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1. Elliptic cohomology

A ring-valued cohomology theory E is complex orientable if there is an ‘orien-
tation class’ x ∈ E2(CP∞) whose restriction along the inclusion S2 ∼= CP1 ↪→ CP∞

is the element 1 in E0S0 ∼= E2CP1. The existence of such an orientation class
implies, by the collapse of the Atiyah–Hirzebruch spectral sequence, that

E∗(CP∞) ∼= E∗[[x]].

The class x is a universal characteristic class for line bundles in E-cohomology; it
is the E-theoretic analogue of the first Chern class. The space CP∞ represents the
functor

X �→ {isomorphism classes of line bundles on X},

and the tensor product of line bundles induces a multiplication map CP∞×CP∞ →
CP∞. Applying E∗ produces a ring map

E∗[[x]] ∼= E∗(CP∞) → E∗(CP∞ × CP
∞) ∼= E∗[[x1, x2]];

the image of x under this map is a formula for the E-theoretic first Chern class
of a tensor product of line bundles in terms of the first Chern classes of the two
factors. That ring map E∗[[x]] → E∗[[x1, x2]] is a (1-dimensional, commutative)
formal group law—that is, a commutative group structure on the formal completion
Â1 at the origin of the affine line A1 over the ring E∗.

A formal group often arises as the completion of a group scheme at its identity
element; the dimension of the formal group is the dimension of the original group
scheme. There are three kinds of 1-dimensional group schemes:

(1) the additive group Ga = A1 with multiplication determined by the map
Z[x] → Z[x1, x2] sending x to x1 + x2,

(2) the multiplicative group Gm = A1\{0} with multiplication determined by
the map Z[x±1] → Z[x±1

1 , x±1
2 ] sending x to x1x2, and

(3) elliptic curves (of which there are many isomorphism classes).
xi
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Ordinary cohomology is complex orientable, and its associated formal group is
the formal completion of the additive formal group. Topological K-theory is also
complex orientable, and its formal group is the formal completion of the multiplica-
tive formal group. This situation naturally leads one to search for ‘elliptic’ coho-
mology theories whose formal groups are the formal completions of elliptic curves.
These elliptic cohomology theories should, ideally, be functorial for morphisms of
elliptic curves.

Complex bordism MU is complex orientable and the resulting formal group
law is the universal formal group law; this means that ring maps from MU∗ to R
are in natural bijective correspondence with formal group laws over R. Given a
commutative ring R and a map MU∗ → R that classifies a formal group law over
R, the functor

X �→ MU∗(X)⊗MU∗ R

is a homology theory if and only if the corresponding map from Spec(R) to the
moduli stack MFG of formal groups is flat. There is a map

Mell → MFG

from the moduli stack of elliptic curves to that of formal groups, sending an elliptic
curve to its completion at the identity; this map is flat. Any flat map Spec(R) →
Mell therefore provides a flat map Spec(R) → MFG and thus a homology theory, or
equivalently, a cohomology theory (a priori only defined on finite CW -complexes).
In other words, to any affine scheme with a flat map to the moduli stack of elliptic
curves, there is a functorially associated cohomology theory.

The main theorem of Goerss–Hopkins–Miller is that this functor (that is,
presheaf){
flat maps from affine schemes to Mell

}
→

{
multiplicative cohomology theories

}
,

when restricted to maps that are étale, lifts to a sheaf

Otop :
{
étale maps to Mell

}
→

{
E∞-ring spectra

}
.

(Here the subscript ‘top’ refers to it being a kind of ‘topological’, rather than
discrete, structure sheaf.) The value of this sheaf on Mell itself, that is the E∞-ring
spectrum of global sections, is the periodic version of the spectrum of topological
modular forms:

TMF := Otop(Mell) = Γ(Mell ,Otop).

The spectrum TMF owes its name to the fact that its ring of homotopy groups
is rationally isomorphic to the ring

Z[c4, c6,Δ
±1]/(c34 − c26 − 1728Δ) ∼=

⊕
n≥0

Γ
(
Mell , ω

⊗n
)

of weakly holomorphic integral modular forms. Here, the elements c4, c6, and Δ
have degrees 8, 12, and 24 respectively, and ω is the sheaf of invariant differentials
(the restriction to Mell of the (vertical) cotangent bundle of the universal elliptic
curve E → Mell). That ring of modular forms is periodic with period 24, and the
periodicity is given by multiplication by the discriminant Δ. The discriminant is
not an element in the homotopy groups of TMF , but its twenty-fourth power Δ24 ∈
π242(TMF ) is, and, as a result, π∗(TMF ) has a periodicity of order 242 = 576.
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One would like an analogous E∞-ring spectrum whose homotopy groups are
rationally isomorphic to the subring

Z[c4, c6,Δ]/(c34 − c26 − 1728Δ)

of integral modular forms. For that, one observes that the sheaf Otop is defined
not only on the moduli stack of elliptic curves, but also on the Deligne–Mumford
compactification Mell of the moduli stack—this compactification is the moduli
stack of elliptic curves possibly with nodal singularities. The spectrum of global
sections over Mell is denoted

Tmf := Otop(Mell) = Γ(Mell ,Otop).

The element Δ24 ∈ π242(Tmf ) is no longer invertible in the homotopy ring, and
so the spectrum Tmf is not periodic. This spectrum is not connective either, and
the mixed capitalization reflects its intermediate state between the periodic version
TMF and the connective version tmf , described below, of topological modular
forms.

In positive degrees, the homotopy groups of Tmf are rationally isomorphic to
the ring Z[c4, c6,Δ]/(c34− c26 − 1728Δ). The homotopy groups π−1, . . . , π−20 are all
zero, and the remaining negative homotopy groups are given by:

π−n(Tmf ) ∼=
[
πn−21(Tmf )

]
torsion-free

⊕
[
πn−22(Tmf )

]
torsion

.

This structure in the homotopy groups is a kind of Serre duality reflecting the
properness (compactness) of the moduli stack Mell .

If we take the (−1)-connected cover of the spectrum Tmf , that is, if we kill all
its negative homotopy groups, then we get

tmf := Tmf 〈0〉,

the connective version of the spectrum of topological modular forms. This spectrum
is now, as desired, a topological refinement of the classical ring of integral modular
forms. Note that one can recover TMF from either of the other versions by inverting
the element Δ24 in the 576th homotopy group:

TMF = tmf [Δ−24] = Tmf [Δ−24].

There is another moduli stack worth mentioning here, the stack M+

ell of elliptic
curves with possibly nodal or cuspidal singularities. There does not seem to be
an extension of Otop to that stack. However, if there were one, then a formal
computation, namely an elliptic spectral sequence for that hypothetical sheaf, shows

that the global sections of the sheaf over M+

ell would be the spectrum tmf . That
hypothetical spectral sequence is the picture that appears before the preface. It is
also, more concretely, the Adams–Novikov spectral sequence for the spectrum tmf .

So far, we have only mentioned the connection between tmf and modular forms.
The connection of tmf to the stable homotopy groups of spheres is equally strong
and the unit map from the sphere spectrum to tmf detects an astounding amount
of the 2- and 3-primary parts of the homotopy π∗(S) of the sphere.

The homotopy groups of tmf are as follows at the prime 2:
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and as follows at the prime 3:

0 4 8 12 16 20 24 28 32 36 40 44 48

33

ν

Here, a square indicates a copy of Z and a dot indicates a copy of Z/p. A little
number n drawn in a square indicates that the copy of Z in π∗(tmf ) maps onto an
index n subgroup of the corresponding Z in the ring of modular forms. A vertical
line between two dots indicates an additive extension, and a slanted line indicates
the multiplicative action of the generator η ∈ π1(tmf ) or ν ∈ π3(tmf ). The y-
coordinate, although vaguely reminiscent of the filtration degree in the Adams
spectral sequence, has no meaning in the above charts.

Note that, at the prime 2, the pattern on the top of the chart (that is, above
the expanding ko pattern on the base) repeats with a periodicity of 192 = 8 ·
24. A similar periodicity (not visible in the above chart) happens at the prime 3,
with period 72 = 3 · 24. Over Z, taking the least common multiple of these two
periodicities results in a periodicity of 24 · 24 = 576.

2. A brief history of tmf

In the sixties, Conner and Floyd proved that complex K-theory is determined
by complex cobordism: if X is a space, then its K-homology can be described as
K∗(X) ∼= MU∗(X)⊗MU∗ K∗, where K∗ is a module over the complex cobordism
ring of the point via the Todd genus map MU∗ → K∗. Following this observation,
it was natural to look for other homology theories that could be obtained from
complex cobordism by a similar tensor product construction. By Quillen’s theorem
(1969), MU∗ is the base ring over which the universal formal group law is defined;
ring maps MU∗ → R thus classify formal groups laws over R.

Given such a map, there is no guarantee in general that the functor X �→
MU∗(X) ⊗MU∗ R will be a homology theory. If R is a flat MU∗-module, then
long exact sequences remain exact after tensoring with R and so the functor in
question does indeed define a new homology theory. However, the condition of
being flat over MU∗ is quite restrictive. Landweber’s theorem (1976) showed that,
because arbitrary MU∗-modules do not occur as the MU -homology of spaces, the
flatness condition can be greatly relaxed. A more general condition, Landweber
exactness, suffices to ensure that the functorMU∗(−)⊗MU∗R satisfies the axioms of
a homology theory. Shortly after the announcement of Landweber’s result, Morava
applied that theorem to the formal groups of certain elliptic curves and constructed
the first elliptic cohomology theories (though the term ‘elliptic cohomology’ was
coined only much later).

In the mid-eighties, Ochanine introduced certain genera (that is homomor-
phisms out of a bordism ring) related to elliptic integrals, and Witten constructed
a genus that took values in the ring of modular forms, provided the low-dimensional
characteristic classes of the manifold vanish. Landweber–Ravenel–Stong made ex-
plicit the connection between elliptic genera, modular forms, and elliptic coho-
mology by identifying the target of the universal Ochanine elliptic genus with the
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coefficient ring of the homology theory X �→ MU∗(X) ⊗MU∗ Z[ 12 ][δ, ε,Δ
−1] asso-

ciated to the Jacobi quartic elliptic curve y2 = 1 − 2δx2 + εx4 (here, Δ is the
discriminant of the polynomial in x). Segal had also presented a picture of the re-
lationship between elliptic cohomology and Witten’s physics-inspired index theory
on loop spaces. In hindsight, a natural question would have been whether there
existed a form of elliptic cohomology that received Witten’s genus, thus explaining
its integrality and modularity properties. But at the time, the community’s at-
tention was on Witten’s rigidity conjecture for elliptic genera (established by Bott
and Taubes), and on finding a geometric interpretation for elliptic cohomology—a
problem that remains open to this day, despite a tantalizing proposal by Segal and
much subsequent work.

Around 1989, inspired in part by work of McClure and Baker on A∞ structures
and actions on spectra and by Ravenel’s work on the odd primary Arf invariant,
Hopkins and Miller showed that a certain profinite group known as the Morava
stabilizer group acts by A∞ automorphisms on the Lubin–Tate spectrum En (the
representing spectrum for the Landweber exact homology theory associated to the
universal deformation of a height n formal group law). Of special interest was
the action of the binary tetrahedral group on the spectrum E2 at the prime 2.
The homotopy fixed point spectrum of this action was called EO2, by analogy
with the real K-theory spectrum KO being the homotopy fixed points of complex
conjugation on the complex K-theory spectrum.

Mahowald recognized the homotopy of EO2 as a periodic version of a hypo-
thetical spectrum with mod 2 cohomology A//A(2), the quotient of the Steenrod
algebra by the submodule generated by Sq1, Sq2, and Sq4. It seemed likely that
there would be a corresponding connective spectrum eo2 and indeed a bit later
Hopkins and Mahowald produced such a spectrum; (in hindsight, that spectrum
eo2 is seen as the 2-localization of tmf ). However, Davis–Mahowald (1982) had
proved, by an intricate spectral sequence argument, that it is impossible to real-
ize A//A(2) as the cohomology of a spectrum. This conundrum was resolved only
much later, when Mahowald found a missing differential around the 55th stem of the
Adams spectral sequence for the sphere, invalidating the earlier Davis–Mahowald
argument.

In the meantime, computations of the cohomology of MO〈8〉 at the prime 2
revealed an A//A(2) summand, suggesting the existence of a map of spectra from
MO〈8〉 to eo2. While attempting to construct a map MO〈8〉 → EO2, Hopkins
(1994) thought to view the binary tetrahedral group as the automorphism group of
the supersingular elliptic curve at the prime 2; the idea of a sheaf of ring spectra
over the moduli stack of elliptic curves quickly followed—the global sections of that
sheaf, TMF , would then be an integral version of EO2.

The language of stacks, initially brought to bear on complex cobordism and
formal groups by Strickland, proved crucial for even formulating the question TMF
would answer. In particular, the stacky perspective allowed a reformulation of
Landweber’s exactness criterion in a more conceptual and geometric way: MU∗ →
R is Landweber exact if and only if the corresponding map to the moduli stack of
formal groups, Spec(R) → MFG , is flat. From this viewpoint, Landweber’s theorem
defined a presheaf of homology theories on the flat site of the moduli stack MFG of
formal groups. Restricting to those formal groups coming from elliptic curves then
provided a presheaf of homology theories on the moduli stack of elliptic curves.
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Hopkins and Miller conceived of the problem as lifting this presheaf of ho-
mology theories to a sheaf of spectra. In the 80s and early 90s, Dwyer, Kan,
Smith, and Stover had developed an obstruction theory for rigidifying a diagram
in a homotopy category (here a diagram of elliptic homology theories) to an honest
diagram (here a sheaf of spectra). Hopkins and Miller adapted the Dwyer–Kan–
Stover theory to treat the seemingly more difficult problem of rigidifying a diagram
of multiplicative cohomology theories to a diagram of A∞-ring spectra. The re-
sulting multiplicative obstruction groups vanished, except at the prime 2—Hopkins
addressed that last case by a direct construction in the category of K(1)-local E∞-
ring spectra. Altogether the resulting sheaf of spectra provided a universal elliptic
cohomology theory, the spectrum TMF of global sections (and its connective ver-
sion tmf ). Subsequently, Goerss and Hopkins upgraded the A∞ obstruction theory
to an obstruction theory for E∞-ring spectra, leading to the definitive theorem of
Goerss–Hopkins–Miller: the presheaf of elliptic homology theories on the compact-
ified moduli stack of elliptic curves lifts to a sheaf of E∞-ring spectra.

Meanwhile, Ando–Hopkins–Strickland (2001) established a systematic connec-
tion between elliptic cohomology and elliptic genera by constructing, for every
elliptic cohomology theory E, an E-orientation for almost complex manifolds with
certain vanishing characteristic classes. This collection was expected to assemble
into a single unified multiplicative tmf -orientation. Subsequently Laures (2004)
built a K(1)-local E∞-map MO〈8〉 → tmf and then finally Ando–Hopkins–Rezk
produced the expected integral map of E∞-ring spectra MO〈8〉 → tmf that recov-
ers Witten’s genus at the level of homotopy groups.

Later, an interpretation of tmf was given by Lurie (2009) using the theory of
spectral algebraic geometry, based on work of Töen and Vezzosi. Lurie interpreted
the stack Mell with its sheaf Otop as a stack not over commutative rings but over
E∞-ring spectra. Using Goerss–Hopkins–Miller obstruction theory and a spectral
form of Artin’s representability theorem, he identified that stack as classifying ori-
ented elliptic curves over E∞-ring spectra. Unlike the previous construction of tmf
and of the sheaf Otop, this description specifies the sheaf and therefore the spectrum
tmf up to a contractible space of choices.

3. Overview

Part I

Chapter 1: Elliptic genera and elliptic cohomology. One-dimensional
formal group laws entered algebraic topology though complex orientations, in an-
swering the question of which generalized cohomology theories E carry a theory of
Chern classes for complex vector bundles. In any such theory, the E-cohomology
of CP∞ is isomorphic to E∗[[c1]], the E-cohomology ring of a point adjoin a formal
power series generator in degree 2. The tensor product of line bundles defines a
map CP∞ × CP∞ → CP∞, which in turn defines a comultiplication on E∗[[c1]],
i.e., a formal group law. Ordinary homology is an example of such a theory; the
associated formal group is the additive formal group, since the first Chern class
of the tensor product of line bundles is the sum of the respective Chern classes,
c1(L ⊗ L′) = c1(L) + c1(L

′). Complex K-theory is another example of such a
theory; the associated formal group is the multiplicative formal group.

Complex cobordism also admits a theory of Chern classes, hence a formal group.
Quillen’s theorem is that this is the universal formal group. In other words, the
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formal group of complex cobordism defines a natural isomorphism of MU∗ with
the Lazard ring, the classifying ring for formal groups. Thus, a one-dimensional
formal group over a ring R is essentially equivalent to a complex genus, that is,
a ring homomorphism MU∗ → R. One important example of such a genus is
the Todd genus, a map MU∗ → K∗. The Todd genus occurs in the Hirzebruch–
Riemann–Roch theorem, which calculates the index of the Dolbeault operator in
terms of the Chern character. It also determines the K-theory of a finite space
X from its complex cobordism groups, via the Conner–Floyd theorem: K∗(X) ∼=
MU∗(X)⊗MU∗ K∗.

Elliptic curves form a natural source of formal groups, and hence complex
genera. An example of this is Euler’s formal group law over Z[ 12 , δ, ε] associated
to Jacobi’s quartic elliptic curve; the corresponding elliptic cohomology theory is
given on finite spaces by X �→ MU∗(X) ⊗MU∗ Z[ 12 , δ, ε]. Witten defined a genus
MSpin → Z[[q]] (not a complex genus, because not a map out of MU∗) which lands
in the ring of modular forms, provided the characteristic class p1

2 vanishes. He also
gave an index theory interpretation of this genus, at a physical level of rigor, in
terms of Dirac operators on loop spaces. It was later shown, by Ando–Hopkins–
Rezk, that the Witten genus can be lifted to a map of ring spectra MString → tmf .
The theory of topological modular forms can therefore be seen as a solution to the
problem of finding a kind of elliptic cohomology that is connected to the Witten
genus in the same way that the Todd genus is to K-theory.

Chapter 2: Elliptic curves and modular forms. An elliptic curve is a
non-singular curve in the projective plane defined by a Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Elliptic curves can also be presented abstractly, as pointed genus one curves. They
are equipped with a group structure, where one declares the sum of three points to
be zero if they are collinear in P2. The bundle of Kähler differentials on an elliptic
curve, denoted ω, has a one-dimensional space of global sections.

When working over a field, one-dimensional group varieties can be classified into
additive groups, multiplicative groups, and elliptic curves. However, when working
over an arbitrary ring, the object defined by a Weierstrass equation will typically be
a combination of those three cases. The general fibers will be elliptic curves, some
fibers will be nodal (multiplicative groups), and some cuspidal (additive groups).

By a ‘Weierstrass curve’ we mean a curve defined by a Weierstrass equation—
there is no smoothness requirement. An integral modular form can then be defined,
abstractly, to be a law that associates to every (family of) Weierstrass curves a
section of ω⊗n, in a way compatible with base change. Integral modular forms
form a graded ring, graded by the power of ω. Here is a concrete presentation of
that ring:

Z[c4, c6,Δ]
/
(c34 − c26 − 1728Δ).

In the context of modular forms, the degree is usually called the weight : the gen-
erators c4, c6, and Δ have weight 4, 6, and 12, respectively. As we will see, those
weights correspond to the degrees 8, 12, and 24 in the homotopy groups of tmf .

Chapter 3: The moduli stack of elliptic curves. We next describe the
geometry of the moduli stack of elliptic curves over fields of prime characteristic, and
over the integers. At large primes, the stack Mell looks rather like it does over C:
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general elliptic curves have an automorphism group of order two, and there are two
special curves with automorphism groups of orders four and six. That picture needs
to be modified when dealing with small primes. At the prime p = 3 (respectively
p = 2), there is only one special ‘orbifold point’, and the automorphism group of
the corresponding elliptic curve has order 12 (respectively 24). The automorphism
group of that curve is given by Z/4 � Z/3 at the prime 3, and by Z/3 � Q8 (also
known as the binary tetrahedral group) at the prime 2.

In characteristic p, there is an important dichotomy between ordinary and
supersingular elliptic curves. An elliptic curve C is ordinary if its group of p-
torsion points has p connected components, and supersingular if the group of p-
torsion points is connected. This dichotomy is also reflected in the structure of the
multiplication-by-p map, which is purely inseparable in the supersingular case, and
the composite of an inseparable map with a degree p covering in the case of an
ordinary elliptic curve. The supersingular elliptic curves form a zero-dimensional
substack of (Mell)Fp

—the stack of elliptic curves in characteristic p—whose car-
dinality grows roughly linearly in p. If one counts supersingular curves with a
multiplicity equal to the inverse of the order of their automorphism group, then
there are exactly (p− 1)/24 of them.

The stratification of (Mell)Fp
into ordinary and supersingular elliptic curves is

intimately connected to the stratification of the moduli stack of formal groups by
the height of the formal group. A formal group has height n if the first non-zero
coefficient of the multiplication-by-pmap is that of xpn

. The ordinary elliptic curves
are the ones whose associated formal group has height 1, and the supersingular
elliptic curves are the ones whose associated formal group has height 2. Higher
heights cannot occur among elliptic curves.

Chapter 4: The Landweber exact functor theorem. The next main re-
sult is that there this a presheaf Ell of homology theories on the (affines of the)
flat site of the moduli stack of elliptic curves—the category whose objects are flat
maps Spec(R) → Mell . That presheaf is defined as follows. Given an elliptic curve
C over a ring R, classified by a flat map Spec(R) → Mell , the associated formal

group Ĉ corresponds to a map MP0 → R, where MP∗ =
⊕

n∈Z MU∗+2n is the

periodic version of complex cobordism. EllC is then defined by

EllC(X) := MP∗(X) ⊗
MP0

R.

We claim that for every elliptic curve C whose classifying map Spec(R) → Mell

is flat, the functor EllC is a homology theory, i.e., satisfies the exactness axiom.
An example of an elliptic curve whose classifying map is flat, and which therefore
admits an associated elliptic homology theory, is the universal smooth Weierstrass
curve.

The proof of this claim is a combination of several ingredients. The main
one is the Landweber exact functor theorem, which provides an algebraic criterion
(Landweber exactness, which is weaker than flatness) on a ring map MP0 → R,
that ensures the functor X �→ MP∗(X) ⊗MP0

R satisfies exactness. The other
ingredients, due to Hopkins and Miller, relate the geometry of Mell and MFG to
the Landweber exactness criterion. These results are the following: (1) A formal
group law MP0 → R over R is Landweber exact if and only if the corresponding
map Spec(R) → MFG is flat; together with Landweber exactness, this gives a
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presheaf of homology theories on the flat site of the moduli stack of formal groups
MFG . (2) The map of stacks, Mell → MFG defined by sending an elliptic curve
to its associated formal group, is flat.

Chapter 5: Sheaves in homotopy theory. By the above construction,
using the Landweber exact functor theorem, we have a presheaf Ohom of homology
theories (previously called Ell) on the moduli stack of elliptic curves. One might try
to define a single ‘universal elliptic homology theory’ as the limit limU∈U Ohom(U),
where U is an affine cover of the moduli stack. However, the category of homology
theories does not admit limits. If, though, we can rigidify the presheaf Ohom of
homology theories to a presheafOtop of spectra, then we can use instead a homotopy
limit construction in the category of spectra. The main theorem is that there does
indeed exist such a presheaf, in fact a sheaf, of spectra.

Theorem (Goerss–Hopkins–Miller). There exists a sheaf Otop of E∞-ring
spectra on (Mell)ét, the étale site of the moduli stack of elliptic curves (whose
objects are étale maps to Mell), such that the associated presheaf of homology the-
ories, when restricted to those maps whose domain is affine, is the presheaf Ohom

built using the Landweber exact functor theorem.

In this theorem, it is essential that the sheaf Otop is a functor to a point-set-
level, not homotopy, category of E∞-ring spectra. Moreover, the functor is defined
on all étale maps N → Mell , not just those where N is affine; (in fact, N can be
itself a stack, as long as the map to Mell is étale). Given a cover N = {Ni → N} of
an object N , we can assemble the n-fold ‘intersections’ Nij := Ni ×N Nj , Nijk :=
Ni ×N Nj ×N Nk, and so forth, into a simplicial object

N• =
[∐

Ni ←←
∐

Nij ←←
← ∐

Nijk ←←
←← · · ·

]
.

The sheaf condition is that the natural map from the totalization (homotopy limit)
of the cosimplicial spectrum

Otop
(
N•

)
=

[
Otop

( ∐
Ni

)
→→ Otop

( ∐
Nij

)
→→
→ Otop

( ∐
Nijk

)
· · ·

]

to Otop(N ) is an equivalence.
Now consider a cover N = {Ni → Mell} of Mell by affine schemes. The afore-

mentioned cosimplicial spectrum for this cover has an associated tower of fibrations

. . . → Tot2 Otop(N•) → Tot1 Otop(N•) → Tot0 Otop(N•)

whose inverse limit is TotOtop(N•) = Otop(Mell ) = TMF . The spectral sequence
associated to this tower has as E2 page the Cech cohomology Ȟq

N
(Mell , πpOtop) of

N with coefficients in πpOtop. Since N is a cover by affines, the Cech cohomology
of that cover is the same as the sheaf cohomology of Mell with coefficients in the
sheafification π†

pOtop of πpOtop; (that sheafification happens to agree with πpOtop

on maps to Mell whose domain is affine). Altogether, we get a spectral sequence,
the so-called descent spectral sequence, that converges to the homotopy groups of
the spectrum of global sections:

E2
pq = Hq(Mell , π

†
pOtop) ⇒ πp−qTMF .
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Chapter 6: Bousfield localization and the Hasse square. We would like
a sheaf of spectra Otop on the moduli stack of elliptic curves Mell . As we will see,
this moduli stack is built out of its p-completions Otop

p and its rationalization. The

p-completion Otop
p is in turn built from certain localizations of Otop with respect

to the first and second Morava K-theories.
Localizing a spectrum X at a spectrum E is a means of systematically ignoring

the part of X that is invisible to E. A spectrum A is called E-acyclic if A ∧X is
contractible. A spectrum B is called E-local if there are no nontrivial maps from
an E-acyclic spectrum into B. Finally, a spectrum Y is an E-localization of X if
it is E-local and there is a map X → Y that is an equivalence after smashing with
E. This localization is denoted LEX or XE .

The localization LpX := LM(Z/p)X of a spectrum X at the mod p Moore spec-
trum is the p-completion of X (when X is connective); we denote this localization
map ηp : X → LpX. The localization LQX := LHQX at the rational Eilenberg–
MacLane spectrum is the rationalization of X; we denote this localization map
ηQ : X → LQX.

Any spectrum X can be reconstructed from its p-completion and rationaliza-
tion by means of the ‘Sullivan arithmetic square’, which is the following homotopy
pullback square:

X
∏

p LpX

LQX LQ

(∏
p LpX

)
.

∏
ηp

LQ(
∏

ηp)

ηQ ηQ

The above pullback square is a special case of the localization square

LE∨FX LEX

LFX LFLEX,

ηE

LF (ηE)

ηF ηF

which is a homotopy pullback square if one assumes that E∗(LFX) = 0.
An application of this localization square gives the so-called ‘chromatic fracture

square’:

LK(1)∨K(2)X LK(2)X

LK(1)X LK(1)LK(2)X.

ηK(2)

LK(1)(ηK(2))

ηK(1) ηK(1)

Here K(1) and K(2) are the first and second Morava K-theory spectra.
When the spectrum in question is an elliptic spectrum, the above square sim-

plifies into the ‘Hasse square’: for any elliptic spectrum E, there is a pullback
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square

LpE ��

��

LK(2)E

��
LK(1)E �� LK(1)LK(2)E.

By means of the arithmetic square, the construction of the sheaf Otop is reduced
to the construction of its p-completions, of its rationalization, and of the comparison
map between the rationalization and the rationalization of the product of the p-
completions. In turn, via the Hasse square, the construction of the p-completion
Otop

p of the sheaf Otop is reduced to the construction of the corresponding K(1)-
and K(2)-localizations and of a comparison map between the K(1)-localization and
the K(1)-localization of the K(2)-localization.

Chapter 7: The local structure of the moduli stack of formal groups.
By Landweber’s theorem, flat maps Spec(R) → MFG to the moduli stack of one-
dimensional formal groups give rise to even-periodic homology theories:

X �→ MP∗(X)⊗MP0
R.

Here, MP is periodic complex bordism, MP0 = MU∗ ∼= Z[u1, u2, . . .] is the Lazard
ring, and the choice of a formal group endows R with the structure of an algebra
over that ring. We wish to understand the geometry of MFG with an eye towards
constructing such flat maps.

The geometric points of MFG can be described as follows. If k is a separably
closed field of characteristic p > 0, then formal groups over k are classified by their
height, where again a formal group has height n if the first non-trivial term of its
p-series (the multiplication-by-p map) is the one involving xpn

. Given a formal
group of height n, classified by Spec(k) → MFG , one may consider ‘infinitesimal
thickenings’ Spec(k) ↪→ B, where B is the spectrum of a local (pro-)Artinian algebra
with residue field k, along with an extension

Spec(k) �� MFG .

B

���
�

�
�

���

� �

This is called a deformation of the formal group. The Lubin–Tate theorem says
that a height n formal group admits a universal deformation (a deformation with a
unique map from any other deformation), carried by the ring W(k)[[v1, . . . vn−1]].
Here, W(k) denotes the ring of Witt vectors of k. Moreover, the map from B :=
Spf(W(k)[[v1, . . . vn−1]]) to MFG is flat.

The formal groups of interest in elliptic cohomology come from elliptic curves.
The Serre–Tate theorem further connects the geometry of Mell with that of MFG ,
in the neighborhood of supersingular elliptic curves. According to this theorem, the
deformations of a supersingular elliptic curve are equivalent to the deformations of
its associated formal group. The formal neighborhood of a point Spec(k) → Mell

classifying a supersingular elliptic curve is therefore isomorphic to Spf(W(k)[[v1]]),
the formal spectrum of the universal deformation ring.
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Chapter 8: Goerss–Hopkins obstruction theory. Goerss–Hopkins ob-
struction theory is a technical apparatus for approaching questions such as the fol-
lowing: for a ring spectrum E and a commutative E∗-algebra A in E∗E-comodules,
is there an E∞-ring spectrum X such that E∗X is equivalent to A? What is the
homotopy type of the space of all such E∞-ring spectra X?

That space is called the realization space of A and is denoted BR(A). There
is an obstruction theory for specifying points of BR(A), and the obstructions
live in certain André–Quillen cohomology groups of A. More precisely, there is
a Postnikov-type tower

. . . → BRn(A) → BRn−1(A) → . . . → BR0(A)

with inverse limit BR(A) whose layers are controlled by the André–Quillen co-
homology groups of A, as follows. If we let Hn+2(A; ΩnA) be the André–Quillen
cohomology space (the Eilenberg–MacLane space for the André–Quillen cohomol-
ogy group) of the algebra A with coefficients in the nth desuspension of A, then
Hn+2(A; ΩnA) is acted on by the automorphism group of the pair (A,ΩnA) and

we can form, by the Borel construction, a space Ĥn+2(A; ΩnA) over the classifying
space of Aut(A,ΩnA). This is a bundle of pointed spaces and the base points pro-

vide a section BAut(A,ΩnA) → Ĥn+2(A; ΩnA). The spaces BRn(A) then fit into
homotopy pullback squares

BRn(A) ��

��

BAut(A,ΩnA)

��
BRn−1(A) �� Ĥn+2(A; ΩnA).

Chapter 9: From spectra to stacks. We have focussed on constructing
spectra using stacks, but one can also go the other way, associating stacks to spectra.
Given a commutative ring spectrum X, let MX be the stack associated to the Hopf
algebroid

(MU∗X,MU∗MU ⊗MU∗ MU∗X).

If X is complex orientable, then MX is the scheme Spec(π∗X)—the stackiness of
MX therefore measures the failure of complex orientability of X. The canonical
Hopf algebroid map (MU∗,MU∗MU) → (MU∗X,MU∗MU ⊗MU∗ MU∗X) induces

a map of stacks from MX to M(1)
FG, the moduli stack of formal groups with first

order coordinate. Moreover, under good circumstances, the stack associated to a

smash product of two ring spectra is the fiber product over M(1)
FG:

MX∧Y
∼= MX ×M(1)

FG

MY .

It will be instructive to apply the above isomorphism to the case when Y is
tmf , and X is one of the spectra in a filtration

S0 = X(1) → X(2) → · · ·X(n) → · · · → MU

of the complex cobordism spectrum. By definition, X(n) is the Thom spectrum
associated to the subspace ΩSU(n) of ΩSU 
 BU ; the spectrum X(n) is an E2-
ring spectrum because ΩSU(n) is a double loop space. Recall that for a complex
orientable theory R, multiplicative maps MU → R correspond to coordinates on
the formal group of R. There is a similar story withX(n) in place ofMU , where the
formal groups are now only defined modulo terms of degree n+1, and multiplicative
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maps X(n) → R correspond to coordinates up to degree n. Using this description,

one can show that MX(n) is the stack M(n)
FG, the classifying stack of formal groups

with a coordinate up to degree n. The map from M(n)
FG to M(1)

FG is the obvious
forgetful map.

The stack Mtmf associated to tmf is the moduli stack of generalized elliptic
curves (both multiplicative and additive degenerations allowed) with first order
coordinate. The stack MX(4)∧tmf can therefore be identified with the moduli stack
of elliptic curves together with a coordinate up to degree 4. The pair of an elliptic
curve and such a coordinate identifies a Weierstrass equation for the curve, and so
this stack is in fact a scheme:

MX(4)∧tmf
∼= SpecZ[a1, a2, a3, a4, a6].

Here, a1, a2, a3, a4, a6 are the coefficients of the universal Weierstrass equation. By
considering the products X(4) ∧ . . . ∧ X(4) ∧ tmf , one can furthermore identify
the whole X(4)-based Adams resolution of tmf with the cobar resolution of the
Weierstrass Hopf algebroid.

Chapter 10: The string orientation. The string orientation, or σ-orienta-
tion of tmf is a map of E∞-ring spectra

MO〈8〉 → tmf .

Here, MO〈8〉 = MString is the Thom spectrum of the 7-connected cover of BO, and
its homotopy groups are the cobordism groups of string manifolds (manifolds with
a chosen lift to BO〈8〉 of their tangent bundle’s classifying map). At the level of
homotopy groups, the map MO〈8〉 → tmf is the Witten genus, a homomorphism
[M ] �→ φW (M) from the string cobordism ring to the ring of integral modular
forms. Note that φW (M) being an element of π∗(tmf ) instead of a mere modular
form provides interesting congruences, not visible from the original definition of the
Witten genus.

Even before having a proof, there are hints that the σ-orientation should exist.
The Steenrod algebra module H∗(tmf ,F2) = A//A(2) occurs as a summand in
H∗(MString ,F2). This is reminiscent of the situation with the Atiyah–Bott–Shapiro
orientation MSpin → ko, where H∗(ko,F2) = A//A(1) occurs as a summand of
H∗(MSpin,F2).

Another hint is that, for any complex oriented cohomology theory E with
associated formal group G, multiplicative (not E∞) maps MO〈8〉 → E correspond
to sections of a line bundle over G3 subject to a certain cocycle condition. If G is the
completion of an elliptic curve C, then that line bundle is naturally the restriction
of a bundle over C3. That bundle is trivial, and because C3 is proper, its space of
sections is one dimensional (and there is even a preferred section). Thus, there is a
preferred map MO〈8〉 → E for every elliptic spectrum E.

A not-necessarily E∞ orientation MO〈8〉 → tmf is the same thing as a nullho-
motopy of the composite

BO〈8〉 → BO
J−→ BGL1(S) → BGL1(tmf ),

where BGL1(R) is the classifying space for rank one R-modules. An E∞ orientation
MO〈8〉 → tmf is a nullhomotopy of the corresponding map of spectra

bo〈8〉 → bo
J−→ Σgl1(S) → Σgl1(tmf ).
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In order to construct that nullhomotopy, one needs to understand the homotopy
type of gl1(tmf )—this is done one prime at a time. The crucial observation is that
there is a map of spectra gl1(tmf )p̂ → tmf p̂, the ‘topological logarithm’, and a
homotopy pullback square

gl1(tmf )
log ��

��

tmf

��
LK(1)(tmf )

1−Up �� LK(1)(tmf )

where Up is a topological refinement of Atkin’s operator on p-adic modular forms.
The fiber of the topological logarithm is particularly intriguing: Hopkins speculates
that it is related to exotic smooth structures on free loop spaces of spheres.

Chapters 11 and 12: The sheaf of E∞ ring spectra and The construc-
tion of tmf . We outline a roadmap for the construction of tmf , the connective
spectrum of topological modular forms. The major steps in the construction are
given in reverse order.

• The spectrum tmf is the connective cover of the nonconnective spectrum
Tmf ,

tmf := τ≥0Tmf ,

and Tmf is the global sections of a sheaf of spectra,

Tmf := Otop(Mell),

where Mell is the moduli stack of elliptic curves with possibly nodal sin-
gularities. This stack is the Deligne–Mumford compactification of the
moduli stack of smooth elliptic curves. Here, Otop is a sheaf on Mell

in the étale topology. Also, TMF is the global sections of Otop over the
substack Mell of smooth elliptic curves,

TMF := Otop(Mell).

The uppercase ‘T ’ in Tmf signifies that the spectrum is no longer connective (but
it is also not periodic). The ‘top’ stands for topological, and Otop can be viewed as
a kind of structure sheaf for a spectral version of Mell .

We are left now to construct the sheaf of spectraOtop. The first step is to isolate
the problem at every prime p and at Q. That is, one constructs Otop

p , a sheaf of

spectra on the p-completion (Mell)p and then pushes this sheaf forward along the

inclusion map ιp : (Mell )p → Mell . One then assembles these pushforwards to
obtain Otop, as follows.

• The sheaf Otop is the limit in a diagram

Otop ��

��

∏
p ιp,∗Otop

p

��

ιQ,∗Otop
Q

��
(∏

p ιp,∗Otop
p

)
Q

for a given choice of map αarith : ιQ,∗Otop
Q →

(∏
p ιp,∗Otop

p

)
Q
.



xxvi INTRODUCTION

Once Otop has been constructed, it will turn out that Otop
p is the p-completion of

Otop, and Otop
Q is its rationalization, so that the above diagram is the arithmetic

square forOtop. This thus leaves one to construct eachOtop
p and Otop

Q and the gluing

map αarith. The sheaf Otop
Q is not difficult to construct. Its value on an étale map

Spec(R) → (Mell)Q is given by Otop
Q (SpecR) = H(R∗), the rational Eilenberg–

MacLane spectrum associated to a certain evenly graded ring R∗. This ring is
specified by R2t := Γ(ω⊗t|SpecR), where ω is the sheaf of invariant differentials.

The construction of Otop
p is more subtle. The first step in its construction is

to employ a natural stratification of (Mell)p. Each elliptic curve has an associated
formal group which either has height equal to 1 if the curve is ordinary, or equal to
2 if the curve is supersingular. This gives a stratification of the moduli space with
exactly two strata:

Mord
ell

ιord−→ (Mell)p
ιss←− Mss

ell .

The sheaf Otop
p is presented by a Hasse square, gluing together a sheaf Otop

K(1) on

Mord
ell and a sheaf Otop

K(2) on Mss
ell . (This notation is used because the sheaves Otop

K(i)

are also the K(i)-localizations of Otop, where K(i) is the ith Morava K-theory at
the prime p.)

• Otop
p is the limit

Otop
p

��

��

ιss,∗Otop
K(2)

��
ιord,∗Otop

K(1)
��
(
ιss,∗Otop

K(2)

)
K(1)

for a certain ‘chromatic’ attaching map

αchrom : ιord,∗Otop
K(1) −→

(
ιss,∗Otop

K(2)

)
K(1)

.

The sheaf Otop
p is thus equivalent to the following triple of data: a sheaf Otop

K(1)

on Mord
ell , a sheaf Otop

K(2) on Mss
ell , and a gluing map αchrom as above. We have

now arrived at the core of the construction of tmf : the construction of these three
objects. This construction proceeds via Goerss–Hopkins obstruction theory.

That obstruction theory is an approach to solving the following problem: one
wants to determine the space of all E∞-ring spectra subject to some conditions,
such as having prescribed homology. More specifically, for any generalized homol-
ogy theory E∗, and any choice of E∗-algebra A in E∗E-comodules, one can calculate
the homotopy type of the moduli space of E∞-ring spectra with E∗-homology iso-
morphic to A. Goerss and Hopkins describe that moduli space as the homotopy
limit of a sequence of spaces, where the homotopy fibers are certain André–Quillen
cohomology spaces of A. As a consequence, there is a sequence of obstructions
to specifying a point of the moduli space, i.e., an E∞-ring spectrum whose E∗-
homology is A. The obstructions lie in André–Quillen cohomology groups of E∗-
algebras in E∗E-comodules. That obstruction theory is used to build the sheaf
Otop

K(2).



INTRODUCTION xxvii

There is also a ‘global’ version of this obstruction theory, where one tries to
lift a whole diagram I of E∗-algebras in E∗E-comodules to the category of E∞-
ring spectra. Here, in general, the obstructions live in the Hochschild–Mitchell
cohomology group of the diagram I with coefficients in André–Quillen cohomology.
This diagrammatic enhancement of the obstruction theory is used to build the sheaf
Otop

K(1).

Obstruction theory for Otop
K(2): The stack Mss

ell is a 0-dimensional substack

of Mell . More precisely, it is the disjoint union of classifying stacks BG where G
ranges over the automorphism groups of the various supersingular elliptic curves.
The Serre–Tate theorem identifies the formal completion of these groups G with the
automorphism groups of the associated formal group. Consequently, to construct
the sheaf Otop

K(2) on the category of étale affines mapping to Mss
ell , it suffices to

construct the stalks of the sheaf at each point of Mss
ell , together with the action

of these automorphism groups. The spectrum associated to a stalk is a Morava
E-theory, the uniqueness of which is the Goerss–Hopkins–Miller theorem: that
theorem says that there is an essentially unique (unique up to a contractible space
of choices) way to construct an E∞-ring spectrum E(k,G), from a pair (k,G) of a
formal group G of finite height over a perfect field k, whose underlying homology
theory is the Landweber exact homology theory associated to (k,G). Altogether
then, given a formal affine scheme Spf(R), with maximal ideal I ⊂ R, and an étale
map Spf(R) → Mss

ell classifying an elliptic curve C over R, the value of the sheaf

Otop
K(2) is

Otop
K(2)(Spf(R)) :=

∏
i

E(ki, Ĉ
(i)
0 ).

In this formula, the product is indexed by the set i in the expression of the quotient

R/I =
∏

i ki as a product of perfect fields, and Ĉi
0 is the formal group associated

to the base change to ki of the elliptic curve C0 over R/I.

Obstruction theory for Otop
K(1): We first explain the approach described

in Chapter 11. Over the stack Mord
ell , there is a presheaf of homology theories

given by the Landweber exact functor theorem. This presheaf assigns to an el-
liptic curve classified by an étale map Spec(R) → Mord

ell the homology theory
X �→ BP∗(X)⊗BP∗ R. Ordinary elliptic curves have height 1, and so the represent-
ing spectrum is K(1)-local. In the setup of the Goerss–Hopkins obstruction theory
for this situation, we take E∗ to be p-adic K-theory, which has the structure of a
θ-algebra. The moduli problem that we are trying to solve is that of determining
the space of all lifts:

E∞-ringsK(1)

Kp̂

��
I :=

(
Aff /Mord

ell

)
ét

��

���������
Algθ.

In the general obstruction theory, the obstructions live in certain Hochschild–
Mitchell cohomology groups of the diagram I. For this particular diagram, the
obstruction groups simplify, and are equivalent to just diagram cohomology of I
with coefficients in André–Quillen cohomology. The diagram cohomology of I is
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in turn isomorphic to the étale cohomology of the stack Mord
ell . In the end, the

essential calculation is

Hs(Mord
ell , ω

⊗k) = 0 for s > 0,

where k ∈ Z and ω is the line bundle of invariant differentials on Mell . At odd
primes, the obstruction groups vanish in the relevant degrees, thus proving the
existence and uniqueness of Otop

K(1). Unfortunately, the higher homotopy groups of

the space of lifts are not all zero, and so one doesn’t get a contractible space of
choices for the sheaf Otop

K(1). At the prime p = 2, one needs to use real instead of

complex K-theory to get obstruction groups that vanish.
The same obstruction theory for E∞-ring spectra also applies to E∞-ring maps,

such as the gluing maps αchrom and αarith for the Hasse square and the arith-
metic square. For αchrom, one considers the moduli space of all E∞-ring maps
ιord,∗Otop

K(1) → ιss,∗(Otop
K(2))K(1) whose induced map of theta-algebras is prescribed,

and one tries to compute the homotopy groups of this moduli space. The obstruc-
tion groups here vanish, and there is an essentially unique map. For αarith, the
map is of rational spectra and the analysis is much easier; the obstruction groups
vanish, and again there is an essentially unique map.

The approach presented in Chapter 12 is a somewhat different way of con-
structing Otop

K(1). In this approach, one directly applies the K(1)-local obstruction

theory to construct LK(1)tmf , and then works backwards to construct Otop. That
approach allows one to avoid the obstruction theory for diagrams, but is more dif-
ficult in other steps—for instance, it requires use of level structures on the moduli
stack Mell to resolve the obstructions.

Chapter 13: The homotopy groups of tmf and of its localizations.
The homotopy groups of tmf are an elaborate amalgam of the classical ring of
modular forms MF∗ and certain pieces of the 2- and 3-primary part of the stable
homotopy groups of spheres π∗(S).

There are two homomorphisms

π∗(S) → π∗(tmf ) → MF∗.

The first map is the Hurewicz homomorphism, and it is an isomorphism on π0

through π6. Conjecturally, this map hits almost all of the interesting torsion classes
in π∗(tmf ) and its image (except for the classes η, η2, and ν) is periodic with period
576 (arising from a 192-fold periodicity at the prime 2 and a 72-fold periodicity
at the prime 3). Among others, the map is nontrivial on the 3-primary stable
homotopy classes α ∈ π3(S) and β ∈ π10(S) and the 2-primary stable homotopy
classes η, ν, ε, κ, κ, q ∈ π∗(S). The second map in the above display is the composite
of the inclusion π∗tmf → π∗Tmf with the boundary homomorphism in the elliptic
spectral sequence

Hs(Mell ;πtOtop) ⇒ πt−s(Tmf ).

This map π∗(tmf ) → MF∗ = Z[c4, c6,Δ]/(c34 − c26 − (12)3Δ) is an isomorphism
after inverting the primes 2 and 3. The kernel of this map is exactly the torsion in
π∗(tmf ) and the cokernel is a cyclic group of order dividing 24 in degrees divisible
by 24, along with some number of cyclic groups of order 2 in degrees congruent to
4 mod 8. In particular, the map from π∗(tmf ) hits the modular forms c4, 2c6, and
24Δ, but c6 and Δ themselves are not in the image. The localization π∗(tmf )(p) at
any prime larger than 3 is isomorphic to (MF∗)(p) ∼= Z(p)[c4, c6].
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The homotopy of tmf can be computed directly using the Adams spectral
sequence. Alternatively, one can use the elliptic spectral sequence to compute the
homotopy of Tmf . The Adams spectral sequence has the form

E2 = ExtAtmf
p

(Fp,Fp) ⇒ π∗(tmf )p̂,

where Atmf
p := homtmf−modules(HFp, HFp) is a tmf -analog of the Steenrod algebra.

At the prime 2, the map Atmf
2 → A ≡ A2 to the classical Steenrod algebra is

injective, and the tmf -module Adams spectral sequence can be identified with the
classical Adams spectral sequence

E2 = ExtA(H
∗(tmf ),F2) = ExtA(A//A(2),F2) = ExtA(2)(F2,F2) ⇒ π∗(tmf )ˆ2.

The elliptic spectral sequence has the form Hs(Mell , πtOtop) ⇒ πt−s(Tmf ). The
homotopy πtOtop is concentrated in even degrees and is the t/2-th power of a line
bundle ω; the spectral sequence thus has the form Hq(Mell ;ω

⊗p) ⇒ π2p−q(Tmf ).

Part II

The manuscripts. The book concludes with three of the original, previously
unpublished, manuscripts on tmf : “Elliptic curves and stable homotopy I” (1996)
by Hopkins and Miller, “From elliptic curves to homotopy theory” (1998) by Hop-
kins and Mahowald, and “K(1)-local E∞ ring spectra” (1998) by Hopkins. The
first focuses primarily on the construction of the sheaf of (associative) ring spectra
on the moduli stack of elliptic curves, the second on the computation of the homo-
topy of the resulting spectrum of sections around the supersingular elliptic curve at
the prime 2, and the third on a direct cellular construction of the K(1)-localization
of tmf . These documents have been left, for the most part, in their original draft
form; they retain the attendant roughness and sometimes substantive loose ends,
but also the dense, heady insight of their original composition. The preceding chap-
ters of this book can be viewed as a communal exposition, more than fifteen years
on, of aspects of these and other primary sources about tmf .

4. Reader’s guide

This is not a textbook. Though the contents spans all the way from classical
aspects of elliptic cohomology to the construction of tmf , there are substantive
gaps of both exposition and content, and an attempt to use this book for a lecture,
seminar, or reading course will require thoughtful supplementation.

Reading straight through the book would require, among much else, some fa-
miliarity and comfort with commutative ring spectra, stacks, and spectral sequences.
Many of the chapters, though, presume knowledge of none of these topics; instead
of thinking of them as prerequisites, we suggest one simply starts reading, and as
appropriate or necessary selects from among the following as companion sources:

Commutative ring spectra:

• May, J. Peter. E∞ ring spaces and E∞ ring spectra. With contributions by
Frank Quinn, Nigel Ray, and Jorgen Tornehave. Lecture Notes in Mathemat-
ics, Vol. 577. Springer-Verlag, Berlin-New York, 1977.
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• Rezk, Charles. Notes on the Hopkins–Miller theorem. Homotopy theory via
algebraic geometry and group representations (Evanston, IL, 1997), 313–366,
Contemp. Math., 220, Amer. Math. Soc., Providence, RI, 1998.

• Schwede, Stefan. Book project about symmetric spectra. Book preprint. Avail-
able at http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf

Stacks:

• Complex oriented cohomology theories and the language of stacks. Course
notes for 18.917, taught by Mike Hopkins (1999), available at http://www.math.

rochester.edu/people/faculty/doug/otherpapers/coctalos.pdf

• Naumann, Niko. The stack of formal groups in stable homotopy theory. Adv.
Math. 215 (2007), no. 2, 569–600.

• The stacks project. Open source textbook, available at http://stacks.math.columbia.

edu

• Vistoli, Angelo. Grothendieck topologies, fibered categories and descent theory.
Fundamental algebraic geometry, 1–104, Math. Surveys Monogr., 123, Amer.
Math. Soc., Providence, RI, 2005.

Spectral sequences:

• Hatcher, Allen. Spectral sequences in algebraic topology. Book preprint. Avail-
able at http://www.math.cornell.edu/˜hatcher/SSAT/SSATpage.html

• McCleary, John. A user’s guide to spectral sequences. Second edition. Cam-
bridge Studies in Advanced Mathematics, 58. Cambridge University Press,
Cambridge, 2001. xvi+561 pp. ISBN: 0-521-56759-9

• Weibel, Charles A. An introduction to homological algebra. Cambridge Studies
in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
xiv+450 pp. ISBN: 0-521-43500-5; 0-521-55987-1

The contents of this book span four levels: the first five chapters (elliptic co-
homology, elliptic curves, the moduli stack, the exact functor theorem, sheaves in
homotopy theory) are more elementary, classical, and expository and we hope will
be tractable for all readers and instructive or at least entertaining for all but the
experts; the next three chapters (the Hasse square, the local structure of the moduli
stack, obstruction theory) are somewhat more sophisticated in both content and
tone, and especially for novice and intermediate readers will require more deter-
mination, patience, and willingness to repeatedly pause and read other references
before proceeding; the last five chapters (from spectra to stacks, string orientation,
the sheaf of ring spectra, the construction, the homotopy groups) are distinctly
yet more advanced, with Mike Hopkins’ reflective account of and perspective on
the subject, followed by an extensive technical treatment of the construction and
homotopy of tmf ; finally the three classic manuscripts (Hopkins–Miller, Hopkins–
Mahowald, Hopkins) illuminate the original viewpoint on tmf—a careful reading
of them will require serious dedication even from experts.

In addition to the references listed above, we encourage the reader to consult
the following sources about tmf more broadly:
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• Goerss, Paul. Topological modular forms [after Hopkins, Miller, and Lurie].
Séminaire Bourbaki (2008/2009). Astérisque No. 332 (2010), 221-255.

• Hopkins, Michael. Topological modular forms, the Witten genus, and the theo-
rem of the cube. Proceedings of the International Congress of Mathematicians
(Zurich 1994), 554-565, Birkhäuser, Basel, 1995.

• Hopkins, Michael. Algebraic topology and modular forms. Proceedings of the
International Congress of Mathematicians (Beijing 2002), 291–317, Higher Ed.
Press, Beijing, 2002.

• Rezk, Charles. Supplementary notes for Math 512. Available at http://www.

math.uiuc.edu/˜rezk/512-spr2001-notes.pdf


