
CHAPTER 1

Algebraic theory of complex multiplication

The theory of complex multiplication. . . is not only the most beautiful
part of mathematics but also of all science.

—David Hilbert

1.1. Introduction

1.1.1. Lifting questions. A natural question early in the theory of abelian vari-
eties is whether every abelian variety in positive characteristic admits a lift to char-
acteristic 0. That is, given an abelian variety A0 over a field κ with char(κ) > 0,
does there exist a local domain R of characteristic zero with residue field κ and
an abelian scheme A over R whose special fiber Aκ is isomorphic to A0? We may
also wish to demand that a specified polarization of A0 or subring of the endomor-
phism algebra of A0 (or both) also lifts to A. (The functor A � Aκ from abelian
R-schemes to abelian varieties over κ is faithful, by consideration of finite étale
torsion levels; see the beginning of 1.4.4.)

Suppose there is an affirmative solution A to such a lifting problem over some
local domain R as above. Let’s see that we can arrange for a solution to be found
over a local noetherian domain (that is even complete). This rests on a direct limit
technique (that is very useful throughout algebraic geometry), as follows. Observe
that for the directed system of noetherian local subrings Ri with local inclusions
Ri ↪→ R, we have R = lim−→Ri. In [34, IV3, §8–§12; IV4, §17] there is an exhaustive
development of the technique of descent through direct limits. The principle is
that if {Di} is a directed system of rings with limit D, and if we are given a
“finitely presented” algebro-geometric situation over D (a diagram of finitely many
D-schemes of finite presentation, equipped with with finitely many D-morphisms
among them and perhaps some finitely presented quasi-coherent sheaves on them,
some of which may be D-flat, etc.) then the entire structure descends to Di for
sufficiently large i. Moreover, if we increase i enough then we can also descend
“reasonable” properties (such as flatness for morphisms or sheaves, and properness,
surjectivity, smoothness, and having geometrically connected fibers for morphisms),
any two descents become isomorphic after increasing i some more, and so on.

The results of this direct limit formalism are intuitively plausible, but their
proofs can be rather non-obvious to the uninitiated (e.g., descending the properties
of flatness and surjectivity). We will often use this limit formalism without much
explanation, and we hope that the plausibility of such results is sufficient for a non-
expert reader to follow the ideas. Everything we need is completed proved in the
cited sections of [34]. As a basic example, since the condition of being an abelian
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14 1. ALGEBRAIC THEORY OF COMPLEX MULTIPLICATION

scheme amounts to a group scheme diagram for a smooth proper R-scheme having
geometrically connected fibers, the abelian scheme A over R descends to an abelian
scheme over Ri0 for some sufficiently large i0.

The residue field κi0 of Ri0 is merely a subfield of κ. By [34, 0III, 10.3.1],
there is a faithfully flat local extension Ri0 → R′ with R′ noetherian and having

residue field κ over κi0 . By faithful flatness, every minimal prime of R̂′ has residue

characteristic 0, so we can replace R̂′ with its quotient by such a prime to obtain a
solution over a complete local noetherian domain with residue field κ.

Typically our liftings will be equipped with additional structure such as a po-
larization, and so the existence of an affirmative solution for our lifting problem
(for a given A0) often amounts to an appropriate deformation ring R for A0 (over a
Cohen ring for κ) admitting a generic point in characteristic 0; the coordinate ring
of the corresponding irreducible component of Spec(R) is such an R. If κ → κ′ is
an extension of fields and W → W ′ is the associated extension of Cohen rings then
often there is a natural isomorphism R′ � W ′⊗̂WR relating the corresponding de-
formation rings for A0 and (A0)κ′ (see 1.4.4.5, 1.4.4.13, and 1.4.4.14). Thus, if R′

has a generic point of characteristic 0 then so doesR. Hence, to prove an affirmative
answer to lifting questions as above it is usually enough to consider algebraically
closed κ. For example, the general lifting problem for polarized abelian varieties
(allowing polarizations for which the associated symmetric isogeny A0 → At

0 is not
separable) was solved affirmatively by Norman-Oort [85, Cor. 3.2] when κ = κ, and
the general case follows by deformation theory (via 1.4.4.14 with O = Z).

1.1.2. Refinements. When a lifting problem as above has an affirmative solution,
it is natural to ask if the (complete local noetherian) base ring R for the lifting
can be chosen to satisfy nice ring-theoretic properties, such as being normal or a
discrete valuation ring. Slicing methods allow one to find an R with dim(R) = 1
(see 2.1.1 for this argument), but normalization generally increases the residue field.
Hence, asking that the complete local noetherian domain R be normal or a discrete
valuation ring with a specified residue field κ is a non-trivial condition unless κ is
algebraically closed.

We are interested in versions of the lifting problem for finite κ when we lift not
only the abelian variety but also a large commutative subring of its endomorphism
algebra. To avoid counterexamples it is sometimes necessary to weaken the lifting
problem by permitting the initial abelian variety A0 to be replaced with another
in the same isogeny class over κ. In 1.8 we will precisely formulate several such
lifting problems involving complex multiplication, and the main result of our work
is a rather satisfactory solution to these lifting problems.

1.1.3. Purpose of this chapter. Much of the literature on complex multiplica-
tion involves either (i) working over an algebraically closed ground field, (ii) making
unspecified finite extensions of the ground field, or (iii) restricting attention to sim-
ple abelian varieties. To avoid any uncertainty about the degree of generality in
which various foundational results in the theory are valid, as well as to provide a
convenient reference for subsequent considerations, in this chapter we provide an
extensive review of the algebraic theory of complex multiplication over a general
base field. This includes special features of the theory over finite fields and over
fields of characteristic 0, and for some important proofs we refer to the original
literature (e.g., papers of Tate). Some arithmetic aspects (such as reflex fields and
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the Main Theorem of Complex Multiplication) are discussed in Chapter 2, and
Appendix A provides proofs of the Main Theorem of Complex Multiplication and
some results of Tate over finite fields.

1.2. Simplicity, isotypicity, and endomorphism algebras

1.2.1. Simple abelian varieties. An abelian variety A over a field K is simple
(over K) if it is non-zero and contains no non-zero proper abelian subvarieties.
Simplicity is not generally preserved under extension of the base field; see Example
1.6.3 for some two-dimensional examples over finite fields and over Q. An abelian
variety A over K is absolutely simple (over K) if AK is simple.

1.2.1.1. Lemma. If A is absolutely simple over a field K then for any field ex-
tension K ′/K, the abelian variety AK′ over K ′ is simple.

Proof. This is an application of direct limit and specialization arguments, as we
now explain. Assume for some K ′/K that there is a non-zero proper abelian sub-
variety B′ ⊂ AK′ . By replacing K ′ with an algebraic closure we may arrange that
K ′ and then especially K is algebraically closed. (The algebraically closed property
for K ′ is unimportant, but it is crucial that we have it for K.) By expressing K ′

as a direct limit of finitely generated K-subalgebras, there is a finitely generated
K-subalgebra R ⊂ K ′ such that B′ = BK′ for an abelian scheme B → Spec(R)
that is a closed R-subgroup of AR.

The constant positive dimension of the fibers of B → Spec(R) is strictly less
than dim(A), as we may check using theK ′-fiber B′ ⊂ AK′ . SinceK is algebraically
closed we can choose a K-point x of Spec(R). The fiber Bx is a non-zero proper
abelian subvariety of A, contrary to the simplicity of A over K. �

For a pair of abelian varieties A and B over a field K, Hom0(AK′ , BK′) can be
strictly larger than Hom0(A,B) for some separable algebraic extension K ′/K. For
example, if E is an elliptic curve over Q then considerations with the tangent line
over Q force End0(E) = Q, but it can happen that End0(EL) = L for an imaginary
quadratic field L (e.g., E : y2 = x3 − x and L = Q(

√
−1)).

Scalar extension from number fields to C or from an imperfect field to its perfect
closure are useful techniques in the study of abelian varieties, so there is natural
interest in considering ground field extensions that are not separable algebraic (e.g.,
non-algebraic or purely inseparable). It is an important fact that allowing such
general extensions of the base field does not lead to more homomorphisms:

1.2.1.2. Lemma (Chow). Let K ′/K be an extension of fields that is primary (i.e.,
K is separably algebraically closed in K ′). For abelian varieties A and B over K,
the natural map Hom(A,B) → Hom(AK′ , BK′) is bijective.

Proof. See [23, Thm. 3.19] for a proof using faithfully flat descent (which is
reviewed at the beginning of [23, §3]). An alternative proof is to show that the
locally finite type Hom-scheme Hom(A,B) over K is étale. �

We shall be interested in certain commutative rings acting faithfully on abelian
varieties, so we need non-trivial information about the structure of endomorphism
algebras of abelian varieties. The study of such rings rests on the following funda-
mental result.
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1.2.1.3. Theorem (Poincaré reducibility). Let A be an abelian variety over a field
K. For any abelian subvariety B ⊂ A, there is is abelian subvariety B′ ⊂ A such
that the multiplication map B ×B′ → A is an isogeny.

In particular, if A �= 0 then there exist pairwise non-isogenous simple abelian
varieties C1, . . . , Cs over K such that A is isogenous to

∏
Cei

i for some ei � 1.

Proof. When K is algebraically closed this result is proved in [82, §19, Thm. 1].
The same method works for perfectK, as explained in [76, Prop. 12.1]. (Perfectness
is implicit in the property that the underlying reduced scheme of a finite type K-
group is a K-subgroup. For a counterexample over any imperfect field, see [25,
Ex.A.3.8].) The general case can be pulled down from the perfect closure via
Lemma 1.2.1.2; see the proof of [23, Cor. 3.20] for the argument. �

1.2.1.4. Corollary. For a non-zero abelian variety A over a field K and a primary
extension of fields K ′/K, every abelian subvariety B′ of AK′ has the form BK′ for
a unique abelian subvariety B ⊂ A.

Proof. By the Poincaré reducibility theorem, abelian subvarieties of A are pre-
cisely the images of maps A → A, and similarly for AK′ . Since scalar extension
commutes with the formation of images, the assertion is reduced to the bijectivity
of End(A) → End(AK′), which follows from Lemma 1.2.1.2. �

Since any map between simple abelian varieties over K is either 0 or an isogeny,
by general categorical arguments the collection of Ci’s (up to isogeny) in the
Poincaré reducibility theorem is unique up to rearrangement, and the multiplic-
ities ei are also uniquely determined.

1.2.1.5. Definition. The Ci’s in the Poincaré reducibility theorem (considered
up to isogeny) are the simple factors of A.

By the uniqueness of the simple factors up to isogeny, we deduce:

1.2.1.6. Corollary. Let A be a non-zero abelian variety over a field, with simple
factors C1, . . . , Cs. The non-zero abelian subvarieties of A are generated by the
images of maps Ci → A from the simple factors.

1.2.2. Central simple algebras. Using notation from the Poincaré reducibility
theorem, for a non-zero abelian variety A we have

End0(A) �
∏

Matei(End
0(Ci))

where {Ci} is the set of simple factors of A and the ei’s are the corresponding
multiplicities. Each End0(Ci) is a division algebra, by simplicity of the Ci’s. Thus,
to understand the structure of endomorphism algebras of abelian varieties we need
to understand matrix algebras over division algebras, especially those of finite di-
mension over Q. We therefore next review some general facts about such rings.

Although we have used K to denote the ground field for abelian varieties above,
in what follows we will use K to denote the ground field for central simple algebras;
the two are certainly not to be confused, since for abelian varieties in positive
characteristic the endomorphism algebras are over fields of characteristic 0.
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1.2.2.1. Definition. A central simple algebra over a field K is a non-zero asso-
ciative K-algebra of finite dimension such that K is the center and the underlying
ring is simple (i.e., has no non-trivial two-sided ideals).

A central division algebra over K is a central simple algebra over K whose
underlying ring is a division algebra.

Among the most basic examples of central simple algebras over a field K are
the matrix algebras Matn(K) for n � 1. The most general case is given by:

1.2.2.2. Proposition (Wedderburn’s Theorem). Every central simple algebra D
over a field K is isomorphic to Matn(Δ) = EndΔ(Δ

⊕n) for some n � 1 and some
central division algebra Δ over K (where Δ⊕n is a left Δ-module). Moreover, n is
uniquely determined by D, and Δ is uniquely determined up to K-isomorphism.

Proof. This is a special case of a general structure theorem for simple rings; see
[53, Thm. 4.2] and [53, §4.4, Lemma 2]. �

In addition to matrix algebras, another way to make new central simple algebras
from old ones is to use tensor products:

1.2.2.3. Lemma. If D and D′ are central simple algebras over a field K, then so
is D ⊗K D′. For any extension field K ′/K, DK′ := K ′ ⊗K D is a central simple
K ′-algebra.

Proof. The first part is [53, §4.6, Cor. 3]; the second is [53, §4.6, Cor. 1, 2]. �

1.2.3. Splitting fields. It is a general fact that for any central division algebra
Δ over a field K, ΔKs

is a matrix algebra over Ks (so [Δ : K] is a square). In
other words, Δ is split by a finite separable extension of K. There is a refined
structure theory concerning splitting fields and maximal commutative subfields of
central simple algebras over fields; [53, §4.1–4.6] gives a self-contained development
of this material. An important result in this direction is:

1.2.3.1. Proposition. Let D be a central simple algebra over a field F , with
[D : F ] = n2. An extension field F ′/F with degree n embeds as an F -subalgebra of
D if and only if F ′ splits D (i.e., DF ′ � Matn(F

′)). Moreover, if D is a division
algebra then every maximal commutative subfield of D has degree n over F .

Proof. The first assertion is a special case of [53, Thm. 4.12]. Now assume that
D is a division algebra and consider a maximal commutative subfield F ′. In such
cases F ′ splits D (by [53, §4.6, Cor. to Thm. 4.8]), so n|[F ′ : F ] by [53, Thm. 4.12].
To establish the reverse divisibility it suffices to show that for any central simple
algebra D of dimension n2 over F , every commutative subfield of D has F -degree
at most n. If A is any simple F -subalgebra of D and its centralizer in D is denoted
ZD(A) then n2 = [A : F ][ZD(A) : F ] by [53, §4.6, Thm. 4.11]. Thus, if A is also
commutative (so A is contained in ZD(A)) then [A : F ] � n. �

The second assertion in Proposition 1.2.3.1 does not generalize to central simple
algebras; e.g., perhaps D = Matn(F ) with F having no degree-n extension fields.

In general, for a splitting field F ′/F of a central simple F -algebra D, the
choice of isomorphism DF ′ � Matn(F

′) is ambiguous up to composition with the
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action of AutF ′(Matn(F
′)), so it is useful to determine this automorphism group.

The subgroup of inner automorphisms is GLn(F
′)/F ′×, arising from conjugation

against elements of Matn(F
′)× = GLn(F

′). In general, the inner automorphisms
are the only ones:

1.2.3.2. Theorem (Skolem–Noether). For a central simple algebra D over a field
F , the inclusion D×/F× ↪→ AutF (D) carrying u ∈ D× to (d �→ udu−1) is an
equality. That is, all automorphisms are inner.

Proof. This is [53, §4.6, Cor. to Thm. 4.9]. �

We finish our discussion of central simple algebras by using the Skolem–Noether
theorem to build the K-linear reduced trace map TrdD/K : D → K for a central
simple algebra D over a field K.

1.2.3.3. Construction. Let D be a central simple algebra over an arbitrary field
K. It splits over a separable closure Ks, which is to say that there is a Ks-algebra
isomorphism f : DKs

� Matn(Ks) onto the n × n matrix algebra for some n � 1.
By the Skolem-Noether theorem, all automorphisms of a matrix algebra are given
by conjugation by an invertible matrix. Hence, f is well-defined up to composition
with an inner automorphism.

The matrix trace map Tr : Matn(Ks) → Ks is invariant under inner automor-
phisms and is equivariant for the natural action of Gal(Ks/K), so the composition of
the matrix trace with f is a Ks-linear map DKs

→ Ks that is independent of f and
Gal(Ks/K)-equivariant. Thus, this descends to a K-linear map TrdD/K : D → K
that is defined to be the reduced trace. In other words, the reduced trace map is
a twisted form of the usual matrix trace, just as D is a twisted form of a matrix
algebra. (For d ∈ D, the K-linear left multiplication map x �→ d · x on D has

trace
√
[D : K] TrdD/K(x), as we can see by scalar extension to Ks and a direct

computation for matrix algebras. The elimination of the coefficient
√
[D : K] is the

reason for the word “reduced”.)

1.2.4. Brauer groups. For applications to abelian varieties it is important to
classify division algebras of finite dimension over Q (such as the endomorphism
algebra of a simple abelian variety over a field). If Δ is such a ring then its center
Z is a number field and Δ is a central division algebra over Z. More generally, the
set of isomorphism classes of central division algebras over an arbitrary field has an
interesting abelian group structure. This comes out of the following definition.

1.2.4.1. Definition. Central simple algebras D and D′ over a field K are similar
if there exist n, n′ � 1 such that the central simple K-algebras D ⊗K Matn(K) =
Matn(D) and D′ ⊗K Matn′(K) = Matn′(D′) are K-isomorphic.

The Brauer group Br(K) is the set of similarity classes of central simple algebras
over K, and [D] denotes the similarity class of D. For classes [D] and [D′], define

[D][D′] := [D ⊗K D′].

This composition law on Br(K) is well-defined and makes it into an abelian
group with inversion given by [D]−1 = [Dopp], whereDopp is the “opposite algebra”.
By Proposition 1.2.2.2, each element in Br(K) is represented (up to isomorphism)
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by a unique central division algebra over K. In this sense, Br(K) is an abelian
group structure on the set of isomorphism classes of such division algebras.

1.2.4.2. Example. The computation of the Brauer group of a number field in-
volves computing the Brauer groups of local fields, so we now clear up any possible
confusion concerning sign conventions in the description of Brauer groups for non-
archimedean local fields. Upon choosing a separable closure Ks of an arbitrary
field K, there are two natural procedures to define a functorial group isomorphism
Br(K) � H2(Ks/K,K×

s ): a conceptual method via non-abelian cohomology as in
[107, Ch. X, §5] and an explicit method via crossed-product algebras. By [107,
Ch. X, §5, Exer. 2], these procedures are negatives of each other. We use the
conceptual method of non-abelian cohomology, but we do not need to make that
method explicit here and so we refer the interested reader to [107] for the details.

Let K be a non-archimedean local field with residue field κ and let Kun denote
its maximal unramified subextension in Ks (with κ the residue field of Kun). It
is known from local class field theory that the natural map H2(Kun/K,Kun×) →
H2(Ks/K,K×

s ) is an isomorphism, and the normalized valuation mapping Kun× →
Z induces an isomorphism

H2(Kun/K,Kun×) � H2(Kun/K,Z)
δ� H1(Gal(Kun/K),Q/Z)

= H1(Gal(κ/κ),Q/Z).

There now arises the question of choice of topological generator for Gal(κ/κ): arith-
metic or geometric Frobenius? We choose to work with arithmetic Frobenius. (In
[103, §1.1] and [107, Ch. XIII, §3] the arithmetic Frobenius generator is also used.)

Via evaluation on the chosen topological generator, our conventions lead to a
composite isomorphism

invK : Br(K) � Q/Z

for non-archimedean local fields K. If one uses the geometric Frobenius convention,
then by also adopting the crossed-product algebra method to define the isomor-
phism

Br(K) � H2(Ks/K,K×
s )

one would get the same composite isomorphism invK since the two sign differences
cancel out in the composite. (Beware that in [103] and [107] the Brauer group of a
general field K is defined to be H2(Ks/K,K×

s ), and so the issue of choosing between
non-abelian cohomology or crossed-product algebras does not arise in the founda-
tional aspects of the theory. However, this issue implicitly arises in the relationship
of Brauer groups and central simple algebras, such as in [103, Appendix to §1]
where the details are omitted.)

Since Br(R) is cyclic of order 2 and Br(C) is trivial, for archimedean local fields
K there is a unique injective homomorphism invK : Br(K) ↪→ Q/Z.

By [103, §1.1, Thm. 3], for a finite extension K ′/K of non-archimedean local
fields, composition with the natural map rKK′ : Br(K) → Br(K ′) satisfies

(1.2.4.1) invK′ ◦ rKK′ = [K ′ : K] · invK .

By [107, Ch. XIII, §3, Cor. 3], invK(Δ) has order
√
[Δ : K] for any central division

algebra Δ over K. These assertions are trivially verified to hold for archimedean
local fields K as well.
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1.2.4.3. Theorem. Let L be a global field. There is an exact sequence

0 �� Br(L) �� ⊕
v Br(Lv)

∑
invLv �� Q/Z �� 0

where the direct sum is taken over all places of L and the first map is defined via
extension of scalars.

Proof. This is [120, §9.7, §11.2]. �
For a global field L and central division algebra Δ over L, invv(Δ) denotes

invLv
(ΔLv

). Theorem 1.2.4.3 says that a central division algebra Δ over a global
field L is uniquely determined up to isomorphism by its invariants invv(Δ), and
that these may be arbitrarily assigned subject to the conditions invv(Δ) = 0 for all
but finitely many v and

∑
invv(Δ) = 0. Moreover, the order of [Δ] in Br(L) is the

least common “denominator” of the local invariants invv(Δ) ∈ Q/Z.
If K is any field then for a class c ∈ Br(K) its period is its order and its index is√

[Δ : K] with Δ the unique central division algebra over K representing the class
c. It is a classical fact that the period divides that index and that these integers
have the same prime factors (see [107, X.5], especially Lemma 1 and Exercise 3),
but in general equality does not hold. For example, there are function fields of
complex 3-folds for which some order-2 elements in the Brauer group cannot be
represented by a quaternion algebra; examples are given in [61, §4], and there are
examples with less interesting fields as first discovered by Brauer. We have noted
above that over local fields there is equality of period and index (the archimedean
case being trivial). The following deep result is an analogue over global fields.

1.2.4.4. Theorem. For a central division algebra Δ over a global field L, the order
of [Δ] in Br(L) is

√
[Δ : L].

As a special (and very important) case, elements of order 2 in Br(L) are pre-
cisely the Brauer classes of quaternion division algebras for a global field L; as noted
above, this fails for more general fields. Since Theorem 1.2.4.4 does not seem to
be explicitly stated in any of the standard modern references on class field theory
(though there is an allusion to it at the end of [4, Ch. X, §2]), and the structure
theory of endomorphism algebras of abelian varieties rests on it, here is a proof.

Proof. Let Δ have degree n2 over L and let d be the order of [Δ] in Br(L), so d|n.
Note that d is the least common multiple of the local orders dv of [ΔLv

] ∈ Br(Lv)
for each place v of L, with dv = 1 for complex v, dv|2 for real v, and dv = 1 for all
but finitely many v. Using these formal properties of the dv’s, we may call upon
the full power of global class field theory via Theorem 6 in [4, Ch. X] to infer the
existence of a cyclic extension L′/L of degree d such that [L′

v′ : Lv] is a multiple of
dv for every place v of L (here, v′ is any place on L′ over v, and the constraint on the
local degree is only non-trivial when dv > 1). In the special case d = 2 (the only
case we will require) one only needs weak approximation and Krasner’s Lemma
rather than class field theory: take L′ to split a separable quadratic polynomial
over L that closely approximates ones that define quadratic separable extensions of
Lv for each v such that dv = 2.

By (1.2.4.1), restriction maps on local Brauer groups induce multiplication by
the local degree on the local invariants, so ΔL′ is locally split at all places of L′.
Thus, by the injectivity of the map from the global Brauer group into the direct
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sum of the local ones (for L′) we conclude that the Galois extension L′/L of degree
d splits Δ. (The existence of cyclic splitting fields for all Brauer classes is proved
for number fields in [120] and is proved for all global fields in [128], but neither
reference seems to control the degree of the global cyclic extension.) It is a general
fact for Brauer groups of arbitrary fields [107, Ch. X, §5, Lemma 1] that every
Brauer class split by a Galois extension of degree r is represented by a central
simple algebra with degree r2. Applying this fact from algebra in our situation,
[Δ] = [D] for a central simple algebra D of degree d2 over L. But each Brauer class
is represented by a unique central division algebra, and so D must be L-isomorphic
to a matrix algebra over Δ. Since [D : L] = d2 and [Δ : L] = n2 with d|n, this
forces d = n as desired. �

1.2.5. Homomorphisms and isotypicity. The study of maps between abelian
varieties over a field rests on the following useful injectivity result.

1.2.5.1. Proposition. Let A and B be abelian varieties over a field K. For any
prime � (allowing � = char(K)), the natural map

Z� ⊗Z Hom(A,B) → Hom(A[�∞], B[�∞])

is injective, where the target is the Z�-module of maps of �-divisible groups over K
(i.e., compatible systems of K-group maps A[�n] → B[�n] for all n � 1).

Proof. Without loss of generality, K is algebraically closed (and hence perfect).
When � �= char(K) the assertion is a reformulation of the well-known analogous
injectivity with �-adic Tate modules (and such injectivity in turn underlies the
proof of Z-module finiteness of Hom(A,B)). The proof in terms of Tate modules
is given in [82, §19, Thm. 3] for � �= char(K), and when phrased in terms of �-
divisible groups it works even when � = p = char(K) > 0. For the convenience
of the reader, we now provide the argument for � = p in such terms. We will use
that the torsion-free Z-module Hom(A,B) is finitely generated, and our argument
works for any � (especially � = char(K)).

Choose a Z-basis {f1, . . . , fn} of Hom(A,B). For c1, . . . , cn ∈ Z� it suffices to
show that if

∑
cifi kills A[�] then �|ci for all i. Indeed, if we can prove this then

consider the case when
∑

cifi kills A[�∞]. Certainly ci = �c′i for some c′i ∈ Z�,
and (

∑
c′ifi) · � kills A[�n] for all n > 0. But the map A[�n] → A[�n−1] induced by

�-multiplication is faithfully flat since it is the pullback along A[�n−1] ↪→ A of the
faithfully flat map � : A → A, so

∑
c′ifi kills A[�n−1] for all n > 0. In other words,

the kernel of the map in the Proposition would be �-divisible, yet this kernel is a
finitely generated Z�-module, so it would vanish as desired.

Now consider c1, . . . , cn ∈ Z� such that
∑

cifi kills A[�]. For the purpose of
proving ci ∈ �Z� for all i, it is harmless to add to each ci any element of �Z�. Hence,
we may and do assume ci ∈ Z for all i, so

∑
cifi : A → B makes sense and kills

A[�]. Since � : A → A is a faithfully flat homomorphism with kernel A[�], by fppf
descent theory any K-group scheme homomorphism A → G that kills A[�] factors
through � : A → A (see [30, IV, 5.1.7.1] and [98]). Thus,

∑
cifi = � · h for some

h ∈ Hom(A,B). Writing h =
∑

mifi with mi ∈ Z, we get
∑

ci⊗fi = � ·
∑

1⊗mifi
in Z� ⊗Z Hom(A,B). This implies ci = �mi for all i, so we are done. �

A weakening of simplicity that is sometimes convenient is:
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1.2.5.2. Definition. An abelian varietyA over a fieldK is isotypic if it is isogenous
to Ce for a simple abelian variety C over K with e � 1; that is, up to isogeny, A
has a unique simple factor. For a simple factor C of an abelian variety A over K,
the C-isotypic part of A is the isotypic subvariety of A generated by the images of
all maps C → A. An isotypic part of A is a C-isotypic part for some such C.

Clearly End0(A) is a semisimple Q-algebra. It is simple if and only if A is
isotypic, and it is a division algebra if and only if A is simple.

By the Poincaré reducibility theorem, every non-zero abelian variety A over a
field K is naturally isogenous to the product of its distinct isotypic parts, and these
distinct parts admit no non-zero maps between them. Hence, if {Bi} is the set
of isotypic parts of A then End0(A) =

∏
End0(Bi) with each End0(Bi) a simple

algebra of finite dimension over Q. Explicitly, if Ci is the unique simple factor of
Bi then a choice of isogeny Bi → Cei

i defines an isomorphism from End0(Bi) onto

the matrix algebra Matei(End
0(Ci)) over the division algebra End0(Ci). Beware

that the composite “diagonal” ring map End0(Ci) → Matei(End
0(Ci)) � End0(Bi)

is canonical only when End0(Ci) is commutative.
In general isotypicity is not preserved by extension of the ground field. To

make examples illustrating this possibility, as well as other examples in the theory
of abelian varieties, we need the operation of Weil restriction of scalars. For a
field K and finite K-algebra K ′, the Weil restriction functor ResK′/K from quasi-
projective K ′-schemes to separated (even quasi-projective) K-schemes of finite type
is characterized by the functorial identity ResK′/K(X ′)(A) = X ′(K ′ ⊗K A) for
K-algebras A. Informally, Weil restriction is an algebraic analogue of viewing
a complex manifold as a real manifold with twice the dimension. In particular, if
K ′/K is an extension of fields then ResK′/K(X ′) is K ′-smooth and equidimensional
when X ′ is K-smooth and equidimensional, with

dim(ResK′/K(X ′)) = [K ′ : K] · dim(X ′).

We refer the reader to [10, §7.6] for a self-contained development of the con-
struction and properties of Weil restriction (replacing K with more general rings),
and to [25, A.5] for a discussion of further properties (especially of interest for
group schemes). In general the formation of Weil restriction naturally commutes
with any extension of the base field, and for K ′ equal to the product ring Kn we
have that ResK′/K carries a disjoint union

∐n
i=1 Si of quasi-projective K-schemes

(viewed as a K ′-scheme) to the product
∏

Si. Thus, the natural isomorphism

ResK′/K(X ′)Ks
� Res(K′⊗KKs)/Ks

(X ′
K′⊗KKs

)

implies that if K ′ is a field separable over K then ResK′/K(A′) is an abelian variety
over K of dimension [K ′ : K]dim(A′) for any abelian variety A′ over K ′ (since

K ′ ⊗K Ks � K
[K′:K]
s ). If K ′/K is a field extension of finite degree that is not

separable then ResK′/K(X ′) is never proper when X ′ is smooth and proper of
positive dimension [25, Ex. A.5.6].

1.2.6. Example. Consider a separable quadratic extension of fields K ′/K and a
simple abelian variety A′ over K ′. Let σ ∈ Gal(K ′/K) be the non-trivial element,
so K ′ ⊗K K ′ � K ′ × K ′ via x ⊗ y �→ (xy, σ(x)y). Thus, the Weil restriction
A := ResK′/K(A′) satisfies AK′ � A′ × σ∗(A′), so AK′ is not isotypic if and only
if A′ is not isogenous to its σ-twist. Hence, for K = R examples of non-isotypic
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AK′ are obtained by taking A′ to be an elliptic curve over C with analytic model
C/(Z ⊕ Zτ ) for τ ∈ C − R such that 1, τ, τ , ττ are Q-linearly independent. (In
Example 1.6.4 we give examples with K = Q.)

In cases when AK′ is non-isotypic, A is necessarily simple. Indeed, if A is not
simple then a simple factor of A would be a K-descent of a member of the isogeny
class of A′, contradicting that A′ and σ∗(A′) are not isogenous. Thus, we have
exhibited examples in characteristic 0 for which isotypicity is lost after a ground
field extension.

The failure of isotypicity to be preserved after a ground field extension does
not occur over finite fields:

1.2.6.1. Proposition. If A is an isotypic abelian variety over a finite field K then
AK′ is isotypic for any extension field K ′/K.

Proof. By the Poincaré reducibility theorem, it is equivalent to show that
End0(AK′) is a simple Q-algebra, so by Lemma 1.2.1.2 we may replace K ′ with
the algebraic closure of K in K ′. That is, we can assume that K ′/K is algebraic.
Writing K ′ = lim−→K ′

i with {K ′
i} denoting the directed system of subfields of finite

degree over K, we have End(AK′) = lim−→End(AK′
i
). But End(AK′) is finitely gen-

erated as a Z-module, so for large enough i we have End0(AK′) = End0(AK′
i
). We

may therefore replace K ′ with K ′
i for sufficiently large i to reduce to the case when

K ′/K is of finite degree. Let q = #K.
The key point is to show that for any abelian variety B′ over K ′ and any

g ∈ Gal(K ′/K), B′ and g∗(B′) are isogenous. Since Gal(K ′/K) is generated by

the q-Frobenius σq, it suffices to show that B′ and B′(q) := σ∗
q (B

′) are isogenous.

The purely inseparable relative q-Frobenius morphism B′ → B′(q) (arising from
the absolute q-Frobenius map B′ → B′ over the q-Frobenius of Spec(K ′)) is such
an isogeny. Hence, the Weil restriction ResK′/K(B′) satisfies ResK′/K(B′)K′ �∏

g g
∗(B′) ∼ B′[K′:K]

.

Take B′ to be a simple factor of AK′ (up to isogeny), so ResK′/K(B′) is an

isogeny factor of ResK′/K(AK′) ∼ A[K′:K]. By the simplicity of A and the Poincaré
reducibility theorem, it follows that ResK′/K(B′) is isogenous to a power of A.
Extending scalars, ResK′/K(B′)K′ is therefore isogenous to a power of AK′ . But

ResK′/K(B′)K′ ∼ B′[K′:K]
, so non-trivial powers of AK′ and B′ are isogenous. By

the simplicity of B′ and Poincaré reducibility, this forces B′ to be the only simple
factor of AK′ (up to isogeny), so AK′ is isotypic. �

1.3. Complex multiplication

1.3.1. Commutative subrings of endomorphism algebras. The following
fact motivates the study of complex multiplication in the sense that we shall con-
sider.

1.3.1.1. Theorem. Let A be an abelian variety over a field K with g := dim(A) >
0, and let P ⊂ End0(A) be a commutative semisimple Q-subalgebra. Then [P : Q] �
2g, and if equality holds then P is its own centralizer in End0(A). If equality holds
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and moreover P is a field of degree 2g over Q then A is isotypic and P is a maximal
commutative subfield of End0(A).

Proof. Consider the decomposition P =
∏

Li into a product of fields. Using
the primitive idempotents of P , we get a corresponding decomposition

∏
Ai of A

in the isogeny category of abelian varieties over K, with each Ai �= 0 and each Li

a commutative subfield of End0(Ai) compatibly with the inclusion
∏

End0(Ai) ⊂
End0(A) and the equality

∏
Li = P . Since dim(A) =

∑
dim(Ai), to prove that

[P : Q] � 2g it suffices to treat the Ai’s separately, which is to say that we may
and do assume that P = L is a field.

Since D = End0(A) is of finite rank over Q, clearly [L : Q] is finite. Choose
a prime � different from char(K). Recall that V�(A) denotes Q� ⊗Z�

T�(A) for
T�(A) := lim←−A[�n](Ks). The injectivity of the natural map

L� := Q� ⊗Q L ↪→ EndQ�
(V�(A))

(see Proposition 1.2.5.1) implies that L� acts faithfully on the Q�-vector space V�(A)
of rank 2g. But L� =

∏
w|� Lw, where w runs over all �-adic places of L, so each

corresponding factor module V�(A)w over Lw is non-zero as a vector space over Lw.
Hence,

2g = dimQ�
V�(A) =

∑
w|�

dimQ�
V�(A)w �

∑
w|�

[Lw : Q�] = [L : Q]

with equality if and only if V�(A) is free of rank 1 over L�.
Assume that equality holds, so V�(A) is free of rank 1 over L�. IfA is not isotypic

then by passing to an isogenous abelian variety we may arrange that A = B × B′

with B and B′ non-zero abelian varieties such that Hom(B,B′) = 0 = Hom(B′, B).

Hence, End0(A) = End0(B) × End0(B′) and so L embeds into End0(B). But
2 dim(B) < 2 dim(A) = [L : Q], so we have a contradiction (since B �= 0).

It remains to prove, without assuming P is a field, that if [P : Q] = 2g then
P is its own centralizer in End0(A). (In case P is a field, so A is isotypic and

hence End0(A) is simple, such a centralizer property would imply that P is a
maximal commutative subfield of End0(A), as desired.) Consider once again the
ring decomposition P =

∏
Li and the corresponding isogeny decomposition

∏
Ai

of A as at the beginning of this proof. We have [Li : Q] � 2 dim(Ai) for all i,
and these inequalities add up to an equality when summed over all i, so in fact
[Li : Q] = 2 dim(Ai) for all i. The preceding analysis shows that each V�(Ai) is
free of rank 1 over Li,� := Q� ⊗Q Li, and so likewise V�(A) is free of rank 1 over

P�. Hence, EndP�
(V�(A)) = P�, so if Z(P ) denotes the centralizer of P in End0(A)

then the P�-algebra map

Z(P )� = Q� ⊗Q Z(P ) → EndQ�
(V�(A))

is injective (Proposition 1.2.5.1) and lands inside EndP�
(V�(A)) = P�. In other

words, the inclusion P ⊂ Z(P ) of Q-algebras becomes an equality after scalar
extension to Q�, so P = Z(P ) as desired. �

The preceding theorem justifies the interest in the following concept.

1.3.1.2. Definition. An abelian variety A of dimension g > 0 over a field K
admits sufficiently many complex multiplications (over K) if there exists a commu-
tative semisimple Q-subalgebra P in End0(A) with rank 2g over Q.
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The reason for the terminology in Definition 1.3.1.2 is due to certain examples
with K = C and P a number field such that the analytic uniformization of A(C)
expresses the P -action in terms of multiplication of complex numbers; see Example
1.5.3. The classical theory of complex multiplication focused on the case of Defini-
tion 1.3.1.2 in which P is a field, but it is useful to allow P to be a product of several
fields (i.e., a commutative semisimple Q-algebra). For example, by Theorem 1.3.1.1
this is necessary if we wish to consider the theory of complex multiplication with A
that is not isotypic, or more generally if we want Definition 1.3.1.2 to be preserved
under the formation of products. The theory of Shimura varieties provides further
reasons not to require P to be a field.

Note that we do not consider A to admit sufficiently many complex multipli-
cations merely if it does so after an extension of the base field K.

1.3.2. Example. The elliptic curve y2 = x3−x admits sufficiently many complex
multiplications over Q(

√
−1) but not over Q. More generally, End0(E) = Q for

every elliptic curve E over Q (since the tangent line at the origin is too small to
support a Q-linear action by an imaginary quadratic field), so in our terminology
an elliptic curve over Q does not admit sufficiently many complex multiplications.

1.3.2.1. Proposition. Let A be a non-zero abelian variety over a field K. The
following are equivalent.

(1) The abelian variety A admits sufficiently many complex multiplications.
(2) Each isotypic part of A admits sufficiently many complex multiplications.
(3) Each simple factor of A admits sufficiently many complex multiplications.

See Definition 1.2.5.2 for the terminology used in (2).

Proof. Let {Bi} be the set of isotypic parts of A, so End0(Bi) � Matei(End
0(Ci))

where Ci is the unique simple factor of Bi and ei � 1 is its multiplicity as such.
Since End0(A) =

∏
End0(Bi), (2) implies (1). It is clear that (3) implies (2).

Conversely, assume that End0(A) contains a Q-algebra P satisfying [P : Q] =
2 dim(A). There is a unique decomposition P =

∏
Li with fields L1, . . . , Ls, and∑

[Li : Q] = 2 dim(A). We saw in the proof of Theorem 1.3.1.1 that by replacing
A with an isogenous abelian variety we may arrange that A =

∏
Ai with each Ai

a non-zero abelian variety having Li ⊂ End0(Ai) compatibly with the embedding∏
End0(Ai) ⊂ End0(A) and the equality

∏
Li = P . Thus, [Li : Q] � 2 dim(Ai) for

all i (by Theorem 1.3.1.1), and adding this up over all i yields an equality, so each
Ai admits sufficiently many complex multiplications using Li. Since each simple
factor of A is a simple factor of some Ai, to prove (3) we are therefore reduced to
the case when P = L is a field.

Applying Theorem 1.3.1.1 once again, L is its own centralizer in End0(A) and
A is isotypic, say with unique simple factor C appearing with multiplicity e. In
particular, End0(A) = Mate(D) for the division algebra D = End0(C) of finite
rank over Q. If Z denotes the center of D then D is a central division algebra
over Z, and L contains Z since L is its own centralizer in End0(A) = Mate(D).
Letting d = dim(C), Mate(D) contains the maximal commutative subfield L of
degree 2g/[Z : Q] = (2d/[Z : Q])e over Z.

As we noted in the proof of Proposition 1.2.3.1 (parts of which are carried
out for central simple algebras that may not be division algebras), the Z-degree of
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Mate(D) is the product of the Z-degrees of L and the centralizer of L in Mate(D).
But L is its own centralizer, so

e2[D : Z] = dimZMate(D) = [L : Z]2 = e2(2d/[Z : Q])2.

We conclude that 2d/[Z : Q] =
√

[D : Z], so (by Proposition 1.2.3.1) 2d/[Z : Q] is
the common Z-degree of all maximal commutative subfields of the central division
algebra D = End0(C) over Z, or equivalently 2d is the Q-degree of all such fields.
But 2d = 2dim(C), so choosing any maximal commutative subfield of D shows
that C admits sufficiently many complex multiplications. �

1.3.3. CM algebras and CM abelian varieties. The following three conditions
on a number field L are equivalent:

(1) L has no real embeddings but is quadratic over a totally real subfield,
(2) for every embedding j : L → C, the subfield j(L) ⊂ C is stable under complex

conjugation and the involution x �→ j−1(j(x)) in Aut(L) is non-trivial and
independent of j,

(3) there is a non-trivial involution τ ∈ Aut(L) such that for every embedding

j : L → C we have j(τ (x)) = j(x) for all x ∈ L.

The proof of the equivalence is easy. When these conditions hold, τ in (3) is unique
and its fixed field is the maximal totally real subfield L+ ⊂ L (over which L is
quadratic). The case L+ = Q corresponds to the case when L is an imaginary
quadratic field.

1.3.3.1. Definition. A CM field is a number field L satisfying the equivalent
conditions (1), (2), and (3) above. A CM algebra is a product L1 × · · · × Ls of
finitely many CM fields (with s � 1).

The reason for this terminology is due to the following important result (along
with Example 1.5.3).

1.3.4. Theorem (Tate). Let A be an abelian variety of dimension g > 0 over a
field K. Suppose A admits sufficiently many complex multiplications. Then there
exists a CM algebra P ⊂ End0(A) with [P : Q] = 2 dim(A). In case A is isotypic
we can take P to be a CM field.

The proof of this theorem (which ends with the proof of Lemma 1.3.7.1) will
require some effort, especially since we consider an arbitrary base field K. Before
we start the proof, it is instructive to consider an example.

1.3.4.1. Example. Consider A = E2 with an elliptic curve E over K = C such
that L := End0(E) is an imaginary quadratic field. The endomorphism algebra
End0(A) = Mat2(L) is simple and contains as its maximal commutative subfields
all quadratic extensions of L. Those extensions which are biquadratic over Q are
CM fields, and the rest are not CM fields. Hence, in the setup of Theorem 1.3.4, even
when A is isotypic and char(K) = 0 there can be maximal commutative semisimple
subalgebras of End0(A) that are not CM algebras. However, if char(K) = 0 and A

is simple (over K) then End0(A) is a CM field; see Proposition 1.3.6.4.
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1.3.5. We will begin the proof of Theorem 1.3.4 now, but at a certain point we will
need to use deeper input concerning the fine structure of endomorphism algebras of
simple abelian varieties over general fields. At that point we will digress to review
the required structure theory, and then we will complete the argument.

By Proposition 1.3.2.1, every simple factor of A admits sufficiently many com-
plex multiplications. Thus, to prove the existence of the CM subalgebra P in Theo-
rem 1.3.4 it suffices to treat the case when A is simple. Note that in the simple case
such a CM subalgebra is automatically a field, since the endomorphism algebra is
a division algebra. Let us first show that the result in the simple case implies that
in the general isotypic case we can find P as a CM field. For isotypic A, by passing
to an isogenous abelian variety we can arrange that A = A′m for a simple abelian
variety A′ over K and some m � 1. Thus, if g′ = dimA′ then g = mg′ and End0(A′)
contains a CM field P ′ of degree 2g′ over Q. But End0(A) � Matm(End0(A′)) and
this contains Matm(P ′). To find a CM field P ⊂ End0(A) of degree 2g = 2g′m over
Q it therefore suffices to construct a degree-m extension field P of P ′ such that P
is a CM field.

Let P ′+ be the maximal totally real subfield of P ′, so for any totally real field
P+ of finite degree over P ′+ the ring P = P+ ⊗P ′+ P ′ is a field quadratic over P+

and it is totally complex, so it is a CM field and clearly [P : Q] = [P : P ′][P ′ : Q] =

2g′[P+ : P ′+]. Hence, to find the required CM field P in the isotypic case it suffices

to construct a degree-m totally real extension of P ′+. To do this, first recall the
following basic fact from number theory [15, §6]:

1.3.5.1. Theorem (weak approximation). For any number field L and finite set
S of places of L, the map L →

∏
v∈S Lv has dense image.

Proof. This is [15, §6]. �

Applying this to P ′+, we can construct a monic polynomial f of degree m in
P ′+[u] that is very close to a totally split monic polynomial of degree m at each
real place and is very close to an irreducible (e.g., Eisenstein) polynomial at a single

non-archimedean place. It follows that f is totally split at each real place of P ′+

and is irreducible over P ′+, so the ring P+ = P ′+[u]/(f) is a totally real field of

degree m over P ′+ as required.

1.3.5.2. We may and do assume for the remainder of the argument that A is
simple. In this case D = End0(A) is a central division algebra over a number field
Z, so the commutative semisimple Q-subalgebra P ⊂ D is a field, and the proof of
Proposition 1.3.2.1 shows that the common Q-degree of all maximal commutative
subfields of D is 2g. Hence, our problem is to construct a maximal commutative
subfield of D that is a CM field.

Let TrdD/Q = TrZ/Q ◦TrdD/Z , where TrdD/Z is the reduced trace. An abelian
variety over any field admits a polarization, so choose a polarization of A over K.
Let x �→ x∗ denote the associated Rosati involution on D (so (xy)∗ = y∗x∗ and
x∗∗ = x).

1.3.5.3. Lemma. The quadratic form x �→ TrdD/Q(xx
∗) on D is positive-definite.

Proof. For any central simple algebra D over any field K whatsoever, let n =√
[D : K] and define the variant TrmD/K : D → K of the reduced trace to be the
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map that sends each y ∈ D to the trace of the K-linear map my : D → D defined by
d �→ yd. We have TrmD/K = n · TrdD/K , as may be checked by extending scalars
to Ks and directly computing with elementary matrices (see 1.2.3.3). Hence, in
the setting of interest with D = End0(A) and K = Z we see that it is equivalent
to prove positive-definiteness for the quadratic form x �→ TrmD/Q(xx

∗), where
TrmD/Q = TrZ/Q ◦ TrmD/Z . The positive-definiteness for TrmD/Q can be verified

by replacing D with End0
K
(AK), to which [82, §21, Thm. 1] applies. �

Lemma 1.3.5.3 says that x �→ x∗ is a positive involution of D (relative to the
linear form TrdD/Q). The existence of such an involution severely constrains the
possibilities for D. First we record the consequences for the center Z.

1.3.5.4. Lemma. The center Z of D = End0(A) is either totally real or a CM
field, and in the latter case its canonical complex conjugation is induced by the
Rosati involution defined by any polarization of A over K.

Proof. Fix a polarization and consider the associated Rosati involution x �→ x∗

on the center Z of D. Clearly Z is stable under this involution. The positive-
definite TrdD/Q(xx

∗) on D restricts to
√
[D : Z] ·TrZ/Q(xx

∗) on Z, so TrZ/Q(xx
∗)

is positive-definite on Z. If x∗ = x for all x ∈ Z then the rational quadratic
form TrZ/Q(x

2) is positive-definite on Z, so by extending scalars to R we see that

Tr(R⊗QZ)/R(x
2) is positive-definite. This forces the finite étale R-algebra R⊗Q Z to

have no complex factors. Hence, Z is a totally real field in such cases.
It remains to show that if the involution x �→ x∗ is non-trivial on Z for some

choice of polarization then Z is a CM field (so the preceding argument would imply
that the Rosati involution arising from any polarization of A is non-trivial on Z)
and its intrinsic complex conjugation is equal to this involution on Z. Let Z+ be
the subfield of fixed points in Z for this involution, so [Z : Z+] = 2 and 2TrZ+/Q

is the restriction to Z+ of TrZ/Q. Hence, TrZ+/Q(x
2) is positive-definite on Z+,

so Z+ is totally real. We aim to prove that Z has no real places, so we assume
otherwise and seek a contradiction.

Let v be a real place of Z. Since the involution x �→ x∗ is non-trivial on Z and
the field Zv � R has no non-trivial field automorphisms, the real place v on Z is not
fixed by the involution x �→ x∗. Thus, the real place v∗ obtained from v under the
involution is a real place of Z distinct from v, and so the positive-definiteness
of TrZ/Q(xx

∗) implies (after scalar extension to R) the positive-definiteness of
Tr(Zv×Zv∗ )/R(xx

∗), where x �→ x∗ on Zv × Zv∗ = R × R is the involution that
swaps the factors. In other words, this is the quadratic form (c, c′) �→ 2cc′, which
by inspection is not positive-definite. �

1.3.6. Albert’s classification. To go further with the proof of Theorem 1.3.4,
we need to review properties of endomorphism algebras of simple abelian varieties
over arbitrary fields.

1.3.6.1. Definition. An Albert algebra is a pair consisting of a division algebra D
of finite dimension over Q and a positive involution x �→ x∗ on D.

For any Albert algebra D and any algebraically closed field K, there exists a
simple abelian variety A over K such that End0(A) is Q-isomorphic to D (with the
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given involution on D arising from a polarization on A); see [1], [2], [3], [112, §4.1,
Thm. 5], and [46, Thm. 13]. For a survey and further references on this topic, see
[92]. We will not need this result.

Instead, we are interested in the non-trivial constraints on the Albert algebras
that arise from polarized simple abelian varieties A over an arbitrary field K when
char(K) and dimA are fixed. Before listing these constraints, it is convenient to
record Albert’s classification of general Albert algebras (omitting a description of
the possibilities for the involution).

1.3.6.2. Theorem (Albert). Let (D, (·)∗) be an Albert algebra. For any place v
of the center Z, let v∗ denote the pullback of v along x �→ x∗. Exactly one of the
following occurs:

Type I: D = Z is a totally real field.
Type II: D is a central quaternion division algebra over a totally real field Z

such that D splits at each real place of Z.
Type III: D is a central quaternion division algebra over a totally real field Z

such that D is non-split at each real place of Z.
Type IV: D is a central division algebra over a CM field Z such that for all

finite places v of Z, invv(D)+ invv∗(D) = 0 in Q/Z and moreover D splits at such
a v if v = v∗.

Proof. See [82, §21, Thm. 2] (which also records the possibilities for the involu-
tion). �

1.3.6.3. Let A be a simple abelian variety over a field K, D = End0(A), and Z the
center of D. Let Z+ be the maximal totally real subfield of Z, so either Z = Z+

or Z is a totally complex quadratic extension of Z+. The invariants e = [Z : Q],

e0 = [Z+ : Q], d =
√
[D : Z], and g = dim(A) satisfy some divisibility restrictions:

• whenever char(K) = 0, the integer ed2 = [D : Q] divides 2g (proof: there
is a subfield K0 ⊆ K finitely generated over Q such that A descends to an
abelian variety A0 over K0 and the D-action on A in the isogeny category
over K descends to an action on A0 in the isogeny category over K0, so upon
choosing an embedding K0 ↪→ C we get a Q-linear action by the division
algebra D on the 2g-dimensional homology H1(A0(C),Q)),

• the action of D on V�(A) with � �= char(K) implies (via Cor. to Thm. 4 of [82,
§19], whose proof is valid over any base field) that ed|2g,

• the structure of symmetric elements in

Q⊗Z Hom(A,At) � Q⊗Z Pic(A)/Pic0(A)

(via [82, §20, Cor. to Thm. 3], whose proof is valid over any base field) yields
that [L : Q]|g for every commutative subfield L ⊂ D whose elements are
invariant under the involution.

• for Type II in any characteristic we have 2e|g (which coincides with the general
divisibility ed2|2g when char(K) = 0 since d = 2 for Type II). To prove it
uniformly across all characteristics, first note that for Type II we have

R⊗Q D = (R⊗Q Z)⊗Z D =
∏
v|∞

Zv ⊗Z D � Mat2(Zv)
e.
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Moreover, by [82, §21, Thm. 2] it can be arranged that under this composite
isomorphism the positive involution onD goes over to transpose on each factor
Mat2(Zv) = Mat2(R). Thus, for D of Type II the fixed part of the involution
on D has Q-dimension 2e and hence Z-degree 2. By centrality of Z in the
division algebra D, the condition x∗ = x for x in D of Type II therefore
defines a necessarily commutative quadratic extension Z ′ of Z inside D, so g
is divisible by [Z ′ : Q] = 2e as desired.

The preceding results are summarized in the following table, taken from the
end of [82, §21]. (As we have just seen, the hypothesis there that K is algebraically
closed is not necessary.) The invariants of D = End0(A) are given in the first three
columns. In the last two columns we give some necessary divisibility restrictions
on these invariants.

Type e d char(K) = 0 char(K) > 0

I e = e0 1 e | g e | g
II e = e0 2 2e | g 2e | g
III e = e0 2 2e | g e | g
IV e = 2e0 d e0d

2 | g e0d | g

We refer the reader to [82, §21], and to [92] for further information on these
invariants. Using the above table, we can prove the following additional facts when
the simple A admits sufficiently many complex multiplications.

1.3.6.4. Proposition. Let A be a simple abelian variety of dimension g > 0 over
a field K, and assume that A admits sufficiently many complex multiplications. Let
D = End0(A).

(1) If char(K) = 0 then D is of Type IV with d = 1 and e = 2g (so D is a CM
field, by Theorem 1.3.6.2).

(2) If char(K) > 0 then D is of Type III or Type IV.

Proof. By simplicity, D is a division algebra. Its center Z is a commutative field.
First suppose char(K) = 0. Let P ⊂ D be a commutative semisimple Q-

subalgebra with [P : Q] = 2g. Since D is a division algebra, P is a field. The above
table (or the discussion preceding it) says that the degree [D : Q] = ed2 divides
[P : Q] = 2g, so the inclusion P ⊂ D is an equality. Thus, D is commutative
(i.e., d = 1), so D = Z is a commutative field and hence e := [Z : Q] = 2g by
the complex multiplication hypothesis. The table shows that in characteristic 0 we
have e|g for Types I, II, and III, so D is of Type IV.

Suppose char(K) > 0. In view of the divisibility relations in the table in positive
characteristic, D is not of Type I since in such cases D is a commutative field whose
Q-degree divides dim(A), contradicting the existence of sufficiently many complex
multiplications. For Type II we have 2e|g, yet the integer 2e = 2[Z : Q] is the Q-
degree of a maximal commutative subfield of the central quaternion division algebra
D over Z, so there are no such subfields with Q-degree 2g. Since a commutative
semisimple Q-subalgebra of D is a field (as D is a division algebra), Type II is not
possible if the simple A has sufficiently many complex multiplications. �
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1.3.7. Returning to the proof of Theorem 1.3.4, recall that we reduced the proof
to the case of simple A. Proposition 1.3.6.4(1) settles the case of characteristic 0,

and Proposition 1.3.6.4(2) gives that D = End0(A) is an Albert algebra of Type
III or IV when char(K) > 0. If D is of Type III then the center Z is totally real
and d is even, whereas if D is of Type IV then Z is CM. Thus, we can apply the
following general lemma to conclude the proof.

1.3.7.1. Lemma (Tate). Let D be a central division algebra of degree d2 over a
number field Z that is totally real or CM. If Z is totally real then assume that d is
even. There exists a maximal commutative subfield L ⊂ D that is a CM field.

The parity condition on d is necessary when Z is totally real, since d = [L : Z]
by maximality of L in D.

Proof. By Proposition 1.2.3.1, any degree-d extension of Z that splits D is
a maximal commutative subfield of D. Hence, we just need to find a degree-d
extension L of Z that is a CM field and splits D. Let Σ be a finite non-empty
set of finite places of Z containing the finite places at which D is non-split. By
the structure of Brauer groups of local fields, for any v ∈ Σ the central simple
Zv-algebra

Dv := Zv ⊗Z D

of rank d2 over Zv is split by any extension of Zv of degree d.
First assume that Z is totally real, so d is even. By weak approximation

(Theorem 1.3.5.1), there is a monic polynomial f over Z of degree d/2 that is
close to a monic irreducible polynomial of degree d/2 over Zv for all v ∈ Σ (and in
particular f is irreducible over all such Zv, and hence over Z since Σ is non-empty).
We can also arrange that for each real place v of Z the polynomial f viewed over
Zv � R is close to a totally split monic polynomial of degree d/2 and hence is
totally split over Zv. Thus, Z ′ := Z[u]/(f) is a totally real extension field of Z
with degree d/2. By the same method, we can construct a quadratic extension
L/Z ′ that is unramified quadratic over each place v′ over a place in Σ and is also
totally complex (by using approximations to irreducible quadratics over R at the
real places of Z ′). This L is a CM field and it is designed so that Zv ⊗Z L is a
degree-d field extension of Zv for all v ∈ Σ. Hence, DL is split at all places of L
(the archimedean ones being obvious), so DL is split.

Assume next that Z is a CM field. Let Z+ ⊂ Z be the maximal totally real
subfield. By the same weak approximation procedure as above (replacing d/2 with

d), we can construct a degree d totally real extension Z ′+/Z+ such that for each

place v0 of Z+ beneath a place v ∈ Σ, the extension Z ′+/Z+ has a unique place
v′0 over v0 and is totally ramified (resp. unramified) at v′0 when Z/Z+ is unramified

(resp. ramified) at v. Hence, (Z ′+)v′
0
and Zv are linearly disjoint over (Z+)v0 . We

conclude that Z ′+ and Z are linearly disjoint over Z ′, so L := Z ′+ ⊗Z+ Z is a field
and each v ∈ Σ has a unique place w over it in L. Clearly [Lw : Zv] = d for all
such w, so L splits D. By construction, L is visibly CM. We have proved Lemma
1.3.7.1. This also finishes the proof of Theorem 1.3.4. �

1.3.7.2. Corollary. An isotypic abelian variety A with sufficiently many complex
multiplications remains isotypic after any extension of the base field.



32 1. ALGEBRAIC THEORY OF COMPLEX MULTIPLICATION

Proof. By Theorem 1.3.4, the endomorphism algebra End0(A) contains a com-
mutative field with Q-degree 2 dim(A). This property is preserved after any ground
field extension (even though the endomorphism algebra may get larger), so by the
final part of Theorem 1.3.1.1 isotypicity is preserved as well. �

1.3.8. CM abelian varieties. It turns out to be convenient to view the CM
algebra P in Theorem 1.3.4 as an abstract ring in its own right, and to thereby
regard the embedding P ↪→ End0(A) as additional structure on A. This is encoded
in the following concept.

1.3.8.1. Definition. Let A be an abelian variety over a field K, and assume that
A has sufficiently many complex multiplications. Let j : P ↪→ End0(A) be an
embedding of a CM algebra P with [P : Q] = 2 dim(A). Such a pair (A, j) is called
a CM abelian variety (with complex multiplication by P ).

Note that in this definition we are requiring P to be embedded in the endo-
morphism algebra of A over K (and not merely in the endomorphism algebra after
an extension of K). For example, according to this definition, no elliptic curve over
Q admits a CM structure (even if such a structure exists after an extension of the
base field).

As an application of Theorem 1.3.4, we establish the following result concerning
the possibilities for Z of Type III in Proposition 1.3.6.4(2). This will not be used
later.

1.3.8.2. Proposition. Let A, K, and D be as in Proposition 1.3.6.4(2) with p =

char(K) > 0, and let Z be the center of D, g = dim(A), d =
√
[D : Z], and

e = [Z : Q]. We have ed = 2g, and if D is of Type III (so d = 2) then either Z = Q
or Z = Q(

√
p).

Note that in this proposition, K is an arbitrary field with char(K) > 0; K is
not assumed to be finite.

Proof. We always have ed|2g, but ed =
√
[D : Q] and D contains a field P of

Q-degree 2g, so 2g|ed. Thus, ed = 2g. Now we can assume A is of Type III, so the
field Z is totally real.

Since A is of finite type over K and D is finite-dimensional over Q, by direct
limit considerations we can descend to the case when K is finitely generated over
Fp. Let S be a separated integral Fp-scheme of finite type whose function field is
K. Since A is an abelian variety over the direct limit K of the coordinate rings
of the non-empty affine open subschemes of S, by replacing S with a sufficiently
small non-empty affine open subscheme we can arrange that A is the generic fiber
of an abelian scheme A → S. Since S is connected, the fibers of the map A → S
all have the same dimension, and this common dimension is g (as we may compute
using the generic fiber A).

The Z-module End(A) is finitely generated, and each endomorphism of A ex-
tends uniquely to a U -endomorphism of AU for some non-empty open U in S
(with U perhaps depending on the chosen endomorphism). Using a finite set of
endomorphisms that spans End(A) allows us to shrink S so that all elements of
End(A) extend to S-endomorphisms of A , or in other words End(A) = End(A ).
We therefore have a specialization map D = End0(A) → End0(As) for every s ∈ S.
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Fix a prime � �= p. Since S is connected and A [�n] is finite étale over S, an
S-endomorphism of A [�n] is uniquely determined by its effect on a single geometric
fiber over S. But maps between abelian varieties are uniquely determined by their
effect on �-adic Tate modules when � is a unit in the base field, so we conclude (via
consideration of �-power torsion) that the specialization map D → End0(As) is

injective for all s ∈ S. We can therefore speak of an element of End0(As) “lifting”
over K in the sense that it is the image of a unique element of D = End0(A) under
the specialization mapping at s. This will be of interest when s is a closed point
and we consider the qs-Frobenius endomorphism of As over the finite residue field
κ(s) at s (with qs = #κ(s)).

By Theorem 1.3.4, we can choose a CM field L ⊂ D with [L : Q] = 2g. In
particular, for each s ∈ S the field L embeds into End0(As) with [L : Q] = 2g =
2dim(As), so each As is isotypic. By Theorem 1.3.1.1, L is its own centralizer in

End0(As). Take s to be a closed point of S, and let qs denote the size of the finite
residue field κ(s) at s. The qs-Frobenius endomorphism ϕs ∈ End0(As) is central,
so it centralizes L and hence must lie in the image of L. In particular, ϕs lifts to
an element of End0(A) = D that is necessarily central (as we may compute after

applying the injective specialization map D ↪→ End0(As)). That is, ϕs ∈ Z ⊂ D
for all closed points s ∈ S.

Let Z ′ be the subfield of Z generated over Q by the lifts of the endomorphisms
ϕs as s varies through all closed points of S. Each Q[ϕs] is a totally real field
since Z is totally real. By Weil’s Riemann Hypothesis for abelian varieties over
finite fields (see the discussion following Definition 1.6.1.2), under any embedding

ι : Q[ϕs] ↪→ C we have each ι(ϕs)ι(ϕs) = qs for qs = #κ(s) ∈ pZ, so the real number
ι(ϕs) is a power of

√
p. Hence, the subfield Q[ϕs] ⊂ Z is either Q or Q(

√
p), so the

subfield Z ′ ⊂ Z is either Q or Q(
√
p).

Let η be a geometric generic point of S, and let Γ be the associated absolute
Galois group for the function field of S. Because each A [�n] is finite étale over S, the
representation of Γ on V�(A) factors through the quotient π1(S, η). The Chebotarev
Density Theorem for π1(S, η) [97, App. B.9] says that the Frobenius elements at the
closed points of S generate a dense subgroup of the quotient π1(S, η) of Γ. Thus,
the image of Q�[Γ] in EndQ�

(V�(A)) is equal to the subalgebra Z ′
� := Q� ⊗Q Z ′

generated by the endomorphisms ϕs. We therefore have an injective map

Q� ⊗Q D ↪→ EndQ�[Γ](V�(A)) = EndZ′
�
(V�(A)).

By Zarhin’s theorem [134] (see [80, XII, §2] for a proof valid for all p, especially
allowing p = 2) this injection is an isomorphism, so we conclude that Z� is central
in EndZ′

�
(V�(A)). But the center of this latter matrix algebra is Z ′

�, so the inclusion

Z ′
� ⊂ Z� is an equality. Hence, the inclusion Z ′ ⊂ Z is an equality as well. Since

Z ′ is either Q or Q(
√
p), we are done. �

1.4. Dieudonné theory, p-divisible groups, and deformations

To solve problems involving lifts from characteristic p to characteristic 0, we
need a technique for handling p-torsion phenomena in characteristic p > 0. The
two main tools for this purpose in what we shall do are Dieudonné theory and
p-divisible groups. For the convenience of the reader we review the basic facts in
this direction, and for additional details we refer to [119], [110, §6], and [75] for
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p-divisible groups, and [41, Ch. II–III] for (contravariant) Dieudonné theory with
applications to p-divisible groups.

1.4.1. Exactness. We shall frequently use exact sequence arguments with abelian
varieties and finite group schemes over fields, as well as with their relative analogues
over more general base schemes. It is assumed that the reader has some familiarity
with these notions, but we now provide a review of this material.

1.4.1.1. Definition. Let S be a scheme, and let T be a Grothendieck topology
on the category of S-schemes. (For our purposes, only the étale, fppf, and fpqc

topologies will arise.) A diagram 1 → G′ → G
f→ G′′ → 1 of S-group schemes is

short exact for the topology T if G′ → G is an isomorphism onto ker(f) and the
map f is a T -covering.

By [30, Exp. IV, 5.1.7.1], in such cases G′′ represents the quotient sheaf G/G′

for the chosen Grothendieck topology. By [31, Exp. V, Thm. 4.1(iv), Rem. 5.1], if
G is a quasi-projective group scheme over a noetherian ring R and if G′ is a finite
flat R-subgroup of G then the fppf quotient sheaf G/G′ is represented by a quasi-
projective R-group (also denoted G/G′), and the resulting map of group schemes
G → G/G′ is an fppf G′-torsor (so G/G′ is R-flat if G is).
1.4.1.2. The Cartier dual ND of a commutative finite locally free group scheme
N over a base scheme S is the commutative finite locally free group scheme which
represents the fppf sheaf functor Hom(N,Gm) : S

′ � HomS′-gp(NS′ ,Gm) on the
category of S-schemes. The structure sheaf OND of ND is canonically isomorphic
to the OS-linear dual of the structure sheaf ON of N , and the co-multiplication
(respectively multiplication) map forOND is theOS-linear dual of the multiplication
(respectively co-multiplication) map for ON .

The functor N � ND on the category of commutative finite locally free group
schemes over S swaps closed immersions and quotient maps, preserves exactness,
and is an involution in the sense that there is a natural isomorphism fN : N �
(ND)D satisfying (fN )D = f−1

ND . See [87, Prop. 2.9] for further details.
As an application, if the S-homomorphism j : G′ ↪→ G is a closed immersion

between finite locally free commutative group schemes then we can use Cartier
duality to give a direct proof that the the fppf quotient sheaf G/G′ is represented by
a finite locally free S-group (without needing to appeal to general existence results
for quotients by G′-actions on quasi-projective S-schemes). The key point is that

the Cartier dual map jD : GD → G′D between finite flat S-schemes is faithfully flat,
as this holds on fibers over S (since injective maps between Hopf algebras over a
field are always faithfully flat [126, 14.1]). Such flatness implies that H := ker(jD)
is a finite locally free commutative S-group, so HD makes sense and the dual map
q : G � (GD)D → HD is faithfully flat. It is clear that G′ ⊂ ker(q), and this
inclusion between finite locally free S-schemes is an isomorphism by comparison of
fibral degrees, so HD represents G/G′.

The following result is useful for constructing commutative group schemes G →
S that are finite and fppf (equivalently, finite and locally free over S).
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1.4.1.3. Proposition. Let S be a scheme, and let G′ and G′′ be finitely presented
separated S-group schemes with G′ affine and flat over S. For any exact sequence

1 → G′ → G → G′′ → 1

of group sheaves for the fppf topology on the category of S-schemes, G is represented
by a finitely presented S-group that is flat and affine over G′′. Moreover, G′ and
G′′ are S-finite if and only if G is S-finite.

See [87, 17.4] for a generalization (using the fpqc topology).

Proof. For any G′′-scheme T viewed as an S-scheme, let g′′ ∈ G′′(T ) correspond
to the given S-morphism T → G′′. Consider the set Eg′′(T ) that is the preimage
under G(T ) → G′′(T ) of g′′. This is a sheaf of sets on the category of G′′-schemes
equipped with the fppf topology, and as such it is a left G′-torsor (strictly speaking,
a left torsor for the G′′-group G′

G′′) due to the given exact sequence. In particular,
the fppf sheaves of sets Eg′′ and G′

G′′ over G′′ are isomorphic fppf-locally over G′′.
Since G′ is fppf affine over S and fppf descent is effective for affine morphisms, it

follows that Eg′′ as an fppf sheaf of sets over G′′ is represented by an affine fppf G′′-
scheme (which is therefore affine fppf over S when G′′ is). It is elementary to check
that this affine G′′-scheme viewed as an S-scheme has its functor of points naturally
identified with G (since for any S-scheme T and g ∈ G(T ), visibly g ∈ Eg′′(T ) for
the point g′′ ∈ G′′(T ) arising from g), so G is represented by an S-group.

Separatedness of G′′ over S and exactness imply that G′ is closed in G. More-
over, G → G′′ is a left G′

G′′-torsor for the fppf topology over G′′, so it is finite when
G′ is S-finite. Thus, if G′ and G′′ are S-finite then G is S-finite. Conversely, if G
is S-finite then its closed subscheme G′ is S-finite, so the quotient G/G′ exists as
an S-finite scheme. But G′′ represents this quotient, so G′′ is S-finite too. �

1.4.1.4. Remark. If 1 → G′ → G → G′′ → 1 is an exact sequence of separated
fppf S-groups with G′ and G′′ abelian schemes then G is an abelian scheme. Indeed,
sinceG → G′′ is an fppf torsor for theG′′-groupG′

G′′ that is smooth and proper with
geometrically connected fibers, G → G′′ is smooth and proper with geometrically
connected fibers. The map G′′ → S is also smooth and proper with geometrically
connected fibers, so G → S is as well. Hence, G is an abelian scheme.

It is also true that if G is an abelian scheme and G′ is a closed S-subgroup of G
that is also an abelian scheme then the fppf quotient sheaf G/G′ is represented by
an abelian scheme. We will give an elementary proof of this over fields in Lemma
1.7.4.4 using the Poincaré reducibility theorem (which is only available over fields).
In general the proof requires a detour through algebraic spaces.

1.4.2. Duality for abelian schemes. In [83, §6.1], duality is developed for pro-
jective abelian schemes, building on the case of an algebraically closed ground
field. Projectivity is imposed primarily due to the projectivity hypotheses in
Grothendieck’s work on Hilbert schemes. The projective case is sufficient for our
needs because any abelian scheme over a discrete valuation ring is projective (this
follows from Lemma 2.1.1.1, to which the interested reader may now turn). For
both technical and aesthetic reasons, it is convenient to avoid the projectivity hy-
pothesis. We now sketch Grothendieck’s results on duality in the projective case,
as well as Artin’s improvements that eliminated the projectivity assumption.
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1.4.2.1. Let A → S be an abelian scheme, and let PicA/S be the functor assigning
to any S-scheme T the group of isomorphism classes of pairs (L , i) consisting of
an invertible sheaf L on AT and a trivialization i : e∗T (L ) � OT along the identity
section eT of AT → T . This is an fppf group sheaf on the category of S-schemes,
and its restriction to the category of S′-schemes (for an S-scheme S′) is PicAS′/S′ .

Let Pic0A/S ⊂ PicA/S be the subfunctor classifying pairs (L , i) that lie in the

identity component of the Picard scheme on geometric fibers. By [7, Exp. XIII,
Thm. 4.7(i)] (see [39, §9.6] for the projective case), the inclusion j : Pic0A/S →
PicA/S is an open subfunctor; i.e., it is relatively representable by open immersions.

This means that for any S-scheme T and (L , i) ∈ PicA/S(T ), Pic
0
A/S ×PicA/S

T as
a functor on T -schemes is represented by an open subscheme U ⊂ T ; explicitly,
there is an open subscheme U ⊂ T such that a T -scheme T ′ lies over U if and only
if the T ′-pullback of (L , i) lies in Pic0 on geometric fibers over T ′.

By Grothendieck’s work on Picard schemes (see [39, Part 5]), if A → S is
projective Zariski-locally on S then PicA/S is represented by a locally finitely pre-

sented and separated S-scheme and the open subscheme At representing Pic0A/S

is quasi-projective Zariski-locally on S and finitely presented. For noetherian S,
functorial criteria show that At is proper and smooth (see [83, §6.1]), hence an
abelian scheme; the case of general S (with A projective Zariski-locally on S) then
follows by descent to the noetherian case.

To drop the projectivity hypothesis, one has to use algebraic spaces. Infor-
mally, an algebraic space over S is an fppf sheaf on the category of S-schemes that
is “well-approximated” by a representable functor (relative to the étale topology),
so concepts from algebraic geometry such as smoothness, properness, and connect-
edness can be defined and behave as expected; see [60]. By Artin’s work on relative
Picard functors as algebraic spaces (see [5, Thm. 7.3]), PicA/S is always a separated
algebraic space locally of finite presentation, and by [7, Exp. XIII, Thm. 4.7(iii)]
the open algebraic subspace Pic0A/S is finitely presented over S.

The functorial arguments that prove smoothness and properness for Pic0A/S

when A is projective work without projectivity because the same criteria are avail-
able for algebraic spaces. Thus, Pic0A/S is smooth and proper over S in the sense

of algebraic spaces. Consequently, by a theorem of Raynaud (see [38, Thm. 1.9]),
Pic0A/S is represented by an S-scheme At; this must be an abelian scheme, called
the dual abelian scheme. Its formation commutes with any base change on S, and
it is contravariant in A in an evident manner.

1.4.2.2. Over A × At there is a Poincaré bundle PA/S provided by the universal

property of At, exactly as in the theory of duality for abelian varieties over a field.
In particular, PA/S is canonically trivialized along e× idAt . Let e′ ∈ At(S) be the
identity, so for any S-scheme T the point e′T ∈ At(T ) corresponds to OAT

equipped
with the canonical trivialization of e∗T (OAT

). Thus, setting T = A gives that PA/S

is also canonically trivialized along idA × e′. Hence, the pullback of PA/S along
the flip At × A � A × At defines a canonical S-morphism ιA/S : A → Att. This
morphism carries the identity to the identity, so it is a homomorphism. By applying
the duality theory over fields to the fibers of A over S, it follows that ιA/S is an
isomorphism; in other words, the pullback of PA/S along the flip At×A � A×At is
uniquely isomorphic to PAt/S respecting trivializations along the identity sections
of both factors. Such uniqueness implies that ιtA/S is inverse to ιAt/S .
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A homomorphism f : A → At is symmetric when the map

f t ◦ ιA/S : A � Att → At

is equal to f . Writing f† := f t◦ιA/S , the equality ιtA/S = ι−1
At/S and the functoriality

of ιA/S in A (applied with respect to f) implies f†† = f , so if we abuse notation by

writing f t rather than f† then (f t)t = f . We say f is symmetric when f t = f (or
more accurately, f† = f). This property holds if it does so on fibers over S, because
homomorphisms f, f ′ : A ⇒ B between abelian schemes coincide if fs = f ′

s for all
s ∈ S. Indeed, for noetherian S such rigidity is [83, Cor. 6.2], and the general case
reduces to this because equality on all fibers descends through direct limits (since
it says that the finitely presented ideal of (f, f ′)−1(ΔA/S) in OA is nilpotent).

A polarization of A is a homomorphism f : A → At that is a polarization on
geometric fibers. Any such f is necessarily symmetric. The properties of polar-
izations are developed in [83, §6.2] for projective abelian schemes, but the only
purpose of imposing projectivity at the outset (even though it is a consequence of
the definition, due to [34, IV3, 9.6.4]) is to ensure the existence of the dual abelian
scheme, so such an assumption may be eliminated.

1.4.2.3. Definition. A homomorphism ϕ : A → B between abelian schemes over
a scheme S is an isogeny when it is surjective with finite fibers. (Equivalently, the
homomorphims ϕs are isogenies in the sense of abelian varieties for each s ∈ S.)

Since quasi-finite proper morphisms are finite by [34, IV4, 18.12.4] (or by [34,
IV3, 8.11.1] with finite presentation hypothesis, which suffices for us), any isogeny
between abelian schemes is a finite morphism. Moreover, by the fibral flatness
criterion [34, IV3, 11.3.11], such maps are flat. Hence, if ϕ as above is an isogeny
then it is finite locally free (and surjective), so the closed subgroup ker(ϕ) is a finite
locally free commutative S-group scheme. Thus, B represents the fppf quotient
sheaf A/ker(ϕ). For example, setting ϕ = [n]A for n � 1 gives A/A[n] � A.

Turning this around, suppose we are given the abelian scheme A and a closed
S-subgroup N ⊂ A that is finite locally free over S. Consider the fppf quotient
sheaf A/N . We claim that this quotient is (represented by) an abelian scheme, so
the map A → A/N with kernel N is an isogeny. It suffices to work Zariski-locally
on S, so we may assume that N → S has all fibers with the same order n � 1. We
then have N ⊂ A[n], due to the following result (proved in [123, §1]):

1.4.2.4. Theorem (Deligne). Let S be a scheme and let H be a commutative S-
group scheme for which the structural morphism H → S is finite and locally free.
If the fibers Hs have rank n for all s ∈ S then H is killed by n.

The quotient sheaf A/N is an fppf torsor over A/A[n] � A with fppf covering group
A[n]/N that is finite (and hence affine) over S. It then follows from effective fppf
descent for affine morphisms that the quotient A/N is represented by a scheme
finite over A/A[n] = A, and the map A → A/N is an fppf A[n]/N -torsor, so the
S-proper S-smooth A is finite locally free over A/N (as A[n]/N is finite locally free
over S). Hence, A/N is proper and smooth since A is, and likewise its fibers over
S are geometrically connected. Thus, A/N is an abelian scheme as desired.
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1.4.2.5. Theorem. Let ϕ : A → B be an isogeny between abelian schemes over a
scheme S, and let N = ker(ϕ). Duality applied to the exact sequence

0 → N −→ A
ϕ−→ B → 0

functorially yields an exact sequence

0 → ND −→ Bt ϕt

−→ At → 0.

That is, the map ϕt is an isogeny whose kernel is canonically isomorphic to ND.
Moreover, double duality for abelian schemes and for finite locally free commu-

tative group schemes are compatible up to a sign: if we identify ϕ and ϕtt via ιA/S

and ιB/S then the natural isomorphism (ND)D � ker((ϕt)t) = ker(ϕtt) � ker(ϕ) =
N is the negative of the canonical isomorphism provided by Cartier duality.

We refer the reader to [86, Thm. 1.1, Cor. 1.3] for a proof based on arguments
that relativize the ones over an algebraically closed field in [82]. (An alternative
approach, at least for the first part, is [87, Thm. 19.1], resting on the link between
dual abelian schemes and Ext-sheaves given in [87, Thm. 18.1].) The special case
ϕ = [n]A : A → A implies that naturally A[n]D = At[n] for every n � 1 because
[n]tA = [n]At (by [87, 18.3]); this identification respects multiplicative change in n.

1.4.3. Constructions and definitions. Let us now focus on constructions spe-
cific to the theory of finite commutative group schemes over a perfect field k of
characteristic p > 0. Let W = W (k) be the ring of Witt vectors of k; e.g., if k is
finite of size q = pr then W is the ring of integers in an unramified extension of
Qp of degree r. Let σ be the unique automorphism of W that reduces to the map
x �→ xp on the residue field k.

1.4.3.1. Definition. The Dieudonné ring Dk over k is W [F ,V ], where F and V
are indeterminates subject to the relations

(1) FV = VF = p,
(2) Fc = σ(c)F and cV = Vσ(c) for all c ∈ W .

Explicitly, elements of Dk have unique expressions as finite sums

a0 +
∑
j>0

ajFj +
∑
j>0

bjVj

with coefficients in W (so the center of Dk is clearly Zp[Fr,Vr] if k has finite size
pr and it is Zp otherwise; i.e., if k is infinite).

Some of the main conclusions in classical Dieudonné theory, as developed from
scratch in [41, Ch. I–III], are summarized in the following theorem.

1.4.3.2. Theorem. There is an additive anti-equivalence of categories G � M∗(G)
from the category of finite commutative k-group schemes of p-power order to the
category of left Dk-modules of finite W -length. Moreover, the following hold.

(1) A group scheme G has order p�W (M∗(G)), where �W (·) denotes W -length.
(2) If k → k′ is an extension of perfect fields with associated extension W → W ′

of Witt rings (e.g., the absolute Frobenius automorphism of k) then the functor
W ′ ⊗W (·) on Dieudonné modules is naturally identified with the base-change
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functor on finite commutative group schemes. In particular, M∗(G(p)) �
σ∗(M∗(G)) as W -modules.

(3) Let FrG/k : G → G(p) be the relative Frobenius morphism. The σ-semilinear

action on M∗(G) induced by M∗(FrG/k) through the isomorphism M∗(G(p)) �
σ∗(M∗(G)) equals the action of F , and G is connected if and only if F is
nilpotent on M∗(G).

(4) There is a natural k-linear isomorphism M∗(G)/FM∗(G) � Lie(G)∨ respect-
ing extension of the perfect base field.

(5) For the Cartier dual GD, naturally M∗(GD) � HomW (M∗(G),K/W ) with
K = W [1/p], using the operators F(�) : m �→ σ(�(V(m))) and V(�) : m �→
σ−1(�(F(m))) on K/W -valued linear forms �. �

For an abelian scheme A → S with fibers of constant dimension g � 1 and
its finite commutative pn-torsion subgroup scheme A[pn] with order (pn)2g, the
directed system A[p∞] := (A[pn])n�1 satisfies the following definition (with h = 2g).

1.4.3.3. Definition. A p-divisible group of height h � 0 over a scheme S is a
directed system G = (Gn)n�1 of commutative S-groups Gn such that: Gn is killed
by pn, each Gn → S is finite and locally free, [p] : Gn+1 → Gn is faithfully flat for
every n � 1, G1 → S has constant degree ph, and Gn is identified with Gn+1[p

n]
for all n � 1.

The (Serre) dual p-divisible group Gt is the directed system (GD
n ) of Cartier

dual group schemes GD
n with the transition maps GD

n → GD
n+1 that are Cartier

dual to the quotient maps [p] : Gn+1 → Gn.

As an illustration, if A → S is an abelian scheme with fibers of dimension
g � 1 then the isomorphisms A[n]D � At[n] respecting multiplicative change in
n (as noted immediately below Theorem 1.4.2.5) yield a canonical isomorphism
between the Serre dual A[p∞]t and the p-divisible group At[p∞] of the dual abelian
scheme At (see [86, Prop. 1.8] or [87, Thm. 19.1]).

1.4.3.4. Remark. In view of the sign discrepancy for comparisons of double du-
ality in Theorem 1.4.2.5, if ϕ : A → At is an S-homomorphism and

f : A[p∞] → At[p∞] � A[p∞]t

is the associated homomorphism between p-divisible groups then the dual homo-
morphism ϕt : A → At (strictly speaking, ϕt ◦ ιA/S via double duality for abelian

schemes) has as its associated homomorphism A[p∞] → A[p∞]t the negative1 of f t

(using double duality for p-divisible groups).
It follows that if ϕ is symmetric with respect to double duality for abelian

schemes then f is skew-symmetric with respect to double duality for p-divisible
groups. The converse is also true: we can see immediately via skew-symmetry
of f that ϕ and ϕt induce the same homomorphism between p-divisible groups,
and to conclude that ϕ = ϕt it suffices to check on fibers due to the rigidity of
abelian schemes (as in 1.4.2.2). On fibers we can apply the faithfulness of passage
to p-divisible groups over fields via 1.2.5.1 with � = p.

1A related sign issue in the double duality for commutative finite group schemes over perfect
fields is discussed in a footnote at the end of B.3.5.5.
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1.4.3.5. Example. If G = (Gn) is a p-divisible group over S (with height h) and
H = (Hn) is a p-divisible subgroup of G (with height h′ � h) in the sense that
Hn is a closed S-subgroup of Gn compatibly in n, then G/H := (Gn/Hn) is also
a p-divisible group over S. Indeed, a computation with fppf abelian sheaves shows
that the complex

0 → G1/H1 → Gn+1/Hn+1
[p]→ Gn/Hn

is left exact in the sense of fppf abelian sheaves and hence the induced map

(Gn+1/Hn+1)/(G1/H1) → Gn/Hn

between finite locally free commutative S-groups is a closed immersion (as is any
proper monomorphism), so it is an isomorphism for order reasons. This shows that
the map [p] : Gn+1/Hn+1 → Gn/Hn is faithfully flat with kernel G1/H1 of order

ph−h′
, so induction on n implies that (Gn/Hn)[p

m] is faithfully flat of order pm(h−h′)

for any m � n. In particular, the closed immersion Gn/Hn → (Gn+1/Hn+1)[p
n] is

an isomorphism for order reasons, so (Gn/Hn) is a p-divisible group.

In the preceding example, clearly the natural map q : G → G/H has functorial
kernel H and has the mapping property of a quotient: any homomorphism of p-
divisible groups G → G′′ that kills H uniquely factors through q. Hence, it is
appropriate to define a short exact sequence of p-divisible groups to be a complex

0 → G′ → G → G′′ → 0

such that G′ is a p-divisible subgroup of G and the induced map G/G′ → G′′ is an
isomorphism, or equivalently the induced complex of finite locally free commutative
S-groups

0 → G′
n → Gn → G′′

n → 0

is short exact for all n � 1.
For example, if 0 → A′ → A → A′′ → 0 is a short exact sequence abelian

schemes (in the sense of fppf abelian sheaves on the category of S-schemes), or
equivalently A → A′′ is faithfully flat with kernel A′, or equivalently it is short
exact on geometric fibers over every point of S, then a computation with the snake
lemma for fppf abelian sheaves shows that the induced complex

0 → A′[p∞] → A[p∞] → A′′[p∞] → 0

is short exact. Also, by the definition of the Serre dual p-divisible group in terms of
Cartier duality at finite levels, the Serre dual of a short exact sequence of p-divisible
groups is short exact.

1.4.3.6. Example. An important example of a short exact sequence of p-divisible
groups is the connected-étale sequence for a p-divisible group over a complete local
noetherian ring R with residue characteristic p > 0. To define this, first recall that
for any finite flat commutative R-group scheme H, the connected component H0 of
the identity section is an open and closed R-subgroup (in particular, it inherits R-
flatness from H, so it is a finite flat R-group) and the associated finite flat quotient
H ét := H/H0 is finite étale; these properties can be seen via the special fiber. The
short exact sequence

0 → H0 → H → H ét → 0

of R-group schemes is the connected-étale sequence for H.
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A p-divisible group G = (Gn) over R is connected if each Gn is connected;
equivalently, every Gn has infinitesimal special fiber. By a snake lemma argument
with fppf abelian sheaves and the connected-étale sequence for finite flat commu-
tative R-group schemes, if G = (Gn) is a p-divisible group over R then G0 := (G0

n)
is a p-divisible group (called the connected component of G) and Gét := (Gét

n ) is a
p-divisible group (called the étale part of G). We call

0 → G0 → G → Gét → 0

the connected-étale sequence for G.
Somewhat deeper lies the fact (see [119, §2.2] and [75, II, 3.3.18, 4.5]) that

if G is a connected p-divisible group over R then O(G) := lim←−O(Gn) is a formal
power series ring in finitely many variables over R such that the induced formal
R-group structure makes [p]∗ : O(G) → O(G) finite flat, and moreover there is an
equivalence

G � Ĝ := Spf(O(G))

from the category of connected p-divisible groups over R to the category of com-
mutative formal Lie groups Γ over R for which [p]Γ is an isogeny. The quasi-inverse
functor is Γ � (Γ[pn]). This equivalence defines the (relative) dimension and Lie
algebra for a connected p-divisible group over R, via analogous notions for formal
Lie groups over R. By [119, §2.3, Prop. 3], dim(G) + dim(Gt) is the height of G.

For later purposes, here is how this construction works in the important exam-
ple of the p-divisible group G = A[p∞] arising from an abelian R-scheme A. What

is Ĝ? Let CR denote the category of artinian local R-algebras that are module-finite
over R (and hence killed by some power of the maximal ideal of R). Every point
of A valued in such an algebra and supported at the identity of the special fiber is

a point of the commutative formal Lie group Â := Spf(O∧
A,0). A computation with

formal group laws shows that all such points have p-power torsion, due to R having
residue characteristic p. (This calculation will be given in a self-contained manner
in the proof of Proposition 1.4.4.3.) Thus, for any C ∈ CR, the formal Lie group

Â has each of its C-points supported in some A[pn]0. It follows that Â and Ĝ pro-

represent the same functor on CR, so the natural map Ĝ → Â is an isomorphism.
In particular, the p-divisible group of A has the same (relative) dimension and Lie
algebra as A does.

1.4.3.7. Now consider p-divisible groups over a perfect field k of characteristic
p > 0. For any p-divisible group G = (Gn)n�1 over k with height h � 1 we
let M∗(G) denote the Dk-module lim←−M∗(Gn). By the same style of arguments
used to work out the Z�-module structure of Tate modules of abelian varieties
in characteristic �= � (resting on knowledge of the orders of the �-power torsion
subgroups), we use W -length to replace counting to infer that M∗(G) is a free
W -module of rank h and

M∗(G)/pnM∗(G) → M∗(Gn)

is an isomorphism for all n � 1. The p-divisible group G is connected if and only
if F is topologically nilpotent on M∗(G) (since this is equivalent to the nilpotence
of F on each M∗(Gn)).

The Dieudonné module functor defines an anti-equivalence between the cate-
gory of p-divisible groups over k (using the evident notion of morphism) and the
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category of left Dk-modules that are finite and free as W -modules; the W -rank of
M∗(G) is equal to the height of G.

The notion of isogeny for p-divisible groups over a general scheme will be dis-
cussed in 3.3.3–3.3.5, but for our present purposes we only need the case when the
base is a perfect field. This special case is easier to develop, and it is also convenient
to have it available (on geometric fibers) when considering the relative case. Thus,
we now define and briefly study this concept over perfect fields.

1.4.3.8. Definition. A homomorphism f : X → Y between p-divisible groups
over a perfect field K is an isogeny if kerf is a finite K-group and the heights of X
and Y coincide.

We first explain what this means in more concrete terms when char(K) �=
p by using p-adic Tate modules, and then the interesting case of perfect K of
characteristic p will proceed similarly by using Dieudonné modules.

Assume char(K) �= p, so all p-divisible groups over K are étale (in the sense
that each pn-torsion subgroup is étale over K). Via the formation of p-adic Tate
modules, the category of p-divisible groups over K is equivalent to the category of
continuous linear representations of Gal(Ks/K) on finite free Zp-modules. It follows
that f is an isogeny if and only if the induced map between p-adic Tate modules
becomes an isomorphism after inverting p. Thus, a homomorphism f : X → Y
between p-divisible groups is an isogeny if and only if there is a homomorphism
f ′ : Y → X such that f ′ ◦f = [pn]X and f ◦f ′ = [pn]Y for some n � 0, and such an
f is a quotient modulo the finite kernel ker(f) in the sense that any homomorphism
of p-divisible groups X → X ′′ over K that kills ker(f) factors uniquely through f .

By forming a quotient Tate module, we likewise see that for any finite K-
subgroup G ⊂ X there is an isogeny of p-divisible groups f : X → Y over K with
ker(f) = G, and f is unique up to unique isomorphism in an evident sense. We call
Y the quotient of X modulo G and denote it as X/G. (It is not entirely trivial to
describe Y [pn] in terms of X and G, and this will make the analogous construction
over a general base scheme less straightforward.)

Now assume char(K) = p (and K is perfect). By arguing with Dieudonné
modules in the role of p-adic Tate modules, it is elementary to check that a homo-
morphism f : X → Y between p-divisible groups over K is an isogeny if and only
if the induced map M∗(f) between Dieudonné modules becomes an isomorphism
after inverting p. Consequently, we again obtain that f is an isogeny if and only if
there is a homomorphism f ′ : Y → X such that f ′◦f = [pn]X and f ◦f ′ = [pn]Y for
some n � 0, and that f has the expected universal mapping property for homomor-
phisms from X that kill the finite kernel of f . Likewise, for any finite K-subgroup
G ⊂ X the induced map of (contravariant!) Dieudonné modules M∗(X) → M∗(G)
is surjective (since G ⊂ X[pn] for large n), so the kernel of this surjection is W -finite
free of the same rank as M∗(X). The corresponding p-divisible group is denoted
X/G because the evident map X → X/G is an isogeny with kernel G.

As with abelian varieties, the isogeny category of p-divisible groups over a per-
fect field k of characteristic p > 0 is defined either by formally inverting isogenies or
more concretely by using as the Hom-sets Hom0(X,Y ) = Hom(X,Y )[1/p]. For an
abelian variety A of dimension g > 0 over k, the Dk-module M∗(A[p∞]) is finite free
of rank 2g over W , so it is an analogue of the �-adic Tate module for � �= char(k)
even though it is contravariant in A. The Dk-module structure is the analogue of
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the Galois action on �-adic Tate modules, though the action by F and V is highly
non-trivial even when k = k̄ (whereas the Galois action on Tate modules is trivial
for such k). As an analogue of the Poincaré reducibility theorem for abelian vari-
eties, the isogeny category of p-divisible groups over k is semisimple when k = k;
see Theorem 3.1.3. (This semisimplicity fails more generally, even over finite fields,
as we see in the étale case: Galois groups can have non-semisimple representations
on finite-dimensional Qp-vector spaces.)

To illustrate the use of Dieudonné modules as a replacement for Tate modules
in the case � = p, we have the following result that will be important in our later
study of a notion of “complex multiplication” for p-divisible groups.

1.4.3.9. Proposition. Let G be a p-divisible group of height h > 0 over a field κ
of characteristic p, and let k be a perfect extension of κ.

(1) If F is a commutative semisimple Qp-subalgebra of End0(G) := Qp⊗Zp
End(G)

then [F : Qp] � h, with equality if and only if M∗(Gk)[1/p] is free of rank 1 as
a W (k)⊗Zp

F -module.

(2) When equality holds, F is its own centralizer in End0(G). If moreover the
maximal Zp-order OF in F lies in End(G) then M∗(Gk) is free of rank 1 as
a W (k)⊗Zp

OF -module.

In 3.1.8 we will show that End(G) is finitely generated as a Zp-module, but
this fact is not needed here.

Proof. We may and do replace κ with k, so κ is perfect. (In particular, we
may use the notion of isogeny as in 1.4.3.8.) Letting K0 = W (κ)[1/p], we view
M∗(G)[1/p] as a finite module over the semisimple ring K0 ⊗Qp

F . The second
condition in (2) is immediate from the freeness in (1) (as W (κ)⊗Zp

OF is a finite
product of discrete valuation rings that are W (κ)-finite, and M∗(G) is finite free
as a W (κ)-module), so it is harmless to pass to an F -linearly isogenous p-divisible
group. Thus, we may decompose G according to the idempotents of F to reduce to
the case when F is a p-adic field. Let k0 be its finite residue field, F0 = W (k0)[1/p],
κ′ a compositum of k0 with κ over Fp, and K ′

0 = W (κ′)[1/p]. Consider the decom-
position

K0 ⊗Qp
F = (K0 ⊗Qp

F0)⊗F0
F �

∏
j:k0→κ′

(K ′
0 ⊗j,F0

F )

where j varies through the embeddings over k0∩κ (⊂ k0). This is a finite product of
copies of totally ramified finite extensions of K ′

0, and the factor fields are permuted
transitively by the natural F -linear action of the Galois group Gal(k0/(k0 ∩ κ)).
Note that this Galois group is generated by a power of the absolute Frobenius.

We conclude that any K0 ⊗Qp
F -module M canonically decomposes in a com-

patible F -linear way as
∏

Mj for vector spaces Mj over the factors fields. Hence,
if M is equipped with an injective F -linear endomorphism F that is semilinear
over the absolute Frobenius of K ′

0 then F must be an F -linear automorphism that
transitively permutes the Mj ’s via F -linear isomorphisms. In particular, if such an
M is non-zero then each Mj is a non-zero vector space over the factor field indexed
by j, so M as a K0 ⊗Qp

F -module would be free of some positive rank ρ and hence
of K0-dimension [F : Qp]ρ.
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Now set M = M∗(G)[1/p], whose K0-dimension is h. This is equipped with
the required Frobenius-semilinear injective endomorphism (that is moreover F -
linear by functoriality), so it is free of some rank ρ � 1 over K0 ⊗Qp

F and hence
h = [F : Qp]ρ. It follows that [F : Qp] � h, with equality if and only if ρ = 1. This
proves (1).

Finally, assuming we are in this rank-1 case, it remains to prove that F is its
own centralizer in End0(G). To compute the centralizer of F , first observe that
the Dieudonné module functor (on the isogeny category) is valued in the category
of K0-vector spaces, so every element f ∈ End0(G) that commutes with the F -
action induces a K0 ⊗Qp

F -linear endomorphism of M∗(G)[1/p]. We know that
M∗(G)[1/p] is free of rank 1 over K0 ⊗Qp

F , so M∗(f) acts as multiplication by
some c ∈ K0 ⊗Qp

F . Since M∗(f) also commutes with the action of F that is
semilinear over the absolute Frobenius σ of K0, we have (σ⊗ 1)(c) = c. This forces
c ∈ F , as desired. �

1.4.4. Deformation theory. Let R be a local ring with residue field κ. The func-
tor A � Aκ from abelian schemes over R to abelian varieties over κ is faithful. This
follows from two facts: the collection of finite étale subgroup schemes A[N ] for N
not divisible by char(κ) is schematically dense in A (due to the fiberwise denseness
and [34, IV3, 11.10.9]), and passage to the special fiber is faithful on finite étale
R-schemes. When considering deformation problems for abelian varieties equipped
with endomorphisms or a polarization (viewed as a special kind of isogeny), this
faithfulness result is implicitly used without comment.

1.4.4.1. Remark. For abelian R-schemes A and B, the injective reduction map

Hom0(A,B) := Q⊗Z Hom(A,B) → Hom0(Aκ, Bκ)

gives meaning to the intersection Hom0(A,B)
⋂
Hom(Aκ, Bκ). This intersection

contains Hom(A,B) but can be strictly larger. To make an example, let R be a
discrete valuation ring with fraction field K of characteristic 0 and residue field κ
of characteristic p > 0, and let E be an elliptic curve over R such that E[p]K is
constant and Eκ is ordinary. There are p+ 1 cyclic subgroups of E[p]K with order
p, so via R-flat closure there are p + 1 closed R-flat subgroups C ⊂ E of order p.
For any local extension of discrete valuation rings R ↪→ R′, the R′-subgroups {CR′}
of ER′ exhaust the p+1 possibilities over R′. Due to the connected-étale sequence

over R̂, it follows that exactly one such C ⊂ E is connected, so the p others are étale
and hence have reduction equal to the same (unique) étale κ-subgroup of Eκ[p].

If C,C ′ ⊂ E[p] are distinct étale subgroups of order p then the kernels of the
isogenies f : E → E/C and f ′ : E → E/C ′ are distinct over K but the same over
κ. Since the reductions of f and f ′ have the same kernel, in the isogeny category
of elliptic curves over R the element f ◦ (f ′)−1 ∈ Hom0(E/C ′, E/C) has reduction
that is a morphism of elliptic curves (and even an isomorphism, with inverse given

by the reduction of f ′ ◦ f−1). If f ◦ f ′−1
were a morphism of elliptic curves over R

then it would have to be an isomorphism (since its reduction is an isomorphism),
and so C ′ would be in the orbit of C under Aut(E) = Aut(EK). These orbits
have size at most #Aut(EK)/2 � 3, so we can find C ′ and C not in the same
Aut(E)-orbit whenever j(EK) �= 0, 1728 or p > 3.
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The analogous faithfulness result for p-divisible groups is more subtle when
char(κ) = p, since it is false without a noetherian condition:

1.4.4.2. Example. Let R = Zp[ζp∞ ] be the (non-noetherian) valuation ring of the
p-power cyclotomic extension of Qp, and let {ζpn} a compatible system of primitive
p-power roots of unity in R. The R-homomorphism between p-divisible groups
Qp/Zp → μp∞ defined by p−n �→ ζpn is an isomorphism between the generic fibers
and induces the zero map between the special fibers.

Under a noetherian hypothesis, the preceding pathology cannot occur:

1.4.4.3. Proposition. Let (R,m) be a noetherian local ring with residue field κ
of characteristic p > 0. The functor G � Gκ from p-divisible groups over R to
p-divisible groups over κ is faithful.

Proof. The problem is to prove that if f : G′ → G is a homomorphism between
p-divisible groups over R and fκ = 0 then f = 0. For each n � 1, the induced map
fn : G′[pn] → G[pn] between finite flat R-group schemes is described by a matrix
over R upon choosing R-bases of the coordinate rings (as finite free R-modules).
Hence, by the Krull intersection theorem it suffices to prove the vanishing result
over R/mN for all N � 1, so we may and do assume that R is an artinian local
ring. By the functoriality of the connected-étale sequence, it suffices to treat the
following separate cases: G′ and G are both connected, G′ and G are both étale,
or G′ is étale and G is connected.

The case when both are étale is obvious. When G′ is étale and G is connected
then we claim that Hom(G′, G) = 0. By faithfully flat base change to the (artinian
local) strict henselization Rsh we may assume G′ is constant, so it is a power of
Qp/Zp. Hence, we can assume G′ = Qp/Zp, so Hom(G′, G) = lim←−G[pn](R) (inverse

limit via p-power maps). The equivalence between connected p-divisible groups and
formal Lie groups over R on which multiplication by p is an isogeny (see Example

1.4.3.6) identifies this inverse limit with the p-adic Tate module of Ĝ(R), where Ĝ
is the formal Lie group associated to G. Hence, the desired vanishing is reduced to

proving that Ĝ(R) has no non-zero infinitely p-divisible elements. In fact, we claim

that [pN ] kills Ĝ(R) for sufficiently large N .

Upon choosing formal parameters for Ĝ, we may identify the set Ĝ(R) with

the set of ordered d-tuples in m, where d = dimG. If g ∈ Ĝ(R) has coordinates in
an ideal I of R then [p](g) has coordinates in (pI, I2) since [p] has linear part given
by p-multiplication on the coordinates. Hence, if we define the sequence of ideals
J0 = m and Jn+1 = (pJn, J

2
n) then we just need JN = 0 for sufficiently large N .

More generally, for any ring whatsoever and any ideal J0, an elementary induction
argument shows that Jn ⊂ (p, J0)

n. The nilpotence of m then does the job.
Finally, we address the most interesting case, which is connected G′ and G.

In this case we switch to the perspective of formal Lie groups and aim to prove
that for commutative formal Lie groups Γ and Γ′ over R such that [p]Γ′ is an
isogeny, Hom(Γ′,Γ) → Hom(Γ′

κ,Γκ) is injective. Consider f ∈ Hom(Γ,Γ′) that
vanishes modulo an ideal I ⊆ m. Choose formal coordinates {x′

i} and {xj} for Γ′

and Γ respectively, so the coefficients of all monomials in f∗(xj) lie in I. Hence,
the formal power series (f ◦ [p]Γ′)∗(xj) = [p]∗Γ′(f∗(xj)) has all coefficients of all
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monomials lying in (pI, I2). Iterating, if f ∈ Hom(Γ′,Γ) vanishes over κ then
f ◦ [pn]Γ′ vanishes modulo the ideal Jn, where J0 = m and Jn+1 = (pJn, J

2
n). We

have already seen that JN = 0 for sufficiently large N , so f ◦ [pN ]Γ′ = 0 for large N .
By hypothesis the isogenous endomorphism [pN ]Γ′ = [p]NΓ′ of Γ′ induces an injective
endomorphism of the coordinate ring, so f = 0. �

An important fact in the study of lifting problems for abelian varieties from
characteristic p to characteristic 0 is that infinitesimal lifting for such an abelian
variety is entirely controlled by that of its p-divisible group. This will be made
precise in Theorem 1.4.5.3 (and Example 1.4.5.4 will address algebraization aspects
in the limit). We now focus on the existence and structure of deformation rings for
abelian varieties and p-divisible groups as well as the behavior of these deformation
rings relative to extension of the residue field.

1.4.4.4. Definition. Let A0 be an abelian variety of dimension g over a field κ.
For a complete local noetherian ring R with residue field κ, a deformation of A0

over R is a pair (A, i) consisting of an abelian scheme A over R and an isomorphism
i : Aκ � A0 over κ.

There is an evident notion of isomorphism between two deformations of A0

over R, and such deformations have no non-trivial automorphisms. Likewise, if
A0 is equipped with a polarization φ0 : A0 → At

0 or an injective homomorphism
α0 : O → End(A0) from a specified Z-finite associative ring O (or both!), we define
in an evident way the notion of deformation for A0 equipped with this additional
structure. In the case of polarizations, any R-homomorphism φ : A → At lifting φ0

is necessarily a polarization. Indeed, the symmetry of φ is inherited from φ0 (due
to faithfulness of passage to the special fiber for abelian schemes over a local ring),
and the ampleness on A of the pullback (1, φ)∗(PA) of the Poincaré bundle PA

is inherited from the ampleness on A0 of its restriction (1, φ0)
∗(PA0

) due to [34,
IV3, 9.6.4].

Fix a complete local noetherian ring Λ with residue field κ (e.g., a Cohen ring
for κ), and let CΛ be the category of artinian local Λ-algebras R with local structure
map Λ → R and residue field κ. The deformation functor

DefΛ(A0) : CΛ → Set

assigns to every R in CΛ the set of isomorphism classes of deformations of A0 over
R. Likewise, if A0 is equipped with a polarization φ0 : A0 → At

0 and endomorphism
structure α0 : O ↪→ End(A0) (for a Z-finite associative ring O) then we define the
deformation functor DefΛ(A0, φ0, α0) similarly. This is a subfunctor of DefΛ(A0).

A covariant functor F : CΛ → Set is pro-representable if there is a complete
local noetherian Λ-algebra R with local structure map Λ → R and residue field
κ such that F � HomΛ(R, ·) (using local Λ-algebra homomorphisms). A formal
deformation ring for A0 (if one exists) is an R that pro-represents DefΛ(A0). The
reason we say “formal” is that over such an R there is merely a universal formal
abelian scheme (which is however universal modulo mn

R among abelian scheme
deformations of A0 over objects in CΛ whose maximal ideal has vanishing nth
power, for each n � 1).

When we include a polarization as part of the deformation problem, if this
enhanced problem admits a pro-representing ring R then by Grothendieck’s formal
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GAGA algebraization theorems [34, III1, 5.4.1, 5.4.5] there is a universal defor-
mation (i.e., a polarized abelian scheme deformation over R that represents the
deformation functor on the category of all complete local noetherian Λ-algebras
with residue field κ).

1.4.4.5. Theorem. The deformation functor DefΛ(A0) is pro-representable and
formally smooth, with tangent space canonically isomorphic to Lie(At

0)⊗κ Lie(A0)
as a κ-vector space. In particular, this formal deformation ring is a formal power
series ring over Λ in g2 variables.

Each deformation functor DefΛ(A0, φ0, α0) and DefΛ(A0, α0) is pro-represented
by a quotient of the formal deformation ring for A0.

Proof. The case of DefΛ(A0) is due to Grothendieck and is explained in detail
in [88, Thm. 2.2.1] (where the description of the tangent space to the deforma-
tion functor is given in the proof). To show that a deformation functor F of the
form DefΛ(A0, φ0, α0) or DefΛ(A0, α0) is pro-represented by a quotient of the for-
mal deformation ring (R,m) for A0, for each integer n � 1 we consider the full
subcategory CΛ,n of objects R ∈ CΛ whose maximal ideal has vanishing nth power.
The restriction DefΛ(A0)|CΛ,n

is represented by R/mn. For each n, suppose there
is an ideal In ⊂ R/mn such that (R/mn)/In represents the subfunctor F |CΛ,n

of
DefΛ(A0)|CΛ,n

. Since CΛ,n is a full subcategory of CΛ,n+1, by universality we see

that In+1 has image In under R/mn+1 → R/mn. Hence, there is a unique ideal
I ⊂ R such that In = (I +mn)/mn for all n � 1, so R/I is the desired quotient.

We are reduced to the following general problem for abelian schemes (applied
to the universal deformation of A0 over R/mn for every n � 1 and the structure
(φ0, α0) on its reduction A0 modulo the nilpotent ideal m/mn). Let A and B
be abelian schemes over a noetherian scheme S, and let I ⊂ OS be a nilpotent
coherent ideal sheaf defining a closed subscheme S0 ⊂ S. For a homomorphism
f0 : A0 → B0 over S0, the condition on an S-scheme T that (f0)T0

lifts (necessarily
uniquely!) to a T -homomorphism AT → BT is represented by a closed subscheme
of S (visibly containing S0). We will prove this by using Hom-schemes.

Consider the functor Hom(A,B) : T � HomT -gp(AT , BT ) on S-schemes. We
shall prove this is represented by an S-scheme locally of finite type (avoiding projec-
tivity hypotheses on A and B). Grothendieck’s construction of Hom-schemes from
Hilbert schemes (via graph arguments) for schemes that are proper, flat, and finitely
presented over the base requires projectivity because this hypothesis is needed to
ensure representability of Hilbert functors. But Artin showed (see [5, Cor. 6.2])
that the Hilbert functor of a proper, flat, and finitely presented S-scheme X is an
algebraic space that is separated and locally of finite type over S. Consequently, the
same holds for Hom-functors between such schemes, and so also for the subfunctors
that impose compatibility with group laws.

We conclude that H := Hom(A,B) is an algebraic space that is separated and
locally of finite type over S. For all s ∈ S the fibers Hs are étale (by the functorial
criterion), and an algebraic space that is separated and locally quasi-finite over a
noetherian scheme is a scheme [60, II, 6.16]. Thus, H is represented by a separated
and locally finite type S-scheme that we denote also as H.

The given f0 defines a section toH0 := H×SS0 → S0. We claim that the closed
subscheme Z0 ↪→ H0 underlying this section is stable under generization. Suppose
not, so there exists a discrete valuation ring R and an element h0 ∈ H0(R) whose
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generic point lands outside Z0 and whose closed point lands inside Z0. Making a
base change by the resulting map Spec(R) → S0 yields a pair of R-homomorphisms
(A0)R ⇒ (B0)R (one coming from h0, and the other from f0) that agree on the
closed fibers but are distinct on generic fibers, contradicting faithfulness of passage
to the special fiber for abelian schemes over a local ring.

By stability under generization, the closed subscheme Z0 in H0 is topologically
open, so the open subscheme U ⊂ H with the underlying space of Z0 is a union of
connected components of H. The structure morphism U → S is a homeomorphism,
so it is of finite type, not just locally of finite type. The map H → S satisfies the
valuative criterion for properness since an abelian scheme over a discrete valuation
ring is the Néron model of its generic fiber [10, 1.2/8], so the open and closed U
in H also satisfies the valuative criterion over S. This proves that the finite type
map U → S is proper, yet it has étale fibers of degree 1, so it is a closed immersion
(defined by a nilpotent ideal). The closed subscheme U ↪→ S represents the lifting
condition on f0. �

1.4.4.6. Remark. A globalization of the formal smoothness of the infinitesimal
deformation theory of an abelian variety is Grothendieck’s result that if R is a
ring containing an ideal J satisfying J2 = 0 then every abelian scheme A0 over
R0 := R/J lifts to an abelian scheme over R. We sketch the proof, building on
the key case of an artinian local base that follows from the formal smoothness of
the infinitesimal deformation theory (and is a key step in the proof of the formal
smoothness in [88, Thm. 2.2.1]).

By direct limit arguments we may and do assume R is noetherian. The ob-
struction to lifting A0 to a smooth proper R-scheme A is a certain class ξ ∈
H2(A0, (Ω

1
A0/R0

)∨⊗R0
J). The formation of ξ is compatible with base change on R

(relative to base change morphisms for the cohomology of quasi-coherent sheaves),
so by Zariski localization and completion we see that the vanishing of ξ is reduced
to the case when R is a complete local noetherian ring. By the Theorem on Formal
Functions [34, III1, 4.2.1], the vanishing of ξ is reduced to the settled case when R
is an artinian local ring.

Now return to a general noetherian R, and fix a smooth proper R-scheme A
lifting A0. By smoothness we may choose a lift e ∈ A(R) of the identity section
e0 ∈ A0(R0). We claim that the subtraction morphism μ0 : A0 ×A0 → A0 defined
by (x, y) �→ x − y uniquely lifts to an R-morphism μ : A × A → A carrying (e, e)
to e. Once such a μ exists, it is the subtraction for a unique group law due to
rigidity arguments explained in [83, Ch. 6, §3]. In particular, over an arbitrary
ring R (without noetherian hypotheses) μ is unique if it exists. Hence, by Zariski
localization it suffices to prove the existence of μ when R is a local noetherian ring,

and by fpqc descent with respect to R → R̂ we may assume R is complete. Formal
GAGA for morphisms [83, III1, 5.4.1] then reduces the existence problem to the
case of artinian local R, so by length induction we may assume J is killed by the
maximal ideal of R. This case is settled in [83, Ch. 6, §3, Prop. 6.15].

The deformation theory of p-divisible groups ends up with results similar to
the case of abelian varieties but proceeds by another path. To describe this, let κ
be a field of characteristic p > 0, Λ a complete local noetherian ring with residue
field κ, and X0 a p-divisible group of height h � 0 and dimension d � 0 over κ (so
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dim(Xt
0) = h − d by [119, §2.3, Prop. 3]). A deformation of X0 over a complete

local noetherian ring R with residue field κ is a pair (X , i) consisting of a p-divisible
group X over R and an isomorphism i : Xκ � X0.

There is an evident notion of morphism between such pairs. By Proposition
1.4.4.3, deformations of X0 have no non-trivial automorphisms (lifting the identity
on X0). Hence, it is reasonable to study the functor DefΛ(X0) assigning to any
R ∈ CΛ the set of isomorphism classes of deformations of X0 over R. In contrast
with the deformation theory of non-zero abelian varieties, for which the universal
formal deformation is never algebraizable beyond the case of elliptic curves, the
universal formal deformation of a p-divisible group is also a universal deformation
relative to all complete local noetherian Λ-algebras with residue field κ since p-
divisible groups are built from torsion-levels that are finite flat over the base.

1.4.4.7. Theorem. The functor DefΛ(X0) is pro-represented by a power series
ring over Λ in d(h−d) variables. The tangent space tX0

to this functor is canonically
isomorphic to Lie(Xt

0)⊗κ Lie(X0) as a κ-vector space.

The pro-representability for connected X0 over perfect κ is established in [124]
by using formal group laws to verify Schlessinger’s criteria; the perfectness is re-
quired to carry out a Dieudonné module computation establishing that dimκ(tX0

) <
∞ (equal to d(h− d)). This approach does not prove formal smoothness. Over al-
gebraically closed fields the pro-representability for general X0 is deduced formally
from the connected case in the proof of [16, Thm. 4.4 (2)]. The general case over
any κ may be deduced from Schlessinger’s criteria and [51, 4.4]; the latter ingredi-
ent is proved via the cotangent complex (also see [51, 4.8] for perfect κ). For the
convenience of the reader, here is a proof for general κ that avoids the machinery
of the cotangent complex.

Proof. First, we address the formal smoothness. The case of connected X0 is
a special case of the unobstructedness of lifting commutative formal Lie groups,
which can be proved over any ring via Cartier theory; see [136, Thm. 4.46]. For
disconnected X0 consider a deformation X of X0 over an artinian local Λ-algebra
R with residue field κ. There is a unique (up to unique isomorphism) étale p-
divisible group E over R that lifts X ét

0 over κ, so X ét is uniquely isomorphic to E
as deformations of X ét

0 .
Since X0 is a deformation of the identity component of X0, we see that the

construction of such X comes in two steps: (i) deform X0 to a (necessarily con-
nected) p-divisible group over R (this step is unobstructed, by the settled connected
case), and (ii) construct extensions over R of E by the chosen deformation of X0

0 .
Such extensions in the sense of fppf abelian sheaves on the category CR of finite
R-algebras (equipped with the fppf topology) arise from p-divisible groups, due to:

1.4.4.8. Lemma. Let R be an local artinian ring with residue characteristic p > 0,
and choose a connected p-divisible group G over R and an étale p-divisible group E
over R. For any short exact sequence of fppf abelian sheaves

(1.4.4.1) 0 → G → Y → E → 0

on the category CR of finite R-algebras (with the fppf topology), Y is a p-divisible
group (so the given short exact sequence is the connected-étale sequence of Y ).
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Proof. Since G and E are p-power torsion sheaves, the sheaf Y is the union of
its subsheaves Y [pn] for n � 1. The snake lemma gives that [p] : Y → Y is an
epimorphism and provides short exact sequences of abelian sheaves

0 → G[pn] → Y [pn] → E[pn] → 0

for all n � 1. The outer terms are represented by finite flat R-group schemes, so
by Proposition 1.4.1.3 the middle term must also be represented by a finite flat
R-group scheme. Thus, Y is a p-divisible group. �

Over any base scheme S, the study of extensions of an étale p-divisible group E
by a given p-divisible group G over S can be reduced to the special case E = Qp/Zp

at the cost of replacing G with a p-divisible group denoted E∨ ⊗G, as follows.
Let E∨ ⊗G be the direct limit (over n → ∞) of the tensor products

E[pn]∨ ⊗Z/(pn) G[pn]

of G[pn] against the Z/(pn)-linear dual E[pn]∨ of the étale sheaf E[pn], using the
evident transition maps. This is easily seen to be a p-divisible group. Note that if
S is the spectrum of a complete local noetherian ring with residue characteristic p
and if G is connected then E∨⊗G is connected with dimension height(E) ·dim(G).

There is a general categorical equivalence (compatible with base change) from
the category of extensions of E by G to the category of extensions of the constant
p-divisible group Qp/Zp by E∨ ⊗ G. In one direction, for an extension (1.4.4.1)
apply E∨ ⊗ (·) and then pull back the short exact sequence

0 → E∨ ⊗G → E∨ ⊗ Y → E∨ ⊗ E → 0

along Qp/Zp ↪→ E∨ ⊗ E corresponding to the identity map in E[pn]∨ ⊗ E[pn] =
End(E[pn]) for n � 1. In the other direction, given an extension of Qp/Zp by
E∨ ⊗ G, we apply E ⊗ (·) to the given exact sequence and push out along the
evaluation map E ⊗ E∨ ⊗ G → G. In an evident way, these are quasi-inverse
constructions.

To summarize, the formal smoothness of DefΛ(X0) for disconnected X0 is re-
duced to cases with X ét

0 = Qp/Zp. Since the deformation theory is formally smooth
in the connected case, the formal smoothness of DefΛ(X0) is reduced to the follow-
ing assertion.

1.4.4.9. Lemma. Let (R,m) be artinian local with residue field κ of characteristic
p > 0, J a non-zero ideal in R such that mJ = 0, and R0 := R/J . For a connected
p-divisible group G over R with reduction G0 over R0,

Ext1R(Qp/Zp, G) → Ext1R0
(Qp/Zp, G0)

is surjective.
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Proof. As above, let CR denote the category of finite R-algebras, equipped with
the fppf topology, and define CR0

similarly; the Ext-groups are computed in the
categories of abelian fppf sheaves on the respective sites CR and CR0

. By writing
Q/Z as the direct sum of its p-primary part Qp/Zp and its prime-to-p part M ,

Ext1R(Q/Z, G) = Ext1R(Qp/Zp, G)⊕ Ext1R(M,G).

The final Ext-term vanishes: any extension E of M by G is a torsion sheaf, so the
decomposition of E as a direct sum of its p-primary part and prime-to-p part splits
the extension structure. Thus, our problem is proving the surjectivity of

Ext1R(Q/Z, G) → Ext1R0
(Q/Z, G0).

Consider the evident commutative diagram of long exact sequences

0 �� G(R) ��

��

Ext1R(Q/Z, G) ��

f

��

Ext1R(Q, G) ��

f ′

��

H1(R,G)

f ′′

��
0 �� G0(R0) �� Ext1R0

(Q/Z, G0) �� Ext1R0
(Q, G0) �� H1(R0, G0)

We want f to be surjective. The functor G on CR is pro-represented by the coordi-
nate ring O(G) of the associated formal Lie group, so it is formally smooth. Hence,
the left vertical map is surjective, so by the 5-lemma it suffices to show that f ′ is
surjective and f ′′ is injective.

We first show that f ′′ is injective, for which it suffices to show that any G-torsor
fppf sheaf of sets X on CR is formally smooth. There is a local finite flat cover R′ of
R such that X|CR′ is pro-represented by O(G)R′ , so X is pro-represented by an R-
descent A of O(G)R′ ; this descent is easily checked to be a complete noetherian local
R-algebra (and its functor on CR is computed using local ring homomorphisms).
Clearly A is R-flat and the scalar extension κ′ ⊗κ Aκ over the residue field κ′ of
R′ is a formal power series ring over κ′. It follows that k ⊗κ Aκ is regular for
any finite extension k of κ (it suffices to consider k containing κ′, as a noetherian
ring with a regular faithfully flat extension is regular [73, Thm. 23.7]), so Aκ is
“geometrically regular” over κ. Thus, Aκ is formally smooth over κ relative to its
max-adic topology [73, Thm. 28.7], so R-flatness ensures that A is formally smooth
over R relative to its max-adic topology by [34, 0IV, 19.7.1].

It remains to show that f ′ is surjective, so choose a short exact sequence

0 → G0 → E0 → Q → 0

representing a class ξ0 ∈ Ext1R0
(Q, G0). The vanishing of H1(S0, G0) for all finite

R0-algebras S0 implies that we obtain a short exact sequence on S0-points for any
S0, and constant Zariski sheaves on CR are sheaves for the finite flat topology, so
pushforward along j : Spec(R0) → Spec(R) gives an exact sequence

0 → j∗(G0) → j∗(E0) → Q → 0.

Since mJ = 0 and G is formally smooth, we have a short exact sequence

0 → K → G → j∗(G0) → 0

on CR where K (S) = Lie(Gκ)⊗κ JS for any finite R-algebra S. Thus, p : G → G
factors uniquely through a map h : j∗(G0) → G since pK = 0, and the pushout of
j∗(E0) along h is an extension of Q by G whose pullback over R0 is pξ0. Since p
acts invertibly on Q, we conclude that f ′ is surjective. �
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We have settled the formal smoothness in Theorem 1.4.4.7. Before we address
the other assertions, we make a practical observation:

1.4.4.10. Remark. The infinitesimal liftability of p-divisible groups, Zariski lo-
cally on the base, is a hypothesis which underlies the Grothendieck–Messing crys-
talline Dieudonné theory [75, Ch. IV, V] that classifies the deformations of p-
divisible groups. It is a deep theorem of Grothendieck–Illusie that this liftability
property holds without Zariski-localization over any affine base on which p is nilpo-
tent (see [51, 4.4]). To apply Grothendieck–Messing theory over artinian local
base rings (which is all we really need in this book) it suffices to use the formal
smoothness established above.

Continuing with the proof of Theorem 1.4.4.7, we address Schlessinger’s cri-
teria for pro-representability of F = DefΛ(X0) (and compute its tangent space).
Consider a pair of maps R1, R2 ⇒ R0 in CΛ with R1 → R0 surjective. Since
deformations of p-divisible groups over artinian local rings have no non-trivial au-
tomorphisms, the bijectivity of

F (R1 ×R0
R2) → F (R1)×F (R0) F (R2)

is immediate from part (2) of the following general result (which will be very useful
in our later work with algebraization of formal CM abelian schemes; see Theorem
2.2.3).

1.4.4.11. Proposition (Ferrand). Let p1 : R1 → R0 and p2 : R2 → R0 be maps
of rings with p1 surjective. Let R denote the fiber product ring R1 ×R0

R2.

(1) If M is a flat R-module and Mj denotes the flat Rj-module M ⊗RRj then the
natural map M → M1 ×M0

M2 is an isomorphism. Conversely, if Mj is an
Rj-module and there are given isomorphisms R0 ⊗R1

M1 � M0 � R0 ⊗R2
M2

then for the R-module M = M1 ×M0
M2 the natural maps Rj ⊗R M → Mj

are isomorphisms, and M is R-flat when each Mj is Rj-flat.
(2) Let R′

j be a finitely generated Rj-algebra and suppose there are given iso-
morphisms of R0-algebras R0 ⊗R1

R′
1 � R′

0 � R0 ⊗R2
R′

2. The R-algebra
R′ := R′

1 ×R′
0
R′

2 is finitely generated, and if each R′
j is flat and finitely pre-

sented over Rj then R′ is flat and finitely presented over R.
(3) Assume that p2 is surjective or that all elements of ker(p1) are nilpotent. The

functor

X � (XR1
, XR2

, (XR1
)R0

� (XR2
)R0

)

from the category of flat R-schemes to the category of triples (X1, X2, f) con-
sisting of flat schemes Xj over Rj and an R0-isomorphism f : (X1)R0

�
(X2)R0

is an equivalence, and X is finite type (respectively flat and finitely
presented) over R if and only if each Xj is finite type (respectively flat and
finitely presented) over Rj.

An R-map f : X → Y between flat finitely presented R-schemes satisfies
property P if and only if the pullback maps fR1

and fR2
satisfy P, where P

is any of the properties: separated, proper, finite, flat, smooth, étale, isomor-
phism, geometric fibers of pure dimension d, connected geometric fibers.

Generalizations of parts (2) and (3) are given in [101, Appendix A] (and ref-
erences therein). For applications to Schlessinger’s criteria, part (3) is used with
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ker(p1) nilpotent. In other situations (such as gluing along closed subschemes,
which we need in the proof of Theorem 2.2.3) part (3) is used with surjective p2.

Proof. Part (1) is [40, Thm. 2.2(iv)] (upon noting that by the proof of [40,
Thm. 2.2(iii)], the kernel vanishes when M is R-flat). We prove part (2) by using
a limit argument suggested by D. Rydh. First assume that each R′

j is finitely
generated over Rj . Consider the directed system {R′

α} of finitely generated R-
subalgebras of R′, and let R′

j,α = R′
α ⊗R Rj , so lim−→R′

j,α = R′
j for each j (since

R′ ⊗R Rj → R′
j is an isomorphism by part (1) applied to M = R′). Since each

R′
j is finitely generated over Rj , it follows that for sufficiently large α0 the maps

R′
j,α0

→ R′
j are surjective for all j. In other words, for the cokernel R-module

M = coker(R′
α0

→ R′), both M ⊗R R1 and M ⊗R R2 vanish. Hence, M = 0 by
[40, Thm. 2.2(ii)]. This says that the inclusion R′

α0
⊂ R′ is an equality, so R′ is

finitely generated over R.
Now assume that each R′

j is flat and finitely presented over Rj , so R′ is flat
and finitely generated over R. Form a presentation

0 → I → R[t1, . . . , tn] → R′ → 0.

By the R-flatness of R′, I is R-flat and this sequence remains exact after applying
Rj ⊗R (·). Thus, the finite presentation of R′

j over Rj implies that the ideal Ij =
Rj⊗RI is finitely generated as a module over Pj = Rj [t1, . . . , tn] for each j. By part
(1) applied to the R-flat I, we have I = I1×I0 I2. Letting P = R[t1, . . . , tn], clearly
P = P1 ×P0

P2 for surjections P1, P2 ⇒ P0, and Ij = Pj ⊗P I. Since I = I1 ×I0 I2,
a variation on the limit argument in the proof of (2) (now applied to modules over
R rather than algebras over R) shows that the P -module I = I1 ×I0 I2 is finitely
generated since each Ij is finitely generated over Pj .

To prove (3), first we prove the equivalences of categories. Assume p2 is sur-
jective. The key point in this case is that for closed immersions of schemes Z ↪→ Y
and Z ↪→ Y ′ the associated pushout of ringed spaces Y

∐
Z Y ′ (topological space

gluing and fiber product of structure sheaves) is again a scheme, identified in the
evident manner with the spectrum of a ring-theoretic fiber product when Y , Y ′,
and Z are affine. The proof of this assertion is elementary and left to the reader;
it is made easier by first showing that the ringed space gluing has the expected
universal property among ringed spaces and is compatible with topological local-
ization, and then proving it is isomorphic in the expected way to the desired affine
scheme when Y , Y ′, and Z are affine. (See [21, §2] for further discussion of this
argument, and [40, §7], [62, Thm. 38], [81, §3], [101, Appendix A] for more general
existence results for pushouts.)

By part (1), the formation of the pushout Y
∐

Z Y ′ is compatible with flat
base change over the pushout, so if X is a flat R-scheme then it is the pushout of
its closed subschemes XR1

and XR2
along their common closed subscheme XR0

=
(XR1

)R0
= (XR2

)R0
. The equivalence of categories in (3) therefore follows from

(1) and the existence of the general “gluing” of schemes along a closed subscheme
and its compatibility with Zariski-localization (so we may carry out computations
in the affine setting).

Suppose instead that the elements of ker(p1) are nilpotent. Now the relevant
pushout we must construct is relative to a closed immersion of schemes j : Z ↪→ Y
that is topologically an equality (i.e., all sections of the defining quasi-coherent ideal
sheaf are locally nilpotent) and an affine map f ′ : Z → Y ′. For every affine open
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U ′ ⊂ Y ′, the preimage affine open f ′−1
(U ′) in Z underlies an open subscheme of Y

that is also affine (since affineness is determined by the underlying reduced scheme
[24, A.2]). We define the pushout ringed space Y

∐
Z Y ′ to have the same topolog-

ical space as Y ′ and structure sheaf f ′
∗(OY ) ×f ′

∗(OZ) OY ′ (via the identification of
OY as a sheaf on the topological space of Z). By working Zariski-locally on Y ′ this
is easily checked to be a scheme, coinciding in the evident manner with the spec-
trum of the expected fiber product ring when Y ′, Y , and Z are affine. Thus, the
equivalence of categories in (3) follows via (1) as in the case when p2 is surjective.

Finally, we analyze the behavior of various propertiesP of R-scheme morphisms
h : X → Y between two flat R-schemes of finite presentation when either p2
is surjective or ker(p1) consists of nilpotent elements. Let Yj = YRj

and Xj =
XRj

. Note that if ker(p1) consists of nilpotent elements then the map Spec(R) →
Spec(R2) is a closed immersion defined by an ideal of nilpotent elements, so the
same holds for X → X2 and Y → Y2. The two cases (surjective p2, or ker(p1)
consisting of nilpotent elements) now will be treated simultaneously.

Clearly the map induced by h between fibers over a point in Spec(R) is identified
with the analogous fiber map for the one of the pullbacks hj : Xj → Yj over Rj

with j ∈ {1, 2}. Hence, since X and Y are R-flat of finite presentation, the fibral
flatness criterion [34, IV3, 11.3.11] implies that h is flat if and only if h1 and h2 are
flat. By the fibral smoothness, étaleness, and isomorphism criteria [34, IV4, 17.8.2,
17.9.5], the cases when P is “smooth”, “étale”, or “isomorphism” are also settled.
The cases of geometric fibers being connected or of pure dimension d are obvious.

Since h is finite if and only if it is quasi-finite and proper [34, IV3, 8.11.1],
and the finite type h is quasi-finite if and only if h1 and h2 are quasi-finite, the
case when P is “finite” is reduced the case when P is “proper”. When h1 and h2

are universally closed it is clear that h is universally closed, so it remains to treat
the case of separatedness; i.e., closedness of the diagonal ΔX/Y . Topologically
this map is visibly a gluing of ΔX1/Y1

and ΔX2/Y2
when p2 is surjective, and it

coincides topologically with ΔX2/Y2
when ker(p1) consists of nilpotent elements.

Thus, in both cases separatedness of h1 and h2 implies separatedness of h. �

We have established enough compatibility for F = DefΛ(X0) with respect to
fiber products in CΛ to equip the tangent space tX0

with a natural κ-vector space
structure. Thus, to complete the verification of Schlessinger’s criteria we need to
address the finite-dimensionality of tX0

.
Equip the square-zero kernel of κ[ε] � κ with trivial divided powers, so by

Grothendieck–Messing theory [75, Ch. IV, V] we can classify the deformations X
ofX0 over κ[ε] in terms of the subbundle Lie(Xt)∨ of the Lie algebra of the universal
vector extension E(X) of X; here, E(X) is universal among extensions of X by the
vector group Lie(Xt)∨. (This application of Grothendieck–Messing theory does not
rest on the caveats as in Remark 1.4.4.10 since κ → κ[ε] has a section.) Via the
choice of divided powers, the Lie algebra Lie(E(X)) is canonically isomorphic to
the Lie algebra

Lie(E((X0)κ[ε])) = Lie(E(X0))⊗κ κ[ε]

associated to the constant deformation (the “origin” of the tangent space), and
there are canonical exact sequences

0 → Lie(Xt)∨ → Lie(E(X)) → Lie(X) → 0
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over κ[ε] and
0 → Lie(Xt

0)
∨ → Lie(E(X0)) → Lie(X0) → 0

over κ.
Grothendieck–Messing theory identifies tX0

with the set of κ[ε]-subbundles of
Lie(E(X0))⊗κ κ[ε] which lift Lie(Xt

0)
∨ modulo ε. Such subbundles are parameter-

ized by

Hom(Lie(Xt
0)

∨,Lie(E(X0)))/End(Lie(X
t
0)

∨) = Hom(Lie(Xt
0)

∨,Lie(X0))

= Lie(Xt
0)⊗κ Lie(X0)

by assigning to any representative κ-linear map L : Lie(Xt
0)

∨ → Lie(E(X0)) the
κ[ε]-subbundle that is the image of the map Lie(Xt

0)
∨⊗κ κ[ε] → Lie(E(X0))⊗κ κ[ε]

defined by x+ yε �→ x+ (y+L(x))ε. Our computation of tX0
respects the κ-linear

structure on tX0
, so this completes the proof of Theorem 1.4.4.7. �

As an extension of Theorem 1.4.4.7, in Theorem 1.4.5.5 we will establish a
“p-divisible group” version of the second part of Theorem 1.4.4.5. We finish the
present discussion of deformation theory by addressing the useful topic of how
deformation rings behave with respect to “change of coefficients”. This is relevant
when trying to reduce certain structural questions about deformation rings (e.g., is
there a characteristic-0 point?) to the case of an algebraically closed residue field.

1.4.4.12. Example. Consider a local map Λ → Λ′ between complete local noe-
therian rings with respective residue fields κ and κ′, and let X be a proper κ-scheme
such that any proper flat deformations of X over artin local Λ-algebras with residue
field κ admit no non-trivial automorphisms, and similarly for Xκ′ using Λ′-algebras.
The deformation functor DefΛ(X) assigns to any artin local Λ-algebra R with
residue field κ the set of isomorphism classes of proper flat deformations of X over
R, and we define DefΛ′(Xκ′) similarly.

It is a theorem of Schlessinger that DefΛ(X) is pro-represented by a complete
local noetherian Λ-algebra R with residue field κ, and likewise DefΛ′(Xκ′) is pro-
represented by a complete local noetherian Λ′-algebra R′ with residue field κ′. Note
that Λ′⊗̂ΛR is a complete local noetherian Λ′-algebra with residue field κ′. By the
local flatness criterion [73, 22.4], base change along R → Λ′⊗̂ΛR carries flat formal
R-schemes of finite type to flat formal Λ′⊗̂ΛR-schemes of finite type.

Let X and X′ be the universal formal deformations of X and Xκ′ over R and
R′ respectively. Clearly

X×Spf(R) Spf(Λ
′⊗̂ΛR) → Spf(Λ′⊗̂ΛR)

is a proper flat deformation of Xκ′ , so it arises as the pullback of X′ along a unique
local Λ′-algebra map

(1.4.4.2) R′ → Λ′⊗̂ΛR.

Is this map an isomorphism?
To demonstrate the usefulness of an affirmative answer, suppose κ and κ′ are

perfect of characteristic p > 0, and Λ = W (κ) and Λ′ = W (κ′). (The case κ′ = κ
will be of most interest.) Consider the problem of whether or not X admits a
proper flat formal lift over a complete local noetherian domain with residue field
κ and characteristic 0. Suppose we can establish that Xκ′ admits a proper flat
formal lift over a complete local noetherian domain D′ with residue field κ′ and
characteristic 0. This lift corresponds to a local W (κ′)-algebra homomorphism
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R′ → D′, so if (1.4.4.2) is an isomorphism then we obtain a local W (κ)-algebra
homomorphism R → D′. Hence, R[1/p] �= 0, so by [54, 7.1.9] (which interprets the
closed points of Spec(R[1/p]) in terms of rigid-analytic geometry) there is a local
W (κ)-homomorphism from R into the valuation ring of a field F of finite degree
over W (κ)[1/p]. The image of R in OF is a (possibly non-normal) local domain
that is finite flat over W (κ) and has residue field κ. (See 2.1.1 for another instance
of this slicing argument in deformation rings.)

To summarize, if (1.4.4.2) is an isomorphism then the problem of finding a
formal lift of X to characteristic 0 with residue field κ is reduced to the same
problem for Xκ′ with residue field κ′. In other words, the formal flat lifting problem
with a fixed residue field is unaffected by making a preliminary scalar extension to
κ′! This is useful when κ′ = κ because it is often easier to make constructions
without increasing the residue field when the residue field is algebraically closed.

The problem of compatibility of the deformation ring with respect to change of
the coefficients (i.e., the isomorphism problem for analogues of (1.4.4.2)) arises in
applications ranging from moduli problems in algebraic geometry to Galois defor-
mation theory and beyond. In the special case that Λ′ is the finite étale extension
of Λ corresponding to a finite separable extension κ′ of κ, an affirmative answer
to the isomorphism problem for the pair (Λ,Λ′) can be established within the ax-
iomatic deformation theory framework presented by Rim in [100, 1.15–1.19], which
considers more general Λ′ for which κ′ is just finitely generated over κ. However,
to include the case κ′ = κ all finiteness hypotheses on κ′/κ must be avoided. There
is an axiomatic approach to the “change of coefficients” problem (in the spirit of
Schlessinger’s criteria), independent of the methods of SGA7, but for the present
purposes it is simpler to give direct proofs in the cases we need. Later we will need
the abstract criterion, at which point we will state and prove it. (See Proposition
1.4.5.6.)

For the formal deformation rings of abelian varieties and p-divisible groups
(without extra structure), the isomorphism property for the analogue of (1.4.4.2)
is easy to verify:

1.4.4.13. Proposition. Let Λ → Λ′ be a local map between complete local noe-
therian rings, inducing an extension κ → κ′ of residue fields. Let G0 be an abelian
variety or p-divisible group over κ, and G′

0 = (G0)κ′ . In the case of p-divisible
groups, assume char(κ) = p.

For the deformation rings R and R′ pro-representing DefΛ(G0) and DefΛ′(G′
0)

respectively, the natural map

R′ → Λ′⊗̂ΛR
is an isomorphism.

Proof. In both cases, the map in question is between formal power series rings
over Λ′. Hence, it suffices to check that the induced map between relative tangent
spaces over κ′ is an isomorphism. In each case, the tangent map is identified with
the natural map

(1.4.4.3) κ′ ⊗κ (Lie(Gt
0)⊗κ Lie(G0)) → Lie((G′

0)
t)⊗κ′ Lie(G′

0)

that is an isomorphism. Indeed, in the case of abelian varieties this compatibil-
ity follows from the functoriality in the ground field for the general identification
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of the tangent space of the deformation functor of a proper κ-scheme Y0 with
H1(Y0, (Ω

1
Y0/κ

)∨). In the case of p-divisible groups it follows from the compatibility

of Grothendieck–Messing theory with respect to base change. �

Deformation rings for geometric objects equipped with extra structure (e.g.,
polarized abelian varieties with endomorphism structure) are not as easy to describe
as in the formally smooth setting used in the preceding proof. In such cases we can
sometimes use a global moduli scheme to establish an isomorphism result for the
“change of coefficients” map:

1.4.4.14. Proposition. Let Λ be a complete local noetherian ring with residue
field κ, and let (A0, φ0, α0) be a polarized abelian variety of dimension g > 0 with
endomorphism structure α0 : O ↪→ End(A0) for a Z-finite associative ring O. The
analogue of (1.4.4.2) for (A0, φ0, α0) is an isomorphism for any Λ′.

The same “change of coefficients” isomorphism holds for the formal deforma-
tion ring of any pair (A0, α0).

Proof. First we treat the polarized cases by relating the deformation problem
to global moduli schemes via auxiliary “level structure”, and then we modify the
method to apply in the absence of polarizations. The introduction of auxiliary level
structure can be carried out without increasing κ by using non-constant “finite étale
level structure” arising inside A0, as follows.

Fix an integer n � 3 not divisible by char(κ). The finite étale group scheme
A0[n] over κ uniquely lifts to a finite étale group scheme G over Λ. Consider the
functor F on the category of Λ-schemes that assigns to any Λ-scheme S the set of
isomorphism classes of quadruples (A, φ, α, τ ) where (A, φ) is a polarized abelian
scheme over S of relative dimension g with φ of constant square degree deg(φ0),
α : O → End(A) is a homomorphism, and τ : A[n] � GS is an S-group isomorphism
(“level structure”). These quadruples have no nontrivial automorphisms since n � 3
and n ∈ Λ×.

By standard moduli space arguments (using Hilbert schemes), the functor F is
represented by a Λ-scheme M locally of finite type. The triple (A0, φ0, α0) and the
canonical isomorphism τ0 : Gκ � A0[n] define a point ξ ∈ M(κ), and the formal
deformation ring for (A0, φ0, α0) is naturally isomorphic to the completed local
ring O∧

M,ξ at ξ (since the finite étale “level structure” τ0 uniquely lifts through any

infinitesimal deformation).
Since MΛ′ represents the restriction of F to the category of Λ′-schemes, it is

straightforward to verify that the analogue of (1.4.4.2) for the present situation is
the inverse of the natural isomorphism

Λ′⊗̂ΛO∧
M,ξ � O∧

MΛ′ ,ξκ′ ,

so it is an isomorphism. (This style of argument applies whenever we can relate
the infinitesimal deformation problem to the formal structure on a global moduli
scheme over Λ.)

Now we treat the case of formal deformation rings for (A0, α0) and (A′
0, α

′
0)

relative to some Λ → Λ′. The absence of a polarization eliminates the option to
use global moduli schemes for abelian schemes. Instead, we work with formal Hom-
schemes attached to formal abelian schemes. (The same procedure can be used to
handle the polarized case above.) Let A → Spf(R) be the universal deformation
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of A0, so for R′ := Λ′⊗̂ΛR it follows from Proposition 1.4.4.13 that the universal
deformation of A′

0 is the base change

A
′ = A×Spf(R) Spf(R′) → Spf(R′).

For any formal abelian schemes B and C over a complete local noetherian ring
R, applying the arguments with Hom-functors from the proof of Theorem 1.4.4.5
over the artinian quotients of R proves that the Hom-functor Hom(B,C) : Y �
HomY-gp(BY,CY) on the category of formal (adic) R-schemes Y locally of finite
type is represented by a separated and locally finite type formal R-scheme.

Thus, we get a separated and locally finite type formal R-scheme End(A) clas-
sifying endomorphisms of A, and its formation commutes with local base change to
any complete local noetherian ring (such as R′). The definition of an action on (a
base change of) A by the Z-finite ring O underlying α0 amounts to giving several
points of End(A) satisfying finitely many relations. These relations correspond to a
formal closed subscheme in a fiber power of End(A), so we get an adic formal mod-
uli scheme M locally of finite type over R that classifies O-actions on A. Moreover,
the formation of M commutes with base change along any local homomorphism
from R to another complete local noetherian ring.

The given α0 corresponds to a rational point ξ ∈ M(κ) in the special fiber,
and the deformation ring pro-representing DefΛ(A0, α0) is the completed local ring
O∧

M,ξ. Similarly, M′ := MR′ contains the κ′-point ξ′ in its special fiber that corre-

sponds to α′
0 and arises by base change from ξ, so there is a natural isomorphism

Λ′⊗̂ΛO∧
M,ξ � O∧

M′,ξ′ .

The inverse of this isomorphism is the “change of coefficients” map that we wanted
to prove is an isomorphism. �

1.4.5. Hodge–Tate decomposition and Serre–Tate lifts. We finish our sum-
mary of the theory of p-divisible groups by recording (for later reference) two fun-
damental theorems. The first is a deep result of Tate.

1.4.5.1. Theorem (Tate). Let R be a complete discrete valuation ring with perfect
residue field of characteristic p > 0 and fraction field K of characteristic 0. For
any p-divisible groups G and G′ over R, the natural injective map Hom(G,G′) →
Hom(GK , G′

K) is bijective. Moreover, if CK denotes the completion of an alge-

braic closure K of K then there is a canonical CK-linear Gal(K/K)-equivariant
isomorphism

(1.4.5.1) CK ⊗Qp
Vp(GK) � (CK(1)⊗K Lie(G)K)⊕ (CK ⊗K Lie(Gt)∨K).

Proof. The full faithfulness of G � GK is [119, 4.2], and the construction of
the isomorphism (1.4.5.1) occupies most of [119]. �

A useful application of the full faithfulness in Tate’s theorem is “completed
unramified descent” for p-divisible groups:

1.4.5.2. Corollary. Let R be as in Theorem 1.4.5.1 and let K ′ be the completion
of the maximal unramified extension of K inside K. Let G′ be a p-divisible group
over the valuation ring R′ of K ′, and assume that the generic fiber G′

K′ is equipped
with a descent to a p-divisible group X over K.
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There is a pair (G,α) consisting of a p-divisible group G over R and an iso-
morphism α : GK � X over K. Moreover, there is a unique isomorphism GR′ � G′

recovering the given identification of generic fibers X ⊗K K ′ � G′ ⊗R′ K ′.

A special case of this corollary is that any “unramified twist” of the p-adic
Tate module of the generic fiber of a p-divisible group over R is also the p-adic Tate
module of the generic fiber of a p-divisible group over R (since both p-adic Galois
lattices have the same inertial restriction).

Proof. The discrete valuation ring R′ is the completion of the strict henselization
Rsh of R inside K, so Rsh → R′ is a local inclusion with relative ramification degree
1 and induces an isomorphism on residue fields. Thus, for any affine R′-scheme Y ′,
descent of Y ′

K′ to Ksh = Frac(Rsh) is equivalent to descent of Y ′ to Rsh [10, 6.2,
Prop. D.4]. Applying this to each G′[pn], we see that G′ uniquely descends to a
p-divisible group G over Rsh compatibly with the descent XKsh of G′

K′ .
For each σ ∈ Gal(Ksh/K) and the associated continuous K-automorphism

σ′ of the completion K ′, the canonical isomorphism σ∗(XKsh) � XKsh induces
an isomorphism σ′∗(G′

K′) � G′
K′ . By Tate’s full faithfulness result (applied over

R′), this extends to an isomorphism σ′∗(G′) � G′ of p-divisible groups over R′.
The uniqueness of the descent from R′ to Rsh implies that this latter isomorphism
uniquely descends to an Rsh-isomorphism ασ : σ∗(G ) � G extending the canonical
isomorphism σ∗(XKsh) � XKsh .

The 1-cocycle condition ατ ◦ τ∗(ασ) = ατσ over Rsh is inherited from the
generic fiber. Thus, since Rsh is a direct limit of R-subalgebras that are Galois
local finite étale over R, on each finite pn-torsion level the Rsh-isomorphisms ασ

amount to an étale descent datum relative to R → Rsh [10, 6.2/B]. The resulting
effective descent of G to a p-divisible group G over R is equipped with a canonical
K-isomorphism α : GK � X. By Tate’s full faithfulness theorem applied over R′,
the K ′-isomorphism

(GR′)⊗R′ K ′ = GK ⊗K K ′ � XK′ � G′ ⊗R′ K ′

uniquely extends to an R′-isomorphism GR′ � G′. �
The link between the deformation theories of abelian varieties and p-divisible

groups in characteristic p is provided by the Serre-Tate deformation theorem:

1.4.5.3. Theorem (Serre–Tate). Let R be a ring in which a prime p is nilpotent,
and let I be an ideal in R such that In = 0 for some n � 1. Define R0 = R/I, and
for an abelian scheme A and p-divisible group G over R let A0 and G0 denote their
respective reductions modulo I.

For any abelian scheme A over R, let εA : A[p∞]0 � A0[p
∞] denote the canon-

ical isomorphism. The functor A � (A0, A[p∞], εA) from the category of abelian
schemes over R to the category of triples (A0, G, ε : A[p∞]0 � G0) is an equivalence.

See [57, 1.2.1] for a proof of this result. �
The most important application of the Serre-Tate deformation theorem is that

for an abelian variety A0 over a field of characteristic p > 0, the infinitesimal
deformation theory of A0 coincides with that of its p-divisible group. Likewise,
if we fix a subring O ⊂ End(A0) or a polarization of A0 (or both) then via the
injection End(A0) ⊂ End(A0[p

∞]) (Proposition 1.2.5.1) and the identification of
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At
0[p

∞] with the Cartier dual of A0[p
∞], the infinitesimal deformation theory of

A0 equipped with this extra structure is the same as that of its p-divisible group
equipped with the analogous induced extra structure.

Consider a homomorphism φ0 : A0 → At
0 and the associated homomorphism

f0 : A0[p
∞] → At

0[p
∞] � A0[p

∞]t.

Clearly φ0 is an isogeny if and only if f0 is an isogeny, and we saw in 1.4.3.4 that
φ0 is symmetric with respect to double duality of abelian varieties if and only if f0
is skew-symmetric (i.e., f t

0 = −f0) with respect to the canonical isomorphism of a
p-divisible group with its Serre double dual.

This leads us to define a quasi-polarization of a p-divisible group G over a
complete local noetherian ring to be a skew-symmetric homomorphism f : G → Gt

that induces an isogeny between the special fibers. (We will see in 3.3.8 that it
is equivalent to say the skew-symmetric f is an isogeny in the sense of 3.3.5, so
we can thereby define the notion of quasi-polarization over any base scheme.) The
ampleness aspect of a polarization cannot be encoded in terms of p-divisible groups,
but quasi-polarizations are nonetheless a helpful concept when using p-divisible
groups to study abelian varieties and their deformations, as the following example
illustrates.

1.4.5.4. Example. As a special case of the Serre-Tate deformation theorem, if
R is a complete local noetherian ring of residue characteristic p > 0 and A0 is an
abelian variety over the residue field, then a deformation of A0[p

∞] to a p-divisible
group G over R corresponds to a deformation of A0 to a formal abelian scheme A

over R. If A0 is equipped with a CM structure and we demand that this structure
lifts to A (via the injection End(A) ↪→ End(A0)) then A can fail to be algebraic (i.e.,
it may not be the formal completion of a proper R-scheme). Explicit CM examples
of this type are given in 4.1.2; also see the discussion immediately following the
statement of Theorem 2.2.3.

To ensure algebraicity of A, we need to encode the deformation of a polariza-
tion. More specifically, choose a polarization φ0 : A0 → At

0 and suppose that the
corresponding map f : A0[p

∞] → At
0[p

∞] = A0[p
∞]t lifts to R (as can happen in

at most one way, by Proposition 1.4.4.3). Let φ : A → At be the corresponding
unique homomorphism that lifts φ0 (in accordance with the Serre–Tate deforma-
tion theorem). If P denotes the formal Poincaré bundle on A×At (which lifts the
Poincaré bundle P0 on A0×At

0) then (1, φ)∗P is a line bundle on A lifting the line
bundle (1, φ0)

∗P0 on A0 that is ample (due to φ0 being a polarization). Hence,
by Grothendieck’s algebraization theorems [34, III1, 5.4.1, 5.4.5], in such cases A

is algebraic, so it arises from a unique abelian R-scheme A deforming A0.
There is a special case in which the liftability of all polarizations comes “for

free”: the Serre–Tate canonical lifting of an ordinary abelian variety A0 over a
perfect field k of characteristic p > 0. To explain these concepts, we first note that
by the perfectness of k, the connected-étale sequence of every p-divisible group X
over k is split (exactly as for finite commutative k-groups), so X is (uniquely) the
product of an étale p-divisible group and a connected p-divisible group; see [87,
I.2]. Letting g = dim(A0), since an étale p-divisible group over k has connected
Serre dual (as we may check over k) and A0[p

∞] = A0[p
∞]0 ×A0[p

∞]ét is of height
2g yet isogenous to its Serre dual A0[p

∞]t � At
0[p

∞] (as A0 is isogenous to At
0), we

see that the p-rank of A0[p
∞] (i.e., height of A0[p

∞]ét) is at most g. We say that A0
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is ordinary when A0[p
∞] has the maximal possible p-rank, namely g; equivalently,

A0[p
∞]0 has height g.
Now assume that A0 is ordinary. Since

At
0[p

∞] � A0[p
∞]t = (A0[p

∞]0)t × (A0[p
∞]ét)t

with At
0 isogenous to A0, for height reasons it follows that the dual of A0[p

∞]0 is

étale. In other words, if A0 is ordinary then canonically A0[p
∞] � X ′

0
t × X0 for

étale p-divisible groups X0 and X ′
0 that are functorial in A0[p

∞]. For any complete
local noetherian ring R with residue field k, X0 and X ′

0 uniquely lift to respective

étale p-divisible groups X and X ′ over R, so the deformation X ′t ×X of X ′
0
t ×X0

corresponds to a canonical formal deformation A of A0 over R. We claim that the
formal abelian scheme A is algebraic; its algebraization is called the Serre–Tate
canonical lifting.

Choose a polarization φ0 : A0 → At
0. The skew-symmetry of the associated

quasi-polarization

X ′
0
t ×X0 = A0[p

∞] → At
0[p

∞] � A0[p
∞]t = Xt

0 ×X ′
0,

forces it to have the form −f t
0 × f0 for a homomorphism f0 : X0 → X ′

0. There
is a unique lifting f : X → X ′ of f0 since X0 and X ′

0 are étale, so −f t × f lifts
−f t

0 × f0. In other words, the map induced by φ0 between p-divisible groups lifts
(necessarily uniquely, by 1.4.4.3) to a homomorphism A[p∞] → At[p∞], as suffices
for the algebraicity of A.

Quasi-polarizations yield a p-divisible group analogue of Proposition 1.4.4.14:

1.4.5.5. Theorem. Let Λ be a complete local noetherian ring with residue field
κ of characteristic p > 0, let X0 be a p-divisible group over κ, and let α0 : O ↪→
End(X0) be an injective homomorphism from an associative finite flat Zp-algebra.
Let φ0 : X0 → Xt

0 be a quasi-polarization of X0.

(1) The functors DefΛ(X0, α0) and DefΛ(X0, φ0, α0) on CΛ are pro-represented by
quotients of the deformation ring for DefΛ(X0).

(2) Let Λ → Λ′ be a local map between complete local noetherian rings, with κ → κ′

the induced map between residue fields. Let (X ′
0, φ

′
0, α

′
0) = (X0, φ0, α0)κ′ , and

let R and R′ be the respective rings pro-representing DefΛ(X0, φ0, α0) and
DefΛ′(X ′

0, φ
′
0, α

′
0). The natural map

(1.4.5.2) R′ → Λ′⊗̂ΛR

analogous to (1.4.4.2) is an isomorphism. The same holds for the deformation
rings of (X0, α0) and (X ′

0, α
′
0), as well as for (X0, φ0) and (X ′

0, φ
′
0).

Proof. Since α0 is encoded in terms of finitely many endomorphisms of X0, and
φ0 is a homomorphism X0 → Xt

0, for the proof of (1) it suffices to establish the
following general claim (applied to the universal deformation of X0 and its dual).
Let X and Y be p-divisible groups over a complete local noetherian ring (R,m)
with residue field κ of characteristic p, and let f0 : X0 → Y0 be a homomorphism
between the special fibers. We claim there exists an ideal I ⊂ R such that for any
local map R → R to an artinian local ring with residue field κ, a lift XR → YR of
f0 exists if and only if I has vanishing image in R.
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Consider the set-valued functor F on CR that carries an object R to the set of
all R-homomorphisms XR → YR lifting f0 (i.e., F (R) is empty if there is no such
lift and F (R) has a single element when a lift exists). The problem is to show that
F is pro-represented by a quotient of R. By the functorial aspect of Proposition
1.4.4.11, it is straightforward to check that for a pair of maps R1, R2 ⇒ R0 in CR
at least one of which is surjective, the natural map

F (R1 ×R0
R2) → F (R1)×F (R0) F (R2)

is bijective. Moreover, F (κ[ε]) consists of a single element (the constant deformation
of f0 as a homomorphism from X⊗R κ[ε] = X0⊗κ κ[ε] to Y0⊗κ κ[ε]), so it vanishes
as a κ-vector space. Thus, by Schlessinger’s criteria, F is pro-represented by a
complete local noetherian R-algebra with residue field κ and has vanishing relative
tangent space (over R), so the ring pro-representing F is a quotient of R. This
completes the proof of (1).

In view of the proof of (1), to prove (2) it suffices to show that for (R, I) as
above and any local homomorphism R → R′ to a complete local noetherian ring
with residue field κ′ ⊃ κ, IR′ is the analogous ideal inside R′ relative to XR′ , YR′ ,
and (f0)κ′ . This seems difficult to verify directly, so we digress to prove an abstract
isomorphism criterion for maps such as (1.4.5.2) and then apply it to establish (2).

To formulate an abstract isomorphism criterion for the “change of coefficients”
map for deformation rings, we need to assume that the functor is defined on a
larger class of rings than the artinian ones. For a complete local noetherian ring Λ
with residue field κ, define InfΛ to be the category of pairs (Λ′, R′) consisting of a
complete local noetherian Λ-algebra Λ′ and a local Λ′-algebra (R′,m) such that

(i) Λ′ → R′ is local and induces an isomorphism on residue fields,
(ii) mn = 0 for some n � 1.

A morphism (Λ′
1, R

′
1) → (Λ′

2, R
′
2) consists of a local Λ-algebra map f : Λ′

1 → Λ′
2 and

a local homomorphism R′
1 → R′

2 over f . In an evident way, InfΛ contains CΛ′ as a
full subcategory for any Λ′. Also, if n � 1 and {(Λ′, R′

i)} is a directed system in InfΛ
such that mn

R′
i
= 0 for all i then R′ := lim−→R′

i equipped with its evident Λ′-algebra

structure is an object in InfΛ whose maximal ideal has vanishing nth power. As an
important special case, for any (Λ′, R′) in InfΛ with mn

R′ = 0, the directed system
{R′

i} of artinian local Λ′-subalgebras of R′ provides a directed system {(Λ′, R′
i)} in

InfΛ with all maximal ideals having vanishing nth power and lim−→R′
i = R′.

Consider a covariant set-valued functor F on InfΛ and any directed system
{(Λ′, R′

i)} as above. There is a natural map

lim−→F (Λ′, R′
i) → F (Λ′, lim−→R′

i).

If this is always bijective then we say that F commutes with direct limits. If we
only consider such directed systems with a fixed Λ′ (such as Λ) then we say F
commutes with direct limits over Λ′. In each of these definitions it suffices to
consider direct limits with R′

i that are artinian. For example, if (R,m) is a complete
local noetherian Λ-algebra with residue field κ and F is defined to be the functor
(Λ′, R′) � HomΛ(R, R′) (using local Λ-algebra maps) then F commutes with direct
limits because R/mn is artinian with finite Λ-length for every n.

Choose Λ′ with residue field κ′ and assume the restriction F |CΛ′ is pro-represent-
ed by a complete local noetherian Λ′-algebra (R′,m′) with residue field κ′. Also
assume F |CΛ

is pro-represented by a complete local noetherian Λ-algebra (R,m)
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with residue field κ. For each n � 1 there is a universal element ξn ∈ F (R/mn),
so for any m � 1 the induced element in F ((Λ′/mm

Λ′)⊗Λ (R/mn)) is classified by a
map of local Λ′-algebras

R′ → (Λ′/mm
Λ′)⊗Λ (R/mn)

that is compatible with change in m and n (since the ξn’s are compatible with
change in n). Passing to the inverse limit defines a map of complete local noetherian
Λ′-algebras

(1.4.5.3) R′ → Λ′⊗̂ΛR
that recovers (1.4.4.2) in the setting of Example 1.4.4.12.

We seek abstract conditions on F which ensure that the map (1.4.5.3) is an
isomorphism. Such an isomorphism property for all Λ′ (assuming F |CΛ′ is pro-
represented by a complete local noetherian Λ′-algebra for all Λ′) says exactly that
F = HomΛ(R, ·), since we have seen the necessity of commutation with direct limits
in such cases and every object (Λ′, R′) in InfΛ is the direct limit of its artinian local
Λ′-subalgebras.

1.4.5.6. Proposition. Let Λ′ be a complete local noetherian Λ-algebra with residue
field κ′, and let F be a covariant set-valued functor on InfΛ such that F |CΛ

and
F |CΛ′ are pro-represented by complete local noetherian rings (R,m) and (R′,m′)
with residue fields κ and κ′ respectively. The map (1.4.5.3) is an isomorphism if
and only if the following conditions hold:

(i) F commutes with direct limits over Λ,
(ii) for any (Λ′, R′) ∈ CΛ′ and the local Λ-subalgebra R = R′ ×κ′ κ ⊂ R′ with

residue field κ, the natural map F (Λ, R) → F (Λ′, R′) is bijective.

This result is an abstract version of an argument of Faltings in the setting of
Galois deformations; see [129, pp. 457-8]. Note that R in (ii) is not noetherian
when [κ′ : κ] is not finite and R′ �= κ′.

Proof. The necessity of (i) has been explained, and the necessity of (ii) is obvious.
To prove sufficiency, we first make a general construction that has nothing to do
with (i) or (ii).

For any (Λ′, R′) in InfΛ, each local Λ-algebra map f : R → R′ factors through
a local Λ-algebra map fn : R/mn → R′ for some n � 1. The map

F (fn) : HomΛ(R,R/mn) = F (R/mn) → F (R′)

produces an element of F (R′) that is independent of n and functorial in (Λ′, R′),
so it defines a natural transformation of functors HomΛ(R, ·) → F on InfΛ.

Our problem is precisely to prove that this is an isomorphism on CΛ′ . By (ii),
it suffices to work on the category of pairs (Λ, R). Now using (i), we are done. �

The abstract criteria in Proposition 1.4.5.6 will now be used to establish part (2)
of Theorem 1.4.5.5 (taking Λ in the abstract criteria to be the universal deformation
ring of X0 as in Theorem 1.4.5.5). For a pair of p-divisible groups X and Y over Λ
and a homomorphism f0 : X0 → Y0 between the special fibers, define the covariant
set-valued functor F on InfΛ to carry (Λ′, R′) to the set of deformations of (f0)κ′ to
R′ (where κ′ is the residue field of Λ′). The set F (Λ′, R′) is empty when there is no
lift and it consists of a single element when there exists a lift and R′ is artinian (as
the uniqueness of such a lift for artinian R′ follows from Proposition 1.4.4.3). In
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fact F (Λ′, R′) always consists of a single element when it is non-empty, even when
R′ is not noetherian. The key point is that mn = 0 for some n � 1, so we can
apply:

1.4.5.7. Lemma. Let R be a ring in which a prime p is nilpotent and let J ⊂ R
be an ideal such that Jn = 0 with n � 1. Let f : X → Y be a homomorphism
between p-divisible groups over R. If f vanishes modulo J then f = 0.

Proof. The case n = 1 is trivial, and by induction on n we may assume n = 2.
Our problem is comparing two R-homomorphisms with the same reduction mod-
ulo J . Equipping J with trivial divided powers, this problem will be solved used
Grothendieck–Messing theory. Consider the Lie algebras of the universal vec-
tor extensions E(X) and E(Y ), equipped with their respective Hodge subbundles
Lie(Xt)∨ and Lie(Y t)∨. For any R-homomorphism u : X → Y , Grothendieck–
Messing theory shows that the map Lie(E(u)) respecting Hodge subbundles uniquely
determines u and only depends on u0 := u mod J . Hence, if u0 = 0 then u = 0. �

We now apply Proposition 1.4.5.6 to the functor F defined above whose value
on any (Λ′, R′) ∈ InfΛ is empty or a singleton. The established part (1) of Theorem
1.4.5.5 (with varying Λ) implies the pro-representability hypothesis in Proposition
1.4.5.6. Thus, we just have to verify conditions (i) and (ii) in Proposition 1.4.5.6.
Condition (ii) is immediate via Proposition 1.4.4.11. To establish (i) for (Λ′, R′) =
lim−→(Λ′, R′

i), we just have to show that if F (Λ′, R′) is non-empty then so is F (Λ′, R′
i)

for some i. We may rename Λ′ as Λ, R′ as R, and R′
i as Ri for simplicity of notation.

Our problem is to show that if f0 lifts to an R-homomorphism f : XR → YR then
f descends to an Ri-homomorphism XRi

→ YRi
for some large i. We shall induct

on the integer n � 1 such that the maximal ideal m of R and maximal ideal mi of
every Ri have vanishing nth power, the case n = 1 being trivial.

Let R = R/mn−1 and Ri = Ri/m
n−1
i , so lim−→Ri = R. We may assume n � 2

and (by induction) that the lift f := fR of f0 descends to a (necessarily unique) lift

f i0 : XRi0
→ YRi0

of f0. For i � i0 let f i = f i0 ⊗Ri0
Ri. For i � i0, if there is a

lift fi : XRi
→ YRi

of f i then fi ⊗Ri
R is a lift of f0 and thus coincides with f (by

Lemma 1.4.5.7). Hence, it is necessary and sufficient to find i � i0 so that f i lifts
over Ri.

By Grothendieck–Messing theory (see [75, IV, 2.5; V, 1.6]), for every i � i0
there is a canonical map

Li : Lie(E(XRi
)) → Lie(E(YRi

))

that only depends on f i and has reduction Lie(E(f i)) modulo the square-zero ideal
m

n−1
i ⊂ Ri, and moreover Li respects the Hodge subbundles if and only if f i

lifts to an Ri-homomorphism XRi
→ YRi

. Thus, it is necessary and sufficient to
prove that Li respects the Hodge subbundles for large i. Compatibility with base
change ensures that Li′ = Li ⊗Ri

Ri′ whenever i′ � i � i0 and that Li ⊗Ri
R =

Lie(E(f)). But this latter map respects the Hodge subbundles since it arises from
an R-homomorphism f lifting f . Hence, by standard limit arguments (and the
compatibility of the Hodge subbundles with respect to base change) it follows that
Li respects the Hodge subbundles for sufficiently large i. This completes the proof
of Theorem 1.4.5.5. �
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1.5. CM types

Let A be an isotypic abelian variety of dimension g > 0 over a field K such
that A admits sufficiently many complex multiplications. By Theorem 1.3.4, we
may and do choose a CM field L ⊂ End0(A) with degree 2g. (Conversely, by
Theorem 1.3.1.1, the existence of such an L forces A to be isotypic.) It turns out
that the L-linear isogeny class of A is encoded in terms of a rather simple discrete
invariant when char(K) = 0 and K is algebraically closed. We wish to review the
basic features of this invariant, called the CM type, and to discuss some useful
replacements for it in positive characteristic.

The order O = L∩End(A) in L acts on A over K, and is called the CM order.
It acts K-linearly on the tangent space T = Lie(A) at the origin, so if char(K) = 0
then L = O ⊗Z Q acts K-linearly on T , whereas if char(K) = p > 0 then O/(p)
acts K-linearly on T . In particular, if char(K) = 0 then T is an L ⊗Q K-module
whose isomorphism class is an invariant of the L-linear isogeny class of A over K;
nothing of the sort is true when char(K) = p > 0.

1.5.1. Characteristic 0. We now focus on the case char(K) = 0. Let K ′/K
be an algebraically closed extension. Since L ⊗Q K �

∏
Ki for finite (separable)

extensions Ki/K, any L ⊗Q K-module M canonically decomposes as
∏

Mi for
a Ki-vector space Mi. Thus, if dimKM is finite then the isomorphism class of
M is determined by the numbers dimKi

Mi, which in turn are determined by the
isomorphism class of the L⊗Q K ′-module M ⊗K K ′.

The K ′-algebra L ⊗Q K ′ has a very simple form: it is
∏

ϕ K ′
ϕ where ϕ ranges

through all field embeddings L → K ′ and K ′
ϕ denotes K ′ viewed as an L-algebra

via ϕ. Hence, any L ⊗Q K ′-module M ′ decomposes into a corresponding product
of eigenspaces M ′

ϕ over K ′ on which L acts through ϕ. We conclude that for
an L ⊗Q K-module M with finite K-dimension, the isomorphism class of M is
determined by the numbers dimK′(M ⊗K K ′)ϕ as ϕ varies through Hom(L,K ′).

On the set Hom(L,K ′) = Hom(L,Q) (with Q the algebraic closure of Q in K ′)
there is a natural involution defined by precomposition with the intrinsic complex
conjugation ι of the CM field L (i.e., the non-trivial automorphism of L over its
maximal totally real subfield L+). This decomposes the set Hom(L,K ′) of size
2g into g “conjugate pairs” of embeddings. In the special case K ′ = C we can
also compute the involution on Hom(L,K ′) by using composition with complex
conjugation on K ′ = C.

An especially interesting example is the L ⊗Q K ′-module M = T ⊗K K ′ with
T = Lie(A) for a CM abelian variety A over K with complex multiplication by L.
There is a non-trivial constraint on the eigenspaces (T ⊗K K ′)ϕ for the L-action
on T ⊗K K ′ (with ϕ varying through the embeddings ϕ : L → K ′):

1.5.2. Lemma. When char(K) = 0, each eigenspace (T ⊗K K ′)ϕ is at most 1-
dimensional over K ′. If Φ denotes the set of g distinct embeddings ϕ : L → K ′

for which there is a ϕ-eigenline in T ⊗K K ′ then Φ contains no “conjugate pairs”.
That is, we have a disjoint union decomposition Hom(L,K ′) = Φ

∐
(Φ ◦ ι).

Proof. By considerations with direct limits (as in the proof of Proposition
1.2.6.1), we may and do first arrange that K is finitely generated over Q. The
choice of algebraically closed extension K ′/K does not matter, so we can replace
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K ′ with K. We may then reduce to the case K = K ′ = C, in which case a proof is
given via the complex-analytic uniformization in [82, §22]. �

The preceding considerations motivate the following concepts.

1.5.2.1. Definition. (i) Let L be a CM field of degree 2g over Q and K an
algebraically closed field of characteristic 0. An K-valued CM type for L is a subset
Φ ⊂ Hom(L,K) of representatives for the g orbits of the action by the complex
conjugation ι of L. That is, Φ consists of g distinct elements such that ϕ ◦ ι �∈ Φ
for all ϕ ∈ Φ, or equivalently Hom(L,K) = Φ

∐
(Φ ◦ ι). To emphasize the role of

L, we often refer to the pair (L,Φ) as a CM type.
(ii) Let L = L1 × · · · × Ls be a CM algebra, where each Li is a CM field. A

CM type for L is a subset
∐

Φi ⊂
∐

Hom(Li,K) = Hom(L,K) where (Li,Φi) is a
CM type for each i.

If K is a field of characteristic 0 and K ′/K is an algebraically closed extension,
then the tangent space to a CM abelian variety A over K with complex multipli-
cation by a CM algebra L determines a K ′-valued CM type Φ for L (apply Lemma
1.5.2 to the isogeny factors of A determined by the primitive idempotents of L).
This is an invariant of the L-linear isogeny class of A over K.

1.5.2.2. Remark. In general, a CM type takes values in the algebraic closure Q
of Q in K ′, so if we first choose this algebraic closure as an abstract field and then
take K ′ to be equipped with a specified embedding of this Q then we can regard the
CM type as being independent of K ′; this is sometimes useful for passing between
different choices of K ′ (such as C and Qp).

1.5.3. Example. Let L be a CM field and Φ a C-valued CM type on L. Let
(R⊗Q L)Φ denote R⊗Q L =

∏
v|∞ Lv endowed with the complex structure defined

via the isomorphism Lv � C using the unique ϕv ∈ Φ pulling back the standard
absolute value of C to the place v of L for each v|∞. In other words, (R⊗Q L)Φ =∏

ϕ∈Φ Cϕ where Cϕ denotes C equipped with the L-action via ϕ : L → C. The ring
of integers OL is a lattice in R⊗QL = R⊗ZOL in the natural way, so (R⊗QL)Φ/OL

is a complex torus of dimension [L : Q]/2.
In the complex-analytic theory [82, §22] it is proved (using that L is a CM

field) that this complex torus admits a Riemann form (with respect to which the
action of each c ∈ L has adjoint given by the complex conjugate c ∈ L), and hence
is an abelian variety. Let AΦ be the corresponding abelian variety over C. By
construction (and GAGA), we get an action by OL on AΦ and hence an embedding
L ↪→ End0(AΦ) as a subfield of Q-degree [L : Q] = 2 dim(AΦ). This makes AΦ into
a CM abelian variety over C with complex multiplication by L. The action by any
c ∈ OL ⊂ End(AΦ) on

Lie(AΦ) = Lie(Aan
Φ ) = (R⊗Q L)Φ =

∏
ϕ∈Φ

Cϕ

is the map (aϕ) �→ (ϕ(c)aϕ) involving multiplication in C. Thus, AΦ equipped with

the embedding L ↪→ End0(AΦ) gives rise to the CM type Φ on L.
The CM abelian varieties AΦ are generally not simple; see Remark 1.5.4.2 for

further discussion of the simplicity aspect. It is shown in the classical theory [82,
§22, First Ex., Thm.] that as we vary Φ through all CM types on L, the AΦ vary
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(without repetition) through all L-linear isogeny classes of (necessarily isotypic)
CM abelian varieties over C with complex multiplication by L.

1.5.3.1. Definition. Let A be an isotypic abelian variety of dimension g > 0
over a field K, and let L be a CM field of degree 2g equipped with an embedding
j : L ↪→ End0(A). The dual CM structure on the dual abelian variety At is

the embedding L ↪→ End0(At) defined by x �→ j(x)t, where x �→ x is complex
conjugation on L.

It is easy to check that this definition respects double duality (i.e., if Att is
equipped with the CM structure dual to the one on At then the canonical isomor-
phism A � Att is L-linear). The reason for the appearance of complex conjugation
on L in the definition of the dual CM structure is that when K is algebraically
closed of characteristic 0 it gives At the same (K-valued) CM type as A.

To verify this equality of CM types we may reduce to the case when K = C and
then use the exhaustive construction in the complex-analytic theory as in Exam-
ple 1.5.3. Alternatively, still working over C, consider the functorial isomorphism
Lie(At) � H1(A,OA) and the functorial Hodge decomposition

C⊗Q H1(A(C),Q) � H1(A(C),C)∨ � Lie(A)⊕H1(A,OA)
∨.

Since H1(A(C),Q) is 1-dimensional as an L-vector space, when At is equipped with
the dual action j(x)t (without the intervention of complex conjugation) then its
CM type is Hom(L,C)− Φ = Φ.

1.5.4. Descent to a number field. For a CM abelian variety over an alge-
braically closed field K of characteristic 0, we may make the CM type essentially
be independent of K by replacing K with Q (see Remark 1.5.2.2). This enables us
to use the complex-analytic theory to prove the following purely algebraic result.

1.5.4.1. Proposition. Let K be an algebraically closed field of characteristic 0.
Let L be a CM field, and consider a CM abelian variety A over K with complex
multiplication via j : L ↪→ End0(A). The L-linear isogeny class of A is uniquely
determined by the K-valued CM type Φ on L associated to (A, j), and every CM
type on L arises in this way from some (A, j) over K.

The hypothesis K = K cannot be weakened. For example, if K is a number
field containing a Galois closure of L over Q (so all K-valued CM types on L
are K-valued) then any quadratic twist of A (equipped with the evident L-linear
structure) has the same CM type as (A, j) but is generally not K-isogenous to A.

Proof. In view of Lemma 1.2.1.2, by expressing K as a direct limit of alge-
braically closed subfields of finite transcendence degree over Q we can reduce to the
case when K has finite transcendence degree over Q. To show that the CM type
determines the L-linear isogeny class it suffices (again by Lemma 1.2.1.2) to treat
the case K = C. This case was addressed in Example 1.5.3 via the complex-analytic
theory, where it was also seen that every CM type Φ on L does arise when K = C.

It remains to show that every CM type Φ on L arises when K = Q. Consider
the CM abelian variety AΦ over C with complex multiplication by L and CM type
Φ as in Example 1.5.3. Recall that OL = L ∩ End(AΦ) inside End0(AΦ). By
expressing C as a direct limit of its finitely generated Q-subalgebras, there is such a
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subalgebra R for which A with its OL-action over C descends to an abelian scheme
A over R equipped with an OL-action.

By localization of R, we can arrange that the tangent space Lie(A ) is finite
and free as an R-module, and by increasing R to contain the integer ring of the
Galois closure of L in C we can arrange that the OL-action on Lie(A ) decomposes
as

∏
ϕ∈Φ Rϕ with Rϕ equal to R having action by c ∈ OL through multiplication

by ϕ(c) ∈ Q ⊂ R. For any maximal ideal m of R, the natural map of Q-algebras
Q → R/m is an isomorphism. Thus, passing to the fiber of A at a closed point of
Spec(R) gives a pair (A, j) over Q with CM type Φ. �

This proposition has an important consequence for descending the field of defi-
nition of a CM abelian variety in characteristic 0, as we will see in Theorem 1.7.2.1.

1.5.4.2. Remark. By Theorem 1.3.1.1, for any (A,L) as in Proposition 1.5.4.1,
A has a unique simple factor C (in the sense of Definition 1.2.1.5). By Proposition
1.3.2.1, C is a CM abelian variety with complex multiplication by the CM field
L′ := End0(C) (see Proposition 1.3.6.4(1)). Since L′ is canonically identified with

the center of End0(A), it naturally embeds into L. Hence, there is a K-valued CM
type Ψ on L′ arising from C, and the pair (L′,Ψ) is determined by (L,Φ) since
A with its complex multiplication by L is determined up to L-linear isogeny by Φ
(and L′ = L if and only if A = C, which is to say that A is simple). It is therefore
natural to seek an intrinsic recipe to directly construct (L′,Ψ) from (L,Φ), and in
particular to characterize in terms of Φ whether or not A is simple.

The criterion is this: among the CM fields in L from which Φ is obtained by full
preimage under restriction, (L′,Ψ) is the unique such pair with [L′ : Q] minimal
and Φ the full preimage of Ψ. Indeed, since the CM type is Q-valued (Remark
1.5.2.2) and the base field K is algebraically closed, it suffices to treat the case
K = C. In this case the desired recipe is established in the complex-analytic theory
(see [82, §22, Rem. (1)]).

1.5.5. Positive characteristic. Assume char(K) > 0, and let A be an abelian
variety over K of dimension g > 0 admitting an action by an order O in a CM field
L of degree 2g over Q. There is no action by L = Q ⊗Z O on the tangent space
T := Lie(A) of A at the origin since L is a Q-algebra and T is a K-vector space.
Thus, there is not a good notion of CM type on L associated to the embedding of
L into End0(A). More specifically, for the CM order O := L ∩ End(A) in L, T has
a K-linear action by O/(p) and there is generally no constraint on this action akin
to the eigenspace decomposition considered in characteristic 0 (as in Lemma 1.5.2).
The lack of such a constraint occurs for a couple of reasons, as we now explain.

1.5.5.1. Example. If p divides the discriminant of O over Z or pOL is not prime
in OL then O/pO fails to be a field. In such cases, the K-linear O/(p)-action on T
admits no notion of eigenspace decomposition that closely resembles the situation
in characteristic 0.

1.5.5.2. Example. Suppose that O has discriminant not divisible by p (so O(p) =
OL,(p)) and that p is totally inert in L. In such cases κ := O/(p) is a finite field of
degree 2g over Fp and Aut(L/Q) injects into Gal(κ/Fp), so the canonical complex
conjugation on L induces a non-trivial involution on κ.
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For an algebraically closed extension K ′/K we can consider the eigenspace
decomposition of T ⊗K K ′ over κ ⊗Fp

K ′ =
∏

ϕ K ′
ϕ where ϕ ranges over the 2g

distinct embeddings of κ into K ′. This could fail to resemble the CM types that
arise in characteristic 0 because (as we shall see in later examples, such as in Remark
2.3.4) there may be conjugate pairs occurring among the ϕ for which T ⊗K K ′ has
a non-zero ϕ-eigenspace with respect to its K ′-linear κ-action.

In such cases, the composite action

O → End(A) → End(A)/(p) → EndK(T )

does not “look like the reduction of a CM type”, and so this provides an obstruction
for A equipped with its O-action to lift to characteristic 0. There is no dimension
obstruction to such lifting: each ϕ-eigenspace in T ⊗K K ′ = Lie(AK′) has K ′-
dimension at most 1. To prove this, first note that the Dieudonné module D :=
M∗(AK′ [p∞]) is free of rank 1 over

O ⊗Z W (K ′) = O(p) ⊗Z(p)
W (K ′) = OL ⊗Z W (K ′)

by Proposition 1.4.3.9(2) (or Proposition 1.2.5.1 and W (K ′)-rank considerations),

so D/pD is free of rank 1 over κ ⊗Fp
K ′. The formal group ÂK′ is the identity

component of the p-divisible group AK′ [p∞] (Example 1.4.3.6), and its tangent
space coincides with that of AK′ . Hence, by 1.4.3.2(4),

T ⊗K K ′ � Lie(AK′ [p∞]) � (D/F(D))∨,

where F : D → D denotes the semilinear Frobenius endomorphism. By naturality,
this composite isomorphism is κ⊗Fp

K ′-linear, so T⊗KK ′ is monogenic over κ⊗Fp
K ′

since the K ′-linear dual of a monogenic κ⊗Fp
K ′-module is monogenic (as κ⊗Fp

K ′

is a finite étale K ′-algebra). Each ϕ-eigenspace of T ⊗K K ′ is therefore monogenic
over K ′, which is to say is of dimension at most 1 over K ′.

To go beyond Example 1.5.5.2, an obstruction to the existence of a CM lift over
a normal local domain of characteristic 0 will be formulated precisely later (see 2.1.5
and 4.1.2). This will be used to exhibit examples (e.g., in 4.1.2) of abelian varieties
over finite fields for which there is no such lift. Such examples are interesting due
to Corollary 1.6.2.5 below, according to which every abelian variety over a finite
field admits sufficiently many complex multiplications.

Although the Lie algebra fails to be an isogeny invariant for the study of CM
abelian varieties in positive characteristic (and End0(A) does not act on the tangent
space when char(K) > 0), there is an alternative linear object attached to a CM
abelian variety A that serves as a good substitute when char(K) = p > 0: the
p-divisible group A[p∞], or its (contravariant) Dieudonné module M∗(A[p∞]) when
K is perfect.

Letting B = A in Proposition 1.2.5.1, we see that Zp ⊗Z End(A) acts faithfully

on A[p∞]. Hence, Qp ⊗Q End0(A) acts faithfully on A[p∞] in the isogeny category
of p-divisible groups over K. In particular, if K is perfect (e.g., finite) and A is
an isotypic CM abelian variety over K with complex multiplication by the CM
field L (see Theorem 1.3.4) then Lp := Qp ⊗Q L acts faithfully and linearly on the
vector space M∗(A[p∞])[1/p] of rank 2g over the absolutely unramified p-adic field
W (K)[1/p].

This W (K)[1/p]-linear faithful Lp-action for perfect K with char(K) = p is
an analogue of a classical construction when char(K) = 0: the action of L on the
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algebraic de Rham cohomology H1
dR(A/K) (a filtered K-vector space of dimension

2g). It will be useful in later considerations (e.g., the proof of Theorem 2.2.3) with
lifting problems from positive characteristic to characteristic 0. (Note that when
char(K) = 0, H1

dR(A/K) provides essentially the same information as the CM type
arising from the L-action on Lie(A) = H0(A,Ω1

A/K)∨, in view of the Hodge filtration

on H1
dR(A/K); cf. Definition 1.5.3.1 and the subsequent discussion there.)

1.6. Abelian varieties over finite fields

In this section we work over a finite field κ with char(κ) = p.

1.6.1. Tate’s theorem and Weil numbers. A fundamental fact in the theory
of abelian varieties over finite fields is:

1.6.1.1. Theorem (Tate’s isogeny theorem). For abelian varieties A and B over
a finite field κ, the natural injective map

Z� ⊗Z Hom(A,B) → Hom(A[�∞], B[�∞])

is bijective for every prime � (including � = char(κ)).

Proof. By passing to A×B, it suffices to treat the case A = B, as we shall now
consider. The case � �= char(κ) is the main result in [118]; see [82, App. I, Thm. 1]
for a proof as well. Unfortunately, Tate did not publish his proof for the case � = p
(though his argument was published in [79]). See Appendix A.1 for a proof. �

Tate’s proof of his isogeny theorem is closely tied up with his analysis of the
general structure of endomorphism algebras of abelian varieties over finite fields.
The essential case, and the one on which we will now focus, is a simple abelian
variety A over a finite field κ. In this case D := End0(A) is a division algebra of
finite dimension over Q. If q = #κ then the q-Frobenius endomorphism

π = πA : A −→ A

is central in D since the q-Frobenius is functorial on the category of κ-schemes.
Hence, the number field Q[π] = Q(π) is contained in the center of D.

Even without simplicity or isotypicity hypotheses on A, Tate proved (see [82,
App. I, Thm. 3(a)]) that the commutative Q-algebra Q[π] is the center of End0(A)
for any abelian variety A over κ.

1.6.1.2. Definition. Let q = pn for a positive integer n and prime number p. Let
F be a field of characteristic 0.

(i) A Weil q-integer in F (or a Weil q-integer of weight 1, to be precise) is an
algebraic integer z ∈ F whose Q-conjugates in C have absolute value q1/2.2

(ii) Let w be an integer. A Weil q-number of weight w is an algebraic number z
such that ordv(z) = 0 for all finite places v of Q(z) prime to q and |τ (y)| =
qw/2 for all injective ring homomorphisms τ : Q(z) → C.

Note that a Weil q-integer as defined above is precisely a Weil q-number of
weight 1 such that ordv(z) � 0 for all p-adic places v of Q(z). The interest in
Definition 1.6.1.2 is that Weil proved (see [95, §3]) that for any non-zero abelian

2What is called a Weil q-integer here is often called a “Weil q-number” or “Weil q-number of
weight 1” in the literature.
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variety A over κ and any � �= p := char(κ), the Q�-linear q-Frobenius action on
V�(A) has characteristic polynomial fA,q ∈ Z[T ] that is independent of � and has
all roots in C equal to Weil q-integers.

In Tate’s work, he also proved (see [82, App. I, Thm. 3(e)]) that A is isotypic
if and only if the common characteristic polynomial fA,q ∈ Z[T ] of the q-Frobenius
action on the Tate modules has a single monic irreducible factor over Q, in which
case this irreducible factor is obviously the minimal polynomial fπ over Q for the
q-Frobenius endomorphism π ∈ End0(A) (since π is central). The polynomial fπ
only depends on A through its isogeny class (due to the functoriality of q-Frobenius
on κ-schemes), and by Weil’s Riemann Hypothesis its Gal(Q/Q)-conjugacy class of
roots in C consists of Weil q-integers, where Q is the algebraic closure of Q in C.

1.6.2. The Honda-Tate theorem. Fix an abstract algebraic closure Q of Q
and let Weil(q) denote the set of Weil q-integers in Q. Elements of Weil(q) are
equivalent when they lie in the same Gal(Q/Q)-orbit; i.e., they have the same
minimal polynomial over Q. The following remarkable result relates Weil q-integers
to isogeny classes of simple abelian varieties over a finite field of size q.

1.6.2.1. Theorem (Honda-Tate). Let κ be a finite field of size q. The assignment
A �→ πA defines a bijection from the set of isogeny classes of simple abelian varieties
over κ to the set of Gal(Q/Q)-conjugacy classes of Weil q-integers.

Proof. We refer the reader to [50], [121], and [95] for a discussion of the proof
of the Honda-Tate theorem. The proof of injectivity in Theorem 1.6.2.1 rests on
the work of Tate related to Theorem 1.6.1.1. The proof of surjectivity uses abelian
varieties in characteristic 0 (in fact, it uses descents to number fields of CM abelian
varieties over C; see Theorem 1.7.2.1). We are not aware of a proof of surjectivity
that avoids abelian varieties in characteristic 0. �

The following consequence of the (proof of the) Honda–Tate theorem describes

the possibilities for the division algebra D = End0(A) in terms of whether the
center Z is Q or Q(

√
p) (the totally real cases) or a CM field.

1.6.2.2. Corollary. Let A be a simple abelian variety over a finite field κ of size q
and characteristic p. Define D = End0(A), so Z := Q(π) is its center. Let π ∈ D
be the q-Frobenius endomorphism. Exactly one of the following occurs.

(1) We have π2 = q = pn with n even. This is precisely the case Z = Q, and occurs
exactly when D is a central quaternion division algebra over Q, in which case
it is the unique quaternion division algebra over Q ramified at exactly {p,∞}.

Each of the isogeny classes of simple abelian varieties with π ∈ {±pn/2}
consists of supersingular elliptic curves E over κ for which all endomorphisms
of Eκ are defined over κ (equivalently, the geometric endomorphism algebra
End0(Eκ) coincides with End0(E)).

(2) We have π2 = q = pn with n odd. This is precisely the case Z = Q(
√
p), and

occurs if and only if D is the unique central quaternion division algebra over
Z ramified at exactly the two infinite places of Z.

The corresponding isogeny class of simple abelian varieties is represented
by the 2-dimensional Weil restriction Resκ′/κ(E

′) where κ′/κ is a quadratic
extension and E′ is a supersingular elliptic curve over κ′ whose geometric
endomorphism algebra is defined over κ′.
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(3) The field Z is a CM field. In such cases, D is the central division algebra over
Z that is split at all places of Z away from p and for each p-adic place v of Z
has local invariant invv(D) = (ordv(π)/ordv(q))[Zv : Qp] mod Z ∈ Q/Z.

The members of the corresponding isogeny class of simple abelian varieties
over κ have dimension g = (1/2)[Z : Q] ·

√
[D : Z].

Proof. Since π is a Weil q-integer, for any embedding j : Z → C the subfield
j(Z) in C is stable under complex conjugation and the effect of this involution on Z
is given by the intrinsic formula π �→ q/π that is independent of j. Thus, Z is either
totally real or a CM field and the totally real cases are precisely when π2 = q = pn,
with Z = Q for even n and Z = Q(

√
p) for odd n.

In all cases, D is split at the finite places of Z away from p. Indeed, Tate’s
isogeny theorem away from p implies that for a prime � �= p the map

(1.6.2.1) Q� ⊗Q D → EndZ�
(V�(A))

is an isomorphism (using that the Z-action on V�(A) encodes the action of the Galois
group Gal(κ/κ)). The right side of (1.6.2.1) is visibly a product of matrix algebras
over factor fields of Z� =

∏
v|� Zv, so D splits at all �-adic places of Z. Writing

d2 = [D : Z], the Zv-algebra isomorphism Dv � EndZv
(Vv(A)) for v|� implies that

Vv(A) has Zv-dimension d for all such v, so V�(A) is free of rank d over Z�. Hence,

[Z� : Q�]d = 2g, so g = (1/2)[Z : Q]
√
[D : Z]. This is the asserted dimension

formula in case (3), and the proof also applies in cases (1) and (2) (as will be used
below). The formula for invv(D) in case (3) with v|p is proved in A.1.3, resting
on preliminary work in A.1.1 and A.1.2, and that proof is applicable regardless of
whether Z is CM or totally real. This completes the proof of case (3), and in cases
(1) and (2) (so π2 = q) it establishes the formula invv(D) = [Zv : Qp]/2 mod Z for
p-adic places v of Z.

Consider case (1) (equivalently, π = ±pn/2 with n even), so D is a central
division algebra over Z = Q split away from p and ∞ with invp(D) = 1/2 mod Z.
This forces inv∞(D) = 1/2 mod Z, so D is a quaternion division algebra over Q.
In particular, the dimension formula yields g = 1, so A is an elliptic curve. In view
of the other possibilities for Z, these are the only cases for which D is a central
quaternion division algebra over Q. The elliptic curves E that arise in such cases
must be supersingular (since it is classical that End0(Eκ) is commutative in the or-

dinary case). Moreover, since it is classical that End0(Eκ) is a quaternion division
algebra in the supersingular case, it follows for Q-dimension reasons that the injec-
tion D = End0(E) → End0(Eκ) is an equality. In other words, all endomorphisms
of Eκ are defined over κ. This settles case (1).

Finally, consider case (2). Since the numbers ±pn/2 with odd n are Galois
conjugate over Q, there is exactly one isogeny class that arises in this case. For
the unique p-adic place v of Z = Q(

√
p), the formula for invv(D) vanishes. Hence,

D splits away from the two real places of Z, so its order in Br(Z) divides 2 and

the dimension formula says g =
√
[D : Z]. Thus, either D = Z and A is an elliptic

curve or D is the unique central quaternion division algebra over Z split away from
the real places and A is an abelian surface. The first case cannot happen, since
otherwise the quadratic field Z would provide a CM structure on the elliptic curve,
contradicting Proposition 1.3.6.4(2) since D = Z is a real quadratic field.
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For the quadratic extension κ′ of κ, the abelian surface Aκ′ is isotypic (by
1.2.6.1). But its q2-Frobenius is π2

κ′ = q, which by the settled case (1) over κ′ is
the Weil q2-integer associated to some supersingular elliptic curve over κ′. Hence,
Aκ′ cannot also be κ′-simple, so it is isogenous to E′ × E′ for an elliptic curve
E′ over κ′ that must be in the isogeny class which occurs in case (1) over κ′.
Choosing such an isogeny decomposition provides a non-zero homomorphism Aκ′ →
E′ over κ′. By the universal property of Weil restriction, we thereby get a non-zero
κ-homomorphism A → Resκ′/κ(E

′). Since A is κ-simple, by dimension reasons
this must be an isogeny. The existence of A is guaranteed by the Honda–Tate
classification, so it follows that for E′ as in case (1) over κ′, the abelian surface
Resκ′/κ(E

′) is necessarily κ-simple and lies in the unique isogeny class occurring in
case (2) over κ. �

1.6.2.3. Remark. In the terminology of Theorem 1.3.6.2, the three cases in Corol-
lary 1.6.2.2 correspond to A that are respectively of Type III with e = 1, Type III
with e = 2, and Type IV. We saw in the proof of 1.6.2.2 that the formula for
invv(D) for p-adic places v of Z in case (3) works in cases (1) and (2), and that
the dimension formula in case (3) works in cases (1) and (2) (though these facts in
cases (1) and (2) are also clear by inspection).

The common Q-degree [Z : Q]
√
[D : Z] of maximal commutative subfields of

the division algebra D is 2g in each case of Corollary 1.6.2.2, so simple abelian
varieties over finite fields always have sufficiently many complex multiplications.

1.6.2.4. Example. Observe that in part (3) of Corollary 1.6.2.2, for any elliptic
curve case that arises necessarily the CM field Z = Q[π] is imaginary quadratic
and D = Z. Writing q = pr, the elliptic curves that arise in this way are as follows,
depending on the behavior of p in the imaginary quadratic field Z = Q[π].

There are several possibilities for the splitting behavior of p in Z: (i) p splits
in Z with π generating the rth power of one of the two primes of Z over p, (ii) p
is inert in Z with r even and π = pr/2ζ for an imaginary quadratic root of unity
ζ �= ±1 such that p is inert in Q(ζ), or (iii) p is ramified in Z and π generates
the rth power of the unique prime of Z over p. Cases (ii) and (iii) are exactly the
supersingular cases, and since D = Z in theses cases, the geometric endomorphism
algebra is not entirely defined over κ. Hence, part (1) of Corollary 1.6.2.2 gives all
supersingular elliptic curves over κ (up to isogeny) whose geometric endomorphism
algebra is defined over κ.

By passing to products and using Theorem 1.3.4, we obtain the following result.

1.6.2.5. Corollary (Tate). Every abelian variety A over a finite field admits suf-
ficiently many complex multiplications. If A is isotypic then it admits a structure
of CM abelian variety with complex multiplication by a CM field. �

1.6.3. Example. As an application of Corollary 1.6.2.2, here are examples of
simple abelian surfaces A over prime fields of any characteristic p �≡ 1 (mod 12)
such that A is not absolutely simple. Let κ be a finite field of size p2, with p a prime
such that p �≡ 1 (mod 4) (resp. p �≡ 1 (mod 3)). Choose ζ such that ζ2 + 1 = 0
(resp. ζ2+ ζ+1 = 0), so Z := Q(ζ) is an imaginary quadratic field of class number
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1 in which p is not split. Let π = ±pζ when p is inert in Z, and let π generate the
unique prime over p in Z when p is ramified in Z, so π is a Weil p2-integer and
Z = Q(π). (Note that π �= ±2

√
−1 = (1±

√
−1)2 since 2 is ramified in Q(

√
−1).)

By Corollary 1.6.2.2(3) (also see Example 1.6.2.4), a simple abelian variety
E0 over κ with p2-Frobenius equal to π must have endomorphism algebra Z and
dimension 1. The elliptic curve E0 is supersingular because p is not split in Z. The
isogeny class of E0 contains no member that is the scalar extension of an elliptic
curve over Fp, as otherwise π would have a square root π0 ∈ Z, which is visibly

absurd by inspection since π �= ±2
√
−1.

The abelian surface A0 := Resκ/Fp
(E0) satisfies (A0)κ � E0 ×E

(p)
0 , so (A0)κ is

not simple. ButA0 is simple, as otherwise there would be a non-zero homomorphism
E′

0 → A0 from an elliptic curve E′
0 over Fp and hence (by the universal property of

Weil restriction) a non-zero homomorphism (E′
0)κ → E0, contrary to what we just

saw concerning the isogeny class of E0. (Note that (A0)κ is isotypic, since E
(p)
0 is

isogenous to E0 via the relative Frobenius morphism E0 → E
(p)
0 .)

Taking K/Q to be a quadratic field in which p is inert, we can lift E0 over
OK,(p) to get an elliptic curve E over K having good reduction E0 at pOK . Then
A := ResK/Q(E) is an abelian surface over Q having good reduction Resκ/Fp

(E0)
at p that is simple over Fp, so (via consideration of Néron models over Z(p)) A
is simple over Q. However, AK � E × E′ where E′ is the twist σ∗(E) by the
non-trivial automorphism σ of K over Q, so AK is not simple.

1.6.4. Example. Pushing the end of Example 1.6.3 further over Q, we now prove
that if π = ±pζ and p ≡ −1 (mod 4) with ζ2 + 1 = 0 (resp. p ≡ −1 (mod 3) with
ζ2 + ζ + 1 = 0) then E and E′ over K are not isogenous (so AK is not isotypic, in
contrast with its reduction (A0)κ). Suppose that there were an isogeny ψ : E → E′,
and choose it with minimal degree. In particular, ψ is not divisible by [p]E . We
claim that ordp(degψ) is odd (and in particular, is positive). Suppose otherwise,

so degψ = mp2n with n � 0 and p � m. Consider the reduction ψ0 : E0 → E
(p)
0

of ψ, also an isogeny with degree mp2n. In particular, ker(ψ0) is a finite subgroup
scheme of E0 with order mp2n, so its p-part has order p2n. But E0 is supersingular,
so it has a unique subgroup scheme of each p-power order. Hence, the p-part of

ker(ψ0) is E0[p
n], so ψ0 = ψ′

0 ◦ [pn]E0
with ψ′

0 : E0 → E
(p)
0 of degree m.

Consider the composite isogeny

E0
ψ′

0→ E
(p)
0 →E

(p2)
0 = E0

using the Frobenius isogeny of E
(p)
0 . This is an endomorphism of E0 with degree

pm. Since End(E0) is an order in Z[ζ] on which the degree is computed as the
norm to Z, we get an element of Z[ζ] whose norm in Z is divisible exactly once by
p. That is impossible since p is prime in Z[ζ], and so completes the verification that
degψ has p-part pj for some odd j.

We conclude that the finite K-subgroup N := ker(ψ) ⊂ E has non-trivial p-
part, and this p-part has cyclic geometric fiber (as otherwise it would contain E[p],
contradicting that we arranged ψ to not be divisible by [p]E). By cyclicity, N [p]
is a K-subgroup of E with order p. Consider its scheme-theoretic closure G in the
Néron model of E at pOK,(p). This is a finite flat group scheme over OK,(p) of
order p, and its special fiber Gκ is an order-p subgroup scheme of the supersingular
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elliptic curve E, so Gκ � αp as κ-groups (since Gκ is local-local of order p, so
M∗(Gκ) = κ with F = V = 0). But OK,(p) is an absolutely unramified discrete
valuation ring, so there are no finite flat group schemes over OK,(p) with special
fiber αp (by the classification results in [123]). This contradiction shows that E
and E′ are not isogenous (so AK is not isotypic), as claimed. In fact, we have
proved something stronger: if Kp denotes the p-adic completion of K then AKp

is
not isotypic.

1.6.5. CM lifting after a field extension and isogeny. The proof of the sur-
jectivity aspect of the Honda-Tate theorem requires constructing abelian varieties
having prescribed properties over finite fields. The idea is to relate simple abelian
varieties over finite fields to simple factors of reductions of CM abelian varieties
over number fields, at least after some finite extension on the initial finite field.
(See [50] or [121, Lemme 3] for details.)

One can ask (as Honda implicitly did at the end of [50, §2]) to do better by
arranging simplicity to hold for the reduction of a CM abelian variety over a number
field (thereby eliminating the need to pass to a simple factor). Building on earlier
work of Honda, such an improved lifting theorem was proved by Tate [121, Thm. 2]
(and is really the starting point for the many lifting questions about CM abelian
varieties that we consider in this book):

1.6.5.1. Theorem (Honda, Tate). For any isotypic abelian variety A over a finite
field κ, there is a finite extension κ′/κ such that Aκ′ is isogenous to the reduction
of a CM abelian variety with good reduction over a p-adic field with residue field κ′.

Proof. By Corollary 1.6.2.5, there is a CM field L ⊂ End0(A) with [L : Q] =
2 dim(A). The field L is its own centralizer in End0(A), so it contains an element π
which acts by the q-Frobenius endomorphism on A, where q = #κ. Let g = dim(A).
Since A is κ-isotypic, Tate’s work on isogenies among abelian varieties over finite
fields [118] gives two results for A: (i) the common characteristic polynomial over Q
for the action of π on the Tate modules of A is a power of an irreducible polynomial
fπ over Q (necessarily the minimal polynomial of π over Q), and (ii)A is κ-isogenous
to any g-dimensional isotypic abelian variety over κ whose q-Frobenius is a zero of
fπ. Moreover, these properties persist after replacing κ with any finite extension
κ′ (and replacing π with π[κ′:κ]), due to Proposition 1.2.6.1.

By [121, §3, Thm. 2] (which is stated in the simple case but holds in the isotypic
case by the same proof), there exists a number field K ⊂ Qp, a g-dimensional
abelian variety B over K with good reduction at the induced p-adic place v of K, an
embedding of finite fields κ ↪→ κv, and an action of OL on B such that the reduction
B0 at v has qv-Frobenius in OL given by the action of πv = π[κv:κ] ∈ OL. (Here,
qv = #κv.) Since B0 admits a CM structure over κv by a field (namely, L), it is κv-

isotypic. Thus, since dim(B0) = dim(B) and Aκv
satisfies FrAκv ,qv

= Fr
[κv:κ]
A,q = πv,

it follows from the results (i) and (ii) in [118] recalled above that there exists a
κv-isogeny φ : B0 → Aκv

. �

1.6.5.2. Remark. The κv-isogeny φ : B0 → Aκv
at the end of the proof of The-

orem 1.6.5.1 might not be L-linear, though it is Q(πv)-linear since it is compatible
with qv-Frobenius endomorphisms. We can exploit the Q(πv)-linearity of φ to find
an L-linear κv-isogeny B0 → Aκv

as follows.
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Since the qv-Frobenius generates the center of the endomorphism algebra of
any abelian variety over κv, the Skolem-Noether theorem ensures that any two
Q(πv)-embeddings of L into the central simple Q(πv)-algebra End

0(Aκv
) are related

through conjugation by a unit. Hence, there is an isogeny u ∈ End(Aκv
) such that

u ◦ φ is L-linear. By renaming this as φ, we may arrange that φ is L-linear. Thus,
in Theorem 1.6.5.1 we may choose the CM lift so that the action of a specified
degree-2g CM field L ⊂ End0(A) also lifts.

It is natural to ask for a strengthening of Theorem 1.6.5.1 in which the isogeny
is applied prior to making a residue field extension (to acquire a CM lifting). As
we will record near the end of 1.8, such a stronger form is true and follows from
one of the main results proved later in this book.

1.7. A theorem of Grothendieck and a construction of Serre

1.7.1. Isogenies and fields of definition. Let A be an abelian variety over a
field K and let K1 ⊂ K be a subfield. We say that A is defined over K1 if there
exists an abelian variety A1 over K1 and an isomorphism f : A � (A1)K . We use
similar terminology for a map h : A → B between abelian varieties over K (i.e.,
there exists a map h1 : A1 → B1 between abelian varieties over K1 such that (h1)K
is identified with h).

For example, supposeK/K1 is a primary extension of fields (i.e.,K1 is separably
algebraically closed in K) and consider abelian varieties A and A′ over K such that
there are isomorphisms f : A � (A1)K and f ′ : A′ � (A′

1)K for abelian varieties
A1 and A′

1 over K1. By Lemma 1.2.1.2, the pairs (A1, f) and (A′
1, f

′) are unique
up to unique isomorphism and every map A → A′ as abelian varieties over K is
defined over K1 in the sense that it uniquely descends to a map A1 → A′

1 as abelian
varieties over K1. Likewise, by Corollary 1.2.1.4, all abelian subvarieties of A are
defined over K1 (and even uniquely arise from abelian subvarieties of A1). For
general extensions K/K1 such K1-descents may not exist, and when (A1, f) does
exist it is not necessarily unique (up to isomorphism).

1.7.1.1. Example. Assume char(K) = 0 and let K ′/K be an algebraically closed
extension (a basic example of interest being K ′ = C). We claim that each member
of the isogeny class of AK′ is defined over the algebraic closure K of K in K ′ (and
hence over a finite extension of K inside K ′). To prove this, observe that the kernel
of any isogeny ψ : AK′ → B over K ′ is contained in some torsion subgroup A[n]K′ ,
and A[n] becomes constant over K (since A[n] is K-étale, as char(K) = 0). Hence,
we can descend ker(ψ) to a constant finite subgroup of AK , and the quotient of AK

by this gives a descent of (B,ψ) to K ⊂ K ′.

1.7.1.2. Example. When char(K) = p > 0, the naive analogue of Example 1.7.1.1
fails. An interesting counterexample is A = E2 for a supersingular elliptic curve
E over a field K of characteristic p > 0. The kernel H of the Frobenius isogeny
E → E(p) is a local-local K-group of order p, and it is the unique infinitesimal
subgroup of E with order p (as any commutative infinitesimal K-group of order p
has vanishing Frobenius morphism).

The only local-local finite commutative group scheme of order p over K is αp.
For perfect K this is easily proved by a computation with Dieudonné modules (as
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we noted in Example 1.6.4). In Proposition 3.1.10 we will prove that this property
in general descends from the perfect closure (set r = 1 there).

Fix a choice of K-subgroup inclusion αp ↪→ E over K, so we get a canonical

copy of α2
p in A = E2 (as the kernel of the Frobenius isogeny A → A(p)). Over an

arbitrary field of characteristic p > 0 the Frobenius and Verschiebung morphisms
of α2

p vanish, so over any such field the non-trivial proper subgroups of α2
p are

naturally parameterized by lines in the 2-dimensional tangent space Lie(α2
p); this

parameterization is given by the tangent line of the subgroup (see [23, Thm. 3.18]
for more details). In particular, the non-trivial proper K-subgroups of α2

p are

parameterized by P1(K), and if K ′/K is an extension field then the non-trivial
properK ′-subgroups of (αp)

2
K′ are parameterized by P1(K ′) (with the subset P1(K)

consisting of the tangent lines to the K ′-subgroups defined over K).
We conclude that if K ′/K is a non-trivial extension field then there are K ′-

subgroups G′ ⊂ A′ := AK′ of order p that are contained in (α2
p)K′ and do not arise

from a K-subgroup of A. In contrast with what we saw in Example 1.7.1.1 for
isogeny classes over algebraically closed fields of characteristic 0, we claim that if
K is separably closed (or more generally if K is separably closed in K ′, with G′ not
defined over K inside A′ = AK′) then the isogenous quotient A′/G′ of A′ = AK′

cannot be defined over K as an abstract abelian variety!
Indeed, if there were an isomorphism A′/G′ � BK′ for an abelian variety B

over K then the resulting isogeny

AK′ = A′ � A′/G′ � BK′

descends to an isogeny A → B over K by Lemma 1.2.1.2 (since K ′/K is primary).
The kernel of this latter isogeny is a K-subgroup of A that descends G′ ⊂ A′,
contrary to how G′ was chosen. Thus, no such B exists.

One lesson we learn from Example 1.7.1.1 and Example 1.7.1.2 is that fields of
definition for abelian varieties in positive characteristic are rather more subtle than
in characteristic 0, even when working over algebraically closed base fields.

1.7.2. Grothendieck’s theorem. To fully appreciate the significance of Exam-
ple 1.7.1.2, we turn our attention to a striking result of Grothendieck concerning
the field of definition of an abelian variety with sufficiently many complex multipli-
cations in positive characteristic. Before stating Grothendieck’s result, we record
the analogue in characteristic 0 that is a source of inspiration.

1.7.2.1. Theorem (Shimura–Taniyama). Every non-zero abelian variety A with
sufficiently many complex multiplications over an algebraically closed field K of
characteristic 0 is defined (along with its entire endomorphism algebra) over a num-
ber field inside K.

Proof. By Example 1.7.1.1, without loss of generality we may replace A with an
isogenous abelian variety. Thus, by Proposition 1.3.2.1 we can pass to the isotypic
(and even simple) case, and so by Theorem 1.3.4 the abelian variety A over K
admits complex multiplication by a CM field L. Let Φ be the resulting CM type on
L. Letting Q denote the algebraic closure of Q in K, we may view Φ as a Q-valued
CM type on L.
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By Proposition 1.5.4.1 (applied over the algebraically closed base field Q) there
is a CM abelian variety B over Q with complex multiplication by L and CM type
Φ (viewed as valued in Q). The abelian variety BK over K admits complex multi-
plication by L with associated CM type Φ (viewed as valued in K), so by applying
Proposition 1.5.4.1 over K we see that BK is L-linearly isogenous to A over K (as
these two abelian varieties over K are endowed with complex multiplication by L
yielding the same CM type Φ on L). Fix such an isogeny f : BK → A. By Example
1.7.1.1 (applied to K/Q), the finite kernel of f descends to a finite subgroup of B.
The quotient of B by this descent of ker(f) is a descent A0 of A = BK/ker(f) to
an abelian variety over Q.

By Lemma 1.2.1.2, End(A0) → End(A) is an isomorphism. Thus, we may
assume the base field K is an algebraic closure Q of Q. Express Q as a direct limit
of number fields to see that the Q-group A descends to an abelian variety over a
number field inside Q. The same direct limit argument as used at the start of the
proof of Proposition 1.2.6.1 then shows that we can choose the descent of A to a
number field so that all elements of End(A) descend as well. �

Theorem 1.7.2.1 can be formulated with a general ground field K of charac-
teristic 0, but the nature of the descent becomes a bit more subtle. Namely, if A
is an abelian variety over a field K of characteristic 0 and if A admits sufficiently
many complex multiplications, then there is a finite extension K ′/K such that AK′

descends (along with its entire endomorphism algebra) to an abelian variety over a
number field contained in K ′. In this formulation it is crucial to introduce the finite
extension K ′/K, even if we just wish to descend the abelian variety (and not any
specific endomorphisms). This is illustrated by quadratic twists of elliptic curves:

1.7.2.2. Example. Consider a CM elliptic curve over C and extend scalars to
K = C(t). Let E be the quadratic twist of this scalar extension by a quadratic
extension K ′/K, so E is a CM elliptic curve over K whose �-adic representation
for Gal(Ks/K) is non-trivial. No member of the isogeny class of E over K can be
defined over C (let alone over Q), as all members of the isogeny class have non-
trivial action by Gal(Ks/K) for their �-adic representations. Of course, if we pass
up to K then the effect of quadratic twisting goes away and there is no obstruction
to descent to Q.

Over number fields, CM abelian varieties extend to abelian schemes over the
entire ring of integers at the cost of a finite extension of the ground field. This is
an application of the semi-stable reduction theorem for abelian varieties (see [109,
Thm. 6]), and we record it here for later reference:

1.7.2.3. Theorem. Every CM abelian variety over a number field has potentially
good reduction at all places.

Since every abelian variety over an algebraic closure of Fp descends to a finite
field and hence has sufficiently many complex multiplications (by Corollary 1.6.2.5),
a first guess for an analogue of Theorem 1.7.2.1 in positive characteristic is that CM
abelian varieties over algebraically closed fields K with positive characteristic can
be descended to the algebraic closure of the prime field inside K (or equivalently,
to a finite subfield of K).
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Example 1.7.1.2 shows that this guess is false, since A′/G′ as built there admits
a CM structure since supersingular elliptic curves over K always admit a CM
structure (as they descend to elliptic curves over the algebraic closure of Fp inside
K). Allowing isogenies does not eliminate the need for a finite extension when the
ground field K is not algebraically closed:

1.7.2.4. Example. For a finite field κ, Example 1.7.2.2 adapts to work over K =
κ(t) by beginning with an elliptic curve over κ (for which complex multiplication
by an imaginary quadratic field exists in general; see Corollary 1.6.2.5). One can
do likewise over κ(t) with κ an algebraic closure of Fp.

Motivated by the above examples, Grothendieck proved a reasonable analogue
of Theorem 1.7.2.1 in positive characteristic:

1.7.2.5. Theorem (Grothendieck). Let A be an abelian variety over a field K with
char(K) = p > 0, and assume A admits sufficiently many complex multiplications.
Then there exists a finite extension K ′ of K, a finite subfield κ ⊂ K ′, and an
abelian variety B over κ such that the scalar extensions A ×Spec(K) Spec(K

′) and
B ×Spec(κ) Spec(K

′) over K ′ are isogenous. �

For an exposition of Grothendieck’s proof, see [89]. The essential difficulty in
the proof in contrast with characteristic 0 is that the isogeny cannot be avoided,
even when K = K (due to Example 1.7.1.2). The proof of Theorem 1.7.2.5 is
immediately reduced to the case whenK is finitely generated over Fp. Grothendieck
used the theory of potentially good reduction to find the required K ′/K and made
a descent from K ′ to a finite subfield via a Chow trace (in the sense of [23, §6]).

1.7.3. There is a refinement of Grothendieck’s theorem, due to C-F.Yu, that clar-
ifies the role of the isogeny and proceeds in a simpler way by using moduli spaces
of abelian varieties. This refinement is given in 1.7.5. We will not need that result,
but the main ingredient in its proof is a technique to modify the endomorphism
ring that will be very useful later, so we now explain that technique.

As motivation, consider an abelian variety A of dimension g > 0 over a field K
such that A admits sufficiently many complex multiplications, and let P ⊂ End0(A)
be a commutative semisimple Q-subalgebra with [P : Q] = 2g. The intersection
O := P ∩End(A) is an order in P that may not be maximal (i.e., it may not equal
OP :=

∏
OLi

, where
∏

Li is the decomposition of P into a finite product of number
fields). It is natural to ask if there is an isogenous abelian variety for which the
non-maximality problem goes away. The following discussion addresses this issue.

1.7.3.1. Example. Consider the preceding setup with K = C. In this case we
have an analytic uniformization Aan = V/Λ in which V is a C-vector space equipped
with a C-linear action by P and Λ is a lattice in V stable under the order O. Then
Λ′ := OP ·Λ is an OP -stable lattice in V and V/Λ′ is an isogenous quotient of Aan

on which OP naturally acts. This algebraizes to an isogenous quotient A′ of A such
that under the identification End0(A′) = End0(A) we have P ∩ End(A′) = OP .

We need an algebraic variant of the analytic construction in Example 1.7.3.1.
Observe that OP · Λ is the image of the natural map OP ⊗O Λ → V . Inspired
by this, we are led to ask if these is a way to enlarge an endomorphism ring via
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a “tensor product” against a finite-index extension of coefficient rings. There is
a construction of this sort due to Serre [104], applicable over any base scheme,
though it turns out to not be applicable to the above situation because OP is not a
projective O-module when O �= OP . We wish to adapt Serre’s construction to the
above situation over a field, so we digress to explain Serre’s procedure.

1.7.4. Serre’s tensor construction. Consider a scheme S, a commutative ring
O, and an O-module scheme A over S. (The main example of such an A to keep
in mind is an abelian scheme, but there are other interesting examples, such the
n-torsion subgroups of such abelian schemes for n � 1.) Let M be a projective
O-module of finite rank.

The projectivity of M ensures that the functor T � M ⊗O A(T ) on S-schemes
is represented by an S-scheme, denoted M ⊗O A, and that M ⊗O A inherits many
nice properties from A such as flatness, smoothness, properness, good behavior
with respect to analytification over C, etc. The interested reader can see [22, §7]
for details (where non-commutative O are also considered), but the idea of the
construction of M ⊗O A is simple, as follows.

If Or ϕ→ Os → M → 0 is a presentation then we want to define M ⊗O A
to be the cokernel of the S-group map Ar → As induced by the matrix of ϕ.
Without the projectivity assumption on the O-module M , over a general base
scheme S such a quotient may not exist. However, since M is locally free of finite
rank as an O-module (by the projectivity hypothesis) we can instead begin with a
presentation of the dual module M∨ and then dualize to get a left-exact sequence
0 → M → Os → Or with suitable local splitting properties to enable us to construct
M ⊗O A as a scheme-theoretic kernel. More explicitly, by projectivity there is an
integer r � 1 and O-module M ′ such that Or � M ⊕ M ′, so there is an O-
linear idempotent endomorphism e of Or such that M = ker(e). The kernel of the
associated O-linear endomorphism of Ar represents M ⊗O A.

1.7.4.1. Example. Let L be a CM field, and let (A, i) and (A′, i′) be CM abelian
varieties over a field K, where i and i′ respectively define complex multiplication
by L. Assume that via these embeddings, OL lies in the endomorphism rings of
the abelian varieties. Finally, assume that there exists a non-zero OL-linear map
A′ → A. (By Proposition 1.5.4.1, when K is algebraically closed of characteristic 0
it is equivalent to assume that the associated CM types Φ′ and Φ on L coincide.)

We claim that M := Hom((A′, i′), (A, i)) is an invertible OL-module whose
formation is unaffected by extension of the ground field and that if char(K) = 0
then the evaluation map

M ⊗OL
A′ → A

is an isomorphism. (Hence, over an algebraically closed field of characteristic 0
the Serre tensor construction defines a natural transitive action of the finite group
Pic(OL) on the set of isomorphism classes of CM abelian varieties with a fixed CM
type (L,Φ) and CM order OL. The argument below will show that the action is
simply transitive.)

The non-zero L-vector space MQ = Hom0((A′, i′), (A, i)) has dimension exactly
1 since for � �= char(K) the natural map

Q� ⊗Q MQ → HomL�
(V�(A

′), V�(A))
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is injective and the target is free of rank 1 over L�. Hence, the finitely generated
torsion-free OL-module M is invertible. Also, the injective map

Hom((A′, i′), (A, i)) → Hom((A′
Ks

, i′), (AKs
, i))

between finitely generated OL-modules has image with finite index since it becomes
an equality after applying Q ⊗Z (·) (for L-dimension reasons); let n be the index.
It follows that all L-linear Ks-homomorphisms f : A′

Ks
→ AKs

are Gal(Ks/K)-
invariant because nf is defined over K. This shows that the formation of M is
unaffected by ground field extension to Ks, and hence by any ground field extension
(due to Lemma 1.2.1.2).

Now we assume that char(K) = 0 and seek to prove that M ⊗OL
A′ → A is

an isomorphism. We may assume K is finitely generated, and then that K = C.
The OL-modules H1(A(C),Z) and H1(A

′(C),Z) are each invertible (due to being
Z-flat of rank [L : Q]). By Example 1.5.3, we get OL-linear isomorphisms A(C) =
(R ⊗Q L)Φ/a and A′(C) = (R ⊗Q L)Φ/a

′ for non-zero ideals a, a′ ⊂ OL. Hence,
elements of M are precisely multiplication on (R⊗Q L)Φ by those c ∈ L such that

ca′ ⊆ a. We conclude that M = HomOL
(a′, a) = aa′

−1
, with M ⊗OL

A′ → A given
by the evident evaluation pairing on C-points. This is an isomorphism because the
induced map on homology lattices is the natural map M ⊗OL

a′ → a that is clearly
an isomorphism.

The isomorphism property for the map M⊗OL
A′ → A in Example 1.7.4.1 fails

away from characteristic 0, even for elliptic curves over finite fields. For example, if
L is imaginary quadratic with class number 1 then the relative Frobenius isogeny
provides counterexamples (using elliptic curves whose j-invariant is not in the prime
field). More explicitly, for p ≡ −1 mod 4 and κ := Z[i]/(p) � Fp2 with p > 3,
consider the elliptic curves E± = E = {y2 = x3 − x} over κ with CM by OL

via the actions [i](x, y) = (−x,±iy). These are not OL-linearly isomorphic (since
Aut(E) = μ4 ⊂ O×

L , as p > 3) but the Frobenius isogeny E → E(p) is an OL-linear
isogeny E+ → E−. Thus, the module M of OL-linear homomorphisms from E+ to
E− is non-zero but the OL-linear map M⊗OL

E+ → E− cannot be an isomorphism
(since M � OL as OL-modules).

1.7.4.2. Example. Let (A, i, L) be as in Example 1.7.4.1 over a field K, so OL ⊂
End(A). For an invertible OL-module M , another such abelian variety is given by
M⊗OL

A. Anym ∈ M defines an OL-linear map em : A → M⊗OL
A via x �→ m⊗x.

For � �= char(K), the map T�(em) induced by em on �-adic Tate modules is the map
T�(A) → M ⊗OL

T�(A) given by v �→ m⊗ v, so em �= 0 when m �= 0. In particular,
the module HomOL

(A,M ⊗OL
A) of OL-linear homomorphisms is non-zero and

therefore invertible (by Example 1.7.4.1).
The natural map of invertible OL-modules

eA,M : M → HomOL
(A,M ⊗OL

A)

is injective, hence of finite index. We shall now show that this map is an isomor-
phism. It suffices to check the result after applying Z� ⊗Z (·) for every prime �
(allowing � = char(K)). This scalar extension is the first map in the diagram

M� → Z� ⊗Z HomOL
(A,M ⊗OL

A) → HomOL,�
(A[�∞],M� ⊗OL,�

A[�∞])
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whose second map is injective (Proposition 1.2.5.1) and composition is the canonical
homomorphism that is injective. It therefore suffices to show that the composite
map is an isomorphism. But M� is free of rank 1 as an OL,�-module, so it is
equivalent to show that the natural map

OL,� → EndOL,�
(A[�∞])

is an isomorphism for all �.
The case � �= char(K) is trivial, as then the �-adic Tate module T�(A) is free

of rank 1 over OL,� (since V�(A) is free of rank 1 over L�, due to faithfulness and
Q�-dimension reasons). Now assume char(K) = p > 0 and � = p. Decomposing
A[p∞] according to the primitive idempotents of OL,p, for each p-adic place v of L
the v-factor has height at least [Lv : Qp] (by Proposition 1.4.3.9) and hence height
exactly [Lv : Qp]. Thus, it suffices to prove more generally that if X is a p-divisible
group over K of height h > 0 and F is a p-adic field of degree h over Qp such that
OF ⊂ End(X) then OF is its own centralizer in End(X).

We may and do assume that K is algebraically closed, so the Dieudonné module
M∗(X) makes sense and is free of rank 1 as a W (K)⊗Zp

OF -module (Proposition
1.4.3.9). Thus, any OF -linear endomorphism f of X gives rise to a W (K)⊗Zp

OF -
linear endomorphism of M∗(X), so M∗(f) must be multiplication by some c ∈
W (K) ⊗Zp

OF . But M∗(f) commutes with the F operator on M∗(X), so c is
invariant under the absolute Frobenius automorphism σ of W (K). This forces
c ∈ W (K)σ=1 ⊗Zp

OF = OF , so f is an OF -multiplier, as desired.

1.7.4.3. Remark. The O-linear projectivity hypothesis on M in the construction
of M ⊗O A cannot be dropped, even when the base is the spectrum of a discrete
valuation ring. For example, if R is a p-adic discrete valuation ring and E is an
elliptic curve over R with endomorphism ring O = Z[p

√−p] (as can be easily con-
structed using classical CM theory for elliptic curves), then for the non-projective
O-module M = Z[

√−p] the fppf sheafification of the functor T � M ⊗O E(T ) on
R-schemes is not representable. (The idea is as follows. First one proves that a
representing object, if one exists, must be an elliptic curve E . By presenting M
over O using two generators and two relations, we get a quotient homomorphism
E×E → E whose kernel must be an R-flat divisor in E×E. Studying its defining
equation in the formal group of E × E leads to a contradiction.)

For any homomorphism f : A → A′ between abelian varieties over a field,
the image f(A) is an abelian subvariety over A′ and the map A → f(A) is flat.
Such good properties for f(A) generally fail for homomorphisms between abelian
schemes over a more general base, but their availability over fields enables us to
push through the initial cokernel idea for the Serre tensor construction over fields.
In this way we can avoid dualizing M and hence make the construction work with
weaker hypotheses on M than projectivity. We shall now give a version of this for
abelian varieties (and in 4.3.1 there is a version for p-divisible groups), but first we
require a general lemma:

1.7.4.4. Lemma. For an abelian variety B over a field K and an abelian subvari-
ety B′, the quotient sheaf B/B′ for the fppf topology on the category of K-schemes
is represented by an abelian variety.
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Proof. Recall from the Poincaré reducibility theorem overK (see Theorem 1.2.1.3)
that there is an abelian subvariety B′′ ⊂ B over K that is an isogeny complement
to B′ in the sense that the natural map f : B′×B′′ → B is an isogeny. Since f is a
finite flat surjection, so B � (B′ ×B′′)/ker(f) as fppf abelian sheaves, we likewise
have B/B′ = B′′/(B′ ∩ B′′) as fppf sheaves. Thus, the problem for B/B′ is the
same as for the quotient of B′′ by the finite K-subgroup scheme B′ ∩ B′′. Hence,
it suffices to show that B′′/G is (represented by) an abelian variety for any finite
K-subgroup G ⊂ B′′.

Rather than appealing to existence results for quotients by the free action of a
finite group scheme on a quasi-projective scheme, here is a more direct argument
via fppf descent theory and a special property of abelian varieties: for any n � 1,
the map [n]B′′ : B′′ → B′′ is a finite flat surjection, so B′′/B′′[n] � B′′ as fppf
abelian sheaves. To exploit this, note that the K-group G is killed by its order n.
(Indeed, we may assume char(K) = p > 0 and use the connected-étale sequence for
G and kernels of relative Frobenius morphisms to reduce to the case when FrG/K

vanishes. In such cases p kills G since [p]G = VerG(p)/K ◦FrG/K .) Thus, G ⊂ B′′[n],
so as fppf abelian sheaves B′′/G is a B′′[n]/G-torsor over B′′/B′′[n] � B′′.

Since B′′[n]/G is represented by a finite K-scheme, by effective descent for
finite morphisms we see that the quotient sheaf B′′/G is therefore represented by
a finite flat B′′-scheme over which B′′ is a finite flat cover (even a G-torsor). This
implies that B′′/G is proper, smooth, and connected, so it is an abelian variety, as
desired. �

Here is the promised generalized Serre tensor construction over fields (allowing
non-projective modules).

1.7.4.5. Proposition. Let A be an abelian variety or finite commutative group
scheme over a field K. Let O → End(A) be a homomorphism from a commutative
ring. For any finitely generated O-module M , the functor T � M ⊗O A(T ) on K-
schemes has fppf sheafification that is respectively represented by an abelian variety
or finite commutative group scheme M ⊗O A.

Suppose A is an abelian variety. For an injective map M → N between torsion-
free O-modules with finite cokernel, the induced map M ⊗O A → N ⊗O A is an
isogeny. In particular, if O′ is a Z-flat O-algebra that is finitely generated as an O-
module and OQ → O′

Q is an isomorphism then the natural map of abelian varieties

A → A′ := O′ ⊗O A is an isogeny and the identification End0(A) = End0(A′)
carries O′ ⊂ End0(A) into End(A′).

The notation O′ ⊗O A should not be confused with the standard notation for
affine base change of schemes. Also, if M is killed by a non-zero element of O then
it is killed by a non-zero integer and hence the abelian variety M ⊗O A vanishes.

Proof. Choose a finite presentation of O-modules

Or ϕ−→ Os −→ M → 0.

The map ϕ is given by an s × r matrix over O, so it defines an analogous map
[ϕ] : Ar → As between K-groups. Since we are working over a field, if A is an
abelian variety then the map [ϕ] has image that is an abelian subvariety of As onto
which [ϕ] is faithfully flat. If instead A is a finite commutative K-group then there
is a finite flat quotient map Ar → Ar/ker[ϕ]. The induced map Ar/ker[ϕ] → As
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between finite K-groups has trivial kernel, so it is a closed immersion. We denote
this closed K-subgroup as [ϕ](Ar), so (as with abelian varieties) the map [ϕ] is
faithfully flat onto a closed K-subgroup [ϕ](Ar) ⊂ As.

Using Lemma 1.7.4.4 in the abelian variety case and the more elementary theory
of quotients for finite commutative K-group schemes in the finite case, the quotient
M ⊗O A := As/[ϕ](Ar) as an abelian variety or finite K-group scheme represents
the cokernel of [ϕ] in the sense of fppf abelian sheaves on the category ofK-schemes.
It follows (via the right-exactness of algebraic tensor products) that the K-group
scheme M ⊗O A represents the fppf sheafification of T � M ⊗O A(T ).

Now assume that A is an abelian variety. Let M → N be an injective map
between torsion-free O-modules with finite cokernel. There is a map N → M
such that both composites M → M and N → N are multiplication by a common
non-zero integer n. Hence, we get maps in both directions between M ⊗O A and
N ⊗O A whose composites are each equal to multiplication by n, so both maps
between M ⊗O A and N ⊗O A are isogenies.

The assertions concerning O′ follow by considering the functor T � O′⊗OA(T )
and the abelian variety over K representing it. �

As an application of the Serre tensor construction with non-projective modules
when the base is a field, we prove a precise form of the “lifting” part of the Deuring
Lifting Theorem:

1.7.4.6. Theorem (Deuring). Let E0 be an elliptic curve over Fq. For any f0 ∈
End(E0) generating an imaginary quadratic field L ⊂ End0(E0) and p-adic place p

of OL, let R be the valuation ring of the compositum W (Fq)[1/p] · Lp over Qp.
There exists a CM elliptic curve E over R equipped with an endomorphism f

such that (E, f) has special fiber isomorphic to (E0, f0).

By 1.6.2.5, for any E0 over Fq there is an imaginary quadratic field L inside

End0(E0). The CM structure forces R to have residue field Fq, as we shall see in
the proof below.

Proof. If E0 is ordinary then Lp = Qp and we can choose E to be the Serre–
Tate canonical lift over W (Fq), to which all endomorphisms of E0 uniquely lift;
see 1.4.5.4. Suppose instead that E0 is supersingular. It suffices to show that for
any imaginary quadratic field L ⊂ End0(E0) and O := End(E0)

⋂
OL, we can lift

(E0, α0) over R where α0 : O ↪→ End(E0) is the natural inclusion.
Consider the canonical O-linear isogeny

h : E0 → E′
0 := OL ⊗O E0

(see 1.7.4.5). The key point is to show that p does not divide the degree of h (so
h induces an isomorphism on p-divisible groups). The degree of h is the order of
the finite Fq-group ker(h), so if this kernel is étale then its order must be relatively
prime to p because a supersingular elliptic curve has infinitesimal p-torsion. Thus,
we may assume ker(h) is not étale, so the infinitesimal identity component of ker(h)
is nontrivial and therefore the relative Frobenius morphism of ker(h) has nontrivial

kernel. The O-linear relative Frobenius morphism FrE0/Fq
: E0 → E

(p)
0 for the

elliptic curve E0 has kernel of order p, so this latter kernel must lie inside ker(h).
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We conclude that if ker(h) is not étale then h factors through FrE0/Fq
, so there

is a commutative diagram

E0

FrE0/Fq

��

h �� OL ⊗O E0

1⊗FrE0/Fq

��
E

(p)
0

������������

h(p)

�� OL ⊗O E
(p)
0

of O-linear isogenies. Since h(p) is the initial O-linear map from E
(p)
0 to an OL-

linear module scheme over Fq, the right vertical map must be an isomorphism. This
latter map is the relative Frobenius isogeny for the elliptic curve OL⊗OE0, as that
also makes the outside square commute (and commutativity uniquely determines
the right vertical map in terms of the other maps on the outside of the diagram).
The Frobenius isogeny for an elliptic curve over Fq is not an isomorphism, so we
have a contradiction. Thus, ker(h) is étale and hence has order not divisible by p.

We conclude that h induces an isomorphism on p-divisible groups, so by the
Serre–Tate deformation theorem it follows that the formal deformation theory of
E0 is the same as that of E′

0. Any formal deformation of E0 over a complete
local noetherian W (Fq)-algebra is a scheme, since the inverse ideal sheaf of the
identity section provides a canonical algebraization, so by using formal GAGA for
morphisms [34, III1, 5.4.1] to keep track of the CM structure we may replace E0

with E′
0 to arrange that OL ⊂ End(E0).

The OL-action on Lie(E0) selects a prime over p in OL and embeds its residue
field into Fq. Pre-composing the OL-action on E0 with the involution of L if
necessary, we can arrange that OL acts on Lie(E0) through an embedding OL/p ↪→
Fq, so the formal group corresponding to E0[p

∞] is a formal OL,p-module over Fq of
dimension 1. Both Lubin–Tate theory and the deformation theory of 1-dimensional
formal modules [49, 22.4.4] ensure that this lifts to a formal OL,p-module over R,
so we obtain the desired OL-linear formal lift of E0 over R. �

1.7.5. Variant on Grothendieck’s theorem. C-F.Yu’s variant on Theorem
1.7.2.5 asserts that we can first apply an isogeny and then pass to a finite extension
onK (with no further isogeny involved) to get to a situation that descends to a finite
field. This goes as follows. Consider the setup in Theorem 1.7.2.5. By Proposition
1.3.2.1, the simple factors have sufficiently many complex multiplications, so we
may focus on the case of simple abelian varieties A. Choose a polarization, so the
division algebra D = End0(A) is endowed with a positive involution. By [133, 2.2],
there is a maximal commutative subfield L ⊂ D that is stable under the involution,
so L is either totally real or CM. We claim that L is a CM field, or in other words
L is not totally real.

To prove this property of L, first note that by Proposition 1.3.6.4 (in positive
characteristic) the division algebra D is either of Type III or Type IV (in the sense
of Theorem 1.3.6.2). Since L contains the center Z of D, for Type IV we get the
CM property for L from the fact that Z is CM in such cases. For Type III, the key
point is that Z is totally real and D is non-split at all real places of Z. We know
that DL is split over L since L is a maximal commutative subfield of D, so L is not
totally real. Hence, once again L is a CM field.

Applying Proposition 1.7.4.5, we can pass to an isogenous abelian variety so
that OL ⊂ End(A). In this special case, we may conclude via the following theorem.
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1.7.5.1. Theorem (Yu). Let K be a field with positive characteristic, and A a CM
abelian variety over K with CM structure provided by a CM field L ⊂ End0(A). If
OL ⊂ End(A) then there is a finite extension K ′/K such that AK′ equipped with
its OL-action descends to a finite field contained in K ′.

This result is [133, Thm. 1.3]; it will not be used in what follows. (Note that
it suffices just to descend the abelian variety AK′ to a finite subfield of K ′, as then
a further finite extension on K ′ will enable us to descend the abelian variety along
with its OL-action, by Lemma 1.2.1.2.)

1.8. CM lifting questions

1.8.1. Basic definitions and examples. Let κ be a field of characteristic p > 0,
and consider an abelian variety A0 over κ. By Corollary 1.6.2.5, if κ is finite and
A0 is isotypic then we may endow it with a structure of CM abelian variety having
complex multiplication by a CM field. Inspired in part by Theorem 1.6.5.1, we
wish to pose several questions related to the problem of lifting A0 to characteristic
0 in the presence of CM structures. First we make a general definition unrelated
to complex multiplication.

1.8.1.1. Definition. A lifting of A0 to characteristic 0 is a triple (R,A, φ) con-
sisting of a domain R of characteristic 0, an abelian scheme A over R, a surjective
map R � κ, and an isomorphism φ : Aκ � A0 of abelian varieties over κ.

We may replace R with its localization at the maximal ideal ker(R � κ) so
that R is local with residue field κ. For K := Frac(R), if AK admits sufficiently
many complex multiplications then we say A is a CM lift of A0 to characteristic 0.
The injective map End(A) → End(AK) has torsion-free cokernel:

1.8.2. Lemma. For abelian schemes A,B over an integral scheme S with generic
point η, the injective map Hom(A,B) → Hom(Aη, Bη) has torsion-free cokernel.

Proof. Consider f : Aη → Bη such that n · f extends to an S-group map
h : A → B for a non-zero integer n. The restriction h : A[n] → B[n] between finite
flat S-groups vanishes because such vanishing holds on the generic fiber over the
integral S. Since [n] : A → A is an fppf covering with kernel A[n], it follows that h

factors through this map over S, which is to say h = n · f̃ for some S-group map

f̃ : A → B. Hence, the map f̃η − f ∈ Hom(Aη, Bη) is killed by n, so f̃η = f . �

The injective map in Lemma 1.8.2 can fail to be surjective:

1.8.3. Example. Let p be a prime with p ≡ 3 (mod 4), so p is prime in Z[i] (with
i2 = −1). Let R = Z(p)+pZ(p)[i], so [Z(p)[i] : R] = p and Frac(R) = Q(i). Let E be

the elliptic curve y2 = x3 − x over R, so the generic fiber EQ(i) has endomorphism
ring Z[i] via the action [i](x, y) = (−x,−iy). Because [i]∗(dx/y) = i · dx/y, Z[i]
acts on Lie(EQ(i)) through scaling via the canonical inclusion Z[i] ↪→ Q(i).

We claim that End(E) = Z (so End0(E) := Q⊗ZEnd(E) = Q, even though the
generic fiber EQ(i) has endomorphism algebra Q(i)). Indeed, if not then End(E) is
an order in Z[i] = End(EQ(i)), so End(E) = Z[i] by Lemma 1.8.2. In particular,
the action by i on EQ(i) would extend to an action on E, so the resulting multiplier
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action by i on the tangent line Lie(EQ(i)) = Lie(E) ⊗R Q(i) would preserve the
R-submodule Lie(E). But Lie(E) is a free R-module of rank 1 since R is local
and E is R-smooth, so the i-action on this R-module is multiplication by some
element r ∈ R. By working over Q(i) we have seen that we get the multiplier i, so
necessarily r = i. Since i �∈ R due to the definition of R, we have a contradiction.

In Example 1.8.3, the base ring R is not normal. This is essential, since in the
normal case there is no obstruction to extending maps between abelian schemes:

1.8.4. Lemma. For a normal domain R with fraction field K, the functor A �
AK from abelian schemes over R to abelian varieties over K is fully faithful.

Proof. This is a special case of a general lemma of Faltings [36, §2, Lemma 1]
concerning homomorphisms between semi-abelian schemes over a normal scheme
(the proof of which simplifies considerably in the case of abelian schemes). �
1.8.4.1. For normal R, Lemma 1.8.4 provides a specialization map

End0(AK) = End0(A) := Q⊗Z End(A) → End0(Aκ)

between endomorphism algebras, and likewise for endomorphism rings. This makes
normality a natural property to impose on R when studying questions about CM
lifts. If R is not normal then End0(AK) may be larger than End0(A), so it is not
evident how to compare endomorphism algebras of the K-fiber and κ-fiber.

Hence, for general R we just work with the specialization map of endomorphism
algebras End0(A) → End0(Aκ). This map can fail to be surjective. An elementary
example is an elliptic curve over Z(p) for a prime p (since elliptic curves over finite
fields always admit complex multiplication, by Corollary 1.6.2.5, whereas elliptic
curves over Q have endomorphism algebra Q). In contrast with Lemma 1.8.2, the
specialization map of endomorphism rings End(A) → End(Aκ) can have cokernel
that is not torsion-free, even when R is normal. (In Chapter 4 we will see many
natural examples of this phenomenon in our study of CM lifting problems, when
we consider lifting questions for specific orders in CM fields; e.g., see 4.1.2.)

1.8.4.2. Remark. In the setting of Lemma 1.8.4, if λ : A → B is a homomorphism
between abelian schemes over R and λK is an isogeny then λ is an isogeny (i.e., λ is
fiberwise surjective with finite kernel; see §3.3 for a general discussion of isogenies
for abelian schemes). To prove this, choose a K-homomorphism μK : BK → AK

such that μK ◦ λK is multiplication by a non-zero integer n. The homomorphism
μ : B → A extending μK therefore satisfies μ ◦ λ = [n]A, so λ has a fiberwise finite
kernel and hence is an isogeny by fibral dimension considerations.

1.8.5. CM lifting problems. To formulate the lifting questions that we study in
subsequent chapters, let Fq be a finite field of size q and let B be an abelian variety
of dimension g > 0 over Fq. Assume B is isotypic over Fq (necessary and sufficient
for B to admit a structure of CM abelian variety with complex multiplication
by a CM field, by Theorem 1.3.1.1 and Corollary 1.6.2.5). Let Bκ denote the
scalar extension of B over a finite extension field κ/Fq. Consider the following five
assertions concerning the existence of a CM lifting of B or Bκ to characteristic 0.

• (CML) CM lifting: there is a local domain R with characteristic 0 and residue
field Fq, an abelian scheme A over R with relative dimension g equipped with
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a CM field L ⊂ End0(A) := Q ⊗Z End(A) satisfying [L : Q] = 2g, and an
isomorphism φ : AFq

� B as abelian varieties over Fq.
• (R) CM lifting after finite residue field extension: there is a local domain R
with characteristic 0 and residue field κ of finite degree over Fq, an abelian
scheme A over R with relative dimension g equipped with an action (in the
isogeny category over R) by a CM field L with [L : Q] = 2g, and an isomor-
phism φ : Aκ � B ×Spec(Fq) Spec(κ) as abelian varieties over κ.

• (I) CM lifting up to isogeny: there is a local domain R with characteristic 0
and residue field Fq, an abelian scheme A over R with relative dimension g
equipped with an action (in the isogeny category over R) by a CM field L
with [L : Q] = 2g, and an isogeny AFq

→ B of abelian varieties over Fq.
• (IN) CM lifting to normal domains up to isogeny: there is a normal local
domain R with characteristic 0 and residue field Fq such that (I) is satisfied
for B using R.

• (RIN) CM lifting to normal domains up to isogeny after finite residue field
extension: there is a normal local domain R with characteristic 0 and residue
field κ of finite degree over Fq such that (R) is satisfied for B using R except
that φ is only required to be an isogeny rather than an isomorphism.

• (sCML) strong CM lifting: For every CM field L ⊂ End0(B) with [L : Q] = 2g
such that OL ⊂ End(B), the abelian variety B satisfies (CML) using a lifting
A such that the Q-subalgebra End0(A) ⊂ End0(B) contains L.

1.8.5.1. Remark. By expressing a local ring as a direct limit of local subrings
essentially of finite type over Z, in the formulation of (R) there is no loss of generality
in replacing κ with an algebraic closure of Fq or allowing κ to vary over all extensions
of Fq. Likewise, the normality condition in (RIN) is irrelevant because it can be
attained at the cost of a finite residue field extension (by a specialization argument
that we will give in 2.1.1), and in (IN) we can assume R is complete since essentially
finite type Z-algebras are excellent (ensuring that normality is preserved under
completion of such rings along an ideal). Even in (I) we can assume R is complete
local noetherian since we may first descend to a local noetherian domain R0 ⊂ R

of characteristic 0 with residue field Fq, and then note that the completion R̂0 of

R0 has a minimal prime of residue characteristic 0 (as R0 → R̂0 is faithfully flat).

By Remark 1.6.5.2, (RIN) has an affirmative answer for any isotypic B over
Fq, and the CM lift can be chosen using any CM maximal commutative subfield

L ⊂ End0(B). There are several refinements we wish to answer:

(1) Is a residue field extension necessary? That is, does (IN) hold for every B?
(2) If (IN) does not hold for every B, can we characterize when it holds? And

how about (I) in general (i.e., drop normality, but permit an isogeny without
increasing the residue field)?

(3) Is an isogeny necessary? That is, does (R) hold for every B (requiring the
local domain R to be normal is not a constraint, since we are allowing a finite
extension on κ; cf. Remark 1.8.5.1), or does even (CML) hold for every B?

These questions can be made more specific in several respects. For example,
since the Q-simple End0(B) is usually non-commutative, it generally contains more
than one CM maximal commutative subfield L (up to conjugacy) and so we can
pose the CM lifting questions requiring an order in a particular choice of L to lift
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to a CM structure over R. We will give examples to show that the choice of L can
affect the the answer to some of the lifting questions. Even if we know for a given
B and L ⊂ End0(B) that there is a CM lift to characteristic 0 on which the action
of an order in L also lifts, it could be that the CM order L ∩ End(B) does not
lift. We will give examples where this happens in 4.1.2 (see Theorem 4.1.1 and the
non-algebraizable universal formal deformation in 4.1.2.3).

1.8.6. Answers to CM lifting problems. The proofs of the following answers
form the backbone of subsequent chapters.

1. By [93, Thm. B], for any g > 2 there exist g-dimensional abelian varieties
over an algebraic closure of Fp for which there is no CM lift to characteristic
0. These results are proved in a much stronger form in Chapter 3. Thus,
(R) does not hold in general, so in particular (CML) sometimes fails to hold.
Hence, an isogeny is necessary; that is, it is better to consider (I) than (CML).

2. Building on lifting results for p-divisible groups in Chapter 3, in Chapter 4 we
prove that (I) holds for every B (so a strengthening of (RIN) holds, applying
the isogeny before making a finite extension on the residue field). In fact,
for any CM maximal commutative subfield L ⊂ End0(B) we construct an
isogeny B → B′ to an abelian variety over Fq such that B′ has a CM lift to
characteristic 0 on which the action of the order Z+ pOL in OL also lifts.

The abelian variety B′ generally depends on L, but we can arrange that

the isogeny to B′ is a p-power at most p4g
2

(and examples show that we cannot
arrange it to have degree not divisible by p in general). The CM lifting of B′

can be found over an order in a p-adic field whose relative ramification degree
over a specific p-adic reflex field is tightly controlled (usually 1).

3. In contrast with success for (I), if we require R to be normal and do not
increase the residue field (but permit isogenies) then the answer is negative:
in Chapter 2 we give examples for which (IN) fails. Hence, for the existence
of a CM lifting to a normal domain of characteristic 0 we must allow a finite
extension of the initial finite field (and an isogeny), as in Theorem 1.6.5.1.

However, there is a salvage: for each B and choice of L ⊂ End0(B) we
will give (in Chapter 2) concrete necessary and sufficient conditions in terms
of a Qp-valued CM type Φ on L for (IN) to have an affirmative answer using
a CM lifting to which the action of an order in L (in the isogeny category)
also lifts and yields the specified CM type Φ. In Example 2.1.7 we will give B
for which this necessary and sufficient condition is satisfied for one choice of
L ⊂ End0(B) (and a suitable Φ) but fails for another choice (and any Φ).

We expect that (sCML) in 1.8.5 does not hold in general, but this is a guess.

1.8.7. Remark. (CM types in (IN) and (I)). In the context of 1.8.5, for any CM
structure L ⊂ End0(B) on the abelian variety B the q-Frobenius endomorphism

ϕ ∈ End(B) lies in L× since L is its own centralizer in End0(B). The combinatorial
data of L-slopes of the L-linear isogeny class of (B,L ⊂ End0(B)) is the sequence of
non-negative rational numbers rw = ordw(ϕ)/ordw(q) indexed by the set of places
w of L above p. When L is a CM field, with complex conjugation ι, this satisfies
the self-duality condition rw + rw◦ι = 1 for each w (since ϕ · ι(ϕ) = q in L).

Fix an algebraic closure Qp of Qp and an embedding of Fq into the residue field

of the valuation ring of Qp (so W (Fq)[1/p] canonically embeds into Qp). For any
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CM lifting of (B,L ⊂ End0(B)) over the valuation ring of a subfield of Qp of finite

degree over W (Fq)[1/p], the associated Qp-valued CM type Φ on L must satisfy the
following compatibility condition with the L-slopes:

#{φ ∈ Φ |φ induces w on L} = rw

for all w; see 2.1.4.1–2.1.4.2. For any Qp-valued CM type (L,Φ) satisfying this
necessary condition, in Chapter 2 we prove a necessary and sufficient condition for
the existence of a solution B to problem (IN) for (B,L) over a local normal domain
R ⊇ W (Fq) with residue field Fq such that the L-action (in the isogeny category)

lifts to B and the resulting CM structure over K = Frac(R) has Qp-valued CM

type Φ relative to some W (Fq)[1/p]-algebra embedding of Qp into K.
Without normality it is more difficult to determine which CM types on L arise

from solutions to the lifting problem (I) for (B,L) when we require the L-action to
lift. If L is a CM field, the answer is p-local for the maximal totally real subfield
L+: it can be analyzed separately for each p-adic place v of L+. To be precise, a
Qp-valued CM type Φ for L corresponds to a sequence {(L+

v ⊗L+L,Φv)}v where Φv

is a set of Qp-algebra homomorphisms L+
v ⊗L+L → Qp, and via p-divisible groups

the question reduces to determining (for each v) the family Fv of all Φv that arise
as the v-component of the Qp-valued CM type of an affirmative solution to the CM

lifting problem (I) for the CM structure (B,L ⊂ End0(B)).
When v is split in L, say with w and w′ the two places over it on L, there turn

out to be no restrictions on Φv beyond the above compatibility conditions

rw = #{φ ∈ Φv |φ induces w on L}, rw′ = #{φ ∈ Φv |φ induces w′ on L}
(which can always be satisfied, since any φ ∈ Φv induces w or w′ on L). However
when v is non-split in L, the proofs in Chapter 4, B.1, and B.2 provide only a
non-empty subset F′

v of Fv;
3 we do not know the discrepancy between Fv and F′

v.
4

3The set F′
v is the family of all v-components of Qp-valued CM types of affirmative solutions

to (I) which can be constructed by the method in B.1 and B.2 together with the Serre tensor
construction for p-divisible groups in 4.3. The proof in Chapter 4, especially 4.5.15 (iii)–4.5.17,
which uses the Serre tensor construction and the existence of CM lifting of toy model p-divisible
groups, gives a non-empty subset F′′

v of F′
v which can be strictly smaller than F′

v.
4A complete solution of (sCML) should also provide an answer to this question.


