generally and roughly be seen as the optimal amplification of a weak pe-
riodic signal in a dynamical system triggered by random forcing. In this section, we
shall briefly deviate from the presentation of our mathematical approach of optimal
tuning by large deviations methods, illustrate the ubiquity of the phenomenon of
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stochastic resonance. We will briefly discuss some prominent examples of dynami-
cal systems arising in different areas of natural sciences in which it occurs, following
several big reviews on stochastic resonance from the point of view of natural sciences
such as [1, 43, 44, 79, 108]. We refer the reader to these references for ample fur-
ther information on a huge number of examples where stochastic resonance appears.
Finally we will briefly comment on computational aspects of stochastic resonance
that are important in particular in high dimensional applications.

1.5.1. Resonant activation and Brownian ratchets. The two popular
examples we mention here are elementary realizations of transition phenomena
corresponding roughly to our paradigm of an overdamped Brownian particle in a
potential landscape subject to weak periodic variation of some parameters. Here
we face the examples of one-well potentials resp. asymmetric periodic multi-well
potentials.

The effect of the so-called resonant activation arises in the simple situation
in which an overdamped Brownian particle exits from a single potential well with
randomly fluctuating potential barrier. In the case we consider the potential barrier
can be considered to undergo weak periodic deterministic fluctuations in contrast.
Even in the simplest situation, in which the height of the potential barrier is given
by a Markov chain switching between two states, one can observe a non-linear
dependence of the mean first exit time from the potential well and the intensity of
the switching (see e.g. Doering and Elston [28]).

Noise induced transport in Brownian ratchets addresses the directed motion of
the Brownian particle in a spatially asymmetric periodic potential having the shape
of a long chain of downward directed sawtooths of equal length. It arises as another
exit time phenomenon, since random exits over the lower potential barrier on the
right hand side of the particle’s actual position are highly favored. For instance in
the context of an electric conductor, this effect creates a current in the downward
direction indicated, see Doering et al. [28, 27] and Reimann [91]. An important
application of this effect is the biomolecular cargo transport, see e.g. Elston and
Peskin [35] and Vanden–Eijnden et al. [80, 26].

1.5.2. Threshold models and the Schmitt trigger. Models of stochastic
resonance based on a bistable weakly periodic dynamical system of the type (0.1)
are often referred to as dynamical models in contrast to the so-called non-dynamical
or threshold models. These are models usually consisting of a biased deterministic
input which may be periodic or not, and a multi-state output. In the simplest
situation, the output takes a certain value as the input crosses a critical threshold.
The simplest model of this type is the Schmitt trigger, an electronic device studied
first by Fauve and Heslot [38] and Melnikov [76] (see also [1, 43, 69, 70, 74]).
It is given by a well-known electronic circuit, characterized by a two-state output
and a hysteretic loop. The circuit is supplied with the input voltage w = wt, which
is an arbitrary function of time. In the ideal Schmitt trigger the output voltage
Y = Yt has only two possible values, say −V and V . Let w increase from −∞.
Then Y = V until w reaches the critical voltage level V+. As this happens, the
output jumps instantaneously to the level −V . Decreasing w does not affect the
output Y until w reaches the critical voltage V−. Then Y jumps back. Therefore,
the Schmitt trigger is a bistable system with hysteresis, see Figure 1.14. The width
of the hysteresis loop is V+−V−. Applying a periodic voltage of small amplitude a
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Figure 1.14. The input-output characteristic (hysteresis loop) of
the Schmitt trigger.

and period T > 0, for example, to V+, we periodically modulate the critical level.
After adding a random noise at the input, the system is able to jump between the
two states ±V . As in the example of glacial cycles we can consider a discontinuous
modulation, for instance given by V+(t) = a sign(sin ( 2πtT )). The whole picture is
now similar to the one in (1.3). Here the periodic modulation of the reference
voltage corresponds to the tilting of the potential wells.

Fauve and Heslot [38] studied the power spectrum of the system and, as in the
glacial cycle example, established that the energy carried by the spectral component
of Y at a given driving frequency has a local maximum for a certain intensity of
the input noise.

The Schmitt trigger provides another interpretation to the phenomenon of sto-
chastic resonance. A system displaying stochastic resonance can be considered as
a random amplifier. The weak periodic signal which cannot be detected in the
absence of noise, can be successfully recovered if the system (the Schmitt trigger
or (1.3)) is appropriately tuned. In other words, the weak underlying periodicity is
exhibited at appropriately chosen non-zero levels of noise, and gets lost if noise is
either too small or too large.

To date, the most important application area of threshold models is neural
dynamics (see Bulsara et al. [17], Douglass et al. [29], Patel and Kosko [85]) and
transmission of information (see Neiman et al. [81], Simonotto et al. [99], Stocks
[101], Moss et al. [79]). The recent book [73] by McDonnell et al. gives a very
complete account on the theory of non-dynamic or threshold stochastic resonance.

1.5.3. The paddlefish. In this well known and frequently discussed example
stochastic resonance appears in the noise-enhanced feeding behavior of the pad-
dlefish Polyodon spathula (see Greenwood et al. [47], Russel et al. [95], Freund et
al. [42]). This species of fish lives in the Midwest of the United States and in the
Yangtze River in China, and feeds on the zooplankton Daphnia. To detect its prey
animals under limited visibility conditions at river bottoms, the paddlefish uses the
long rostrum in front of its mouth as an electrosensory antenna. The frequency
range of sensitivity of the rostrum’s electroreceptors well overlaps with the range
of frequencies produced by the prey. Roughly, the capture probability is observed
as a function of the position of the prey relative to the rostrum. In experiments,
external noise was generated by electrodes connected to an electric noise genera-
tor. It was observed that the spatial distribution and number of strike locations
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is a function of the external noise intensity, with a maximum of captures of more
distant plankton at some optimal external noise intensity. If experimentally noisy
electric signals improve the sensitivity of the electroreceptors, nature itself should
also provide sources of noise. In [95] it was conjectured that, besides the signal,
such a noise might be produced by the populations of prey animals themselves.
In [42] this conjecture was confirmed by measurements of the noise strength pro-
duced by single Daphnia in the vicinity of a swarm. In the simple quantitative
approaches, quality of tuning is measured by Fisher information, a concept that
may be comparable to the entropy notions in Chapter 3, Section 3.2.

1.5.4. The FitzHugh–Nagumo system. A more detailed modeling of neu-
ral activities of living systems underlies this well known and studied example. It
deals with action potentials and electric currents transmitted through systems of
ion channels provided by the axons in neural networks, triggered by their mutual
interaction and the interaction of the system with the biological environment. Neu-
rons communicate with each other or with muscle cells by means of electric signals.
Each single neuron can be modeled as an excitable dynamical system: in the rest
state characterized by a negative potential gap with respect to the extracellular
environment, no current flows through the membrane of the neuronal cell. If this
threshold potential barrier disappears due to noisy perturbations created by the
environment (neighboring cells, external field), ion channels through the membrane
are opened and currents appear in form of a spike or firing, followed by a deter-
ministic recovery to the rest state. During a finite (refractory) time interval, the
membrane potential is hyperpolarized by the current flow, and any firing impossi-
ble. The theory that captures the above-mentioned features of neuronal dynamics,
including the finite refractory time, is described by the FitzHugh–Nagumo (FHN)
equations (see Kanamaru et al. [63]). In the diffusively coupled form, a system of
N coupled neurons is described by the system of equations (see [63])

τ u̇i(t) =
(
− vi +

(
ui −

u3
i

3

)
+ S(t)

)
+
√
ε Ẇi(t) +

1

N

N∑
j=1

(ui − uj),

v̇i(t) = ui − βvi + γ.

Here ui describes the membrane potential of neuron i, vi a variable describing
whether and to which degree neuron i is in the refractory interval of time after
firing, S describes an external periodic pulse acting on the potential levels, while
W1, . . . ,Wn is a vector of independent Brownian motions. Finally, τ , β, ε and γ
are system parameters. In the infinite particle limit, the system becomes a sto-
chastic partial differential equation. Roughly, total throughput current will be a
function of the model parameters, and stochastic resonance appears as its optimal
value for a suitable parameter choice (synchronization). The paper by Wiesenfeld
et al. [109] reports about a much simplified form of this system, in which action
potentials of single mechanoreceptor cells of the crayfish Procambarus clarkii are
concerned. The mechanosensory system of the crayfish consists of hairs located
on its tailfan, connected to mechanoreceptor cells. Streaming water moves the hair
and so provides the external excitation that causes the mechanoreceptor cell to fire.
Experimentally (see [109]), a piece of tailfan containing the hair and sensory neuron
was extracted and put into a saline solution environment. Then, periodic pressure
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modulations and random noise were imposed on the environment. The firings pro-
duced by the mechanoreceptor cell were recorded for different noise levels, and show
clear stochastic resonance peaks as functions of noise intensity. Similar phenomena
are encountered on a much more general basis in the exchange of substances or
information through ionic channels on cell membranes in living organisms.

1.5.5. Physiological systems. The fact that sensory neurons are excitable
systems leading to the FitzHugh–Nagumo equations in the preceding subsection, is
also basic for many suggestions of how to make use of the phenomenon of stochastic
resonance in medicine. Disfunctions arising in sensory organs responsible for hear-
ing, tactile or visual sensations or for balance control could result from relatively
higher sensitivity thresholds compared with those of healthy organs. To raise the
sensitivity level, a natural idea seems to be to apply the right amount of external
noise to these dysfunctional organs, in order to let stochastic resonance effects am-
plify weak signal responses. In experiments reported in Collins et al. [21], local
indentations were applied to the tips of digits of test persons who had to correctly
identify whether a stimulus was presented. Stimuli generated by subthreshold sig-
nals garnished with noise led to improvements in correct identification, with some
optimal noise level indicating a stochastic resonance point. Results like this may be
used for designing practical devices, as for instance gloves, for individuals with ele-
vated cutaneous sensory thresholds. Similarly, randomly vibrating shoe inserts may
help restoring balance control (see Priplata et al. [89]). Stochastic resonance effects
may be used for treating disfunctions of the human blood pressure system (barore-
flex system) featuring a negative feedback between blood pressure and heart rate
resp. width of blood vessels. Blood pressure is monitored by two types of receptors,
for arteries and veins. In Hidaka [54], a weak periodic input was introduced at the
venous blood pressure receptor, whereas noise was added to the arterial receptor.
It was shown that the power of the output signal of the heart rate (measured by
an electrocardiogram) as a function of noise intensity exhibits a bell-shape form,
typical for a curve with a stochastic resonance point. Another group of possible
medical applications of the amplification effects of stochastic resonance is related
to the human brains information processing activity (see Mori and Kai [78]). In
an experiment in Usher and Feingold [103] the effect of stochastic resonance in
the speed of memory retrieval was exhibited. Test persons were proven to perform
single digit calculations (e.g. 7 × 8 =?) significantly faster when exposed to an
optimal level of acoustic noise (via headphones).

1.5.6. Optical systems. In optical systems, stochastic resonance was first
observed in McNamara et al. [75] and Vemuri and Roy [104] in a bidirectional ring
laser, i.e. a ring resonator with a dye as lasing medium. This laser system supports
two meta-stable states realized as modes of the same frequency that travel in oppo-
site directions. They are strongly coupled to each other by the lasing medium, thus
permitting a bistable operation. When the pumping exceeds the lasing threshold,
either clockwise or counterclockwise modes propagate in the laser, with switchings
between those two modes initiated by spontaneous emission in the active medium,
and fluctuations of the pump laser. The net gains of the two propagating modes
in opposite directions can be controlled by an acousto-optical modulator inside the
cavity, which thus can be used both to impose a periodic switching rate between
the modes and to inject noise. Therefore the resulting semiclassical laser equations
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are equivalent to those describing overdamped motion of a particle in a periodi-
cally modulated double well potential, as described in the prototypical example of
Section 1.2.

The choice of examples we discussed in more detail is rather selective. The ef-
fects of stochastic resonance have been found in a big number of dynamical systems
in various further areas of the sciences, and studied by a variety of physical mea-
sures of quality of tuning. We just mention a big field of applications in microscopic
systems underlying the laws of quantum mechanics in which intrinsic quantum tun-
neling effects interfere with the interpretation of potential barrier tunneling that
can be seen as causing noise induced transitions in diffusion dynamics. See [108]
for a comprehensive survey. Stochastic resonance has further been observed in
passive optical bistable systems [30], in experiments with magnetoelastic ribbons
[100], in chemical systems [67], as well as in further biological ones [94, 60, 41].
Stochastic resonance may even be observed in more general systems in which the
role of periodic deterministic signals is taken by some other physical mechanisms
(see [108]).

1.5.7. Computational aspects of large deviation theory related to
stochastic resonance. Our theoretical approach aimed at explaining stochastic
resonance conceptually by means of space-time large deviations of weakly periodic
dynamical systems does not touch at all the field of numerical algorithms and sci-
entific computing for stochastic resonance related quantities which become very
important for applications especially in high dimensions. In the framework of the
classical Freidlin–Wentzell theory, first exit time estimates as well as large devia-
tions rates are analytically expressed by the quasi-potential (see Chapter 2) which
can be calculated more or less explicitly for gradient systems. To determine and
minimize the quasi-potential in high-dimensional scenarios is an analytically hardly
accessible task. In Vanden–Eijnden et al. [31, 53] practically relevant algorithms
with numerous applications for this task have been developed. They have been ap-
plied to various problems in different areas of application of stochastic resonance.


