Contents | Preface | | vii | |----------------------|--|----------------------------------| | Introduction | | ix | | 1.2. | Energy balance models of climate dynamics
Heuristics of our mathematical approach | 1
1
6 | | 1.3.
1.4.
1.5. | Markov chains for the effective dynamics and the physical paradigm
of spectral power amplification
Diffusions with continuously varying potentials
Stochastic resonance in models from electronics to biology | 14
18
21 | | 2.4. | 2. Transitions for time homogeneous dynamical systems with small noise Brownian motion via Fourier series The large deviation principle Large deviations for Brownian motion The Freidlin-Wentzell theory Diffusion exit from a domain | 27
28
37
44
50
59 | | Chapter | 3. Semiclassical theory of stochastic resonance in dimension 1 Freidlin's quasi-deterministic motion The reduced dynamics: stochastic resonance in two-state Markov chains Spectral analysis of the infinitesimal generator of small noise diffusion | 69
69
78
91
114 | | 4.2. | dynamical systems with small noise and weak inhomogeneity Large deviations for diffusions with weakly inhomogeneous coefficients. A new measure of periodic tuning induced by Markov chains Exit and entrance times of domains of attraction | 133
134
144
154
169 | | Appendi | ix A. Supplementary tools | 177 | | Appendi | ix B. Laplace's method | 179 | | Bibliogr | Bibliography | | | Index | | 189 |