
Introduction

I restricted myself to characteristic zero: for a short time, the quantum
jump to p �= 0 was beyond the range . . . but it did not take me too long
to make this jump.

—Oscar Zariski

The arithmetic of abelian varieties with complex multiplication over a number field
is fascinating. However this will not be our focus. We study the theory of complex
multiplication in mixed characteristic.

Abelian varieties over finite fields. In 1940 Deuring showed that an elliptic
curve over a finite field can have an endomorphism algebra of rank 4 [33, §2.10].
For an elliptic curve in characteristic zero with an endomorphism algebra of rank 2
(rather than rank 1, as in the “generic” case), the j-invariant is called a singular j-
invariant. For this reason elliptic curves with even more endomorphisms, in positive
characteristic, are called supersingular.1

Mumford observed as a consequence of results of Deuring that for any elliptic
curves E1 and E2 over a finite field κ of characteristic p > 0 and any prime � �= p,
the natural map

Z� ⊗Z Hom(E1, E2)−→HomZ�[Gal(κ/κ)](T�(E1), T�(E2))

(where on the left side we consider only homomorphisms “defined over κ”) is an
isomorphism [118, §1]. The interested reader might find it an instructive exercise
to reconstruct this (unpublished) proof by Mumford. Tate proved in [118] that
the analogous result holds for all abelian varieties over a finite field and he also
incorporated the case � = p by using p-divisible groups. He generalized this result
into his influential conjecture [117]:

An �-adic cohomology class2 that is fixed under the Galois group should be
a Q�-linear combination of fundamental classes of algebraic cycles when
the ground field is finitely generated over its prime field.

Honda and Tate gave a classification of isogeny classes of simple abelian vari-
eties A over a finite field κ (see [50] and [121]), and Tate refined this by describing

1Of course, a supersingular elliptic curve isn’t singular. A purist perhaps would like to say “an
elliptic curve with supersingular j-value”. However we will adopt the generally used terminology
“supersingular elliptic curve” instead.

2The prime number � is assumed to be invertible in the base field.
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the structure of the endomorphism algebra End0(A) (working in the isogeny cate-
gory over κ) in terms of the Weil q-integer of A, with q = #κ; see [121, Thm. 1].
It follows from Tate’s work (see 1.6.2.5) that an abelian variety A over a finite field
κ admits sufficiently many complex multiplications in the sense that its endomor-
phism algebra End0(A) contains a CM subalgebra3 L of rank 2 dim(A). We will
call such an abelian variety (in any characteristic) a CM abelian variety and the

embedding L → End0(A) a CM structure on A.
Grothendieck showed that over any algebraically closed field K, an abelian

variety that admits sufficiently many complex multiplications is isogenous to an
abelian variety defined over a finite extension of the prime field [89]. This was
previously known in characteristic zero (by Shimura and Taniyama), and in that
case there is a number field K ′ ⊂ K such that the abelian variety can be defined
over K ′ (in the sense of 1.7.1). However in positive characteristic such abelian
varieties can fail to be defined over a finite subfield of K; examples exist in every
dimension > 1 (see Example 1.7.1.2).

Abelian varieties in mixed characteristic. In characteristic zero, an abelian
variety A gives a representation of the endomorphism algebra D = End0(A) on the
Lie algebra Lie(A) of A. If A has complex multiplication by a CM algebra L of
degree 2 dim(A) then the isomorphism class of the representation of L on Lie(A) is
called the CM type of the CM structure L ↪→ End0(A) on A (see Lemma 1.5.2 and
Definition 1.5.2.1).

As we noted above, every abelian variety over a finite field is a CM abelian vari-
ety. Thus, it is natural to ask whether every abelian variety over a finite field can be
“CM lifted” to characteristic zero (in various senses that are made precise in 1.8.5).
One of the obstacles4 in this question is that in characteristic zero there is the no-
tion of CM type that is invariant under isogenies, whereas in positive characteristic
whatever can be defined in an analogous way is not invariant under isogenies. For
this reason we will use the terminology “CM type” only in characteristic zero.

For instance, the action of the endomorphism ring R = End(A0) of an abelian
variety A0 on the Lie algebra of A0 in characteristic p > 0 defines a representa-
tion of R/pR on Lie(A0). Given an isogeny f : A0 → B0 we get an identification
End0(A0) = End0(B0) of endomorphism algebras, but even if End(A0) = End(B0)
under this identification, the representations of this common endomorphism ring
on Lie(A0) and Lie(B0) may well be non-isomorphic since Lie(f) may not be an
isomorphism. Moreover, if we have a lifting A of A0 over a local domain of char-
acteristic 0, in general the inclusion End(A) ⊂ End(A0) is not an equality. If the
inclusion End0(A) ⊂ End0(A0) is an equality then the character of the representa-
tion of End(A0) on Lie(A0) is the reduction of the character of the representation of
End(A) on Lie(A). This relation can be viewed as an obstruction to the existence
of CM lifting with the full ring of integers of a CM algebra operating on the lift;
see 4.1.2, especially 4.1.2.3–4.1.2.4, for an illustration.

In the case when End(A0) contains the ring of integers OL of a CM algebra
L ⊂ End0(A0) with [L : Q] = 2 dim(A0), the representation of OL/pOL on Lie(A0)
turns out to be quite useful, despite the fact that it is not an isogeny invariant. Its
class in a suitable K-group will be called the Lie type of (A0,OL ↪→ End(A0)).

3A CM algebra is a finite product of CM fields; see Definition 1.3.3.1.
4surely also part of the attraction
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The above discrepancy between the theories in characteristic zero and charac-
teristic p > 0 is the basic phenomenon underlying this entire book. Before dis-
cussing its content, we recall the following theorem of Honda and Tate ([50, §2,
Thm. 1] and [121, Thm. 2]).

For an abelian variety A0 over a finite field κ there is a finite extension
κ′ of κ and an isogeny (A0)κ′ → B0 such that B0 admits a CM lifting
over a local domain of characteristic zero with residue field κ′.

This result has been used in the study of Shimura varieties, for settings where the
ground field is an algebraic closure of Fp and isogeny classes (of structured abelian
varieties) are the objects of interest; see [135]. Our starting point comes from the
following questions which focus on controlling ground field extensions and isogenies.

For an abelian variety A0 over a finite field κ, to ensure the existence
of a CM lifting over a local domain with characteristic zero and residue
field κ′ of finite degree over κ,
(a) may we choose κ′ = κ?
(b) is an isogeny (A0)κ′ → B0 necessary?

These questions are formulated in various precise forms in 1.8.

An isogeny is necessary. Question (b) was answered in 1992 (see [93]) as follows.

There exist (many) abelian varieties over Fp that do not admit any CM
lifting to characteristic zero.

The main point of [93] is that a CM liftable abelian variety over Fp can be defined
over a small finite field. This idea is further pursued in Chapter 3, where the size,
or more accurately the minima5 of the size, of all possible fields of definition of the
p-divisible group of a given abelian variety over Fp is turned into an obstruction for
the existence of a CM lifting to characteristic 0. This is used to show (in 3.8.3) that
in “most” isogeny classes of non-ordinary abelian varieties of dimension � 2 over
finite fields there is a member that has no CM lift to characteristic 0. (In dimension
1 a CM lift to characteristic 0 always exists, over the valuation ring of the minimal
possible p-adic field, by Deuring Lifting Theorem; see 1.7.4.6.) We also provide
effectively computable examples of abelian varieties over explicit finite fields such
that there is no CM lift to characteristic 0.

A field extension might be necessary—depending on what you ask.
Bearing in mind the necessity to modify a given abelian variety over a finite field to
guarantee the existence of a CM lifting, we rephrase question (a) in a more precise
version (a)′ below.

(a)′ Given an abelian variety A0 over a finite field κ of characteris-
tic p, is it necessary to extend scalars to a strictly larger finite field
κ′ ⊃ κ (depending on A0) to ensure the existence of a κ′-rational isogeny
(A0)κ′ → B0 such that B0 admits a CM lifting over a characteristic 0
local domain R with residue field κ′?

It turns out there are two quite different answers to question (a)′, depending on
whether one requires the local domain R of characteristic 0 to be normal. The
subtle distinction between using normal or general local domains for the lifting

5The size of a finite field κ1 is smaller than the size of a finite field κ2 if κ1 is isomorphic to
a subfield of κ2, or equivalently if #κ1 | #κ2. Among the sizes of a family of finite fields there
may not be a unique minimal element.
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went unnoticed for a long time. Once this distinction came in focus, answers to the
resulting questions became available.

If we ask for a CM lifting over a normal domain up to isogeny, in general a base
field extension before modification by an isogeny is necessary. This is explained in
2.1.2, where we formulate the “residual reflex obstruction”, the idea for which goes
as follows. Over an algebraically closed field K of characteristic zero, we know that
a simple CM abelian variety B with K-valued CM type Φ (for the action of a CM
field L) is defined over a number field in K containing the reflex field E(Φ) of Φ.
Suppose that for every K-valued CM type Φ of L, the residue field of E(Φ) at any
prime above p is not contained in the finite field κ with which we began in question
(a). In such cases, for every CM structure L → End0(A0) on A0 and any abelian
variety B0 over κ which is κ-isogenous to A0, there is no L-linear CM lifting of
B0 over a normal local domain R of characteristic zero with residue field κ.6 In
2.3.1–2.3.3 we give such an example, a supersingular abelian surface A0 over Fp2

with End(A0) = Z[ζ5] for any p ≡ ±2 (mod 5). A much broader class of examples
is given in 2.3.5, consisting of absolutely simple abelian varieties (with arbitrarily
large dimension) over Fp for infinitely many p.

Note that passing to the normalization of a complete local noetherian domain
generally enlarges the residue field. Hence, if we drop the condition that the mixed
characteristic local domain R be normal then the obstruction in the preceding
consideration dissolves. And in fact we were put on the right track by mathematics
itself. The phenomenon is best illustrated in the example in 4.1.2, which is the
same as the example in 2.3.1 already mentioned: an abelian surface C0 over Fp2

with CM order Z[ζ5] that, even up to isogeny, is not CM liftable to a normal local
domain of characteristic zero. On the other hand, this abelian surface C0 is CM
liftable to an abelian scheme C over a mixed characteristic non-normal local domain
of characteristic zero, though the maximal subring of Z[ζ5] whose action lifts to C
is non-Dedekind locally at p; see 4.1.2.7 This example is easy to construct, and
the proof of the existence of a CM lifting, possibly after applying an Fp2 -rational
isogeny, is not difficult either.

In Chapter 4 we show that the general question of existence of a CM lifting
after an appropriate isogeny can be reduced to the same question for (a mild gen-
eralization of) the example in 4.1.2, enabling us to prove:

every abelian variety A0 over a finite field κ admits an isogeny A0 → B0

over κ such that B0 admits a CM lifting to a mixed characteristic local
domain with residue field κ.

There are refined lifting problems, such as specifying at the beginning which CM
structure on A0 is to be lifted, or even what its CM type should be on a geometric
fiber in characteristic 0. These matters will also be addressed.

6The source of obstructions is that the base field κ might be too small to contain at least
one characteristic p residue field of the reflex field E(Φ) for at least one CM type Φ on L. Thus,
the field of definition of the generic fiber of the hypothetical lift may be too big. Likewise, an
obstruction for question (b) is that the field of definition of the p-divisible group A0[p∞] may be
too big (in a sense that is made precise in 3.8.3 and illustrated in 3.8.4–3.8.5).

7No modification by isogeny is necessary in this example, but the universal deformation for
C0 with its Z[ζ5]-action is a non-algebraizable formal abelian scheme over W (Fp2 ).
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Our basic method is to “localize” various CM lifting problems to the corre-
sponding problems for p-divisible groups. Although global properties of abelian va-
rieties are often lost in this localization process, the non-rigid nature of p-divisible
groups can be an advantage. In Chapter 3 the size of fields of definition of a p-
divisible group in characteristic p appears as an obstruction to the existence of CM
lifting. The reduction steps in Chapter 4 rely on a classification and descent of
CM p-divisible groups in characteristic p with the help of their Lie types (see 4.2.2,
4.4.2). In addition, the “Serre tensor construction” is applied to p-divisible groups,
both in characteristic p and in mixed characteristic (0, p); see 1.7.4 and 4.3.1 for
this general construction.

Survey of the contents. In Chapter 1 we start with a survey of general facts
about CM abelian varieties and their endomorphism algebras. In particular, we
discuss the deformation theory of abelian varieties and p-divisible groups, and we
review results in Honda-Tate theory that describe isogeny classes and endomor-
phism algebras of abelian varieties over a finite field in terms of Weil integers. We
conclude by formulating various CM lifting questions in 1.8. These are studied in
the following chapters. We will see that the questions can be answered with some
precision.

In Chapter 2 we formulate and study the “residual reflex condition”. Using this
condition we construct several examples of abelian varieties over finite fields κ such
that, even after applying a κ-isogeny, there is no CM lifting to a normal local
domain with characteristic zero and residue field of finite degree over κ; see 2.3. It
is remarkable that many such examples exist, but we do not know whether we have
characterized all possible examples; see 2.3.7.

We then study algebraic Hecke characters and review part of the theory of com-
plex multiplication due to Shimura and Taniyama. Using the relationship between
algebraic Hecke characters for a CM field L and CM abelian varieties with CM by
L (the precise statement of which we review and prove), we use global methods to
show that the residual reflex condition is the only obstruction to the existence of
CM lifting up to isogeny over a normal local domain of characteristic zero. We also
give another proof by local methods (such as p-adic Hodge theory).

In Chapter 3 we take up methods described in [93]. In that paper classical CM
theory in characteristic zero was used. Here we use p-divisible groups instead of
abelian varieties and show that the size of fields of definition of a p-divisible group
in characteristic p is a non-trivial obstruction to the existence of a CM lifting. In 3.3
we study the notion of isogeny for p-divisible groups over a base scheme (including
its relation with duality). We show, in one case of the CM lifting problem left
open in [93, Question C], that an isogeny is necessary. Our methods also provide
effectively computed examples. Some facts about CM p-divisible groups explained
in 3.7 are used in 3.8 to get an upper bound of a field of definition for the closed
fiber of a CM p-divisible group.

In Appendix 3.9, we use the construction (in 3.7) of a p-divisible group with
any given p-adic CM type over the reflex field to produce a semisimple abelian
crystalline p-adic representation of the local Galois group such that its restriction to
the inertia group is “algebraic” with algebraic part that we may prescribe arbitrarily
in accordance with some necessary conditions (see 3.9.4 and 3.9.8).
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In Chapter 4 we show CM liftability after an isogeny over the finite ground field
(lifting over a characteristic zero local domain that need not be normal). That is,

every CM structure (A0, L → End0(A0)) over a finite field κ has an
isogeny over κ to a CM structure (B0, L → End0(B0)) that admits a
CM lifting;

(see 4.1.1). This statement is immediately reduced to the case when L is a CM
field (not just a CM algebra) and the whole ring OL of integers of L operates on
A0, which we assume.

Our motivation comes from the proof in 4.1.2 (using an algebraization argument
at the end of 4.1.3) that the counterexample in 2.3.1 to CM lifting over a normal
local domain satisfies this property. In general, after an easy reduction to the
isotypic case, we apply the Serre-Tate deformation theorem to localize the problem
at p-adic places v of the maximal totally real subfield L+ of a CM field L ⊆
End0(A0) of degree 2 dim(A0). This reduces the existence of a CM lifting for the
abelian variety A0 to a corresponding problem for the CM p-divisible group A0[v

∞]
attached to v.8

We formulate several properties of v with respect to the CM field L; any one
of them ensures the existence of a CM lifting of A0[v

∞]κ after applying a κ-isogeny
to A0[v

∞] (see 4.1.6, 4.1.7, and 4.5.7). These properties involve the ramification
and residue fields of L and L+ relative to v. If v violates all of these properties
then we call it bad (with respect to L/L+ and κ). Let Lv := L ⊗L+ L+

v . After
applying a preliminary κ-isogeny to arrange that OL ⊂ End(A0), for v that are
not bad we apply an OL-linear κ-isogeny to arrange that the Lie type of the OL,v-
factor of Lie(A0) (i.e., its class in a certain K-group of (OL,v/(p))⊗ κ-modules) is
“self-dual”. Under the self-duality condition (defined in 4.4.3) we produce an OL,v-
linear CM lifting of A0[v

∞]κ by specializing a suitable OL,v-linear CM v-divisible
group in mixed characteristic; see 4.4.6. We use an argument with deformation
rings to eliminate the intervention of κ: if every p-adic place v of L+ is not bad
then there exists a κ-isogeny A0 → B0 such that OL ⊂ End(B0) and the pair
(B0,OL ↪→ End(B0)) admits a lift to characteristic 0 without increasing κ.

If some p-adic place v of the totally real field L+ is bad then the above argument
does not work because in that case no member of the OL,v-linear κ-isogeny class of
the p-divisible group A0[v

∞] has a self-dual Lie type. Instead we change A0[v
∞] by a

suitable OL,v-linear κ-isogeny so that its Lie type becomes as symmetric as possible,
a condition whose precise formulation is called “striped”. Such a p-divisible group
is shown to be isomorphic to the Serre tensor construction applied to a special class
of 2-dimensional p-divisible groups of height 4 that are similar to the ones arising
from the abelian surface counterexamples in 2.3.1; we call these toy models (see
4.1.3, especially 4.1.3.2).

These “toy models” are sufficiently special that we can analyze their CM lift-
ing properties directly; see 4.2.10 and 4.5.15(iii). After this key step we deduce
the existence of a CM lifting of A0[v

∞]κ from corresponding statements for (the
p-divisible group version of) toy models. In the final step, once again we use de-
formation theory to produce an abelian variety B0 isogenous to (the original) A0

over κ and a CM lifting of B0 over a possibly non-normal 1-dimensional complete
local noetherian domain of characteristic 0 with residue field κ. Although OL acts

8See 1.4.5.3 for the statement of the Serre–Tate deformation theorem, and 2.2.3 and 4.6.3.1
for a precise statement of the algebraization criterion that is used in this localization step.
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on the closed fiber, we can only ensure that a subring of OL of finite index9 acts
on the lifted abelian scheme (see 4.6.4).

Appendix A. In Appendix A.1 we provide a self-contained development of the
proof of the p-part of Tate’s isogeny theorem for abelian varieties over finite fields of
characteristic p, as well as a proof of Tate’s formula for the local invariants at p-adic
places for endomorphism algebras of simple abelian varieties over such fields. (An
exposition of these results is also given in [79]; our treatment uses less input from
non-commutative algebra.) Appendices A.2 and A.3 provide purely algebraic proofs
of the Main Theorem of Complex Multiplication for abelian varieties, as well as a
converse result, both of which are used in essential ways in Chapter 2. In Appendix
A.4 we use Shimura’s method to show that an algebraic Hecke character with a
given algebraic part can be constructed over the field of moduli of the algebraic
part, with control over places of bad reduction.

In the special case of the reflex norm of a CM type (L,Φ), combining this
construction of algebraic Hecke characters with the converse to the Main Theorem
of CM in A.3 proves that over the associated field of moduli M ⊂ Q (a subfield of
the Hilbert class field of the reflex field E(L,Φ)) there exists a CM abelian variety
A with CM type (L,Φ) such that A has good reduction at all p-adic places of
M ; see A.4.6.5. Since M is the smallest possible field of definition given (L,Φ),
this existence result is optimal in terms of its field of definition. Typically M �=
E(L,Φ), and this is regarded as a “class group obstruction” to finding A with its
CM structure by L over E(L,Φ), a well-known phenomenon in the classical CM
theory of elliptic curves.

(In the “local” setting of CM p-divisible groups over p-adic integer rings there
are no class group problems and one gets a better result: in 3.7 we use the preceding
global construction over the field of moduli to prove that for any p-adic CM type
(F,Φ) and the associated p-adic reflex field E ⊂ Qp over Qp there exists a CM
p-divisible group over OE with p-adic CM type (F,Φ).)

Appendix B. In Appendices B.1 and B.2, we give two versions of a more di-
rect (but more complicated) proof of the existence of CM liftings for a higher-
dimensional generalization of the toy model.10 The first version uses Raynaud’s
theory of group schemes of type (p, . . . , p). The second version uses recent devel-
opments in p-adic Hodge theory. We hope that material described there will be
useful in the future. In Appendix B.3 we compare several Dieudonné theories over
a perfect base field of characteristic p > 0. In Appendix B.4 we give a formula for
the Dieudonné module of the closed fiber of a finite flat commutative group scheme,
constructed using integral p-adic Hodge theory; this formula is used in B.2.

9This subring of finite index can be taken to be Z+ pOL.
10In the original proof of our main CM lifting result in 4.1.1, the case of a bad place v|p of

L+ was reduced through the Serre tensor construction to this existence result. Both B.1 and B.2
are logically independent of results in Chapter 4. Readers who cannot wait to see a proof of the
existence of a CM lifting (without modification by any isogeny) for such a higher-dimensional toy
model may proceed directly to B.1 or B.2, after consulting 4.2 for the definition of the Lie type
of an O-linear p-divisible group and related notation.
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References

(1) Abelian varieties. In Mumford’s book [82] the theory of abelian varieties
is developed over an algebraically closed base field, and we need the theory
over a general field; references addressing this extra generality are Milne’s
article [76] (which rests on [82]) and the forthcoming book [45]. Since [45]
is not yet in final form we do not refer to it in the main text, but the reader
should keep in mind that many results for which we refer to [82] and [76]
are also treated in [45]. We refer the reader to [83, Ch. 6, §1–§2] for a self-
contained development of the elementary properties of abelian schemes, which
we freely use. (For example, the group law is necessarily commutative and is
determined by the identity section, as in the theory over a field.)

(2) Semisimple algebras. We assume familiarity with the classical theory of
finite-dimensional semisimple algebras over fields (including the theory of their
splitting fields and maximal commutative subfields). A suitable reference for
this material is [53, §4.1–4.6]; another reference is [11]. In 1.2.2–1.2.4 we
review some of the facts that we need from that theory.

(3) Descent theory and formal schemes. In many places, we need to use the
techniques of descent theory and Grothendieck topologies (especially the fppf
topology, though in some situations we use the fpqc topology to perform de-
scent from a completion). This is required for arguments with group schemes,
even over a field, such as in considerations with short exact sequences. For
accounts of descent theory, we refer the reader to [10, §6.1–6.2], and to [39,
Part 1] for a more exhaustive discussion. These techniques are discussed in a
manner well-suited to group schemes in [98] and [30, Exp. IV–VIA].

Our arguments with deformation theory rest on the theory of formal
schemes, especially Grothendieck’s formal GAGA and algebraization theo-
rems. A succinct overview of these matters is given in [39, Part 4], and the
original references [34, I, §10; III1, §4–§5] are also highly recommended.

(4) Dieudonné theory and p-divisible groups. To handle p-torsion phenom-
ena in characteristic p > 0 we use Dieudonné theory and p-divisible groups.
Brief surveys of some basic definitions and properties in this direction are
given in 1.4, 3.1.2–3.1.6, and B.3.5.1–B.3.5.5. We refer the reader to [119],
[71] and [110, §6] for more systematic discussions of basic facts concerning
p-divisible groups, and to [29] and [41, Ch. II–III] for self-contained devel-
opments of (contravariant) Dieudonné theory, with applications to p-divisible
groups. Contravariant Dieudonné theory is used in Chapters 1–4.

Covariant Dieudonné theory is used in Appendix B.1 because the alter-
native proof there of the main result of Chapter 4 uses a covariant version of
p-adic Hodge theory. A brief summary of covariant Dieudonné can be found
in B.3.5.6–B.3.6.7. We recommend [136] for Cartier theory; an older standard
reference is [69].

A very useful technique within the deformation theory of p-divisible groups
is Grothendieck–Messing theory, which is developed from scratch in [75]. Al-
though we do not provide an introduction to this topic, we hope that our
applications of it may inspire an interested reader who is not familiar with
this technique to learn more about it.
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Notation and terminology

• Numerical labeling of text items and displayed expressions.
– We use “x.y.z”, “x.y.z.w”, etc. for text items (sub-subsections, results,

remarks, definitions, etc.), arranged lexicographically without repetition.
– Any labeling of displayed expressions (equations, commutative diagrams,

etc.) is indicated with parentheses, so “see (x.y.z)” means that one should
look at the zth displayed expression in subsection x.y. This convention
avoids confusion with the use of “x.y.z” to label a text item.

– Any label for a text item is uniquely assigned, so even though “see x.y.z”
does not indicate if it is a sub-subsection or theorem (or lemma, etc.),
there is no ambiguity for finding it in this book.

• Convention on notation.
– p denotes a prime number.
– CM fields are usually denoted by L.
– K often stands for an arbitrary field, κ is usually used to denote either a

residue field or a finite field of characteristic p.
– V ∨ denotes the dual of a finite-dimensional vector space V over a field.
– k denotes a perfect field, often of characteristic p > 0. In 4.2–4.6, k is an

algebraically closed field of characteristic p.
– K0 is the fraction field of W (k), where k is a perfect field of characteristic

p > 0 and W (k) is the ring of p-adic Witt vectors with entries in k.
– Abelian varieties are usually written as A, B, or C, and p-divisible groups

are often denoted as G or as X or Y .
– The p-divisible group attached to an abelian variety or an abelian scheme

A is denoted by A[p∞]; its subgroup scheme of pn-torsion points is A[pn].
• Fields and their extensions.

– For a field K, we write K to denote an algebraic closure and Ks to denote
a separable closure.

– An extension of fields K ′/K is primary if K is separably algebraically
closed in K ′ (i.e., the algebraic closure of K in K ′ is purely inseparable
over K).

– For a number field L we write OL to denote its ring of integers. Similar
notation is used for non-archimedean local fields.

– If q is a power of a prime p, Fq denotes a finite field with size q (sometimes
understood to be the unique subfield of order q in a fixed algebraically
closed field of characteristic p). If κ and κ′ are abstract finite fields with

respective sizes q = pn and q′ = pn
′
for integers n, n′ � 1 then κ ∩ κ′

denotes the unique subfield of either κ or κ′ with size pgcd(n,n
′); the

context will always make clear if this is being considered as a subfield of
either κ or κ′. Likewise, κκ′ denotes κ⊗κ∩κ′ κ′, a common extension of
κ and κ′ with size plcm(n,n′).

• Base change.
– If T → S is a map of schemes and S′ is an S-scheme, then TS′ denotes

the S′-scheme T ×S S′ if S is understood from context.
– When S = Spec(R) and S′ = Spec(R′) are affine, we may write TR′

to denote T ⊗R R′ := T ×Spec(R) Spec(R
′) when R is understood from

context.
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• Abelian varieties and homomorphisms between them.
– The dual of an abelian variety A is denoted At.
– For an abelian variety A over a field K and a prime � not divisible by

char(K), upon choosing a separable closure Ks of K (often understood
from context) the �-adic Tate module T�(A) denotes lim←−A[�n](Ks) and

V�(A) denotes Q� ⊗Z�
T�(A).

– For any abelian varieties A and B over a field K, Hom(A,B) denotes
the group of homomorphisms A → B over K, and Hom0(A,B) denotes
Q⊗Z Hom(A,B).
(Since Hom(A,B) → Hom(AK , BK) is injective, Hom(A,B) is a finite

free Z-module since the same holds over K by [82, §19, Thm. 3].)
– WhenB = A we write End(A) and End0(A) respectively, and call End0(A)

the endomorphism algebra of A (over K). The endomorphism algebra
End0(A) is an invariant which only depends on A up to isogeny over K,
in contrast with the endomorphism ring End(A).

– We write A ∼ B to denote that abelian varieties A and B over K are
K-isogenous.

– To avoid any possible confusion with notation found in the literature, we
emphasize that what we call Hom(A,B) and Hom0(A,B) are sometimes
denoted by others as HomK(A,B) and Hom0

K(A,B).11

• Adeles and local fields.
– We write AL to denote the adele ring of a number field L, AL,f to denote

the factor ring of finite adeles, and A and Af in the case L = Q.
– If v is a place of a number field L then Lv denotes the completion of L

with respect to v; OL,v denotes the valuation ring OLv
of Lv in case v is

non-archimedean, with residue field κv whose size is denoted qv.
– For a place w of Q we define Lw := Qw ⊗Q L =

∏
v|w Lv, and in case w

is the �-adic place for a prime � we define OL,� := Z� ⊗ZOL =
∏

v|� OL,v.

• Class field theory and reciprocity laws.
– The Artin maps of local and global class field theory are taken with

the arithmetic normalization, which is to say that local uniformizers are
carried to arithmetic Frobenius elements.12

– recL : A×
L/L

× → Gal(Lab/L) denotes the arithmetically normalized glob-
al reciprocity map for a number field L.

– The composition of A×
L � A×

L/L
× with recL is denoted rL.

– For a non-archimedean local field F we write rF : F× → Gal(F ab/F ) to
denote the arithmetically normalized local reciprocity map.

• Frobenius and Verschiebung.
– For a commutative group scheme N over an Fp-scheme S, N (p) denotes

the base change of N by the absolute Frobenius endomorphism of S. The
relative Frobenius homomorphism is denoted FrN/S : N → N (p), and the

11with the notation Hom(A,B) and Hom0(A,B) then reserved to mean the analogues for

AK and BK over K, or equivalently for AKs and BKs over Ks (see Lemma 1.2.1.2).
12Recall that for a non-archimedean local field F with residue field of size q, an element of

Gal(Fs/F ) is called an arithmetic (resp. geometric) Frobenius element if its effect on the residue

field of Fs is the automorphism x �→ xq (resp. x �→ x1/q); this automorphism of the residue
field is likewise called the arithmetic (resp. geometric) Frobenius automorphism. We choose the
arithmetic normalization of class field theory so that uniformizers correspond to Frobenius endo-
morphisms of abelian varieties in the Main Theorem of Complex Multiplication.
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Verschiebung homomorphism for S-flat N of finite presentation denoted
VerN/S : N

(p) → N see [30, VIIA, 4.2–4.3]). If S is understood from
context then we may denote these as FrN and VerN respectively.
For n � 1, the pn-fold relative Frobenius and Verschiebung homomor-
phisms N → N (pn) and N (pn) → N are respectively denoted FrN/S,pn

and VerN/S,pn .
– For a perfect field k with char(k) = p > 0 and the unique lift σ : W (k) →

W (k) of the Frobenius automorphism y �→ yp of k, a Dieudonné module
over k is a W (k)-module M equipped with additive endomorphisms F :
M → M and V : M → M such that F ◦ V = [p]M = V ◦ F , F(cm) =
σ(c)F(m), and cV(m) = V(σ(c)m) for all c ∈ W (k) and m ∈ M ; these
are the left modules over the Dieudonné ring Dk (see 1.4.3.1).

– The semilinear operators F and V on a Dieudonné module M corre-
spond to respective W (k)-linear maps M (p) → M and M → M (p), where
M (p) := W (k)⊗σ,W (k) M .


