
CHAPTER 1

Stationary Fokker–Planck–Kolmogorov Equations

In this chapter we introduce principal objects related to elliptic equations
for measures, an important example of which is the stationary Fokker–Planck–
Kolmogorov equation for invariant probabilities of diffusion processes. Although
our approach is purely analytic, some concepts related to diffusion processes are
explained. Our principal problems are explained and in the rest of this chapter
we present the results on existence of densities of solutions to elliptic equations for
measures and their local properties such as Sobolev regularity. Thus, it turns out
that under broad assumptions our equations for measures are reduced to equations
for their densities. However, these equations have a rather special form, which leads
to certain properties of solutions that are different from the case of general second
order equations.

1.1. Background material

Throughout we shall use the following standard notation. The inner product
and norm in Rd are denoted by 〈 ·, · 〉 and | · |, respectively. The diameter of a set
Ω is diamΩ = supx,y∈Ω |x − y|. The open ball of radius r centered at a is denoted
by U(a, r) or Ur(a). The unit matrix is denoted by I. The trace of an operator A
is denoted by trA. The inequality A � B for operators on Rd means the estimate
〈Ah, h〉 � 〈Bh, h〉, where h ∈ Rd, for their quadratic forms. In expressions like
aijxiyi and bixi the standard summation rule with respect to repeated indices will
be meant. Set u+ = max(u, 0), u− = −min(u, 0), i.e., u = u+ − u−.

Throughout “positive” means “larger than zero”.
The class of all smooth functions with compact support lying in an open set

Ω ⊂ Rd is denoted by C∞
0 (Ω); the classes of the type Ck

b (Ω), C
k
0 (Ω) of functions

with k continuous derivatives etc. are defined similarly; C(Ω) and Cb(Ω) are the
classes of continuous and bounded continuous functions. The class of functions
whose derivatives up to order k have continuous extensions to the closure of Ω is
denoted by the symbol Ck(Ω). The support of a function f , i.e., the closure of the
set {f �= 0}, is denoted by supp f .

A measure μ on a σ-algebra A in a space Ω is a function μ : A → R1 that is
countably additive: μ(A) =

∑∞
n=1 μ(An) whenever An ∈ A are pairwise disjoint

and their union is A. Such a measure is automatically bounded and can be written
as μ = μ+ − μ−, where the measures μ+ and μ−, called the positive and negative
parts of μ, respectively, are nonnegative and concentrated on disjoint sets Ω+ ∈ A
and Ω+ ∈ A, respectively, such that Ω = Ω+ ∪ Ω−. The measure

|μ| := μ+ + μ−
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is called the total variation of the measure μ. The variational norm or the variation
of the measure μ is defined by the equality ‖μ‖ := |μ|(Ω). Let M(Ω) be the class
of all bounded measures on (Ω,A) and P(Ω) the class of all probability measures
on (Ω,A) (i.e., measures μ � 0 with μ(Ω) = 1). The simplest probability measure
is Dirac’s measure δa at a point a ∈ Ω, it equals 1 at the point a and 0 at the
complement of a. If μ � 0 and μ(Ω) � 1, then μ is a subprobability measure.

It is useful to admit also unbounded measures with values in [0,+∞] defined
similarly. Such a measure is called σ-finite if the space is the union of countably
many parts of finite measure. The classical Lebesgue measure on Rd provides an
example. Lebesgue measure of a set Ω will be occasionally denoted by |Ω|. For
most of the results discussed below we need only the classical Lebesgue measure
and other measures absolutely continuous with respect to it (see below).

We recall that the Borel σ-algebra B(E) is the smallest σ-algebra containing
all open sets of a given space E. The term “a Borel measure μ” will normally mean
a finite (possibly signed) countably additive measure on the σ-algebra of Borel
sets; cases where infinite measures (say, locally finite measures) are considered will
always be specified, except for Lebesgue measure. A Borel measure μ on a subset
in Rd is called locally finite if every point has a neighborhood of finite |μ|-measure.

A finite Borel measure μ on a topological space X is called Radon if, for every
Borel set B ⊂ X and every ε > 0, there is a compact set Kε ⊂ B such that
|μ|(B\Kε) < ε. By Ulam’s theorem, on all complete separable metric spaces all
finite Borel measures are Radon. Throughout we consider only Borel measures.

The integral of a function f with respect to a measure μ over a set A is denoted
by the symbols ∫

A

f(x)μ(dx),

∫
A

f dμ.

For a nonnegative measure μ and p ∈ [1,∞), the symbols Lp(μ) or Lp(Ω, μ) denote
the space of equivalence classes of μ-measurable functions f such that the function
|f |p is integrable. This space is equipped with the standard norm

‖f‖p := ‖f‖Lp(μ) :=

(∫
Ω

|f |p dμ
)1/p

.

The notation Lp(Ω) always refers to the classical Lebesgue measure; sometimes we
write Lp(Ω, dx) in order to stress this.

Let L∞(μ) denote the space of equivalence classes of bounded μ-measurable
functions equipped with the norm ‖f‖∞ := infg∼f supx |g(x)|.

A measure μ is called separable if L1(μ) is separable (and then so are also all
spaces Lp(μ) for p <∞).

As usual, for p ∈ [1,+∞) we set

p′ :=
p

p− 1
.

The classical Hölder inequality says that∫
Ω

|fg| dμ � ‖f‖p‖g‖p′ , f ∈ Lp(μ), g ∈ Lp′
(μ).

It yields the generalized Hölder inequality∫
Ω

|f1 · · · fn| dμ � ‖f1‖p1
· · · ‖fn‖pn

, fi ∈ Lpi(μ), p−1
1 + · · ·+ p−1

n = 1.
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In addition, if pq � p + q, f ∈ Lp(μ) and g ∈ Lq(μ), then by Hölder’s inequality
fg ∈ Lr(μ) and

(1.1.1) ‖fg‖r � ‖f‖p‖g‖q if r = pq/(p+ q).

The integrability of a function with respect to a signed measure μ is under-
stood as its integrability with respect to the total variation |μ| of the measure μ;
the corresponding classes will be denoted by Lp(μ) or Lp(|μ|) and by Lp(U, μ) or
Lp(U, |μ|) in the case where μ is restricted to a fixed set U ⊂ Ω.

For a Radon measure μ, the class L1
loc(μ) consists of all functions that are

integrable with respect to μ on all compact sets.
Let IA denote the indicator function of the set A, i.e., IA(x) = 1 if x ∈ A,

IA(x) = 0 if x �∈ A.
A measure ν on a σ-algebra A is called absolutely continuous with respect to

a measure μ on the same σ-algebra if the equality |μ|(A) = 0 implies the equality
ν(A) = 0; notation: ν 
 μ. By the Radon–Nikodym theorem this is equivalent to
the existence of a function � integrable with respect to |μ| such that

ν(A) =

∫
A

�(x)μ(dx), A ∈ A.

The function � is called the density (the Radon–Nikodym density) of the measure ν
with respect to the measure μ and is denoted by the symbol dν/dμ. It is customary
to write also

ν = � · μ or ν = �μ.

If ν 
 μ and μ 
 ν, then the measures ν and μ are equivalent; notation: ν ∼ μ.
This is equivalent to the following property: ν 
 μ and dν/dμ �= 0 |μ|-almost
everywhere. The term “almost everywhere” is shortened as μ-a.e. (for a signed
measure μ, the term “μ-a.e.” is understood as “|μ|-a.e.”).

A sequence of Borel measures μn converges weakly to a Borel measure μ if for
every bounded continuous function f one has

lim
n→∞

∫
f dμn =

∫
f dμ.

A family M of Radon measures on a topological space X is called uniformly tight
if for each ε > 0 there is a compact set Kε ⊂ X such that |μ|(X\Kε) < ε for
all measures μ ∈ M. According to the Prohorov theorem, a bounded family of
Borel measures on a complete separable metric space is uniformly tight precisely
when every infinite sequence in it contains a weakly convergent subsequence (see
Bogachev [125, Chapter 8]).

Given an open set Ω ⊂ Rd and p ∈ [1,+∞), we denote by W p,1(Ω) or Hp,1(Ω)
the Sobolev class of all functions f ∈ Lp(Ω) whose generalized partial derivatives
∂xi

f are in Lp(Ω). A generalized (or Sobolev) derivative is defined by the equality
(the integration by parts formula)∫

U

ϕ∂xi
f dx = −

∫
U

f∂xi
ϕdx, ϕ ∈ C∞

0 (Ω).

This space is equipped with the Sobolev norm

‖f‖p,1 := ‖f‖p +
d∑

i=1

‖∂xi
f‖p.
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We also use higher-order Sobolev classes W p,k(Ω) = Hp,k(Ω) with k ∈ N, con-
sisting of functions whose Sobolev partial derivatives up to order k are in Lp(Ω)
and equipped with naturally defined norms ‖f‖p,k, and fractional Sobolev spaces
Hp,r(Ω) with noninteger r (the definition is given in § 1.8); the notation with the
letter H will normally be used in the case of fractional or parabolic Sobolev classes.

The class W∞,k(Ω) consists of functions with bounded Sobolev derivatives up
to order k; for example, W∞,1(Ω) is the class of bounded Lipschitzian functions.
Let ∇f = (∂x1

f, . . . , ∂xd
f).

The class W p,k
0 (Ω) is defined as the closure of C∞

0 (Ω) in W p,k(Ω).
The space C0,δ(Ω) consists of Hölder continuous of order δ ∈ (0, 1) functions f

on Ω with finite norm

‖f‖C0,δ := sup
x∈Ω

|f(x)|+ sup
x,y∈Ω,x�=y

|f(x)− f(y)|/|x− y|δ.

Symbols like W p,1
loc (R

d), W p,1
loc (Ω), L

p
loc(Ω, μ) denote the classes of functions f

such that ζf belongs to the corresponding class without the lower index “loc” for
every ζ ∈ C∞

0 (Rd) or ζ ∈ C∞
0 (Ω), respectively.

Let W p,−1(Rd) denote the dual space to W p′,1(Rd) with p′ = p/(p− 1), p > 1.
Let us define weighted Sobolev spaces or classes. Let a nonnegative measure μ

on Rd be given by a locally integrable density � with respect to Lebesgue mea-
sure. The class W p,k(μ) is defined as the completion of C∞

0 (Rd) with respect to
the Sobolev norm ‖ · ‖p,k,μ defined similarly to ‖ · ‖p,k, but with the measure μ in
place of Lebesgue measure. If the density � is continuous and positive, thenW p,k(μ)

coincides with the class of functions f ∈ W p,k
loc (R

d) with ‖f‖p,k,μ < ∞. Weighted
classes are used below only in a very few places, mostly the classes W p,1(μ), more-
over, in such cases the measure μ has some additional properties, for example,
possessing a continuous positive density or a weakly differentiable density, so that
the weighted Sobolev classes are well-defined (see, e.g., Bogachev [126, § 2.6]).

We shall need the class W d+,1
loc (Ω) consisting of all functions f on an open set Ω

such that the restriction of f to each ball U with closure in Ω belongs to W pU ,1(U)

for some pU >d, and also the class Ld+
loc(Ω) defined similarly.

In the theory of Sobolev spaces and its applications a very important role is
played by the following Sobolev embedding theorem (the case p = 1 is called the
Gagliardo–Nirenberg embedding theorem).

1.1.1. Theorem. (i) If p > d or p = d = 1, then one has the embedding

W p,1(Rd) ⊂ Cb(R
d) = C(Rd) ∩ L∞(Rd).

Moreover, there exists a number C(p, d) > 0 such that

(1.1.2) ‖f‖∞ � C(p, d)‖f‖p,1, f ∈W p,1(Rd).

(ii) If p ∈ [1, d), then W p,1(Rd)⊂Ldp/(d−p)(Rd), hence Lq(Rd)⊂W p′,−1(Rd) if
q = dp/(dp+ p− d), p > 1. Moreover, there is a number C(p, d) > 0 such that

(1.1.3) ‖f‖dp/(d−p) � C(p, d)‖f‖p,1, f ∈W p,1(Rd).

For any bounded domain Ω with Lipschitzian boundary analogous embeddings hold
with some number C(p, d,Ω).

Note that p′ = qd/(d− q) in (ii). Actually in place of (1.1.3) the inequality

(1.1.4) ‖f‖dp/(d−p) � C(p, d)
∥∥|∇f |

∥∥
p

∀ f ∈W p,1(Rd)
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holds, which for p = 1 is called the Galiardo–Nirenberg inequality; it shows that an
integrable function on Rd with an integrable gradient belongs in fact to the class
Ld/(d−1)(Rd), hence also to all Lp(Rd) with 1 � p � d/(d− 1). For functions with
support in the unit ball U we obtain the inequality

(1.1.5) ‖f‖p � C(p)
∥∥|∇f |

∥∥
p
, f ∈W p,1

0 (U).

Note also the Poincaré inequality

(1.1.6) ‖f − fU‖p � C(p)
∥∥|∇f |

∥∥
p
, f ∈W p,1(U), fU =

∫
U

f dx.

A function from the class W d,1(Rd) need not be even locally bounded, but on
every ball U it belongs to all Lr(U).

For higher derivatives the following assertions are valid.

1.1.2. Corollary. One has the following embeddings.
(i) If kp < d, then W p,k(Rd) ⊂ Ldp/(d−kp)(Rd).
(ii) If kp > d, then W p,k(Rd) ⊂ C(Rd) ∩ L∞(Rd).
(iii) W 1,d(Rd) ⊂ C(Rd) ∩ L∞(Rd).

Hölder norms of Sobolev functions admit the following estimates.

1.1.3. Theorem. Let rp > d, let U be a ball of radius 1 in Rd, and let
f ∈ W p,r(U). Then f has a modification f0 which satisfies Hölder’s condition
with exponent α = min(1, r − d/p), and there exists C(d, p, r) > 0 such that for all
x, y ∈ U one has the inequality

(1.1.7) |f0(x)− f0(y)| � C(d, p, r)‖f‖p,r|x− y|α.
If f ∈W p,r

0 (U), then

(1.1.8) |f0(x)− f0(y)| � C(d, p, r)‖Drf‖Lp(U)|x− y|α,
where ‖Drf‖Lp(U) denotes the Lp(U)-norm of the real function

x �→ sup
|vi|�1

|Drf(x)(v1, . . . , vr)|.

A similar assertion is true for domains with sufficiently regular boundaries, but
the constants will depend also on the domains.

Unlike the whole space, for a bounded domain Ω ⊂ Rd, one has the inclusion
Lp(Ω) ⊂ Lr(Ω) whenever p > r. This yields a wider spectrum of embedding
theorems. We formulate the main results for a ball U ⊂ Rd. Let us set W q,0 := Lq.

1.1.4. Theorem. (i) Let kp < d. Then

W p,j+k(U) ⊂W q,j(U), q � dp

d− kp
, j ∈ {0, 1, . . .}.

(ii) Let kp = d. Then

W p,j+k(U) ⊂W q,j(U), q <∞, j ∈ {0, 1, . . .}.
If p = 1, then W j+d,1(U) ⊂ Cj

b (U).
(iii) Let kp > d. Then

W p,j+k(U) ⊂ Cj
b (U), j ∈ {0, 1, . . .}.

In addition, these embeddings are compact operators, with the exception of case (i)
with q = dp/(d− kp).
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Proofs of all these classic results can be found in the book Adams, Fournier [3].
For p > d and any function f ∈ W p,1(Rd) with support in a ball of radius R

one has the estimate

‖f‖L∞ � C(p, d,R)
∥∥|∇f |

∥∥
p
.

Neither this estimate nor (1.1.4) hold for functions on bounded domains (for ex-
ample, for constant functions). Also a constant C(p, d,R) cannot be taken inde-
pendently of R (excepting the case d = p = 1), as simple computations with the
functions fj(x) = max(1− |x|/j, 0) show.

Under broad assumptions about a set Ω in Rd, the class W p,k
0 (Ω) (defined above

as the closure of C∞
0 (Ω) in W p,k(Ω)) admits the following description (see Adams,

Fournier [3, Theorem 5.29 and Theorem 5.37]).

1.1.5. Theorem. Let Ω be a bounded open set with smooth boundary. Then

the class W p,k
0 (Ω) coincides with the set of functions in W p,k(Ω) whose extensions

by zero outside Ω belong to W p,k(Rd).

1.1.6. Corollary. Let Ω be a bounded open set with smooth boundary. Suppose
that f ∈W p,k(Ω), where p > d. If the continuous version of f vanishes on ∂Ω along

with its derivatives up to order k − 1, then f ∈W p,k
0 (Ω).

Let UR be an open ball of radius R. First we want to recall some simple

properties of the space W p,−1(UR), which is the dual of W p′,1
0 (UR) for p ∈ (1,∞).

It is known (see, e.g., Adams, Fournier [3, Chapter III, Theorem 3.12]) that every
u ∈W p,−1(UR) can be written as

(1.1.9) u = ∂xi
f i, f i ∈ Lp(UR), i = 1, . . . , d,

and, for all representations (1.1.9), one has

(1.1.10) ‖u‖Wp,−1(UR) � ‖f‖Lp(UR).

By using scaling to control the norms of the embeddings, we arrive at the
following well-known lemma (see, e.g., Gilbarg, Trudinger [409, Theorem 7.10]).

1.1.7. Lemma. (i) Let d′ < r <∞ and R > 0. Then we have the continuous
embedding Lrd/(r+d)(UR) ⊂ W r,−1(UR). In addition, there exists a number N
independent of R such that

(1.1.11) ‖u‖W r,−1(UR) � N‖u‖Lrd/(r+d)(UR)

for all u ∈ Lrd/(r+d)(UR) and all R > 0.
(ii) Let 1 < r < d′ and R > 0. Then L1(UR) ⊂ W r,−1(UR) and the embedding

operator is bounded. In addition, there exists a number N independent of R such
that

(1.1.12) ‖u‖W r,−1(UR) � NR1−d/r′‖u‖L1(UR)

for all u ∈ L1(UR) and all R > 0.
(iii) Let r = d′, s > 1, and R > 0. Then Ls(UR) ⊂ W r,−1(UR). In addition,

there exists N independent of R such that

(1.1.13) ‖u‖W r,−1(UR) � NR2+d/s‖u‖Ls(UR)

for all u ∈ Ls(UR) and all R > 0.
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1.2. Elliptic equations

For convenience of later references we collect here a number of known results
about second order elliptic equations. Throughout Δ = ∂2

x1
+· · ·+∂2

xd
is the Laplace

operator. An elliptic operator (or a “nondivergence form elliptic operator”) is an
expression

LA,b,cu = aij∂xi
∂xj

u+ bi∂xi
u+ cu,

where aij , bi and c are functions on Rd, A = (aij)i,j�d, b = (bi)di=1 and the summa-
tion over repeated upper and lower indices is meant, moreover, A = A∗ � 0. Such
operators should be distinguished from “divergence form” operators

LA,b,cu = ∂xi
(aij∂xj

u+ biu) + cu,

to which it is customary to ascribe also more general operators

LA,b,β,cu = ∂xi
(aij∂xj

u+ biu) + βi∂xi
u+ cu, β = (βi).

As we shall see below, different forms of operators lead not only to different prop-
erties of solutions to the equations of the form LA,b,cu= f (a “direct” or “nondi-
vergence form” equation) or LA,b,cv = f (a “divergence form” equation), but even
to different settings of problems. We note at once that our principal object —
a stationary Fokker–Planck–Kolmogorov equation — is in general something third.

Nondivergence and divergence form equations are most often solved in Hölder
classes (functions with Hölder continuous derivatives up to the second order) and
in Sobolev classes. Let us mention the basic facts about Dirichlet problems on
domains and about equations on the whole space.

A function u in the class W p,1
0 (Ω) on an open set Ω in Rd is called a solution

of the equation

LA,b,β,cu = ν, where ν ∈W p,−1
0 (Ω), p > 1,

if aij , bi, βi, c are measurable, aij |∇u|, biu, βi|∇u|, cu ∈ Lp(Ω), and∫
Ω

[
−〈A∇u− ub,∇ϕ〉+ ϕ〈β,∇u〉+ cuϕ

]
dx = ν(ϕ)

for all functions ϕ ∈W
p/(p−1),1
0 (Ω) or, equivalently, for all ϕ ∈ C∞

0 (Ω), where ν(ϕ)
is the value of the functional ν at ϕ. In the case of bounded coefficients the required
integrability conditions are automatically fulfilled.

Let Ω be a bounded domain in Rd with smooth boundary, let functions aij

be Hölder continuous on the closure of Ω, and let the matrix A(x) be symmetric
and positive definite on Ω. It is known (see, for example, Gilbarg, Trudinger [409,
Theorem 6.14], Krylov [552, Theorem 6.5.3]) that for every function f ∈ C∞

0 (Ω)
there is a function u ∈ C2(Ω) such that u = 0 on ∂Ω and

aij∂xi
∂xj

u = f on Ω.

It is known (see [409, Lemma 9.17] or Krylov [556, Theorem 2, p. 242]) that for
every r > 1 there is a number Cr independent of f such that

(1.2.1) ‖u‖W r,2(Ω) � Cr‖f‖Lr(Ω).

If A is merely continuous on Ω, then for any f ∈ Lr(Ω) the equation LA,b,cu = f

with lower order terms bi, c ∈ L∞(Ω) has a solution in the space W r,2(Ω)∩W r,1
0 (Ω)

if c � 0 (say, if c = 0). In this case also the indicated estimate holds.
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The most general known conditions on the second order coefficients ensuring the
solvability in Sobolev classes are formulated in terms of the class VMO consisting of
locally integrable functions a on Rd for each of which there is a positive continuous
function ω on [0,+∞) with ω(0) = 0 such that

sup
z∈Rd,r<R

r−2d

∫
Ur(z)×Ur(z)

|a(x)− a(y)| dx dy � ω(R) ∀R > 0.

This class contains all uniformly continuous functions, but includes also some locally
unbounded functions. Note that the inclusion W d,1(Rd) ⊂ VMO holds. About
these conditions, see Dong [308], [309], Krylov [557] and the references given
there. The following result is proved in Krylov [555].

1.2.1. Theorem. Suppose that

aij ∈ VMO, A(x) � ε · I, |aij |+ |bi|+ |βi|+ |c| � K.

Then, for every p > 1, there are numbers λ0 and M depending only on p, d,K, ε
and a common for all aij function ω from the condition of the membership in VMO
such that for all λ � λ0 and f, g1, . . . , gd ∈ Lp(Rd) the equations

LA,b,cu− λu = f and LA,b,β,cv − λv = f + div g, g = (g1, . . . , gd),

have unique solutions u∈W p,2(Rd) and v∈W p,1(Rd) and

λ‖u‖p + ‖u‖p,2 � M‖(LA,b,c − λ)u‖p,(1.2.2)

‖v‖p,1 � M(‖f‖p + ‖g‖p).(1.2.3)

Thus, the operator LA,b,c − λ is an isomorphism between the spaces W p,2(Rd)
and Lp(Rd), LA,b,β,c − λ is an isomorphism between W p,1(Rd) and W p,−1(Rd).

Estimate (1.2.3) means that ‖v‖p,1 � M‖LA,b,β,cv − λv‖p,−1.

1.2.2. Corollary. Under the conditions indicated in the theorem, for every
ball U , whenever λ � λ0, we have the estimate

(1.2.4) ‖u‖Wp,1
0 (U) � M‖LA,b,β,cu− λu‖Wp,−1(U), u ∈W p,1

0 (U).

Proof. Note that by defining u by zero outside U we obtain a function in
W p,1(Rd) with the same norm, but the norm of LA,b,β,cu will change, so for
justifying (1.2.4) we use a different reasoning. We take a sequence of functions
un ∈ C∞

0 (U) converging to u in W p,1(U). Set L = LA,b,β,c. Then

‖un‖Wp,1(U) = ‖un‖Wp,1(Rd) � M‖Lun−λun‖Wp,−1(Rd) = M‖Lun−λun‖Wp,−1(U),

where the left-hand side converges to ‖un‖Wp,1(U) and the right-hand side converges
to M‖Lu− λu‖Wp,−1(U), which follows by the estimate

‖Lv‖Wp,−1(U) �
∥∥|A∇v|+ |β| |∇v|+ |bv|+ |cv|

∥∥
Lp(U)

and the boundedness of the coefficients. �

For equations without lower order terms (or under some other additional condi-
tions) one can take λ = 0. For the proof of the following result under more general
conditions (in particular, with a bounded domain with C1-boundary in place of a
ball), see Auscher, Qafsaoui [78], Byun [214]. Let us derive it from the previous
corollary.
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1.2.3. Proposition. Under the conditions on A from the theorem, for the
operator LA = LA,0,0,0 and every ball U one can find M > 0 such that

(1.2.5) ‖u‖Wp,1
0 (U) � M‖LAu‖Wp,−1(U), u ∈W p,1

0 (U).

Moreover, for any f, g1, . . . , gd ∈ Lp(U) the equation

LAu = f + div g, g = (g1, . . . , gd)

has a unique solution in W p,1
0 (U).

Proof. First we observe that our estimate yields the existence of a solution
taking into account that the number M in (1.2.4) according to Theorem 1.2.1
depends on A only through p, d,K, ε and the function ω. Indeed, we can approx-
imate A in Lp(U) by a sequence of smooth mappings Ak with common parame-

ters indicated above. The sequence of solutions uk ∈ W p,1
0 (U) of the equations

LAk
uk = f+div g turns out to be bounded in W p,1

0 (U), hence a subsequence {ukn
}

converges weakly in W p,1
0 (U) to some function u, which obviously will be a solution

to LAu = f + div g.
We now establish estimate (1.2.5). Suppose that it fails. Then there exist

functions un ∈W p,1
0 (U) such that

‖un‖Wp,1
0 (U) = 1, ‖LAun)‖Wp,−1(U) � 1/n.

We observe that {un} converges in W p,1
0 (U), since otherwise there is a subsequence

{vn} with ‖vn − vk‖Wp,1
0 (U) � c > 0, whence we obtain

‖(LA − λ0)(vn − vk)‖Wp,−1(U) � c/M,

hence ‖vn − vk‖Wp,−1(U) � c/(2Mλ0) for sufficiently large n. This contradicts the

compactness of the embedding W p,1
0 (U) ⊂ W p,−1(U). Thus, there is u = lim

n→∞
un

in W p,1
0 (U). Then ‖u‖Wp,1

0 (U) = 1, but LAu = 0, i.e., the integral of 〈A∇u,∇ϕ〉
vanishes for all functions ϕ ∈ C∞

0 (U), then also for all ϕ ∈ W p′,1
0 (U), whence it

follows that u = 0. Indeed, if p � 2, then the integral of 〈A∇u,∇u〉 over U vanishes,

which is only possible if u = 0, since u ∈ W p,1
0 (U). The estimate proven for p � 2

yields also the existence of a solution, as observed above.
We can now complete our proof of (1.2.5) in the case 1 < p < 2. It remains to

show that u = 0 if u∈W p,1
0 (U) and LAu = 0. As shown above, we can solve the

equation LAw = signu in W p′,1
0 (U). Then the integral of |u| equals the integral

of −〈A∇w,∇u〉, which equals the vanishing integral of −〈∇w,A∇u〉. �

1.2.4. Corollary. Let the conditions on A indicated in Theorem 1.2.1 hold
and u ∈W q,1

0 (U) for some q > 1. If

LAu = f + div g, g = (g1, . . . , gd),

where f, gi ∈ Lp(U) and p > q, then u ∈W p,1
0 (U).

Proof. Let w ∈W p,1
0 (U) be a solution of the equation LAu = f+div g, which

exists by Proposition 1.2.3. Then the difference v = u− w ∈ W q,1
0 (U) satisfies the

homogeneous equation LAv = 0, but this equation has only zero solution in the
class W q,1

0 (U). Therefore, u = w almost everywhere. �
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Below we need the following technical assertion which follows from the previous
proposition and embedding theorems.

1.2.5. Lemma. Let p and q be two numbers satisfying the estimates p � d,
q � p′, but not such that p = d = q′. Let R1 > 0. Assume that the functions
aij ∈ W p,1(UR1

) are continuous and A � λ · I for some λ > 0. Then, there exist
N > 0 and R0 > 0 depending only on p, q, d, λ,R1, the modulus of continuity of A,
‖aij‖Wp,1(UR1

), and the rate of decreasing to zero of ‖∇aij‖Ld(UR) as R → 0, such

that for all R < R0 and ϕ ∈W q,1
0 (UR), one has

(1.2.6) f := aij∂xi
∂xj

ϕ ∈W q,−1(UR) and ‖∇ϕ‖Lq(UR) � N‖f‖W q,−1(UR).

Proof. We may assume that R1 = 1. Note f ∈W q,−1(UR). This follows from
the fact that, for every bounded function ζ ∈ W p,1(UR), the operator ψ �→ ζψ is

continuous on W q′,1
0 (UR) by the estimate

‖∇(ζψ)‖Lq′ (UR) � C‖∇ψ‖Lq′ (UR).

Indeed, if q′ < d, we have |∇ζ| ∈ Lp(UR) and ψ ∈ Lq′d/(d−q′)(UR). Hence by
Hölder’s inequality |ψ∇ζ| ∈ Ls(UR), where

s =
pq′d/(d− q′)

p+ q′d/(d− q′)
=

pq′d

pd− pq′ + q′d
= q′

pd

pd− pq′ + q′d
� q′.

In addition,

‖ψ∇ζ‖Ls(UR) � ‖ψ‖Lq′d/(d−q′)(UR)‖∇ζ‖Lp(UR)

� C‖∇ψ‖Lq′ (UR)‖∇ζ‖Lp(UR).

The case q′ > d, where ψ is bounded and q′ � p (since q � p′), and the case q′ = d,
where q′ < p and ψ is in all Lr(UR), r <∞, are similar. We note that

∂xi
(aij∂xj

ϕ) = f + ∂xi
aij∂xj

ϕ =: f + g.

By the previous proposition

(1.2.7) ‖∇ϕ‖Lq(UR) � N1

(
‖g‖W q,−1(UR) + ‖f‖W q,−1(UR)

)
,

where N1 is independent of R ∈ (0, 1] and ϕ. Let a = (aj), aj = ∂xi
aij .

Now we consider three cases.
Case q > d′. By Lemma 1.1.7(i) and (1.1.1) we have

‖g‖W q,−1(UR) � N2‖a‖Ld(UR)‖∇ϕ‖Lq(UR),

which along with (1.2.7) yields

(1.2.8) ‖∇ϕ‖Lq(UR) � N1N2‖a‖Ld(UR)‖∇ϕ‖Lq(UR) +N1‖f‖W q,−1(UR).

We emphasize that N1 and N2 are independent of R and f and note that, since
|∇aij | ∈ Lp(UR) and p � d, we can choose R so small that

N1N2‖a‖Ld(UR) � 1/2.

For such an R, inequality (1.2.8) implies (1.2.6).
Case p′ < q � d′. In that case it follows from q > p′ that, for r defined by

rd/(r + d) = pq/(p+ q), we have r > d′ � q. Therefore, for R ∈ (0, 1), we obtain

‖g‖W q,−1(UR) � N3R
d(r−q)/(rq)‖g‖W r,−1(UR) � N‖a‖Lp(UR)‖∇ϕ‖Lq(UR),

and we can finish the proof as above.
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Case q = p′ < d′. As is easy to see, this is the only remaining case. By
Lemma 1.1.7 and (1.1.1), for R ∈ (0, 1), we have

‖g‖W q,−1(UR) � N4R
1−d/p‖g‖L1(UR) � N4‖a‖Lp(UR)‖∇ϕ‖Lq(UR),

and the argument from the first case applies again to complete the proof. �

In § 1.7 we return to divergence form equations.
An important role in the theory of partial differential equations is played by

various maximum principles. These principles can be of the following types:
1) the weak maximum principle asserts that, under certain conditions, if Lu � 0

in a domain Ω, u|∂Ω � 0, then u � 0 in Ω; this maximum principle is discussed in
Chapter 2; note that if Lu = 0 and L1 = 0, then the maximum and minimum of u
are attained at the boundary;

2) the strong maximum principle asserts that, under certain conditions (see
Gilbarg, Trudinger [409, § 3.2]), if Lu = 0 and u attains its minimum or maximum
in the interior of Ω, then u is a constant. Let us give a precise formulation.

1.2.6. Theorem. Suppose that LA,bu � 0 in a connected open set Ω, where
u ∈ C2(Ω), c1 · I � A(x) � c2 · I with constant c1, c2 > 0, and b is bounded. If u
attains its maximum in the interior of Ω, then u is constant in Ω.

1.3. Diffusion processes

Fokker–Planck–Kolmogorov equations arise naturally in the study of diffusion
processes. Here we recall basic concepts and consider some examples. These con-
cepts are not used in the main part of the book, but some acquaintance with them
is useful for understanding the origins of the central problems of the book and the
character of the most important applications of the presented analytical results.

First we define the concept of a Markov transition function on a measurable
space (X,X ) in which all singletons belongs to X . Suppose we are given a nonempty
set T ⊂ R. A function (s, x, t, B) �→ P (s, x, t, B) defined for all s, t ∈ T with s � t,
x ∈ X and B ∈ X is called a Markov transition function if

1) for all fixed s, t, x, the function B �→ P (s, x, t, B) is a probability measure
on X and for s = t it is Dirac’s measure at the point x;

2) for all fixed s, t, B, the function x �→ P (s, x, t, B) is measurable with respect
to X ;

3) whenever s, t, u ∈ T and s � t � u, for all x ∈ X and B ∈ X we have the
equality

(1.3.1) P (s, x, u,B) =

∫
X

P (t, y, u,B)P (s, x, t, dy),

called the Chapman–Kolmogorov equation.
A random process {ξt}t∈T with values in X is called a Markov process with

the given transition function P (s, x, t, B) if, for all t, u ∈ T with t � u and B ∈ X ,
the function P (t, ξt, u, B) serves as a conditional probability P (ξu ∈ B|F�t) with
respect to the σ-algebra F�t generated by the random elements ξs with s � t.

The quantity P (s, x, t, B) can be interpreted as the probability of hitting the
set B by the process at the time t under the condition that it is at the point x at the
time s � t. So the measures P (s, x, t, · ) are also called the transition probabilities
of the process. It is also possible to consider Markov families {ξs,x,t} for which
s � t and ξs,x,s = x. Certainly, in the general case there is no requirement that the



12 1. STATIONARY FOKKER–PLANCK–KOLMOGOROV EQUATIONS

process must be at a fixed point at the initial time. If P (s, x, t, · ) depends on s, t
through t− s, then the process is called homogeneous; in this case

P (s, x, t, · ) = P (0, x, t− s, · ) =: P (x, t− s, · ).

The one-dimensional distributions Pt of the process {ξt}t∈T are defined by the
equality Pt(B) := P (ξt ∈ B). A necessary and sufficient condition that a process
be Markov with the given transition function is the equality

(1.3.2) P
(
(ξt1 , . . . , ξtn) ∈ C

)
=

∫
X

· · ·
∫
X

IC(x1, . . . , xn)

×P (tn−1, xn−1, tn, dxn)· · ·P (t1, x1, t2, dx2)Pt1(dx1)

for all C ∈ Xn and ti ∈ T with t1 < · · · < tn.
A somewhat more general concept is obtained if in place of the family of the

σ-algebras F�t we take an increasing family of σ-algebras Ft with the property
that ξt is Ft-measurable.

Let U(x, ε) = {y : |x− y| < ε}, V (x, ε) = {y : |x− y| > ε}. A Markov process
with values in Rd with transition probabilities P (s, x, t, B) is called a diffusion
process or a diffusion (see Wentzell [937] or Gikhman, Skorokhod [408]) if there
is a mapping b : Rd× [0,+∞) → Rd, called the drift coefficient, and a mapping
(x, t) �→ A(x, t) with values in the space of symmetric operators on Rd, called the
diffusion coefficient or diffusion matrix, such that

(i) for all ε > 0, t � 0 and x ∈ Rd we have

lim
h→0

h−1P
(
t, x, t+ h, V (x, ε)

)
= 0,

(ii) for some ε > 0 and all t � 0, x ∈ Rd we have

lim
h→0

h−1

∫
U(x,ε)

(y − x)P (t, x, t+ h, dy) = b(x, t),

(iii) for some ε > 0 and all t � 0, x, z ∈ Rd we have

lim
h→0

h−1

∫
U(x,ε)

〈y − x, z〉2 P (t, x, t+ h, dy) = 2〈A(x, t)z, z〉.

If A and b do not depend on t, then the diffusion is homogeneous.

1.3.1. Proposition. Suppose that relations (i)–(iii) hold locally uniformly in x
and the functions aij, bi are locally bounded. Then the transition probabilities satisfy
the parabolic Fokker–Planck–Kolmogorov equation

∂tμ = ∂xi
∂xj

(aijμ)− ∂xi
(biμ)

in the sense of generalized functions (see Chapter 6). If ν is a finite Borel measure
on Rd and

μt(dx) =

∫
Rd

P (0, y, t, dx) ν(dy),

then the measure μ = μt(dx) dt gives a solution to the Cauchy problem with the
initial condition μ

∣∣
t=0

= ν.
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Proof. We give a brief justification, see details in Wentzell [937, § 11.2] or
Gikhman, Skorokhod [408, Chapter 1, § 1]. Let f ∈ C∞

0 (Rd). Then

d

dt

∫
Rd

f(y)P (s, x, t, dy)

= lim
h→0

h−1

(∫
Rd

f(y)P (s, x, t+ h, dy)−
∫
Rd

f(z)P (s, x, t, dz)

)
.

By the Chapman–Kolmogorov equation the right-hand side equals

lim
h→0

∫
Rd

h−1

∫
Rd

(
f(y)− f(z)

)
P (t, z, t+ h, dy)P (s, x, t, dz).

By using conditions (i)–(iii) and Taylor’s expansion for f , we obtain

lim
h→0

h−1

∫
Rd

(
f(y)− f(z)

)
P (t, z, t+ h, dy)

= aij(z, t)∂zi∂zjf(z) + bi(z, t)∂zif(z).

Since convergence as h→ 0 is uniform in z, we have

d

dt

∫
Rd

f(y)P (s, x, t, dy)

= lim
h→0

∫
Rd

(
aij(z, t)∂zi∂zjf(z) + bi(z, t)∂zif(z)

)
P (s, x, t, dz).

Thus, we have proved that the transition probabilities satisfy the indicated equa-
tion. In addition, for each function ζ ∈ C∞

0 (Rd), condition (i) gives the equality

lim
h→0

∫
Rd

ζ(y)P (s, x, s+ h, dy) = ζ(x),

i.e., P (s, x, t, dy) satisfies the condition P
∣∣
t=s

= δx. This proves the last assertion
in the case where ν = δx. The general case follows by integration with respect
to ν. �

In the case where the transition probabilities P (s, x, t, dy) are given by densities
�(s, x, t, y) with respect to Lebesgue measure, in the variables (y, t) they satisfy the
above Fokker–Planck–Kolmogorov equation (also called the forward Kolmogorov
equation)

∂t�(s, x, t, y) = ∂yi
∂yj

(
aij(y, t)�(s, x, t, y)

)
− ∂yi

(
bi(y, t)�(s, x, t, y)

)
,

and in the variables (x, s) they satisfy the backward Kolmogorov equation

−∂s�(s, x, t, y) = aij(x, s)∂xi
∂xj

�(s, x, t, y) + bi(x, s)∂xi
�(s, x, t, y).

If A and b do not depend on t, then

P (s, x, t, dy) = P (0, x, t− s, dy)

under broad assumptions, i.e., the transition probabilities are determined by the
probabilities

P (x, t, dy) = P (0, x, t, dy).

In case the latter have densities �(x, t, y), the backward Kolmogorov equation takes
the form

∂t�(x, t, y) = aij(x)∂xi
∂xj

�(x, t, y) + bi(x)∂xi
�(x, t, y).
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The differential operator

LA,bϕ = aij∂xi
∂xj

ϕ+ bi∂xi
ϕ

is called the generator of the given process. This terminology is connected with the
fact that under suitable conditions the operators

Ttf(x) =

∫
Rd

f(y)P (x, t, dy)

form a semigroup in a suitable functional space (semigroups will be discussed in
Chapter 5). Then the forward Kolmogorov equation (which is the Fokker–Planck–
Kolmogorov equation) reads ∂tTtf = TtLf and the backward equation becomes
∂tTtf = LTtf . Say, if A = I, bi ∈ C∞

b (Rd), then the given formal relations have
the usual meaning for f ∈ C∞

b (Rd).
In the case of a homogeneous process an important concept of a stationary

distribution or invariant measure of the process (or of its transition semigroup)
arises. This is a probability measure μ such that

μ(B) =

∫
Rd

P (y, t, B)μ(dy) ∀ t � 0, B ∈ B(Rd).

It follows from what has been said that any stationary distribution satisfies the
stationary Fokker–Planck–Kolmogorov equation

∂xi
∂xj

(aijμ)− ∂xi
(biμ) = 0,

which will be the main object of study in Chapters 1–5.
Diffusion processes can be considered also in a broader sense, for example, one

can consider almost surely continuous Markov processes in Rd such that their tran-
sition probabilities P (s, x, t, dy) satisfy the Fokker–Planck–Kolmogorov equation
with the initial condition P

∣∣
t=s

= δx. Such processes are called quasi-diffusions.

Since the distribution of a Markov process (or the family of its finite-dimensional
distributions) is completely determined by its initial distribution and its transition
probabilities, uniqueness of a probability solution to the Cauchy problem for the
Fokker–Planck–Kolmogorov equation yields the weak uniqueness of the diffusion
process whose transition probabilities satisfy this equation.

We recall that the conditional expectation of an integrable function ξ on a
probability space (Ω,A, μ) with respect to a σ-algebra B ⊂ A is a B-measurable
integrable function Eμ[ξ|B] such that∫

Ω

ηξ dμ =

∫
Ω

ηEμ[ξ|B] dμ

for every bounded B-measurable function η.
Jensen’s inequality for the conditional expectation says that if V is a convex

function and V (ξ) ∈ L1(μ), then a.e.

V (Eμ[ξ|B]) � Eμ[V (ξ)|B].
A real or vector random process {ξt}t∈T with a directed index set T is called a

martingale with respect to a family of σ-algebras Ft that is increasing in the sense
that Fs ⊂ Ft whenever s � t, provided that the element ξs is measurable with
respect to Fs, integrable and almost surely ξs = E[ξt|Fs] for t � s, where E[ξt|Fs]
is the conditional expectation (the existence of the conditional expectation follows
by the integrability).
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One of the most important examples of a Markov process which is also a mar-
tingale (and one of the most important for applications processes) is the Wiener
process.

1.3.2. Example. A Wiener process (or a Brownian motion) {wt}t�0 is a real
random process with the following properties:

(i) the trajectory t �→ wt(ω) is continuous for every ω and w0 = 0,
(ii) the random variables wt1 , wt2−wt1 , . . . , wtn−wtn−1

are independent, when-
ever 0 � t1 < t2 < · · · < tn,

(iii) for each t the random variable wt is Gaussian with zero mean and variance t,
i.e., Ew2

t = t.
A Wiener process in Rd is just a collection (w1

t , . . . , w
d
t ) of independent Wiener

processes. The existence of Wiener processes is not straightforward and is proved
in many textbooks (see, e.g., Wentzell [937]).

Let Ft be the σ-algebra generated by the variables ws with s � t. Then
with respect to this family the Wiener process is a martingale, since for s � t the
conditional expectation of wt−ws with respect to Fs vanishes by condition (ii). In
addition, the Wiener process is Markov with respect to the indicated family with
the transition function P (s, x, t, · ) defined as follows: if s = t, then this is Dirac’s
measure at the point x, if s < t, then this is the Gaussian measure with mean x and
variance t−s, i.e., the measure with density y �→ (2π)−1/2 exp

[
−(y−x)2/(2t−2s)

]
.

The Chapman–Kolmogorov equation is verified directly. The Markov property is
verified by means of (1.3.2).

A diffusion process with a nonzero drift is not a martingale, which can be seen
from the Itô equation (see below).

The most important way of constructing diffusion processes is solving stochastic
differential equations. First we introduce the Itô integral.

Suppose we are given a Wiener process {wt}t�0 and a process {ξt}t�0 measur-
able in (ω, t) such that the variable ξt is measurable with respect to the σ-algebra Ft

generated by the variables ws with s � t (such a process is called adapted). Let
also T > 0. Suppose that ∫ T

0

E|ξt|2 dt <∞.

The stochastic Itô integral ∫ T

0

ξt dwt

is defined as follows. If there are points 0 = t1 < · · · < tn = T such that
ξt = ξti whenever ti � t < ti+1, then this integral is naturally defined as the
sum

∑n
i=1 ξti(ω)

(
wti+1

(ω) − wti(ω)
)
. In the general case the function ξt(ω) is ap-

proximated in L2(P⊗dt) by a sequence of functions of the indicated form and it is
proved that the stochastic integrals of the approximations converge in L2(P ); the
limit is taken for the stochastic integral of the original process.

Similarly one defines the stochastic integral with respect to a Wiener process
in Rd of a real-valued or operator-valued process.

Suppose now we are given Borel functions σ and b on R. If

ξt = ξt0 +

∫ t

t0

σ(ξs) dws +

∫ t

t0

b(ξs) ds, t0 � t � T,
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then the adapted process {ξt}t∈[t0,T ] is called a strong solution of the stochastic
differential equation

(1.3.3) dξt = σ(ξt)dwt + b(ξt)dt

on [t0, T ] with the initial distribution ξt0 . This equation is a symbolic expression
for the previous integral equation. Similarly stochastic equations are introduced
for processes in Rd, when b is a vector field, σ is an operator-valued mapping.

It is known (see Wentzell [937] or Krylov [551]) that in the case of Lipschitzian
coefficients σ and b for any Ft0-measurable square-integrable random variable ξt0
this stochastic equation has a unique solution and this solution is a diffusion process
with the drift b and the diffusion coefficient σσ∗/2. There are also more subtle
results (see Ikeda, Watanabe [473]). The following theorem on existence of a strong
solution is proved in Gyöngy, Krylov [432] (we give its version for the whole space).

1.3.3. Theorem. Suppose that σ = (σij)i,j�d and b are Borel mappings from
Rd×[0,+∞) to the space of matrices on Rd and to Rd, respectively, such that for
every k ∈ N there are a positive function Mk integrable on [0, k] and a number
εk > 0 such that

|σij(x, t)− σij(y, t)|2 � Mk(t)|x− y|2, |b(x, t)|+ |σij(x, t)| � Mk(t),

A(x, t) := 2−1σ(x, t)σ∗(x, t) � εk · I if |x| � k, t ∈ [0, k], i, j � d.

Let V � 0 be a function on Rd×[0,+∞) with continuous first and second derivatives
in x and a continuous derivative in t such that for some increasing sequence of
bounded domains Dk covering Rd for each T > 0 we have

LA,bV (x, t) � M(t)V (t, x), inf
x∈∂Dk, t�T

V (x, t)→ +∞,

where M is a locally integrable function on [0,+∞). Then (1.3.3) has a unique
strong solution on [0,+∞).

In Chapter 9 also the concept of weak solution will be mentioned and the related
concept of martingale problem (which in turn is strongly related to Fokker–Planck–
Kolmogorov equations).

Apart from the Wiener process, the Ornstein–Uhlenbeck process is very useful
in applications. This process is given by the linear stochastic equation (scalar or
vector)

dξt = dwt − 2−1ξt dt.

It can be expressed via the Wiener process by the formula

ξt = e−t/2ξ0 + e−t/2

∫ t

0

es/2 dws.

For ξ0 = x0 the process ξ̂t = e−t/2x0 + e−t/2wet−1 has the same finite-dimensional
distributions as ξt (but does not satisfy the above stochastic equation). The gen-
erator of the Ornstein–Uhlenbeck process has the form L/2, where the operator

Lϕ(x) = Δϕ(x)− 〈x,∇ϕ(x)〉
is called the Ornstein–Uhlenbeck operator.

We observe that the Wiener process has no stationary probability measures,
but the standard Gaussian measure is invariant for the Ornstein–Uhlenbeck pro-
cess and the Ornstein–Uhlenbeck semigroup (see also Examples 1.4.7, 5.1.1 and
Exercise 5.6.57).
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Let us also mention the Itô formula. If the process ξt = (ξ1t , . . . , ξ
d
t ) in Rd

satisfies the equation dξt = σ(ξt)dwt + b(ξt)dt, then for any smooth function f the
scalar process f(ξt) satisfies the equation

df(ξt) =

d∑
i=1

∂xi
f(ξt)dξ

i
t +

1

2

d∑
i,j=1

∂xi
∂xj

f(ξt)dξ
i
tdξ

j
t

=
d∑

i,k=1

∂xi
f(ξt)σ

ik(ξt)dw
k
t +

d∑
i,k=1

∂xi
f(ξt)σ

ik(ξt)b
i(ξt)dt

+
1

2

d∑
i,j,k=1

∂xi
∂xj

f(ξt)σ
ik(ξt)σ

jk(ξt)dt.

The Itô formula will not be used in this book, but some acquaintance with it is
useful for better understanding the methods of obtaining certain estimates. For
example, the integral of the function f with respect to the solution of the parabolic
Fokker–Planck–Kolmogorov equation at the moment t is usually the expectation
of f(ξt). For example, if σ = I, then by the Itô formula this gives the expectation

Ef(ξ0) + E

∫ t

0

[
〈∇f(ξt), b(ξt)〉+

1

2
Δf(ξt)

]
dt.

Under the integral we have Lf(ξt), L = Δ/2+b ·∇. If Lf � C+Cf , then the right-
hand side is estimated by the integral of C + CEf(ξt) over [0, t], which enables us
to estimate Ef(ξt) by means of the known Gronwall inequality (see Exercise 7.5.3).

1.4. Basic problems

Suppose we are given a locally finite Borel measure μ (possibly signed) on an
open set Ω ⊂ Rd, a Borel function c on Ω, a Borel vector field b = (bi) on Ω, and
a matrix-valued mapping A = (aij)i,j�d on Ω such that the functions aij are Borel
measurable. For ϕ ∈ C∞(Ω) let us set

LA,bϕ :=
∑
i,j�d

aij∂xi
∂xj

ϕ+
∑
i�d

bi∂xi
ϕ, LA,b,cϕ = LA,bϕ+ cϕ.

We shall also consider the divergence form operators

LA,bϕ :=
∑
i,j�d

∂xi
(aij∂xj

ϕ) +
∑
i�d

bi∂xi
ϕ

and the correspondingly defined operators LA,b,c.

1.4.1. Definition. We say that μ satisfies the equation

(1.4.1) L∗
A,b,cμ = 0

in Ω if aij , bi, c ∈ L1
loc(|μ|) and one has

(1.4.2)

∫
Ω

LA,b,cϕ(x)μ(dx) = 0 ∀ϕ ∈ C∞
0 (Ω).

For a given measure ν on Ω the equation

(1.4.3) L∗
A,b,cμ = ν

is defined similarly as the identity

∫
Ω

LA,b,cϕdμ =

∫
Ω

ϕdν.



18 1. STATIONARY FOKKER–PLANCK–KOLMOGOROV EQUATIONS

For c = 0 we arrive at the equations L∗
A,bμ = 0 and L∗

A,bμ = ν, the first of
which is called the stationary Fokker–Planck–Kolmogorov equation; when c �= 0 it
is called the Fokker–Planck–Kolmogorov equation with a potential.

Equation (1.4.1) can be written as the equality

∂xi
∂xj

(aijμ)− ∂xi
(biμ) + cμ = 0

in the sense of generalized functions. If it is known in advance that the measure μ
is given by a density � of class W 1,1

loc (which is true under broad assumptions, as we

shall see below) and the functions aij are locally bounded and belong to W 1,1
loc and

the functions ∂xj
aij� are integrable, then the integration by parts in (1.4.2) yields

the equation
∂xi

(aij∂xj
�)− ∂xi

(
(bi − ∂xj

aij)�
)
+ c� = 0,

also understood in the sense of generalized functions.
If the coefficients are smooth and it is known in advance that the measure μ is

given by a smooth density � (which is true if the matrix A(x) is not degenerate),
then the double integration by parts in (1.4.2) yields the usual equation

aij∂xi
∂xj

�+ 2∂xi
aij∂xj

�− bi∂xi
�− ∂xi

bi�+ c� = 0.

Unlike the direct elliptic equations of the form LA,b,cu = 0, the density of a solution
of equation (1.4.1) even with Lipcshitzian coefficients and a nondegenerate matrix

A may fail to belong to the second class W 1,2
loc (simple examples are given below).

The equation
L∗
A,b,cμ = 0

is defined similarly, but it requires additional assumptions about either aij or μ
(which will be made in appropriate places), because it is necessary to give meaning
to the integral of LA,b,cϕ with respect to μ. For example, if aij ∈ C1(Ω), then we
write ∂xi

(aij∂xj
ϕ) as ∂xi

aij∂xj
ϕ+ aij∂xi

∂xj
ϕ and use the previous definition.

Let us give a precise definition of a solution of the elliptic equation

(1.4.4) L∗
A,b,cμ = 0

for Borel measures μ on Ω, where L is an elliptic second order operator of divergence
form

Lϕ(x) := ∂xi

(
aij(x)∂xj

ϕ(x)
)
+ bi(x)∂xi

ϕ(x).

The interpretation of this equation is as usual: the functions aij and bi must be
integrable on every compact set in Ω with respect to the measure μ and, for every
function ϕ ∈ C∞

0 (Ω), we must have the equality∫
Ω

LA,b,cϕdμ = 0.

However, the latter can be understood in one of the following two ways.
(I) One has aij ∈W 1,1

loc (Ω), the functions a
ij , ∂xi

aij , and bi are Borel measurable
and locally integrable with respect to |μ|, and

(1.4.5)

∫
Ω

[aij∂xi
∂xj

ϕ+ ∂xi
aij∂xj

ϕ+ bj∂xj
ϕ] dμ = 0.

(II) The measure μ possesses a density � in the class W 1,1
loc (Ω) such that the

functions aij∂xi
� and bi� are locally Lebesgue integrable and

(1.4.6)

∫
Ω

[−aij∂xi
�∂xj

ϕ+ bi∂xi
ϕ�] dx = 0.
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Clearly, if the coefficients aij are locally Sobolev and the functions ∂xi
aij� are

locally integrable, then (1.4.6) can be written as (1.4.5).
Throughout we deal with the case where the matrix A is symmetric and non-

negative, but this is not needed for the definition (unlike for most of the results).
Probability solutions are those that are probability measures. Integrable solu-

tions are those given by integrable densities (possibly signed).
In general, equation (1.4.1) can fail to have nonzero solutions in the class of

bounded measures (take Ω = R1, A = 1, b = 0, then the equation μ′′ = 0 means
that the density of μ is linear), it can have many solutions even in the class of
probability measures, and its solutions can be quite singular (e.g., if A = 0 and
also b = 0, then any measure is a solution). However, even in the generality under
consideration some positive information is available.

The one-dimensional case is much simpler than the multidimensional case.

1.4.2. Proposition. Let d = 1 and let Ω be an interval (x0, x1). Suppose
that A > 0 on Ω. Then, any measure μ satisfying the equation L∗

A,b,cμ = ν is
absolutely continuous with respect to Lebesgue measure and has a density � of the
form � = �0/A, where �0 is absolutely continuous on every compact subinterval
in Ω.

If c = 0 and b/A is locally Lebesgue integrable, x2 ∈ (x0, x1) is fixed, then

(1.4.7) �(x) = A(x)−1E(x)

(
C1 +

∫ x

x0

C2 + F (t)

E(t)
dt

)
,

E(x) := exp

∫ x

x2

b(t)

A(t)
dt, F (x) := ν

(
(x0, x)

)
.

If A = 1, c = 0, ν = 0, Ω = (−1, 1), and b is locally Lebesgue integrable on the
interval (−1, 1), then

(1.4.8) �(x) =

(
k1 + k2

∫ x

0

exp

(
−
∫ s

0

b(t) dt

)
ds

)
exp

∫ x

0

b(t) dt,

where k1 and k2 are constants.

Proof. We have the identity∫
Ω

(Aϕ′′ + bϕ′ + cϕ) dμ =

∫
Ω

ϕdν ∀ϕ ∈ C∞
0 (Ω),

which can be written as the equality

(Aμ)′′ − (bμ)′ + cμ = ν

in the sense of distributions. Hence the distributional derivative of (Aμ)′ − bμ is a
locally bounded measure, i.e., (Aμ)′− bμ is a function of locally bounded variation.
This shows that the distributional derivative of Aμ is a locally bounded measure
as well. Hence Aμ is absolutely continuous and has a density �0. Therefore, μ is
absolutely continuous. Now it is seen from our reasoning that the distributional de-
rivative of Aμ is a locally integrable function, so that �0 admits a locally absolutely
continuous version. In the case A = 1, c = 0, ν = 0, we arrive at the equation
μ′′ − (bμ)′ = 0, whence μ′ − bμ = k2 for some constant k2. If b is locally Lebesgue
integrable, this equation can be explicitly solved. The general case reduces to this
one by passing to the measure Aμ. �
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Even in this simplest one-dimensional case we observe that a solution μ can
fail to have a continuous density if A is positive but not continuous. We actually
see that in the case of nondegenerate A (i.e., detA �= 0) the regularity of solutions
is essentially the regularity of A. We shall see below that in higher dimensions the
picture is similar, although the proofs involve much deeper techniques. Another
simple observation is that without any assumptions of nondegeneracy on A we
obtain that the measure A ·μ is absolutely continuous. A highly nontrivial analogue
of this is true also in the multidimensional case.

Sometimes it is useful to construct an equation for which a given function is a
solution.

1.4.3. Example. In the one-dimensional case for any two smooth functions
f and g with everywhere nonzero Wronskian W = f ′g − fg′ it is easy to write the
equation L∗

1,b,cμ = 0 with smooth coefficients for which they form a basis in the
space of solutions. To this end we equate the determinant of the matrix with the
rows (u, u′, u′′), (f, f ′, f ′′), (g, g′, g′′) to zero, which gives a second order equation
−Wu′′+Au′+Bu = 0 satisfied by f and g. Dividing by −W we obtain the equation
u′′ − (A/W )u′ − (B/W )u = 0, which can be written as L∗

1,b,cu = 0, b = A/W ,

c = b′ − B/W . For nonzero c it is not always possible to find an explicit solution,
but a new degree of freedom appears, which leads to some effects impossible in the
case where c = 0.

Let us consider one more instructive example.

1.4.4. Example. Let � ∈ W 1,1
loc (R

d) and let μ = � dx. Then μ satisfies the
equation L∗

I,bμ = 0 with

b :=
∇�

�
, where b(x) := 0 whenever �(x) = 0.

Indeed, |b| is locally |μ|-integrable. For any ϕ ∈ C∞
0 (Rd), by the integration by

parts formula we have∫
[Δϕ+ 〈b,∇ϕ〉] � dx =

∫
[−〈∇ϕ,∇�〉+ 〈b,∇ϕ〉�] dx = 0

since b� = ∇� almost everywhere due to the fact that ∇� vanishes almost every-
where on the set {� = 0} (see Exercise 1.8.19).

1.4.5. Definition. Let � ∈ W 1,1
loc (R

d). The mapping ∇�/�, where we set by
definition ∇�(x)/�(x) := 0 if �(x) = 0, is called the logarithmic gradient of the
measure μ or of the density �.

In this example, we can even choose � to be infinitely differentiable, but b can be
quite singular with respect to Lebesgue measure. For instance, given a proper closed
subset Z ⊂ Rd, we can find a probability density � ∈ C∞(Rd) with Z = {� = 0}; in
this way one can even obtain b that is not Lebesgue locally integrable on a closed
set of positive Lebesgue measure. The simplest example of a singularity is this:

(1.4.9) �(x) = x2 exp(−x2/2)/
√
2π, b(x) = x+ 2x−1.

In the case of smooth coefficients and nondegenerate A all solutions are smooth.
This is a corollary of the following classical result (see Taylor [894, Chapter III],



1.4. BASIC PROBLEMS 21

Trèves [898, Chapter I]), which is often referred to as Weyl’s regularity theorem
for the equation

LA,b,cμ = ν.

1.4.6. Theorem. Suppose that aij , bi, c ∈ C∞(Ω) and detA > 0. If μ is a
distribution on Ω such that LA,b,cμ ∈ C∞(Ω), then μ ∈ C∞(Ω).

Therefore, if a measure ν on Ω has an infinitely differentiable density, then
any measure μ on Ω satisfying the equation L∗

A,b,cμ = ν possesses an infinitely
differentiable density.

The second assertion follows from the first one, since in the case of smooth
coefficients the equation L∗

A,b,cμ = ν can be written as the equality

∂xi
∂xj

(aijμ)− ∂xi
(biμ) + cμ = ν

in the sense of distributions, which can be rewritten as

aij∂xi
∂xj

μ+ (∂xi
∂xj

aij)μ+ 2∂xi
aij∂xj

μ− (∂xi
bi)μ− bi∂xi

μ+ cμ = ν,

i.e., as LA,b0,c0μ = ν with some smooth coefficients b0 and c0.
Explicitly solvable equations are rather rare, although there are important cases

when they appear.

1.4.7. Example. Let μ be the standard Gaussian measure on Rd, i.e., a prob-
ability measure with the standard Gaussian density

�(x) = (2π)−d/2 exp(−|x|2/2).

Its logarithmic gradient has an especially simple form:

∇�(x)

�(x)
= −x.

According to the previous example, μ satisfies the equation L∗μ = 0, where L is
the Ornstein–Uhlenbeck operator

Lϕ(x) = Δϕ(x)− 〈x,∇ϕ(x)〉,

already encountered above. This operator plays an important role in analysis,
probability theory, and the most diverse applications. We shall see below that any
bounded measure σ on Rd satisfying the equation L∗σ = 0 has the form σ = kμ,
where k is a constant. It is worth noting that the operator L has an eigenbasis
in L2(γ). For d = 1 an eigenbasis is formed by the Hermite–Chebyshev polynomials

H0 = 1, Hn(t) =
(−1)n√

n!
et

2/2 dn

dtn
(
e−t2/2

)
, n > 0.

Here LHn = −nHn. For Rd an eigenbasis is formed by the polynomials

Hk1,...,kd
(x1, . . . , xd) = Hk1

(x1) · · ·Hkd
(xd), ki � 0.

Here

LHk1,...,kd
= −(k1 + · · ·+ kd)Hk1,...,kd

.

In this case the operator L is obviously symmetric in L2(μ) on the domain of
definition C∞

0 (Rd), but this is not always true, as one can see from the following
result.
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1.4.8. Proposition. Suppose that a nonnegative locally finite measure μ with
a density � ∈ W p,1

loc (R
d) satisfies the equation L∗

A,bμ = 0, where aij ∈ W p,1
loc (R

d),

bi ∈ Lp
loc(R

d), p � 2. Then the symmetry of the operator LA,b on domain C∞
0 (Rd)

in L2(μ), i.e., the identity∫
Rd

ϕLA,bψ dμ =

∫
Rd

ψLA,bϕdμ, ϕ, ψ ∈ C∞
0 (Rd),

is equivalent to the almost everywhere equality

A∇� = �b0, bi0 := bi −
d∑

j=1

∂xj
aij .

For A = I the symmetry is equivalent to the equality ∇� = �b.

Proof. Indeed, by the integration by parts formula the indicated identity is
equivalent to the identity∫

Rd

〈ϕ∇ψ − ψ∇ϕ,A∇�− �b0〉� dx = 0,

which by the identity ∫
Rd

〈∇(ϕψ), A∇�− �b0〉 dx = 0

that follows from the equation turns out to be equivalent to the relation∫
Rd

ϕ〈∇ψ,A∇�− �b0〉 dx = 0, ϕ, ψ ∈ C∞
0 (Rd).

The latter is equivalent to the equality

〈∇ψ,A∇�− �b0〉 = 0 a.e. for every function ψ ∈ C∞
0 (Rd),

i.e., is the announced equality, since for ψ we can take a function that coincides with
the coordinate function xi on a given cube, which yields that (A∇�)i = �bi0. �

Note that the symmetry of the operator LA,b on domain C∞
0 (Rd) in L2(μ)

implies that L∗
A,bμ = 0 under the much weaker assumption that aij , bi ∈ L2

loc(μ),

since for ϕ ∈ C∞
0 (Rd) we can take ψ ∈ C∞

0 (Rd) in such a way that ψ = 1 on the
support of ϕ.

We shall see below that under broad assumptions any solution of the equation
L∗
A,b,cμ = 0 has the same smoothness as the diffusion coefficient A. However, even

in the one-dimensional case it is easy to find an example where the smoothness of
the solution does not exceed that of A.

1.4.9. Example. Let us take a probability measure μ with a smooth density
that satisfies the equation L∗

I,b0
μ = 0, e.g., let μ be the standard Gaussian measure

and b0(x) = −x. If now g is any Borel function with 1 � g � 2, then the measure
g · μ satisfies the equation L∗

A,bμ = 0 with A = g−1I and b = g−1b0. In particular,
in this way we can obtain an example, where A and b are Hölder continuous and
A is uniformly nondegenerate, but the density of μ is not weakly differentiable and
its Hölder order is not greater than that of A.
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1.5. Existence of densities

We now turn to conditions for the existence of densities of solutions. Suppose
that A = (aij)di,j=1 is a Borel measurable mapping on an open set Ω ⊂ Rd with

values in the space of nonnegative symmetric operators on Rd. The main results
of this section assert that under broad assumptions any solution of the equation
L∗
A,b,cμ = 0 has a density on the set where detA > 0, and it is possible to estimate

certain Lp-norms of the density.
For the proof we need the classical result following from the Riesz theorem and

asserting that every linear functional Λ defined on a linear subspace E in Lp(λ),
where λ is a nonnegative σ-finite measure and p ∈ [1,∞), and satisfying the estimate

Λ(f) � C‖f‖Lp(λ), f ∈ E,

is given by means of some function g ∈ Lp/(p−1)(λ) in the form

Λ(f) =

∫
fg dλ, f ∈ E.

In addition, we also need the following corollary of a very deep maximum
principle due to A.D. Aleksandrov.

1.5.1. Theorem. For every smooth positive function f on a uniformly convex
smooth domain Ω (the principal curvatures of ∂Ω are separated from zero, e.g., Ω is
a ball) there is a convex function z ∈ C2(Ω) ∩ C(Ω) such that z|∂Ω = 0 and

αij∂xi
∂xj

z � d| det(αij)|1/df on Ω

for every nonnegative symmetric matrix (αij) and

sup
x∈Ω

|z(x)| � C(d,Ω)‖f‖Ld(Ω).

Proof. It is known (see Gilbarg, Trudinger [409, Theorem 17.23]) that for
every smooth positive function f on a uniformly convex smooth domain Ω there
exists a convex solution z ∈ C2(Ω) ∩ C(Ω) of the Dirichlet problem

(1.5.1) det(D2z) = fd, z|Ω = 0.

Then by A.D. Aleksandrov’s maximum principle (see [409, Theorem 9.1]) we have

sup
x∈Ω

|z(x)| � C(d,Ω)‖f‖Ld(Ω).

If now α = (αij) is a nonnegative symmetric d×d-matrix, we have

αij∂xi
∂xj

z = tr (αD2z) � d| detα det(D2z)|1/d = d| detα|1/df,
since tr (AB) � d| det(AB)|1/d for any nonnegative symmetric d×d-matrices, be-

cause tr (AB) = tr (
√
BA

√
B) and

√
BA

√
B is a nonnegative matrix. �

Here is one of the main results in this section.

1.5.2. Theorem. Suppose that the matrix A(x) is symmetric and nonnegative-
definite for every x. Let μ be a locally finite Borel measure on Ω (possibly signed)
such that aij ∈ L1

loc(Ω, μ), and for some C > 0 one has

(1.5.2)

∫
Ω

aij∂xi
∂xj

ϕdμ � C(sup
Ω
|ϕ|+ sup

Ω
|∇ϕ|)

for all nonnegative ϕ ∈ C∞
0 (Ω). Then the following assertions are true.
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(i) If μ is nonnegative, then (detA)1/dμ has a density in Ld′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then μ has a density which

belongs to Lr
loc(Ω, dx) for every r ∈ [1, d′).

Proof. We shall start with case (ii) which is simpler. Let U0 be a ball with
compact closure in Ω and let ζ ∈ C∞

0 (Ω) be such that 0 � ζ � 1, ζ = 1 on U0 and
the support of ζ belongs to a ball U ⊂ Ω. Let us consider the measure ν = ζ μ. By
substituting ζψ in place of ϕ in (1.5.2), for every nonnegative smooth function ψ
on Ω, we obtain

(1.5.3)

∫
U

aij∂xi
∂xj

ψ dν � C1(sup
U
|ψ|+ sup

U
|∇ψ|),

where

C1 = C +
(
C + 2d2 sup

i,j
‖aij‖L1(U,μ)

)
sup
U
|∇ζ|+ ‖aij‖L1(U,μ) sup

U
|∂xi

∂xj
ζ|

is independent of ψ. It is easily seen that (1.5.3) remains true for every nonnegative
ψ ∈ C2(U). By considering the function ψ + sup |ψ|, we arrive at the estimate

(1.5.4)

∣∣∣∣∫
U

aij∂xi
∂xj

ψ dν

∣∣∣∣ � C1(sup
U
|ψ|+ sup

U
|∇ψ|) ∀ψ ∈ C2(U).

Now let r > d. As we noted in § 1.2, for every f ∈ C∞
0 (U) there exists a function

u ∈ C2(U) such that

aij∂xi
∂xj

u = f

on U and u = 0 on ∂U . Moreover, there exists a constant C2 independent of f such
that

‖u‖W r,2(U) � C2‖f‖Lr(U).

By the Sobolev embedding theorem, we obtain

sup
U
|∇u|+ sup

U
|u| � C3‖f‖Lr(U).

Together with (1.5.4) this yields

(1.5.5)

∫
U

f dν � C1C3‖f‖Lr(U) ∀ f ∈ C∞
0 (U).

Hence ν is absolutely continuous with ν = g dx, g ∈ Lr′(U).
Let us now consider case (i). The above reasoning does not work in this case

even for bounded uniformly nondegenerate A, since the equation aij∂xi
∂xj

u = f
need not be solvable; for continuous A, the solution u of this equation is only in
W r,2 and not in C2, hence one cannot pass from C∞

0 -functions to u in (1.5.4). In
order to overcome this difficulty, we need the assumption that μ is nonnegative. As
above, by considering a suitable function ζ, we arrive at estimate (1.5.4) for the
measure ν = ζμ on the open ball UR0

(x0). Note that the support of the measure
ν is contained in a ball UR(x0) of radius R = R0 − 2r, where r > 0. In that case,
instead of solving the elliptic equation, we shall employ Theorem 1.5.1, according
to which, for every nonnegative continuous function f on Rd vanishing outside
the closed ball UR0

(x0), there exists a nonnegative continuous concave function z
(the convex function from the theorem with the minus sign) on UR0

(x0) with the
following property:

−αij∂xi
∂xj

z � | det(αij)|1/df
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in UR0
(x0) for every nonnegative matrix (αij) and

sup
UR0

(x0)

z � N‖f‖Ld(UR0
(x0)),

where N is independent of f and (αij). Let g be a fixed smooth probability density
on Rd whose support is contained in the unit ball centered at the origin. For any
locally integrable function v, we set

vε = v ∗ gε, gε(x) = ε−dg(ε−1x).

Then, for every nonnegative matrix (αij) and every ε ∈ (0, r), one has the estimates

(1.5.6) −αij∂xi
∂xj

zε(x) � | det(αij)|1/dfε(x),

(1.5.7) sup
UR(x0)

|zε| � N‖fε‖Ld(UR0
(x0)) � N‖f‖Ld(UR0

(x0))

on UR+r(x0), where N is independent of f , αij , and ε. Clearly, the functions zε are
smooth, nonnegative and concave on UR+r(x0) if ε < r. We observe that, for every
nonnegative continuously differentiable concave function w on UR+r(x0), one has

|∇w(x)| � r−1 sup
y∈UR+r(x0)

w(y) ∀x ∈ UR(x0).

This estimate follows by considering the one-dimensional case. Together with
(1.5.4), (1.5.6) applied to αij = aij(x) and (1.5.7), this yields the estimate∫

| det(aij)|1/dfε dν �
∣∣∣∣∫ aij∂xi

∂xj
zε dν

∣∣∣∣ � C1 sup
UR(x0)

(
|∇zε|+ |zε|

)
� C1N(1 + r−1)‖f‖Ld(UR0

(x0)).

As in case (ii), we complete the proof. �

Notice that in assertion (ii) one cannot expect that the density of μ is continuous
even for infinitely differentiable aij , which is seen if one takes d = 1, Ω = (−1, 1),
A = 1 and μ(dx) = I(0,+∞) dx.

We do not know whether assertion (i) remains true for signed measures.

1.5.3. Corollary. Let μ be a locally finite (possibly signed) Borel measure
on Ω and let aij , bi, c ∈ L1

loc(Ω, μ). Assume that

(1.5.8)

∫
Ω

(LA,bϕ+ cϕ) dμ � 0 for all nonnegative ϕ ∈ C∞
0 (Ω).

Then the following assertions are true.
(i) If μ is nonnegative, then the locally finite measure (detA)1/dμ has a density

in Ld′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then μ has a density which

belongs to Lr
loc(Ω, dx) for every r ∈ [1, d′).

In particular, the above statements are true if (1.4.1) holds.

Proof. It suffices to note that, for every bounded open Ω0 ⊂ Ω0 ⊂ Ω, one has∣∣∣∣∫
Ω0

(bi∂xi
ϕ+ cϕ) dμ

∣∣∣∣ � sup
Ω0

|∇ϕ|
∫
Ω0

|b| d|μ|+ sup
Ω0

|ϕ|
∫
Ω0

|c| d|μ|

for every smooth function ϕ with support in Ω0. �
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In assertion (ii) of this corollary one cannot expect the density of μ to be Hölder
continuous, since for d = 1 and A = 1 one can take the measure μ with density

exp

∫ x

0

b(t) dt

with a suitable function b (see Exercise 1.8.11).
The previous corollary has the following important generalization with the same

proof concerned with the nonhomogeneous equation L∗
A,b,cμ = ν with a measure

on the right.

1.5.4. Corollary. Let μ and ν be two locally finite (possibly signed) Borel
measures on Ω and let aij , bi, c ∈ L1

loc(Ω, μ). Assume that

(1.5.9)

∫
Ω

[
LA,bϕ+ cϕ

]
dμ =

∫
Ω

ϕdν for all nonnegative ϕ ∈ C∞
0 (Ω).

Then the following assertions are true.
(i) If μ is nonnegative, then the locally finite measure (detA)1/dμ has a density

in Ld′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then μ has a density which

belongs to Lr
loc(Ω, dx) for every r ∈ [1, d′).

1.5.5. Remark. (i) Assertions (i) of Theorem 1.5.2, Corollary 1.5.3, and
Corollary 1.5.4 for nonnegative measures extend to the case when μ is a σ-finite
nonnegative Borel measure on Ω (not necessarily locally bounded). Indeed, (1.5.2),
(1.5.8), and (1.5.9) make sense also for σ-finite μ provided that aij , bi, c ∈ L1

loc(Ω, μ).
One can find a probability measure μ0 such that μ = f μ0, where f is a positive
Borel function. Let

aij0 := faij , bi0 := fbi, c0 := fc, A0 = (aij0 )i,j�d, b0 = (bi0)i�d.

Clearly, aij0 , b
i
0, c0 ∈ L1

loc(μ0) and μ0 satisfies the hypotheses of the above men-
tioned assertions with A0, b0, and c0 in place of A, b, and c. Hence the mea-
sure (detA0)

1/dμ0 has a density � ∈ Ld′

loc(Ω, dx). Since we have the equality

(detA0)
1/d = f(detA)1/d, this means that (detA)1/dμ has the same density.

(ii) Assume that the hypotheses of Corollary 1.5.3(i) are fulfilled. Suppose that
the ball UR1

(x0) of radius R1 > 0 centered at a point x0 is contained in Ω. Then,
for every R < R1 and r < d′, there exists a number N depending only on R1, R, r, d
such that the density �A of (detA)1/dμ satisfies the estimate

‖�A‖Ld′ (UR) � N
∥∥1 + |b|+ |c|

∥∥
L1(UR1

,μ)
.

In addition, for fixed d, the number N can be chosen as a locally bounded function
of R1, R, r. This follows from the proof of Theorem 1.5.2.

(iii) Assume that the hypotheses of Corollary 1.5.3(ii) are fulfilled. Let UR1
(x0)

belong to Ω. Then, for every R < R1 and r < d′, there exists a number N depending
only on R1, R, r, d, infUR1

detA, supi,j supUR1
|aij |, and the Hölder norm of A on

UR1
such that the density � of μ satisfies the estimate

‖�‖Lr(UR) � N
∥∥1 + |b|+ |c|

∥∥
L1(UR1

,μ)
.

In addition, for fixed d, the number N can be chosen as a locally bounded function
of the indicated quantities. This also follows from the proof of Theorem 1.5.2.
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Let us consider an elliptic operator

Lu = aij∂xi
∂xj

u+ bi∂xi
u+ cu,

where the coefficients aij , bi and c are bounded Borel measurable functions on a
domain Ω ⊂ Rd, the matrix A(x) =

(
aij(x)

)
1�i,j�d

is symmetric and for some

positive constants λ > 0 and γ > 0 one has

λI � A(x) � λ−1I ∀x ∈ Ω.

Moreover, we assume that for every ball U(x0, r) ⊂ Ω we have

sup
x∈U(x0,r)

[
r|b(x)|+ r2|c(x)|

]
� λ−1.

The following theorem was obtained in Bauman [94]. We say that a nonnegative
Borel measure μ satisfies the inequality L∗μ � 0 in Ω if∫

Ω

Lϕdμ � 0 whenever ϕ ∈ C∞
0 (Ω), ϕ � 0.

1.5.6. Theorem. Suppose that U(x0, r) ⊂ Ω and 0 < σ < γ < 1. There exists
a constant C > 0 depending only on γ, σ, λ, and d such that if a Borel measure μ
is a nonnegative solution of the inequality L∗μ � 0, then

μ
(
U(x0, γr)

)
� Cμ

(
U(x0, σr)

)
.

Proof. The theorem follows if we prove that there exists a number θ ∈ (0, 1)
such that for all γ ∈ (θ, 1) there holds the estimate

μ
(
U(x0, γr)

)
� Cμ

(
U(x0, θr)

)
,

where C depends only on γ, θ, λ, and d. Indeed, iterations of the above estimate
will imply that

μ
(
U(x0, γr)

)
� Ckμ

(
U(x0, θ

kr/γk−1)
)
.

By choosing k so that θk < σγk−1 we obtain the assertion of the theorem. Changing
variables we may assume that r = 1 and x0 = 0.

Set ϕ(u) = exp(−u−1) if u > 0 and ϕ(u) = 0 if u � 0. We have

Lϕ(1− |x|2) = −ϕ′(1− |x|2)
(
2trA(x) + 2〈b(x), x〉

)
− 4ϕ′′(1− |x|2)〈A(x)x, x〉+ c(x)ϕ(1− |x|2)

� ϕ(1− |x|2)(1− |x|2)−4
(
〈A(x)x, x〉

(
4− 2(1− |x|2)

)
− (1− |x|2)2

(
2trA(x) + 2〈b(x), x〉

)
+ c(x)(1− |x|2)4

)
.

We can choose θ ∈ (0, 1) such that

〈A(x)x, x〉
(
4− 2(1− |x|2)

)
− (1− |x|2)2

(
2trA(x) + 2〈b(x), x〉

)
+ c(x)(1− |x|2)4 � C0 > 0

for every x with θ < |x| < 1. Here C0 depends only on λ, θ, and d. We have Lϕ � 0
on U(0, 1) \ U(0, θ) and for every γ ∈ (θ, 1) we have Lϕ � C1 on U(0, γ) \ U(0, θ),
where C1 depends only on λ, θ, γ, and d. Note also that there exists a constant
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C2 > 0 depending only on λ and d such that |Lϕ| � C2 on U(0, 1). Since μ � 0
and L∗μ � 0, we obtain

C1μ
(
U(0, γ) \ U(0, θ)

)
�
∫
U(0,γ)\U(0,θ)

Lϕdμ �
∫
U(0,1)\U(0,θ)

Lϕdμ

� −
∫
U(0,θ)

Lϕdμ � C2μ
(
U(0, θ)

)
.

Hence μ
(
U(0, γ)

)
� (C1 + C2)μ

(
U(0, θ)

)
. �

The following theorem is a type of reverse Hölder’s inequality. It follows im-
mediately from Theorem 1.5.6 and Theorem 1.5.2.

1.5.7. Theorem. Suppose that μ is a nonnegative solution of the inequality
L∗μ � 0 on Ω. Let γ > 1. Then μ has a density � with respect to Lebesgue measure
and there exists a constant C > 0 depending only on λ, γ, and d such that for every
ball U(x0, r) with U(x0, γr) ⊂ Ω, one has(∫

U(x0,r)

�d/(d−1) dx

)(d−1)/d

� C|U(x0, r)|−1/d

∫
U(x0,r)

� dx.

The next interesting fact was discovered in Gehring [403].

1.5.8. Lemma. Let Q be an arbitrary cube in Rd and let g be a nonnegative
function in Lq

loc(R
d) with q > 1. Suppose that for almost all x ∈ Q the inequality

|U |−1

∫
U

gq dx � C

(
|U |−1

∫
U

g dx

)q

holds for every ball U centered at x. Then, there is a number ε > 0, depending only
on q, C and d, such that g ∈ Lp(Q) for every p ∈ [q, q + ε) and

|Q|−1

∫
Q

gp dx � ε

q + ε− p

(
|Q|−1

∫
Q

gq dx

)p/q

.

1.5.9. Corollary. Let μ be a nonnegative solution of the inequality L∗μ � 0
on Ω and let U be a ball with closure in Ω. Then μ has a density � with respect to
Lebesgue measure such that there is a number ε > 0, depending only on λ and U ,
with the property that � ∈ Lp(U) for every p in the interval

[
1, d/(d− 1) + ε

)
.

Recall that a Borel measure μ belongs to the Muckenhoupt class A∞ if for
every ε > 0 there exists a δ > 0 such that μ(E) � εμ(U) whenever U ⊂ Ω is a ball
and E ⊂ U is a Borel set with |E| � δ|U |.

1.5.10. Corollary. Let μ be a nonnegative solution of the inequality L∗μ � 0
on Ω. Let γ > 1. Then there exists a constant C > 0, depending only on λ, γ
and d, such that for every ball U(x0, r) with U(x0, γr) ⊂ Ω and for every Borel set
E ⊂ U(x0, r) we have

μ(E)

μ
(
U(x0, r)

) � C
( |E|
|U(x0, r)|

)1/d
,

in particular, μ belongs to A∞ on every subdomain Ω′ with Ω′ ⊂ Ω.
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Proof. Let � be a density of the measure μ. Applying Hölder’s inequality and
Theorem 1.5.7 we obtain

μ(E) =

∫
U(x0,r)

IE� dx � |E|1/d
(∫

U(x0,r)

�d/(d−1) dx

)(d−1)/d

� C|E|1/d|U(x0, r)|−1/dμ
(
U(x0, r)

)
,

as required. �
1.5.11. Remark. (i) According to Coifman, Fefferman [254, Theorem V]

and Muckenhoupt [728, Theorem 1], the last corollary implies that � is in the
Muckenhoupt class Ap for some p > 1 on every subset Ω′ with Ω′ ⊂ Ω, i.e., there
exists a constant C1 > 0 such that(

1

|U |

∫
U

� dx

)(
1

|U |

∫
U

�−1/(p−1) dx

)p−1

� C1,

for every ball U ⊂ Ω′, where C1 depends only on λ, d, and Ω′.
(ii) Moreover, for every ε > 0 there exists a constant β such that, for every ball

U ⊂ Ω′, Lebesgue measure of the set{
y ∈ U : β|U |−1

∫
U

� dx � �(y) � β−1|U |−1

∫
U

� dx

}
is not less than (1 − ε)|U |. This assertion may be interpreted as a generalized
Harnack principle.

(iii) There exist constants C2 > 0 and k > 1 depending only on λ, d, and Ω′

such that (∫
Ω′
|ϕ|kp� dx

)1/(kp)

� C2

(∫
Ω′
|∇ϕ|p� dx

)1/p

for every ϕ ∈ C∞
0 (Ω′). See Fabes, Kenig, Serapioni [347] for a proof.

1.6. Local properties of densities

We now proceed to the regularity results. Throughout this section we assume
that A(x) is symmetric and positive and A(x) is continuous in x. By the Sobolev
embedding theorem, the continuity assumption is automatically satisfied for some
version of A if aij ∈ W p,1

loc , where p > d. In Theorem 1.4.6 we have already
considered the case of smooth coefficients.

Let us consider the case where the coefficients are only Hölder continuous. The
following result was proved in Sjögren [861].

1.6.1. Theorem. Suppose that the coefficients aij , bi, c are locally Hölder
continuous in Ω and detA > 0. Then any solution μ of the equation L∗

A,b,cμ = 0
has a locally Hölder continuous density.

Note that the solutions in [861] were a priori locally integrable functions, but
by the above results the theorem remains true for measures. It would be interest-
ing to study the case where only the coefficients aij are Hölder continuous. The
continuity of all coefficients does not guarantee the Hölder continuity of a solution
even if d = 1 and A > 0. However, it is not clear whether densities of solutions are
continuous in the case where the coefficients are just continuous and A is uniformly
elliptic. Without the requirement of uniform ellipticity, when A is just nondegen-
erate and continuous, one can construct a discontinuous probability solution on Rd
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with d > 1, using an example from Bauman [95] (which in turn employs a con-
struction from Modica, Mortola [720]). In this example on a disc U in the plane
a uniformly elliptic operator LA with continuous A is such that there is a locally
unbounded integrable function � � 0 on R2 with L∗

A(� dx) = 0. Taking a diffeo-
morphism G : R2 → U , G = (g1, g2) with a positive Jacobian, we obtain that the
measure μ with the locally unbounded density � ◦ G detDG satisfies the equation
L∗
Q,bμ = 0 with continuous coefficients, where Q = (qmk), qmk = aij∂xj

gk∂xi
gm,

and bk = aij∂xi
∂xj

gk.
We now proceed to the most difficult case where the diffusion coefficient is

somewhat better than Hölder continuous, but is not smooth, and we want to have
some Sobolev regularity of densities of solutions. One of the reasons why this is
important is that, having established the Sobolev regularity of our solution, we can
rewrite the equation L∗

A,b,cμ = 0 for μ as a classical equation for its density � in
the sense of weak solutions: indeed, integrating by parts, we find that∫

Ω

[aij∂xi
�∂xj

ϕ+ ∂xi
aij∂xj

ϕ�+ bi∂xi
ϕ�+ c�] dx = 0 ∀ϕ ∈ C∞

0 (Ω).

The difference between the main idea of the proofs in this section and that of the
previous one is that now we verify that the solution determines a functional not
on Lp, but on a negative Sobolev class, which gives the membership of the measure
in a positive Sobolev class.

1.6.2. Theorem. Let d � 2, p � d, 1 < q < ∞, and R1 > 0. Suppose that
aij ∈W p,1(UR1

) and A � λI, where λ > 0. Then there exist numbers R0 > 0 and
N0 > 0 with the following properties. Let R < R0 and let μ be a measure of finite
total variation on UR such that for any ϕ ∈ C2

0 (UR) := C2(UR) ∩
{
u : u|∂UR

= 0
}

we have the bound

(1.6.1)

∣∣∣∣∫
UR

aij∂xi
∂xj

ϕdμ

∣∣∣∣ � N‖∇ϕ‖Lq(UR)

with a number N independent of ϕ. Furthermore, assume one of the following:
a) p > d or
b) p = d > q′ and μ ∈

⋃
r>1 L

r(UR), where we identify μ with its density.

Then μ ∈W q′∧p,1
0 (UR) and

(1.6.2) ‖μ‖
W q′∧p,1

0 (UR)
� N0.

In addition, the radius R0 can be taken such that it depends only on p, q, d, λ,R1,
‖aij‖Wp,1(UR1

), and the rate of decrease of ‖∇aij‖Ld(UR) as R→ 0, and N0 depends
on the same quantities and N .

Proof. We break the proof into three cases.
Case q � p′ and q �= d′. Take f = (f1, . . . , fd) ∈ C2(UR) and solve the equation

aij∂xi
∂xj

ϕ = ∂xi
f i

in UR with zero boundary conditions. If a) holds, then p > d and A is Hölder
continuous in UR and, by Hölder space theory (see § 1.2), there exists a unique
solution ϕ ∈ C2

0 (UR) of our problem, which we can substitute into estimate (1.6.1).
If b) holds, then, since A is continuous, ∂xi

∂xj
ϕ are summable to any power by
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Lp-theory (see § 1.2), and, owing to μ ∈
⋃

r>1 L
r(UR), we again can substitute ϕ

into inequality (1.6.1). By Lemma 1.2.5 and (1.6.1) we have∣∣∣∣∫
UR

∂xi
f i μ dx

∣∣∣∣ � N‖∂xi
f i‖W q,−1(UR),

which implies our claim. We emphasize that we have established the inclusion of

μ to W q′,1
0 (UR), not just to W q′,1(UR), since the dual to W q,−1(UR) is the former

smaller space.
Case q = d′ � p′. In this case by our assumptions we have p > d, so that

Lemma 1.2.5 is still applicable.
Case 1 < q < p′ < d′. As is easy to see, this is the only remaining case. Observe

that, of course, (1.6.1) is satisfied with r = (p′+d′)/2 in place of q and, by the first

case, we have μ ∈W r′,1
0 (UR) if R is sufficiently small. Since r′ > d, by the Sobolev

embedding theorem, μ is bounded in UR. Furthermore, we note that (1.6.1) means
that

ϕ �→
∫
UR

aij∂xi
∂xj

ϕμdx

is a linear functional defined on a dense subspace C2
0 (UR) of W

q,1
0 (UR) and bounded

in theW q,1
0 (UR)-norm. By the duality between W q,1

0 (UR) and W q′,−1(UR), we have
that ∫

UR

aij∂xi
∂xj

ϕμdx =

∫
UR

fϕ dx,

where f ∈ W q′,−1(UR) ⊂ W p,−1(UR). Thus, μ is a generalized solution of the
equation

∂xj
(aij∂xi

μ) = f − ∂xj
(∂xi

aijμ) =: g.

Here ∂xi
aijμ ∈ Lp(UR), since μ is bounded, so that g ∈W p,−1(UR). Since μ belongs

to W r′,1
0 (UR) and r′ > d � 2, we conclude that μ ∈ W p,1

0 (UR) by Corollary 1.2.4,
which is applicable, since p > d. �

1.6.3. Remark. The proof of this theorem actually shows that if μ has com-

pact support in UR1
and (1.6.1) holds for all ϕ ∈ C∞

0 (UR1
), then μ ∈W q′∧p,1

0 (UR)
for some R < R1. Moreover, even without the assumption of compactness of

support, one can show that μ ∈ W q′∧p,1
loc (UR), but this requires some extra work

(Exercise 1.8.16).

This theorem yields at once a certain low regularity of solutions to our elliptic
equations.

1.6.4. Corollary. Suppose that p > d � 2, aij ∈ W p,1
loc (Ω), detA > 0, and μ

satisfies the equation L∗
A,bμ = 0, where b ∈ Lr

loc(μ) for some r > 1. Then μ has a

density in the class Wα,1
loc (Ω) for each α < dr/(dr − r + 1).

Proof. Let us take η ∈ C∞
0 (Ω) with support in a ball U ⊂ Ω and 0 � η � 1.

Consider the measure μ0 = η · μ. We know that μ has a density in Ls
loc(Ω) with

any s < d/(d− 1), which will be denoted also by μ. For every ϕ ∈ C∞
0 (U) we have

ηaij∂xi
∂xj

ϕ = LA,b,c(ηϕ)−ϕaij∂xi
∂xj

η− 2aij∂xi
ϕ∂xj

η−ϕbi∂xi
η− ηbi∂xi

ϕ− cηϕ.
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Let q = α′. By Hölder’s inequality, the integral of ηbi∂xi
ϕ with respect to μ is

estimated by

‖∇ϕ‖Lq(U)‖ηbμ‖Lα(U) � ‖∇ϕ‖Lq(U)‖ηb‖Lr(μ)‖μ‖(r−α)/(rα)
Ls(U) ,

where s = (rα − α)/(r − α) < d(d − 1), since α < dr/(dr − r + 1), so ‖μ‖Ls(U) is
finite. The integrals of the remaining terms are estimated similarly. In particular,
the integral of ηcϕ is estimated by ‖ϕ‖∞‖ηc‖L1(μ) and the norm ‖ϕ‖∞ is estimated
by C‖∇ϕ‖Lq(U), since q > d due to the inequality dr/(dr − r + 1) < d/(d − 1),
which is readily verified. Therefore,∫

U

aij∂xi
∂xj

ϕdμ0 � C(η,A, b, c)‖∇ϕ‖q.

Hence ημ ∈Wα,1
0 (U), which yields our assertion. �

More can be obtained if b is better integrable.

1.6.5. Theorem. Let μ = � dx, � ∈ Lr
loc(Ω, dx), a

ij ∈ W p,1
loc (Ω), where p > d,

r ∈ (p′,∞). Suppose that the mapping A−1 is locally bounded and we are given
functions

β ∈ Lp
loc(Ω, dx) + Lp

loc(Ω, μ) and γ ∈ L
pd/(p+d)
loc (Ω, dx) + L

pd/(p+d)
loc (Ω, μ)

such that for every ϕ ∈ C∞
0 (Ω) we have∣∣∣∣∫

Ω

aij(x)∂xi
∂xj

ϕ(x)μ(dx)

∣∣∣∣ � ∫
Ω

(
|ϕ(x)| |γ(x)|+ |∇ϕ(x)| |β(x)|

)
|μ|(dx).

Then � ∈W p,1
loc (Ω).

Proof. Let γ = γ1 + γ2, γ1 ∈ L
pd/(p+d)
loc (Ω, dx) and γ2 ∈ L

pd/(p+d)
loc (Ω, μ). Let

also β = β1 + β2, where β1 ∈ Lp
loc(Ω, dx) and β2 ∈ Lp

loc(Ω, μ).
Note that we can assume that r �= p′d/(d − p′), since otherwise we could just

slightly decrease the number r. Since r > p′, we have pr > p+ r. Then

q :=
pr

pr − p− r
> 1, q′ =

pr

p+ r
> 1.

According to (1.1.1), β1� ∈ Lq′

loc(Ω) provided β1 ∈ Lp
loc(Ω). The same is true for

β2 ∈ Lp
loc(Ω, μ), since

|β2|q
′ |�|q′ = |β2|pr/(p+r)|�|r/(p+r)|�|(pr−r)/(p+r),

where |β2|pr/(p+r)|�|r/(p+r) ∈ Ls
loc(Ω) and |�|(pr−r)/(p+r) ∈ Ls′

loc(Ω) with the number
s = (p+ r)/r.

Since r �= p′d/(d − p′), we have q �= d. If q > d, then r > p′d/(d − p′) and for
every ball UR with UR ⊂ Ω we have by Hölder’s inequality

‖γ�‖L1(UR) � ‖γ1‖Lpd/(p+d)(UR)‖�‖Lp′d/(d−p′)(UR) + ‖γ2‖L1(UR,|μ|).

Let q < d. Define k by kdq′/(d+ q′) = r, which gives

k′dq′

d+ q′
=

pd

p+ d
,

because (d+q′)/(dq′) = 1/r+1/p+1/d due to 1/q′ = 1/r+1/p. Hence by Hölder’s
inequality with the exponents k′ and k we obtain

‖γ�‖Ldq′/(d+q′)(UR) � ‖γ1‖Lpd/(p+d)(UR)‖�‖Lr(UR) + ‖γ2‖Lpd/(p+d)(UR,|μ|)‖�‖Ls(UR),

where s = r(1− (d+ q′)/dq′) < r.
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Observe that for every number R > 0 such that UR := UR(x0) ⊂ Ω, whenever
η ∈ C∞

0 (UR) and ϕ ∈ C2
0 (UR), one has∣∣∣∣∫

UR

aij∂xi
∂xj

ϕ(η�) dx

∣∣∣∣ � ∣∣∣∣∫
UR

aij∂xi
∂xj

(ϕη)� dx

∣∣∣∣
+

∣∣∣∣∫
UR

aij∂xi
∂xj

η(ϕ�) dx

∣∣∣∣+ 2

∫
UR

‖A‖ |∇η| |∇ϕ| |�| dx

(1.6.3)

� N1

∫
UR

(|ϕ|+ |∇ϕ|)|β�| dx � N2‖β�‖Lq′ (UR)‖∇ϕ‖Lq(UR) = N3‖∇ϕ‖Lq(UR),

where the constants N1, N2, and N3 are independent of ϕ. The last inequality
above is due to the estimate ‖ϕ‖Ldq/(d−q)(UR) � N‖∇ϕ‖Lq(UR) if q < d and the

estimate ‖ϕ‖L∞(UR) � N‖∇ϕ‖Lq(UR) if q > d with some constant N . It follows by

Theorem 1.6.2 that η� ∈W q′∧p,1
0 (UR) if R is small enough, and, since we can take

any point as x0 and q′ < p, we have

(1.6.4) � ∈W q′,1
loc (Ω).

Moreover, if q′ < d, then by the Sobolev embedding � ∈ Lr1
loc(Ω) with

r1 = q′d/(d− q′) =
prd

(p+ r)d− pr
.

The inequality q′ < d is equivalent to r < pd/(p− d). Thus, on the interval(
p/(p− 1), pd/(p− d)

)
we obtain a mapping T : r �→ r1 with the property that if � ∈ Lr

loc(Ω), then we
have � ∈ Lr1

loc(Ω). It is easy to see that

r1
r

=
pd

pd− r(p− d)
≥ pd

pd− p′(p− d)
=

d′

p′
> 1,

where the first inequality is due to pr > p+ r and the second one is due to p > d.
Hence after finitely many applications of T to the given number r we will come to

s ∈
(
p/(p− 1), pd/(p− d)

)
such that t = T (s) ≥ pd/(p−d) and μ ∈ Lt(UR). Actually, without loss of generality
we may assume that t > pd/(p− d), since otherwise we could just slightly decrease
the initial point r (and increase the number of iterations of T ). This shows that
we could assume from the very beginning that r > pd/(p − d) that is q′ > d. In
that case (1.6.4) implies that the function μ is locally bounded, which shows that
(1.6.3) is true with q′ = p. Now it only remains to apply again Theorem 1.6.2. �

1.6.6. Remark. The condition on the density of μ in Theorem 1.6.5 can be
replaced by the condition that β, γ ∈ L1

loc(Ω, μ). This follows by Theorem 1.5.2.

1.6.7. Corollary. Let μ be a locally finite Borel measure on Ω satisfying the
equation L∗

A,b,cμ = 0. Let A−1 be locally bounded in Ω with aij ∈ W p,1
loc (Ω), where

p > d, and let either

(i) bi ∈ Lp
loc(Ω, dx), c ∈ L

pd/(p+d)
loc (Ω, dx)

or
(ii) bi ∈ Lp

loc(Ω, μ), c ∈ L
pd/(p+d)
loc (Ω, μ). Then μ has a density in W p,1

loc (Ω) that
is locally Hölder continuous.
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Proof. It suffices to take β = |b|, γ = |c| and apply Theorem 1.6.5. �

1.6.8. Corollary. Let μ be a locally finite Borel measure on UR. Suppose
that the mapping A−1 is locally bounded on UR with aij ∈W p,1

loc (UR), where p > d,
∂xi

aij ∈ Lp
loc(μ), and bi, c ∈ Lp

loc(μ). Suppose that∫
UR

[
aij∂xi

∂xj
ϕ+ ∂xi

aij∂xj
ϕ+ bi∂xi

ϕ+ cϕ
]
dμ = 0 ∀ϕ ∈ C∞

0 (UR).

Then μ has a density in W p,1
loc (UR) that is locally Hölder continuous.

Corollary 1.6.7 can be generalized as follows.

1.6.9. Corollary. Let p > d, let aij ∈ W p,1
loc (Ω), b

i, f i, c ∈ Lp
loc(Ω), and let

A−1 be locally bounded in Ω. Assume that μ is a locally finite Borel measure on Ω
such that bi, c ∈ L1

loc(Ω, μ) and, for every function ϕ ∈ C∞
0 (Ω), one has∫

Ω

[
aij∂xi

∂xj
ϕ+ bi∂xi

ϕ+ cϕ
]
dμ =

∫
Ω

f i∂xi
ϕdx.

Then μ has a density in W p,1
loc (Ω).

It is easily seen that in Corollary 1.6.7 one cannot omit the hypotheses that
A−1 is locally bounded and aij ∈ W p,1

loc . Indeed, if A and b vanish at a point
x0, then Dirac’s measure at x0 satisfies our elliptic equation. In particular, if it
is not given in advance that μ is absolutely continuous, then one cannot take an
arbitrary Lebesgue version of A. We have already seen in Example 1.4.9 that a
solution may fail to be more regular than A. Also, the condition p > d is essential
for the membership of μ in a Sobolev class even if A = I (see the example below).
However, if μ is a probability measure on Rd, then the condition |b| ∈ L2(μ) implies
that μ = � dx with � ∈W 1,1(Rd) and |∇�|2/� ∈ L1(Rd) (see § 3.1).

1.6.10. Example. Let d > 3 and

L∗F = ΔF − div (Fb)− F = ΔF + α∂xi
(xi|x|−2F )− F,

where α = d− 3 and

b(x) = −αx|x|−2 = ∇(|x|−α)/|x|−α.

Then the function F (x) = (er − e−r)r−(d−2), r = |x|, is locally Lebesgue integrable

and L∗F = 0 in the sense of distributions, but F does not belong to W 2,1
loc (R

d).

Here |b| ∈ Ld−ε
loc (Rd) for all ε > 0. In a similar way, if the term −F is omitted in

the equation above, then the function F (x) = r−(d−3) has the same properties.

Proof. Observe that ∂xi
F , ∂xi

∂xj
F are locally Lebesgue integrable. Hence

the equation L∗F = 0 follows easily from the equation

f ′′ +
(d− 1 + α)

r
f ′ + α

d− 2

r2
f − f = 0

on (0,∞), which is satisfied for the function f(r) = (er − e−r)r−(d−2). It re-
mains to note that F , ∇F , and ΔF are locally Lebesgue integrable, since f(r)rd−1,
f ′(r)rd−1, and f ′′(r)rd−1 are locally bounded, but ∇F is not Lebesgue square-
integrable at the origin. If d � 6, then F is also not Lebesgue square-integrable at
the origin. In the case without the term −F in the equation similar calculations
show that F (x) = r−(d−3) has the same properties. �
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1.7. Regularity of solutions to divergence type equations

Here we present several important results related to divergence form equations.
First we consider the equation

(1.7.1) ∂xi
(aij∂xj

u) = 0.

Suppose that λ1 · I � A(x) � λ2 · I. What we call its solution can be defined in
different ways depending on the properties of the coefficients aij (see § 1.4). If the
functions aij are merely measurable and locally bounded, then we require that the
solution must satisfy the inclusion u ∈W 1,1

loc and the identity∫
Rd

aij∂xi
ϕ∂xj

u dx = 0 ∀ϕ ∈ C∞
0 (Rd).

In this case E. De Giorgi (see De Giorgi [286]) showed that any solution in W 2,1
loc is

locally Hölder continuous. J. Serrin (see Serrin [842]) constructed an example show-

ing that the membership in W p,1
loc with p < 2 does not ensure the local boundedness

of a solution, and his conjecture that in the case of Hölder continuous coefficients
any solution in W 1,1

loc belongs automatically to W 2,1
loc was proved by H. Brezis (see

Brezis [207], Ancona [48]), even under somewhat weaker assumptions: the solution
must belong to the class of functions of bounded variation and the coefficients must
be Dini continuous. In addition, in the case of merely continuous aij , Brezis proved
that any solution in W p,1

loc with some p > 1 belongs to all W q,1
loc with q < ∞. How-

ever, in Jin, Maz’ya, Van Schaftingen [492] an example was constructed showing
that for p = 1 this is not true.

Let now all functions aij be locally Lipschitzian. Then equation (1.7.1) can

be written as L∗
A,bu = 0 with bi =

∑d
j=1 ∂xj

aij , hence a priori solutions from L1
loc

are admissible. In this situation, in Zhang, Bao [955] the conjecture of Brezis was

proved that all solutions belong to all classes W q,2
loc with q < ∞; the problem was

to prove the inclusion in W 2,1
loc , then the classical results increase the regularity.

Let us consider a general divergence form equation. Set

(1.7.2) Lu = ∂xi

(
aij∂xj

u− biu
)
+ βi∂xi

u+ cu,

where functions aij , bi, βi and c are measurable on a bounded open set Ω ⊂ Rd.
Suppose that

λ1 · I � A(x) � λ2 · I, λ1, λ2 > 0,

g = |c|+
∑d

i=1

[
|ai|2 + |bi|2

]
∈Ls(Ω), f ∈Ls(Ω), gi∈L2s(Ω), s > d/2. We shall say

that a function u ∈W 2,1
loc (Ω) satisfies the equation

Lu = f + divg

if we have the equality∫
Ω

[
〈A∇u,∇ϕ〉 dx+ u〈b,∇ϕ〉+ 〈β,∇u〉ϕ+ cuϕ

]
dx=

∫
Ω

[
〈g,∇ϕ〉 − fϕ

]
dx

for every function ϕ ∈ C∞
0 (Ω). For such solutions the following important result of

Trudinger [904] holds (its first assertion was proved already in the first edition of
the book Ladyzhenskaya, Ural’tseva [577, Theorem 14.1]).
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1.7.1. Theorem. Any solution u has a locally Hölder continuous version and
for every ball UR(z) in Ω and r < R one has the inequality

sup
x,y∈Ur(z)

|u(x)− u(y)| � C1r
α
(
sup
UR(z)

|u|+ ‖f‖Ls(Ω) +max
i
‖gi‖L2s(Ω)

)
,

where the numbers C1 and α > 0 depend only on d, s, R, λ1, λ2, ‖g‖Ls(Ω). If f = 0
and g = 0 and u � 0, then u satisfies Harnack’s inequality

sup
x∈Ur(z)

u(x) � C2 inf
x∈Ur(z)

u(x),

where the number C2 depends only on the same quantities as C1.

For solutions of the equation L∗
A,b,cμ = 0 we obtain the following.

1.7.2. Corollary. Let μ be a nonnegative locally finite Borel measure on a
domain Ω in Rd satisfying the equation L∗

A,b,cμ = 0. Let A−1 be locally bounded

in Ω with aij ∈ W p,1
loc (Ω), where p > d, and let bi ∈ Lp

loc(Ω, dx), c ∈ L
p/2
loc (Ω, dx).

Then the continuous density � of μ has the following property: for every compact
set K contained in a connected open set U with compact closure in Ω, one has

sup
K

� � C inf
K

�,

where the number C depends only on the quantities ‖aij‖Wp,1(U), ‖b‖Lp(U), ‖c‖Lp(U),
infU detA, and K. In particular, � does not vanish in U if it is not identically zero
in U .

The dependence of C on the indicated quantities will be studied in Chapter 3.
The assumption that bi ∈ Lp

loc(Ω, dx) in Theorem 1.7.2 cannot be replaced by
the alternative assumption from Corollary 1.6.7 that bi ∈ Lp

loc(Ω, μ). Indeed, it
suffices to take b = ∇�/� such that � is a probability density which has zeros,
but |b| ∈ Lp(μ) (for example, we can take � which behaves like exp(−x−2) in a
neighborhood of the origin).

1.7.3. Proposition. Suppose that the hypotheses of the previous corollary are
fulfilled and Ω is connected. Let μ be some positive measure on Ω satisfying the
equation L∗

A,b,cμ = 0. Then, any other solution μ0 can be written as μ0 = f · μ,
where f ∈W p,2

loc (Ω).

Proof. Suppose first that d > 1. Then p > 2. We know that μ and μ0

have continuous densities � and �0, respectively, in the class W p,1
loc (Ω) and that �

has no zeros in Ω. Set f = �0/�. Then μ0 = f · μ and f ∈ W p,1
loc (Ω). We have

ai :=
∑d

j=1 ∂xj
aij ∈ Lp

loc(Ω). Set a := (ai). Let us verify that f satisfies the elliptic
equation

(1.7.3) aij�∂xi
∂xj

f + 〈∇f, 2�a+ 2A∇�− �b〉 = 0

in the sense of weak solutions in the class W p,1
loc (Ω), i.e., in the sense of the identity∫

Ω

[
−ϕ∂xi

(aij�)∂xj
f − 〈�A∇f,∇ϕ〉+ 〈∇f, 2�a+ 2A∇�− �b〉ϕ

]
dx = 0

for all ϕ ∈ C∞
0 (Ω). This will yield the desired inclusion f ∈ W p,2

loc (Ω), since we

have �aij ∈ W p,1
loc (Ω), �A is nondegenerate, a�, b�, c� ∈ Lp

loc(Ω). In order to



1.7. REGULARITY OF SOLUTIONS TO DIVERGENCE TYPE EQUATIONS 37

establish equality (1.7.3) we observe that the equality L∗
A,b,cμ0 = L∗

A,b,cμ = 0 and
the integration by parts formula give the identities

(1.7.4)

∫
[−∂xi

(aij�f)∂xj
ϕ+ 〈f�b,∇ϕ〉+ c�fϕ] dx = 0,

(1.7.5)

∫
[−∂xi

(aij�)∂xj
ϕ+ 〈�b,∇ϕ〉+ c�ϕ] dx = 0

for all ϕ ∈ C∞
0 (Ω). Since aij , �, f ∈ W p,1

loc (Ω) and p > 2, it follows that equality
(1.7.5) remains true for all functions ϕ of the form ϕ = fψ with ψ ∈ C∞

0 (Ω). This
yields the identity∫

[−∂xi
(aij�)f∂xj

ϕ− ∂xi
(aij�)ϕ∂xj

f + 〈�b, f∇ϕ〉+ 〈�b, ϕ∇f〉+ c�fϕ] dx = 0

for all ϕ ∈ C∞
0 (Ω). Subtracting this identity from (1.7.4) and differentiating the

products by the Leibniz formula we arrive at (1.7.3). In the case d = 1 this reasoning
does not apply if p < 2, but in this case a simple direct proof works: we have
(Af�)′ = f�b+ψ and (A�)′ = b�+ k, where ψ is the indefinite integral of cf� and
k is constant. Then f ′ = (ψ − kf)(A�)−1. �

In the rest of this section we discuss a priori estimates of solutions on a bounded
domain Ω ⊂ Rd, which will play an important role in the proofs of the theorems on
existence and regularity of solutions. The simplest a priori estimate is obtained by
substituting in the identity defining the equation Lu = f + divg the function uϕ,
where the function ϕ ∈ C∞

0 (Ω) equals 1 on Ω′ and Ω′ ⊂ Ω. Suppose for simplicity
that b = β = c = 0 and f, gi ∈ L2(Ω). Then we immediately obtain

‖u‖W 2,1(Ω′) � C
(
‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖g‖L2(Ω)

)
.

The next result generalizes this estimate to the case of the operator L of the form
(1.7.2) with all coefficients and the space W p,1.

For functions on Ω we shall write that aij ∈ VMO if aij extends to all of Rd as
a function in VMO. We recall that the membership of a function aij in the class
VMO is expressed in terms of a certain function ω denoted below by the symbol ωA

(see § 1.2). This condition is weaker than the uniform continuity. In the case of
uniformly continuous coefficients we can take for ωA the modulus of continuity. For
Hölder continuous coefficients, ωA can be easily expressed in terms of their Hölder
norms.

Suppose that the coefficients aij , b, β and c satisfy the following conditions with
some numbers λ1, λ2 > 0:

aij∈VMO, aij = aji, λ1 · I � A(x) � λ2 · I,
bi, βi∈Ld(Ω), c∈Ld/2(Ω) if 2 � q < d,

bi, βi∈Ls(Ω), c∈Ls/2(Ω) with some s>d if 2 � q = d,

bi, βi∈Lq(Ω), c∈Ldq/(d+q)(Ω) if q > d.

(1.7.6)

As above, let U(x, r) denote the ball of radius r centered at x and let |U(x, r)|
be its volume.

For γ � 1, r > 0 and η ∈ Lγ(Ω) we set

Θγ,η(r) = sup
x∈Ω

(∫
U(x,r)∩Ω

|η(y)|γ dy
)1/γ

.
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We recall Young’s inequality. If x > 0, y > 0, ε > 0, δ > 0, γ > 0, and
δ−1 + γ−1 = 1, then

(1.7.7) xy � ε
xδ

δ
+ ε1−γ y

γ

γ
.

1.7.4. Theorem. Suppose that the coefficients of the operator L satisfy con-
ditions (1.7.6) and q � 2. Let g ∈ Lq(Ω), f ∈ Lp(Ω), where p = dq/(d + q) if
q �= d and p > d/2 if q = d. If a function u ∈W q,1(Ω) is a solution to the equation
Lu = f +div g on Ω, then for every open set Ω′ with compact closure in Ω we have
the estimate

‖u‖W q,1(Ω′) � C
(
‖u‖L1(Ω) + ‖g‖Lq(Ω) + ‖f‖Lp(Ω)

)
,

where the constant C depends only on Ω,Ω′, d, λ1, λ2, q, ωA and on the rate of
convergence of the quantities Θd,b(r), Θd,β(r), Θd/2,c(r) to zero as r → 0 in case

2 � q < d and on the number s and the norms ‖bi‖Ls , ‖βi‖Ls , ‖c‖Ls/2 in case
q = d, and, finally, on the norms ‖bi‖Lq , ‖βi‖Lq

, ‖c‖Ldq/(d+q) in case q > d.

Proof. Let U =U(a, r) be a ball with closure in Ω and 0 < r < 1 and let a
function ζ in C∞

0 (U) be such that 0�ζ�1, ζ(x) > 0 in U and ζ(x) = 1 on the
twice smaller ball U(a, r/2), and also

J(s) := sup
x
|∇ζ(x)|ζ(x)−s + sup

i,j,x
|∂xi

∂xj
ζ(x)|ζ(x)−s <∞, 0 < s < 1.

These conditions can be easily ensured by taking ζ(x) = ψ(|x|/r), ψ ∈ C∞
0 (R),

0 � ψ � 1, ψ(y) = 0 if |y| � 1, ψ(y) > 0 if |y| < 1, ψ(y) = 1 if |y| � 1/2 and
ψ(y) = exp

[
(y2−1)−1

]
near the points −1 and 1. We shall use as a cut-off function

only this ζ.
1. We first prove the theorem for q = 2. To this end, we shall estimate the

norm ‖uζ‖W 2,1(U). Substituting in the identity defining the equation Lu = f+div g

the function ϕ = uζ2 and integrating, we have∫
Ω

[
aijuxj

uxi
ζ2 dx+ 2aijuxj

uζζxi
+ biuxi

uζ2 + 2biu2ζxi
ζ

+ giuxi
ζ2 + 2giuζζxi

+ ciuxi
uζ2 + hu2ζ2 + fuζ2

]
dx = 0.

Using inequality (1.7.7) with α = β = 2 and a sufficiently small ε > 0 and the first
condition in (1.7.6), we find that

‖ζ∇u‖2L2 � C1

(
‖u∇ζ‖2L2 + ‖buζ‖2L2 + ‖βuζ‖2L2

+ ‖
√
|c|uζ‖2L2 + ‖gζ‖2L2 + ‖fuζ2‖L1

)
,(1.7.8)

where C1 = C1(d,m,M). Let us estimate the summands in the right-hand side of
this inequality separately. Set t = d if d > 2 and t = (s+ 2)/2 if d = 2. It is clear

that 2 < t < s if n = d. In order to estimate ‖ηuζ‖L2 , where η equals b, c or
√
|h|,

we apply Hölder’s inequality with the exponent t/2 and the Sobolev embedding
W 2,1 ⊂ L2t/(t−2). We have

(1.7.9) ‖ηuζ‖2 � ‖η‖t‖uζ‖2t/(t−2) � C(d, t)‖η‖t‖uζ‖2,1,

where ‖η‖t = Θd,η(r) if t = d, ‖η‖t � |U(a, r)|1−t/s‖η‖s if 2 < t < s. Applying
Hölder’s inequality with the exponents p, p′ = p(p− 1)−1, where p = 2d(d + 2)−1
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if d > 2 and p > 1 if d = 2, inequality (1.7.7) with γ = δ = 2 and the Sobolev

embedding W 2,1 ⊂ Lp′
, we obtain

‖fuζ2‖1 � ‖fζ‖p‖uζ‖p′ � C(d, p)‖fζ‖p‖uζ‖2,1
� ε2‖uζ‖22,1 + ε−2C(d, p)2‖fζ‖2p.

Let us estimate ‖u∇ζ‖L2 . Let l = 4(d + 2)−1 if d > 2 and 0 < l < 1 if d = 2. By
the Sobolev embedding theorem W 2,1 ⊂ L(2−l)/(1−l). Applying Hölder’s inequality,
we arrive at the inequalities

‖u∇ζ‖2 = ‖uζ(2−l)/2ζ−(2−l)/2∇ζ‖2 � J(1− l/2)

(∫
U

|uζ|2−l|u|l dx
)1/2

� J(1− l/2)‖u‖l/21 ‖uζ‖(2−l)/2
(2−l)/(1−l) � J(1− l/2)C(n, l)‖u‖l/21 ‖uζ‖(2−l)/2

2,1 .

Young’s inequality (1.7.7) with α = 2/l and β = 2/(2− l) gives

‖u∇ζ‖2 � ε‖uζ‖2,1 + ε−l/(2−l)C(d, l)‖u‖L1 .

According to estimate (1.7.9) with η = 1, we have

‖uζ‖L2(U(a,r)) � C(d, t)|U(a, r)|1/t‖uζ‖2,1.
Substituting the obtained estimates in (1.7.8) and taking into account that by the
Leibniz formula

‖uζ‖2,1 � ‖u∇ζ‖2 + ‖ζ∇u‖2 + ‖uζ‖2,
we find that

‖uζ‖W 2,1(U) � C2ε
−1
(
‖u‖L1(U) + ‖g‖L2(U) + ‖f‖Lp(U)

)
+ C2

(
‖b‖Lt(U) + ‖β‖Lt(U) + ‖c‖1/2

Lt/2(U)
+ |U(a, r)|1/t + ε

)
‖uζ‖W 2,1(U),

where C2 = C2(d, p, t,m,M). Choosing r > 0 and ε > 0 such that

C2

(
‖b‖Lt(U(a,r)) + ‖c‖Lt(U(a,r)) + ‖h‖1/2

Lt/2(U(a,r))
+ |U(a, r)|1/t + ε

)
<

1

2
,

we arrive at the estimate ‖uζ‖2,1 � 2C2ε
−1
(
‖u‖1 + ‖g‖2 + ‖f‖p

)
. By using a

smooth partition of unity associated with a finite covering of the domain Ω′ by
balls of radius r with closure in Ω, we obtain the required estimate.

2. Let us consider the case 2 < q < d. As above, we start with an estimate
of the quantity ‖uζ‖W q,1(U). We may assume that A is extended to the whole

space Rd with preservation of all conditions. By Theorem 1.2.1, for a sufficiently
large number λ=λ(d, q,m,M, ωA)>0 there is a number N=N(d, q,m,M, ωA)>1
such that for every function w ∈ W q,1(Rd) with compact support the generalized
function Aw = ∂xi

(aij∂xj
w)− λw satisfies the inequality

(1.7.10) ‖w‖W q,1(Rd) � N‖Aw‖W q,−1(Rd).

The function w = ζu satisfies the equation

(1.7.11) Aw = −λζu+ aij∂xi
ζ∂xj

u+ ∂xi
(aiju∂xj

ζ)− ζ∂xi
(biu)

+ βi∂xi
uζ + cuζ − ζ∂xi

gi + fζ.

According to (1.7.10) it suffices to estimate the norm of the right-hand side in
W q,−1(U) through the parameters indicated in the theorem. Let us rewrite the
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right-hand side of the last equality in the following form convenient for our later
use:

(1.7.12) Aw = ∂xi
(aiju∂xj

ζ − biuζ − giζ)− λζu+ aij∂xi
ζ∂xj

u

+ biu∂xi
ζ + βi∂xi

(uζ)− βiu∂xi
ζ + cuζ + gi∂xi

ζ + fζ.

We recall that ‖∂xi
ηi‖q,−1 � ‖η‖q for every vector function η ∈ Lq and by the

embedding theorem we have Lp ⊂ W q,−1 if p = dq(d+ q)−1. Therefore, the norm
of the right-hand side is estimated by

(1.7.13) ‖aiju∂xj
ζ‖q + ‖biuζ‖q + ‖giζ‖q + C(d, p)

[
λ‖ζu‖p

+ ‖aij∂xi
ζ∂xj

u‖p + ‖biu∂xi
ζ‖p + ‖βi∂xi

(uζ)‖p + ‖βiu∂xi
ζ‖p

+ ‖huζ‖p + ‖gi∂xi
ζ‖p + ‖fζ‖p

]
,

where C = C(d, p) is the constant from the embedding theorem. We observe that

‖aiju∂xj
ζ‖q � M‖u∇ζ‖q, ‖gi∂xi

ζ‖p � ‖∇ζ‖d‖g‖q.

Applying Hölder’s inequality with the exponents d/q, d/(d− q) and the exponents
(d+ q)/q, (d+ q)/d, we obtain

‖biuζ‖q + C(d, p)
[
‖biu∂xi

ζ‖p + ‖ci∂xi
(uζ)‖p + ‖βiu∂xi

ζ‖p
]

� C(d, q, p)
[
(‖b‖d + ‖c‖d)‖uζ‖q,1 + (‖b‖d + ‖β‖d)‖u∇ζ‖q

]
.

Hölder’s inequality with the exponents (d+ q)/2q, (d+ q)/(d− q) and the Sobolev
embedding theorem give

λ‖ζu‖p + ‖cuζ‖p � C(d, q)
(
λ|U(a, r)|2q/(d+q) + ‖c‖d/2

)
‖uζ‖q,1.

It remains to estimate ‖u∇ζ‖Lq . Let l = q2/(dq+q−d). We observe that 0 < l < 1
and (q − l)/(1− l) = dq/(d− q). By the Sobolev embedding theorem and Hölder’s
inequality we have

‖u∇ζ‖q = ‖ζ1−l/quζ−1+l/q∇ζ‖q � J
(
1− l/q

)(∫
U

|uζ|q−l|u|l dx
)1/q

� J
(
1− l/q

)
‖u‖l/q1 ‖uζ‖(q−l)/q

(q−l)/(1−l) � J
(
1− l/q

)
C(d, l, q)‖u‖l/q1 ‖ζu‖(q−l)/q

q,1 .

According to Young’s inequality (1.7.7) with α = q/l, β = q/(q − l), we obtain

‖u∇ζ‖q � ε‖uζ‖q,1 + C(d, l, q, ε)‖u‖1.

Similarly to the case q = 2 we pick ε > 0 and r > 0 sufficiently small. We obtain

‖uζ‖q,1 � C3

(
‖∇u∇ζ‖p + ‖u‖1 + ‖g‖q + ‖f‖p

)
.

By using a partition of unity we arrive at the estimate

‖u‖W q,1(Ω′) � C4

(
‖u‖Wp,1(Ω′′) + ‖u‖L1(Ω) + ‖g‖Lq(Ω) + ‖f‖Lp(Ω)

)
for any domains Ω′ ⊂ Ω′′ ⊂ Ω with Ω′ ⊂ Ω′′, Ω′′ ⊂ Ω. The constant C4 depends
only on Ω′,Ω′′,Ω and the quantities indicated in the hypotheses of the theorem.
Let us set

pk = dpk−1(d+ pk−1), p0 = q, p1 = p.
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Since pk/pk−1 � d/(d+1), we can find a natural number K such that pK � 2. Let
{Ωk}0�k�K be a family of open sets such that Ω′ ⊂ Ωk ⊂ Ω and Ωk ⊂ Ωk+1. Then,
as shown above, whenever 0 � k � K, we have the estimate

(1.7.14) ‖u‖Wpk−1,1(Ωk−1)

� C(k)
(
‖u‖Wpk,1(Ωk) + ‖u‖L1(Ω) + ‖g‖Lq(Ω) + ‖f‖Lp(Ω)

)
.

Since pk � 2 for k = K, we estimate ‖u‖WpK,1 via ‖u‖W 2,1 and use the already
established estimate for the case q = 2. Repeatedly applying inequality (1.7.14)
for each k, in finitely many steps we obtain the required estimate for ‖u‖Wp0,1(Ω′),
which completes the proof in the case 2 < q < d.

Let us consider the case q > d. As in the previous case, the norm of the right-
hand side in equality (1.7.11) is estimated by (1.7.13). Applying condition (1.7.6)
and Hölder’s inequality with the exponents (d+ q)/q and (d+ q)/d, we obtain the
following inequalities:

‖aiju∂xj
ζ‖q + C(d, p)

[
‖biu∂xi

ζ‖p + ‖βiu∂xi
ζ‖p
]

� C(d, p)(M + ‖b‖d + ‖β‖d)‖u∇ζ‖q
� C(d, p)

(
M + |U(a, r)|(q−d)/d‖b‖q + |U(a, r)|(q−d)/d‖β‖q

)
‖u∇ζ‖q.

Let us estimate ‖u∇ζ‖q. Since q > d, by the Sobolev embedding theorem

‖uζ‖L∞(U(a,r)) � C(n, p)r(q−d)/q‖uζ‖W q,1(U(a,r)).

Then

‖u∇ζ‖q =

(∫
U

|uζ|q−1|u| |∇ζ|qζ1−q dx

)1/q

� C(d, q)J
(
(q − 1)/q

)
‖u‖(q−1)/q

q,1 ‖u‖1/q1 � ε‖u‖q,1 + ε−1C̃(d, q)‖u‖1.
Applying again the Sobolev embedding theorem, we obtain

‖biuζ‖q + C(d, p)
[
λ‖uζ‖p + ‖cuζ‖p

]
� C(d, q, p)r(q−d)/q(1 + ‖b‖q + ‖c‖p)‖uζ‖q,1.

It remains to observe that

‖βi∂xi
(uζ)‖p � |U(a, r)|(q−d)/q‖β‖q‖u‖q,1, ‖gi∂xi

ζ‖p � ‖g‖q‖∇ζ‖d.
Similarly to the previous cases we pick ε > 0 and r > 0 sufficiently small and obtain
that

‖uζ‖q,1 � C5

(
‖∇u∇ζ‖p + ‖u‖1 + ‖g‖q + ‖f‖p

)
.

By using a partition of unity, we arrive at the estimate

‖u‖W q,1(Ω′) � C6

(
‖u‖Wp,1(Ω′′) + ‖u‖L1(Ω) + ‖g‖Lq(Ω) + ‖f‖Lp(Ω)

)
for any domains Ω′ ⊂ Ω′′ ⊂ Ω with Ω′ ⊂ Ω′′, Ω′′ ⊂ Ω. Note that p < d and we can
use the previous step for estimating the norm ‖u‖p,1. The proof in the case q = d
is similar. �

It is clear that the norm ‖u‖L1(Ω) can be replaced (by Hölder’s inequality) with
the norm ‖u‖Lq(Ω).

The next assertion describes the dependence of the constant from the theorem
on the diameter of the domain in the simplest case where b = β = 0 and c = f = 0.
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1.7.5. Corollary. Let Ω = U(z,R), where R < 1, and let u ∈ W q,1
loc

(
U(z,R)

)
satisfy the equation ∂xi

(aij∂xi
u−gi) = 0, where q > d and (1.7.6) is fulfilled. Then,

whenever λ < 1, we have

‖u‖W q,1(U(z,λR)) � R−1C
(
‖u‖Lq(U(z,R)) +R‖g‖Lq(U(z,R))

)
,

where C = C(d, q, α, ωA, λ).

Proof. Let us change the coordinates x = z+Ry. Then the obtained function
v(y) = u(z +Ry) satisfies in U(0, 1) the equation

∂yj

(
aij(z +Ry)∂yi

v(y) +Rgi(z +Ry)
)
= 0.

By assumption, aij ∈ VMO with the function ωA, so we may assume that the
function ωA does not change, since R < 1. Then for the function v we have

‖v‖W q,1(U(0,λ)) � C(d, q, α, ‖A‖C0,δ , λ)
(
‖v‖Lq(U(0,1)) +R‖g‖Lq(U(0,1))

)
.

Making the inverse change of coordinates and taking into account that R < 1 we
obtain

‖v‖W q,1(U(0,λ)) = R−d/q‖u‖Lq(U(z,λR)) +R1−d/q‖∇u‖Lq(U(z,λR))

� R1−d/q‖u‖W q,1(U(z,λR)).

Similarly, we have

‖v‖Lq(U(0,1))+R‖h‖Lq(U(0,1)) = R−d/q‖u‖Lq(U(z,R))+R1−d/q‖g‖Lq(U(z,R))

= R−d/q
(
‖u‖Lq(U(z,R)) +R‖g‖Lq(U(z,R))

)
.

On the basis of these estimates we obtain

‖u‖W q,1(U(z,λR)) � C(d, q, α, ‖A‖C0,δ , λ)R−1
(
‖u‖Lq(U(z,R)) +R‖g‖Lq(U(z,R))

)
,

as required. �

From Theorem 1.7.4 we deduce an estimate on the whole domain Ω for the
function u ∈W q,1

0 (Ω) in the case where the boundary ∂Ω is sufficiently regular.
Recall that the boundary ∂Ω is of class C1 if it can be locally made flat by a

diffeomorphism of class C1.

1.7.6. Corollary. Suppose that the coefficients of the operator L satisfy con-
ditions (1.7.6) and q � 2. Let also g ∈ Lq(Ω), f ∈ Lp(Ω), where p = dq/(d+ q) if
q �= d and p > d/2 if q = d. If Ω is a bounded domain with boundary of class C1

and a function u ∈W q,1
0 (Ω) is a solution of the equation Lu = f + divg in Ω, then

‖u‖W q,1
0 (Ω) � C

(
‖u‖L1(Ω) + ‖g‖Lq(Ω) + ‖f‖Lp(Ω)

)
,

where the constant C depends only on the same quantities as in Theorem 1.7.4.

Proof. It suffices to consider the following situation: u ∈ W q,1(K), where
K is a cube one of the faces of which belongs to the hyperplane {xd = 0} and the

cube itself belongs to the open half-space {xd > 0}. Suppose that uψ ∈ W q,1
0 (Ω)

for every function ψ ∈ C∞(K) vanishing in a neighborhood of every face excepting
xd = 0. This actually means that u = 0 when xd = 0. Set y = (x1, . . . , xd−1). For
any xd < 0 we set u(y, xd) = −u(y,−xd) and

A(y, xd) = A(y,−xd), b(y, xd) = −b(y,−xd), β(y, xd) = −β(y,−xd),

c(y, xd) = c(y,−xd), f(y, xd) = f(y,−xd), g
i(y, xd) = −gi(y,−xd).
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LetK ′ be the cube obtained by reflecting K with respect to {xd = 0}. The function
u belongs to W 1,q

0 (K ∪ K ′) and satisfies the equation Lu = f + divg in K ∪ K ′.
Let K1 be a cube inside of K such that all faces of K1 are strictly inside of K,
excepting one face belonging to the hyperplane {xd = 0}. By Theorem 1.7.4 we
have

‖u‖W q,1(K1) � C
(
‖u‖L1(K∪K′) + ‖g‖Lq(K∪K′) + ‖f‖Lp(K∪K′)

)
.

Thus, we obtain the required estimate up to the boundary {xd = 0}. �

Existence of solutions to divergence form equations is discussed in Chapter 2,
the increasing of the Sobolev regularity is considered in § 1.8(ii).

1.8. Complements, comments, and exercises

(i) Fractional Sobolev classes (43). (ii) Increasing Sobolev regularity of solu-
tions (47). (iii) Renormalized solutions (48). (iv) Generalizations of the max-
imum principle of A.D. Aleksandrov and k-Hessians (49). Comments (50).
Exercises (53).

1.8(i). Fractional Sobolev classes

In the case where the diffusion matrix A is infinitely differentiable a somewhat
more special result holds in terms of the scale of fractional Sobolev classes. Given
p ∈ (1,+∞) and s ∈ R, we set

Hp,s(Rd) := (I −Δ)−s/2
(
Lp(Rd)

)
, ‖f‖p,s = ‖(I −Δ)s/2f‖p,

where the operator (I−Δ)−s/2 is applied in the sense of the space of tempered dis-
tributions S ′(Rd); it can be defined via the Fourier transform by using the operator
of multiplication by the function (1 + |x|2)−s/2. If s � 0, then the space Hp,s(Rd)
is continuously embedded into Lp(Rd). For s ∈ N the class Hp,s(Rd) coincides
with W p,s(Rd) and the respective norms are equivalent. The class Hp,s

loc (R
d), where

s ∈ R, p > 1, consists of all functions f such that ϕf ∈ Hp,s(Rd) for all ϕ ∈ C∞
0 (Rd).

In the proofs below we use the following well-known lemma. Let Ω be a domain
in Rd and A a mapping on Ω with values in the space of positive symmetric operators
on Rd.

1.8.1. Lemma. Suppose that aij ∈ C∞(Ω) and detA > 0.
(i) Let r ∈ (−∞,∞) and p > 1. If u is a distribution such that LAu ∈ Hp,r

loc (Ω),

then u ∈ Hp,r+2
loc (Ω); also if u ∈ Hp,r

loc (Ω), then ∂xi
u ∈ Hp,r−1

loc (Ω), 1 � i � d.

(ii) We have Hp,1
loc (Ω) ⊂ L

dp/(d−p)
loc (Ω) and Lp

loc(Ω) ⊂ H
dp/(d−p),−1
loc (Ω) whenever

1 < p < d, and Hp,1
loc (Ω) ⊂ C

1−d/p
loc (Ω) if p > d, so that in the latter case all

functions in Hp,1
loc (Ω) are locally bounded. In addition, whenever q > p > 1, we

have the inclusion Lp
loc(Ω) ⊂ H

q,d/q−d/p
loc (Ω).

(iii) If μ is a locally bounded Radon measure on Ω, then μ ∈ Hp,−m
loc (Ω), when-

ever p > 1 and m > d(1− 1/p).

Proof. Assertion (i) is well-known: its first statement is a well-known elliptic
regularity result (see Taylor [894, Chapter III]) and the second statement follows
from the boundedness of Riesz’s transforms. Assertion (ii) is just the Sobolev em-
bedding theorem (mentioned in § 1.1 for Hp,1). Assertion (iii) follows from this
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embedding theorem, because for any regular sub-domain U of Ω one has the em-
bedding Hq,m(U) ⊂ C(U) if qm > d, whence by duality we obtain that the space
Hq/(q−1),−m(U) = [Hq,m

0 (U)]∗ contains all finite measures on U . �

We formulate the following result for d > 1 just because the case d = 1 is ele-
mentary and has already been discussed. In addition, we include in the formulation
some assertions which follow also from the already mentioned results (but the proof
we give is direct and does not use the results above).

1.8.2. Theorem. Under the same assumptions about A as in the lemma, let
d � 2 and let μ and ν be Radon measures on Ω (possibly signed). Let a mapping
b = (bi) : Ω → Rd and a function c : Ω → R be such that |b|, c ∈ L1

loc(Ω, μ).
Suppose that L∗

A,b,cμ = ν. Then the following assertions are true.

(i) One has μ ∈ H
p,1−d(p−1)/p−ε
loc (Ω) for any p � 1 and any ε > 0. Here

1 − d(p − 1)/p > 0 if p ∈
[
1, d/(d − 1)

)
and, in particular, μ admits a density

F ∈ Lp
loc(Ω) for any p ∈

[
1, d/(d− 1)

)
.

(ii) If |b| ∈ Lγ
loc(Ω, μ), c ∈ L

γ/2
loc (Ω, μ) and ν ∈ L

d/(d−γ+2)
loc (Ω) where d � γ > 1,

then F := dμ/dx ∈ Hp,1
loc (Ω) for any p ∈ [1, d/(d−γ+1)). In particular, F ∈ Lp

loc(Ω)
for any p ∈

[
1, d/(d− γ)

)
, where we set d/(d− γ) :=∞ if γ = d.

(iii) If γ > d and either

(a) |b| ∈ Lγ
loc(Ω) and c, ν ∈ L

γd/(d+γ)
loc (Ω),

or
(b) |b| ∈ Lγ

loc(Ω, μ), c ∈ L
γd/(d+γ)
loc (Ω, μ), and ν ∈ L

γd/(d+γ)
loc (Ω),

then μ admits a density F ∈ Hγ,1
loc (Ω). In particular, F ∈ C

1−d/γ
loc (Ω).

Proof. (i) We have in the sense of distributions

(1.8.1) LAμ = ∂xi

(
(bi − ∂xj

aij)μ
)
− ∂xi

aij∂xj
μ− cμ+ ν

on Ω. Here by Lemma 1.8.1(iii) the right-hand side belongs to Hp,−m−1
loc (Ω) if

m > d(1− 1/p). By Lemma 1.8.1(i) we conclude μ ∈ Hp,−m+1
loc (Ω), which leads to

the result after substituting m = d(1− 1/p) + ε.
Before we prove (ii) and (iii), we need some preparations. Fix p1 > 1 and

assume that F = dμ/dx ∈ Lp1

loc(Ω). Such a number p1 exists by (i). Set

(1.8.2) r := r(p1) :=
γp1

γ − 1 + p1

and observe that owing to the inequalities 1 < γ and p1 > 1, we have 1 < r < γ.
Next, starting with the formula

|bF |r = (|b||F |1/γ)r|F |r−r/γ

and using Hölder’s inequality (with s = γ/r > 1 and t := s/(s−1) = γ/(γ− r) and
the relations |b| |F |1/γ ∈ Lγ

loc(Ω) and F ∈ Lp1

loc(Ω), we obtain that biF ∈ Lr
loc(Ω).

By Lemma 1.8.1(i) one has

(1.8.3) biF ∈ Hr,0
loc(Ω), (biF )xi

∈ Hr,−1
loc (Ω).

(ii) Set

(1.8.4) q := q(p1) :=
γp1

γ − 2 + 2p1
∨ 1,
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and note that q > 1 ⇔ γ > 2 ⇔ q < γ/2, in particular, q < γ in any case. Hence
repeating the above argument with the triple c, γ/2, q in place of |b|, γ, r, we obtain
that

(1.8.5) cF ∈ Lq
loc(Ω).

Fix p1 > 1 such that F := dμ
dx ∈ Lp1

loc(Ω) and let r, q be as in (1.8.2), (1.8.4),
respectively. Since γ � d, we have q < d, which by (1.8.5) and assertions (ii)

and (iii) of Lemma 1.8.1 implies that cF ∈ H
dq/(d−q),−1
loc (Ω) if q > 1 and that

cF ∈ Hs,−1
loc (Ω) for any s ∈ (1, d/(d− 1)) if q = 1.

It turns out that if p1 < d/(d− γ), then

(1.8.6) cF ∈ Hr,−1
loc (Ω).

Indeed, if q > 1, then (1.8.6) follows from the fact that if p1 ∈
(
1, d/(d− γ)

)
, then

the inequality r � dq/(d − q) holds. If q = 1, then γ � 2 and (1.8.6) follows from
the fact that r < d/(d− γ + 1) � d/(d− 1) for p1 < d/(d− γ).

Finally, by Lemma 1.8.1 (ii) we obtain that ν ∈ H
d/(d−γ+1),−1
loc (Ω) if γ > 2

and ν ∈ Hs,−1
loc (Ω) for any s ∈

(
1, d/(d − 1)

)
if γ � 2. In the same way as above,

ν ∈ Hr,−1
loc (Ω) whenever 1 < p1 < d/(d − γ). This along with (1.8.3) and (1.8.6)

shows that the right-hand side of (1.8.1) is now in Hr,−1
loc (Ω). By Lemma 1.8.1(i)

we have

(1.8.7) μ ∈ Hr,1
loc(Ω)

and by Lemma 1.8.1(ii) we have F ∈ Lp2

loc(Ω), where

p2 :=
dr

d− r
=

dγp1
dγ − d+ (d− γ)p1

=: f(p1).

Thus, we obtain

p1 ∈
(
1,

d

d− γ

)
and F ∈ Lp1

loc(Ω) =⇒ F ∈ L
f(p1)
loc (Ω).

One can easily check that p2 = f(p1) > p1 if p1 < d/(d − γ), and that the only
positive solution of the equation q = f(q) is q = d/(d− γ). Therefore, by taking p1
in
(
1, d/(d− 1)

)
, which is possible by (i), and by defining pk+1 = f(pk) we obtain

an increasing sequence of numbers pk ↑ d/(d− γ), which implies that F ∈ Lp
loc(Ω)

for any p < d/(d− γ).
But as pk ↗ d/(d − γ), the sequence of numbers r(pk) defined according to

equality (1.8.2) increases to the limit

γd/(d− γ)

γ − 1 + d/(d− γ)
=

d

d− γ + 1
.

By (1.8.7) this proves (ii).
(iii) First we consider case (b). By the last assertion in (ii) we have F ∈ Lp1

loc(Ω)
for any finite p1 > 1. Let r := r(p1) be defined as in (1.8.2). Then 1 < r < γ and
inclusions (1.8.3) hold. Set

(1.8.8) q := q(p1) :=

dγ
d+γ p1

dγ
d+γ − 1 + p1

.

If 2 � d < γ, then dγ/(d + γ) > 1. Therefore, since p1 > 1, it follows that
1 < q < dγ/(d+γ). Hence repeating the arguments that led to (1.8.3) with the triple
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c, dγ
d+γ , q in place of |b|, γ, r, we obtain cF ∈ Lq

loc(Ω), thus, cF ∈ H
dq/(d−q),−1
loc (Ω)

by assertion (ii) of the lemma. Observe that, as p1 →∞, we have

r ↑ γ, q ↑ dγ

d+ γ
,

dq

d− q
↑ γ.

Therefore, combining this with our assumption that ν is contained in the class

L
dγ/(d+γ)
loc (Ω), which by assertion (ii) of the lemma is contained in Hγ,−1

loc (Ω), and

by taking p1 large enough, we see that the right-hand side of (1.8.1) is inHγ−ε,−1
loc (Ω)

for any ε ∈ (0, γ − 1). By Lemma 1.8.1(ii) we conclude that F ∈ Hγ−ε,1
loc (Ω). Since

γ > d, the function F is locally bounded. Now we see that above we can take
p1 = ∞ and therefore the right-hand side of (1.8.1) is in Hγ,−1

loc (Ω), which by
assertion (i) of the lemma gives us the desired result.

In the remaining case (a) we take p1 > γ/(γ−1) and assume that F ∈ Lp1

loc(Ω).
Then instead of (1.8.2) and (1.8.8) we define

(1.8.9) r := r(p1) :=
γp1

γ + p1
, q := q(p1) :=

dγ
d+γ p1
dγ
d+γ + p1

∨ 1

and observe that, since p1 > γ/(γ − 1), we have r > 1, which (because of the
relation p−1

1 + γ−1 = r−1) allows us to apply Hölder’s inequality starting with
|bF |r = |b|r|F |r to conclude that (1.8.3) holds. Since c ∈ L1

loc(Ω, μ),

dγ

d+ γ
> 1 and

(
dγ

d+ γ

)−1

+ p−1
1 = q−1,

we also have that cF ∈ Lq
loc(Ω). Obviously, q < d. As in part (ii) this yields that

cF ∈ H
dq/(d−q),−1
loc (Ω) if q > 1 and cF ∈ Hs,−1

loc (Ω) for any s ∈ (1, d/(d−1)) if q = 1.
We assert that (1.8.6) holds (with r = r(p1) as in (1.8.9)) for all p1 > γ/(γ − 1),
p1 �= dγ/(dγ − d− γ).

Indeed, if q > 1, then dq/(d− q) = r. If q = 1, then p1 � dγ/(dγ − d− γ). But
since p1 �= dγ/(dγ − d − γ), we have p1 < dγ/(dγ − d − γ), which is equivalent to
the inequality r < d/(d− 1).

Thus, since ν ∈ L
dγ/(d+γ)
loc (Ω) ⊂ Hγ,−1

loc (Ω) ⊂ Hr,−1
loc (Ω), because r < γ, asser-

tion (i) in the lemma yields the following:

(1.8.10)
(
p1 >

γ

γ − 1
, p1 �=

dγ

dγ − d− γ
, F ∈ Lp1

loc(Ω)
)
=⇒ F ∈ Hr,1

loc(Ω).

If r < d, then the latter in turn implies by assertion (ii) in Lemma 1.8.1 that
F ∈ Lp2

loc(Ω). Let us summarize what has been shown:(
p1 > γ

γ−1 , p1 �= dγ
dγ−d−γ , r := γp1

γ+p1
< d, F ∈ Lp1

loc(Ω)
)

=⇒ F ∈ Lp2

loc(Ω),(1.8.11)

where

p2 :=
dr

d− r
=

dγp1
dγ − (γ − d)p1

>
dγ

dγ − (γ − d)
p1.

Also, note that γ/(γ−1) < d/(d−1) < dγ
γd−d−γ , so that by (i) we can find a number

p1 to start with. Then starting with p1 close enough to d/(d − 1), by iterating
(1.8.11) we always increase p by some factor greater than dγ/(dγ − (γ − d)) > 1.
While doing this, we can obviously choose the first p so that the iterated numbers
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p will never be equal to dγ/(dγ − d− γ) and the corresponding numbers r will not
coincide with d. After several steps we shall come to the situation where r > d,
and then we conclude from (1.8.10) that F is locally bounded (one cannot keep
iterating (1.8.11) infinitely because of the restriction r < d). As in case (b), we can
now easily complete the proof. �

Example 1.6.10 shows that assertion (iii) of this theorem may fail if γ > d is

replaced by γ = d− ε. Then F does not even need to be in H2,1
loc (Ω).

1.8(ii). Increasing the Sobolev regularity of solutions

The following result of Morrey is known (see Morrey [723, Theorem 5.5.3,
p. 154], where A is continuous) about raising the integrability of a solution of
the full equation with the operator LA,b,β,c on a domain Ω ⊂ Rd, d > 1, where
aij∈VMO and A(x) � δ · I with some δ > 0.

1.8.3. Theorem. Let d/(d − 1) � q < r and let u ∈ W q,1
loc (Ω) satisfy the

equation
LA,b,β,cu = f + div g, g = (g1, . . . , gd),

where f ∈ L
dr/(d+r)
loc (Ω), gi ∈ Lr

loc(Ω), bi, βi ∈ Ls
loc(Ω), c ∈ Lt

loc(Ω), s = d and
t = d/2 if r < d, s > d and t > d/2 if r = d, s = r and t = dr/(d + r) if r > d.

Then u ∈W r,1
loc (Ω).

Proof. 1. Under the assumptions of the theorem for every ball U(x0, ε) in Ω

of a sufficiently small radius ε there is a function v ∈W r,1
0

(
U(x0, ε)

)
satisfying the

equation

(1.8.12) ∂xi
(aij∂xj

v − biv) + βi∂xi
v = f + ∂xi

gi.

It suffices to establish the existence in the case of smooth coefficients, since approx-
imating the coefficients by smooth functions and using the estimate

‖u‖W r,1
0 (U(x0,ε))

� N(‖g‖Lr(U(x0,ε)) + ‖f‖Ldr/(d+r)(U(x0,ε))),

one can construct a sequence of smooth functions converging to the solution. How-
ever, it is important that the radius ε of the ball U(x0, ε) could depend only on ωA

and the quantities δ, ‖β‖Ls , and ‖b‖Ls and be independent of the smoothness of
the coefficients.

For constructing a solution in the case of smooth coefficients it suffices to show
that for a sufficiently small ball U(x0, ε) the solution of the homogeneous equation

(f = gi = 0) in the class W 2,1
0

(
U(x0, ε)

)
must be zero. Then, by the Fredholm

alternative (see Proposition 2.1.4), there exists a solution of the nonhomogeneous

equation on this ball. Thus, let v ∈W 2,1
0

(
U(x0, ε)

)
and

∂xi
(aij∂xj

v − biv) + βi∂xi
v = 0.

Multiplying by v and integrating by parts we obtain

ε

∫
U(x0,ε)

|∇v|2 dx �
∫
U(x0,ε)

|b+ β| |v| |∇v| dx.

We recall that by the Sobolev inequality ‖v‖L2d/(d−2)(U(x0,ε)) � c(d)‖∇v‖L2(U(x0,ε)),

where c(d) does not depend on ε. Applying Hölder’s inequality, we obtain∫
U(x0,ε)

|b+ β| |v| |∇v| dx � c(d)‖b+ β‖Ld(U(x0,ε))‖∇v‖2L2(U(x0,ε))
.
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Choosing ε so small that c(d)‖b+ β‖Ld(U(x0,ε)) � δ/2, we obtain the inequality∫
U(x0,ε)

|∇v|2 dx � 0.

Therefore, v = 0 on U(x0, ε).

Thus, we have shown uniqueness of a solution in W 2,1
0

(
U(x0, ε)

)
, hence also in

W r,1
0

(
U(x0, ε)

)
with r � 2. We observe once again that for constructing a solution

in the smooth case this uniqueness is enough. If r � 2, then some additional
reasoning is required.

We show that the solution v is unique. It suffices to show that the solution v of
the homogeneous equation must be zero. To this end we solve the adjoint equation
with the right-hand side f = sign v and g = 0, i.e.,

∂xi
(aij∂xi

w − βiw) + biw = sign v.

Since the right-hand side is bounded, there is a solution w∈Wm,1
0

(
U(x0, ε)

)
with m

as close to d as we wish (so w ∈ Lp
(
U(x0, ε)

)
for any p). Multiplying this equation

by v and integrating by parts we conclude that v = 0. Thus, on a sufficiently small
ball U(x0, ε) there is a unique solution v ∈W r,1

0

(
U(x0, ε)

)
of equation (1.8.12).

2. Let r < d and ζ ∈ C∞
0 (Ω), where the support of ζ belongs to a ball U of a

sufficiently small radius indicated above. Then

(1.8.13)

∂xi

(
aij∂xj

(uζ)− bi(uζ)
)
+ βi∂xi

(uζ) = ∂xi
(aiju∂xj

ζ − giζ) + aij∂xi
ζ∂xj

u

+ biu∂xi
ζ − βiu∂xi

ζ + cuζ + gi∂xi
ζ + fζ.

Set

f̃ = aij∂xi
ζ∂xj

u+ biu∂xi
ζ − βiu∂xi

ζ + cuζ + gi∂xi
ζ + fζ, g̃i = aiju∂xj

ζ − giζ.

Then

∂xi

(
aij∂xj

(uζ)− bi(uζ)
)
+ βi∂xi

(uζ) = f̃ + ∂xi
g̃i.

We observe that f̃ ∈ Lq(U) and g̃i ∈ Ldq/(d−q)(U). Then by the previous step

we have uζ ∈ W
dq/(d−q),1
0 (U). Note that dq/(d − q) � q(d − 1)/(d − 2), since

q � d/(d − 1). Repeating this reasoning on a smaller ball we again increase the
smoothness of our solution until we obtain the inclusion to the class W r,1. The
cases r = d and r > d are similar. �

1.8(iii). Renormalized solutions

Let Ω ⊂ Rd. Suppose we are given a nonnegative nonzero function W ∈ L1
loc(Ω)

satisfying the equation

(1.8.14) ∂xi
∂xj

(aijW ) = 0,

where A=A∗ is infinitely differentiable, λ−1 · I�A(x)�λ · I, x∈Ω. A renormalized
with respect to W solution of equation (1.8.14) is a function w such that we have
wW ∈ L1

loc(Ω) and wW in place of W satisfies (1.8.14). It turns out that the
renormalized solutions possess many nice properties. For example, the maximum
principle holds for them. Indeed, the function w satisfies the equation

aij∂xi
∂xj

w + 2W−1∂xj
(aijW )∂xi

w = 0,
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for the solutions of which the classical strong maximum principle holds. In the
next theorem we have collected some typical results from the papers Bauman [94],
Escauriaza [341], [342].

1.8.4. Theorem. Let w be a renormalized with respect to W solution of
equation (1.8.14). Then the following assertions are true.

(i) Harnack’s inequality. Let w � 0. For every ball U(x0, r) with U(x0, 5r) ⊂ Ω
one has the inequality

sup
U(x0,r)

w(x) � C(λ, d) inf
U(x0,r)

w(x).

(ii) Hölder’s continuity. There is a number α = α(λ, d) ∈ (0, 1] such that for
every ball U(x0, r) ⊂ Ω one has the estimate

|w(x)− w(y)| � C(λ, d)
( |x− y|

r

)α
sup

U(x0,r)

|w(z)|.

(iii) Boundedness of solutions. For every ball U(x0, r) ⊂ Ω one has the estimate

sup
U(x0,r/2)

|w(x)| � C(λ, d)

(∫
U(x0,r)

|w|W dx

)(∫
U(x0,r)

W dx

)−1

.

The constants C(λ, d) and α(λ, d) depend only on λ and d and are independent of
the smoothness of A.

Assertion (i) is obtained in [94, Theorem 4.4]. Assertion (ii) is a corollary of (i)
and the fact that any constant is a renormalized solution. Finally, (iii) is proved in
[341, Theorem 2.3]. In [342], these results are used for obtaining some estimates
on the Green’s function.

1.8(iv). Generalizations of the maximum principle of
A.D. Aleksandrov and k-Hessians

For the proof of the existence of densities in § 1.5 we have used the maximum
principle of A.D. Aleksandrov (see Theorem 1.5.1). Here we consider some of
its generalizations. Let Ω be a convex bounded domain in Rd with boundary of
class C1, e.g., a ball. It is known (see Gilbarg, Trudinger [409, Theorem 8.15]) that
if u ∈ C2(Ω)

⋂
C0(Ω) satisfies the equation Δu = f , then

sup
Ω
|u| � C(d,Ω, p)‖f‖Lp(Ω)

for any p > d/2. According to Aleksandrov’s maximum principle, if a convex
function u ∈ C2(Ω)

⋂
C0(Ω) satisfies the equation detD2u = f , then

sup
Ω
|u| � C(d,Ω)‖f‖1/dL1(Ω).

It turns out that some intermediate estimates hold.
Let Sk(u) be the sum of the principal k-minors in the matrix D2u. In this case

S1(u) = Δu = trD2u and Sd(u) = detD2u. The expression Sk(u) is called the
k-Hessian. A function u ∈ C2(Ω)

⋂
C0(Ω) is called k-admissible if Sj(u) � 0 for all

indices j � k. The set of all k-admissible functions will be denoted by Φk
0(Ω). Let

‖u‖Φk
0(Ω) =

(∫
Ω

−uSk(u) dx

)1/(k+1)

.

The next result was proved in Wang [934, Theorem 5.1].
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1.8.5. Theorem. Let u ∈ Φk
0(Ω).

(i) If 1 � k < d/2, then ‖u‖Lp+1(Ω) � C‖u‖Φk
0(Ω) for each p+1 ∈ [1, k∗], where

we set k∗ = d(k + 1)/(d− 2k).
(ii) If k = d/2, then ‖u‖Lp(Ω) � C‖u‖Φk

0(Ω) for all p � 1.

(iii) If d/2 < k � d, then ‖u‖L∞(Ω) � C‖u‖Φk
0(Ω).

The number C depends only on d, k, and diamΩ.

Note that in the case k = d/2 in Tian, Wang [895] the following was proved:
there are numbers α(d) > 0 and C(d,Ω) > 0 such that∫

Ω

exp

(
α
( |u|
‖u‖Φk

0(Ω)

)β)
dx � C(d,Ω), where 1 � β � (d+ 2)/d.

By using Moser’s iterations, one can derive from this result analogs of Alek-
sandrov’s maximum principle for k-Hessians. The next corollary is proved in [934,
Theorem 5.5].

1.8.6. Corollary. Let u ∈ Φk
0(Ω) and Sk(u) = f . Then

sup
Ω
|u| � C‖f‖1/kLp(Ω),

where p > d/(2k) if k � d/2 and p = 1 if k > d/2.

Let σk(λ) =
∑

1�i1<i2<...<ik�d λi1 · · ·λik be the kth elementary symmetric
polynomial. Set

Γk = {λ ∈ Rd : σj(λ) � 0, j = 1, 2, . . . , k}, Γ∗
k = {λ ∈ Rd : 〈λ, μ〉 � 0 ∀μ ∈ Γk}.

LetA be a symmetric matrix and let λ(A) be the vector of eigenvalues of A. Suppose
that λ(A) ∈ Γ∗

k. Set

�∗k(A) = inf
{
〈λ(A), μ〉 : μ ∈ Γk, σk(μ) � 1

}
For example, λ(A) ∈ Γ∗

1 precisely when A = g · I, where g is a nonnegative number.
In this case �∗k(A) = g.

The next related result is proved in Kuo, Trudinger [565].

1.8.7. Corollary. Let u ∈ C2(Ω)
⋂
C0(Ω) and tr(AD2u) � f . Suppose that

λ(A) ∈ Γ∗
k and �∗k(A) > 0. Then

sup
Ω

u � C‖f/�∗k(A)‖Lq(Ω),

where q = k if k > d/2 and q > d/2 if k � d/2. The number C depends only
on d, k, q, and Ω.

Comments

Bibliographic materials related to the outstanding Russian mathematician An-
drey Nikolaevich Kolmogorov and the great German physicist, a Nobel prize win-
ner Max Planck, whose names are in the title of this book, can be found in Kol-
mogorov [530] and Klyauc, Frankfurt [517], where some additional references are
given. Adriaan Daniël Fokker (17.VIII.1887 – 24.IX.1972) is a Dutch physicist,
a member of the Royal Dutch Academy. He was born in the island of Java, a Dutch
colony at the time, in 1904 – 1905 was a student at the Polytechnic school in Delft,
in 1906 – 1913 studied physics at the University of Leiden with H. Lorentz, on
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October 24, 1913, defended his thesis “Over Brown’sche bewegingen in het stral-
ingsveld, en waarschijnlijkheids-beschouwingen in de stralingstheorie”, the main
results of which were published in his paper [377] (where the stationary equation
was considered). Later he continued his studies with Albert Einstein. After his mil-
itary service in World War I he worked in 1917 – 1918 as an assistant of H. Lorentz
and P. Ehrenfest, in 1923 – 1927 he was Professor at the High Technical School in
Delft, in 1928 – 1955 he was curator of the physical cabinet of the Teylers Museum
in Haarlem and was Professor at the University of Leiden. Fokker’s main scien-
tific works are devoted to radiation, X-rays, physics of electron, general relativity,
gravitation, the theory of fluctuations, and the theory of gyroscope. The equation
bearing his name was needed for establishing the distribution law of the average
energy of a rotating electric dipole, for this purpose Fokker developed a method
first used by Einstein [329] for describing the Brownian motion. In addition, Fokker
was an expert in music theory, he was enthusiast of the 31 equal temperament, his
31-tone equal-tempered organ, which was installed in Teyler’s Museum in Haarlem
in 1951, is called the Fokker organ. It is worth mentioning that Kolmogorov and
Planck also were amateurs and connoisseurs of music, moreover, Planck was playing
at a professional level.

There is an extensive literature on the theory of Sobolev spaces, see Adams [2],
Adams, Fournier [3], Besov, Il’in, Nikolskĭı [112], Bogachev [126], Brezis [208],
Burenkov [212], Evans, Gariepy [344], Gol’dshtĕın, Reshetnyak [412], Haroske,
Triebel [440], Krylov [556], Kufner, Sändig [558], Leoni [602], Maz’ja [682], [683],
Runst, Sickel [828], Stein [877], Triebel [899], [900], and Ziemer [965], where
numerous additional references can be found. In [126], [558] and Zhikov [961] also
weighted Sobolev classes are considered.

Many books are devoted to the general theory of elliptic second order linear
partial differential equations, see Agmon [5], Agmon, Douglis, Nirenberg [6], Bers,
John, Schechter [109], Borsuk [198], Borsuk, Kondratiev [199], Chen, Wu [237],
Demengel, Demengel [293], Egorov, Kondratiev [325], Gilbarg, Trudinger [409],
Han, Lin [438], Hörmander [461], Helffer [447], Kenig [501], Kondrat’ev, Lan-
dis [533], Koshelev [537], Kozlov, Maz’ya, Rossmann [541], Kresin, Maz’ya [542],
Krylov [552], [556], Ladyzhenskaya, Ural’tseva [577], Landis [581], Lions, Ma-
genes [618], Maugeri, Palagachev, Softova [681], Maz’ya, Rossmann [685], Mi-

randa [713], Nazarov, Plamenevsky [737], Olĕinik, Radkevič [757], Radke-
vich [798], Rempel, Schulze [803], Sauvigny [834], Shimakura [857], Shish-
marev [859], Stampacchia [870], Stroock [882], Troianiello [901], Volpert [924],
Wu, Yin, Wang [944], and also Garroni, Menaldi [400].

However, Fokker–Planck–Kolmogorov equations have significant specific fea-
tures and so far have not become the subject of a separate exposition, although
some of their aspects are discussed in depth in books with probabilistic motives, see
Gihman, Skorokhod [407], Krylov [549], Kushner [570], Soize [865] (where also
explicit solutions are considered), Stroock [882], Stroock, Varadhan [884]. These
specific features are connected, on the one hand, with the fact that such equations
by their nature are equations with respect to measures (sometimes they are called
“double divergence form” equations and their solutions are called “adjoint solu-
tions”, in the case of irregular coefficients they cannot be written as divergence
form equations or as direct equations), and, on the other hand, with unusual for
the classical theory classes of solutions (say, integrable on the whole space, but
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without any restrictions on growth or smoothness class). A study of such equations
goes back to Kolmorogov’s works [527], [528], [529] and a series of earlier works in
physics by Fokker [377], Smoluchowski [863], Planck [781], and Chapman [235],
where equations for probability densities were considered (see also Hostinský [466]).
The informative survey Fuller [394] lists also Lord Rayleigh and L. Bachelier among
predecessors.

Connections between elliptic operators and diffusions are discussed in the books
Bass [91] and Pinsky [780].

Traditionally, second order elliptic equations are solved in Hölder classes or in
Sobolev classes depending on the properties of the coefficients. It is more convenient
to consider the major problems of this book in Sobolev classes even in the case of
smooth coefficients, which is due to the significant role of various a priori estimates
in terms of quantities like Sobolev norms.

The existence of densities of solutions under minimal assumptions is based on
the A.D. Aleksandrov estimates (see [34]–[37]). Unlike direct elliptic equations
and divergence form equations, Fokker–Planck–Kolmogorov equations can have so-
lutions whose regularity is not higher than the regularity of the diffusion coefficients.
There are many works devoted to generalizations of Aleksandrov’s estimates, see
Cabré [215], Kuo, Trudinger [565]. Elliptic inequalities of the type L∗u � 0 were
considered long ago, see, for example, Littman [628], [629].

Theorem 1.7.4 makes precise the statement of a result formulated by Ch. Mor-
rey in his book [723, p. 156] not quite correctly (with Ω′ = Ω). The assertion
given there with Ω′ = Ω would be false, for example, for the Laplace equation on a
ball. A proof of Morrey’s estimate with an investigation of the dependence of the
constant on the coefficients was given in Shaposhnikov [843] with the same inac-
curacy as in [723]. Actually, the reasoning in Shaposhnikov [843] yields exactly
the estimate we give, as explained in Shaposhnikov [846], and an estimate with
Ω = Ω′ is possible only for solutions with zero boundary values on a domain with
a sufficiently regular boundary (see Corollary 1.7.6). We observe that in the exist-
ing applications of Morrey’s theorem actually only the presented correct statement
was used, although in some papers it was formulated with the indicated inaccuracy
(see, for example, Bogachev, Röckner [160] and Bogachev, Krylov, Röckner [152]).
The proof of the corrected statement was given in Bogachev, Röckner, Shaposh-
nikov [165] and Shaposhnikov [846], where even a more general fact is proved.

Various results which can be regarded as results about properties of densities
of solutions to elliptic Fokker–Planck–Kolmogorov equations with coefficients of a
rather general form were obtained in the books cited above and also in the papers
Krylov [547], Sjögren [861], Bauman [94], [95], Escauriaza [341], [342], Escauri-
aza, Kenig [343], Fabes, Stroock [348], Gushchin [430], Maz’ya, McOwen [684];
note also a more abstract approach of Herve [452]. A systematic study of the
whole complex of these problems was initiated in Bogachev, Röckner [157], [158],
[160], Bogachev, Krylov, Röckner [149], [152] and continued by many authors.
Stationary Fokker–Planck–Kolmogorov equations with various special restrictions
on the coefficients are considered in Arapostathis, Borkar [55], Bensoussan [105],
Noarov [745]–[749] and in the works cited on concrete occasions in the subsequent
chapters. Fokker–Planck–Kolmogorov equations can be also considered on more
singular manifolds such as fractals and metric measure spaces.
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Exercises

1.8.8. Suppose that probability measures μ and ν on the real line satisfy the
equations L∗

1,b1,c1
μ = 0 and L∗

1,b2,c2
ν = 0. Show that the measure σ = μ⊗ν satisfies

the equation L∗
I,b,cσ = 0 with b(x, y) =

(
b1(x), b2(y)

)
, c(x, y) = c1(x) + c2(y).

1.8.9. Let a measure μ on Rd satisfy the equation L∗
A,bμ = 0. Write down

the equation to which the measure ν = μ◦F−1 satisfies, where F = (F i) is a
diffeomorphism of Rd with inverse G = (Gi).

Hint: Make the change of variable x = G(y) in the integral identity, sub-
stituting ϕ = ψ◦F , obtain the equation L∗

Q,hν = 0 with the matrix Q = (qmk),

where qmk(y) = aij
(
G(y)

)
∂xi

F k
(
G(y)

)
∂xj

Fm
(
G(y)

)
, and the drift h = (hk), where

hk(y) = aij
(
G(y)

)
∂xi

∂xj
F k
(
G(y)

)
+ bi
(
G(y)

)
∂xi

F k
(
G(y)

)
.

1.8.10. Suppose that a probability measure μ on the real line satisfies the
equation L∗

1,bμ = 0 on (−∞, 0) and on (0,+∞) with some continuous function b on
the real line. Is it true that μ satisfies this equation on the whole real line?

1.8.11. Give an example of an absolutely continuous function on [0, 1] that
does not satisfy the Hölder condition of any order.

1.8.12. (Bogachev, Röckner [160]) Let Ak = (aijk ) be a sequence of continuous
mappings on Rd with values in the space of symmetric matrices and let bk = (bik)
be a sequence of Borel vector fields on Rd. Suppose that for every ball Ur ⊂ Rd of
radius r there exist numbers cr > 0, αr > 0, and p = pr > d such that

Ak � crI, ‖aijk ‖Wp,1(Ur) + ‖bik‖Lp(Ur) � αr for all i, j, k.

Assume that there are probability measures μk on Rd such that L∗
Ak,bk

μk = 0.
Then the measures μk have continuous strictly positive densities that are uniformly
Hölder continuous on every ball. If the sequence {μk} is uniformly tight, then it
has compact closure in the variation norm, and every measure μ in its closure has
a continuous strictly positive density of class W p,1(Ur) for every r > 0.

Hint: It follows from our hypotheses and Theorem 1.6.5 that the measures μk

have continuous densities fk. Since the functions fk are probability densities, we
obtain by (1.6.2) that, for every r > 0, the sequence {fk} is bounded in W p,1(Ur).
By the Sobolev embedding theorem {fk} is uniformly Hölder continuous on Ur,
in particular, has compact closure with respect to the sup-norm. If {μk} is uni-
formly tight, then some subsequence {μki

} converges weakly to some probability
measure μ. Passing to a subsequence once again we may assume that the functions
fki

converge uniformly on compact sets and are uniformly bounded in W p,1(Ur) for
each r > 0. Hence μ has a density f ∈W p,1(Ur). Then we obtain a continuous and
strictly positive version of f . Therefore, the probability measures μki

converge to μ
in the variation norm. This reasoning applies to any subsequence in {μk}, whence
we obtain the desired conclusion.

1.8.13. (Bogachev, Röckner [160]) The assertion of the previous exercise can
be generalized as follows. Let Ω be an open set in Rd that is the union of increasing
open sets Ωk such that the closure of Ωk is compact and contained in Ωk+1. Let
μk be probability measures on Ωk satisfying the equations L∗

Ak,bk
μk = 0 on Ωk,

where each Ak is a continuous mapping on Ωk with values in the set of nonnegative
symmetric matrices, the mappings Ak are uniformly bounded on compact sets in the
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W p,1-norm with some p > 1, the mappings A−1
k are uniformly bounded on compact

sets, and Borel vector fields bk on the sets Ωk are uniformly bounded in the Lp(Rd)-
norm on compact sets. Then the analogue of the assertion of the previous exercise
is true. The same is true for Riemannian manifolds of dimension d.

1.8.14. Let (X,B, μ) be a probability space, where the measure μ is separable,
and let (S,S) be a measurable space. Suppose that for each s ∈ S we are given a
μ-integrable function ξs such that for every set B ∈ B the integral of ξs over B is
an S-measurable function of s. Prove that for every s ∈ S one can choose a version
of ξs such that the function (x, s) �→ ξs(x) is B⊗S-measurable.

Hint: If μ is Lebesgue measure on [0, 1] and fs ∈ L2(μ), then we can take
the standard trigonometric basis {en} in L2(μ) and set ξs(x) =

∑∞
n=1(ξs, en)en(x)

at the points of convergence, by using the Carleson theorem on convergence of
this series almost everywhere and making ξs zero outside; the set of convergence
belongs to B⊗S, which ensures the B⊗S-measurability of the obtained version.
In the general case we can use the existence of a Schauder basis {ϕn} in L1(μ)
consisting of B-measurable functions with the property that for each f ∈ L1(μ)
the series f =

∑∞
n=1 cn(f)ϕn converges μ-a.e.; the coefficients cn(f) are continuous

linear functionals on L1(μ), hence they are represented as the integrals of fψn

with certain ψn ∈ L∞(μ), which ensures the measurability of s �→ cn(fs). Finally,
a Schauder basis with the indicated property can be constructed as follows: by the
separability of the measure there is a countable collection of sets Bn ∈ B the linear
span of the indicators of which is dense in L1(μ); the σ-algebra Bn generated by
B1, . . . , Bn can be also generated by a partition ofX into finitely many disjoint parts
Bn,1, . . . , Bn,kn

, the conditional expectations of f with respect to Bn converge to f
in norm and almost everywhere by the martingale convergence theorem, and these
conditional expectations can be represented as partial sums of a series in Haar-type
functions constructed by means of the indicated decreasing partitions. Another
construction can be found in the hint to Exercise 6.10.71 in Bogachev [125].

1.8.15. Let ξ : [0, 1]→ L1(μ) be a continuous mapping, where μ is a probability
measure on a measurable space (Ω,B). Prove that there is a function η : Ω×R→ R,
called a measurable modification of ξ, such that it is measurable with respect to
B⊗B(R) and for each t ∈ R the equality η(ω, t) = ξ(t)(ω) holds for μ-a.e. ω.

Hint: Use the previous exercise considering μ on the σ-algebra generated
by ξ(t), t ∈ Q; see also Neveu [742, § III.4].

1.8.16. Justify Remark 1.6.3.

1.8.17. Prove that if on the closed ball in Rd a uniformly Hölder continuous
sequence of functions converges in measure, then it converges uniformly.

1.8.18. Let u ∈ W p,2(U) ∩W p,1
0 (U), where the set U ⊂ Rd is bounded and

open and p > d. By using Corollary 1.1.6 show that for all c > 0 and α > 1 the
function w := (u+ c)α − cα belongs to W p,2

0 (U).

1.8.19. Let f ∈W 1,1
loc (R

d). Show that ∇f(x) = 0 a.e. on f−1(0).

1.8.20. Prove that the diffusion process on the real line given by the equation
dξt = dwt+f(ξt)dt, where f

′(x)+f(x)2 = ax2+bx+c, has an invariant probability
measure only under the condition that f(x) = αx+ β, α < 0.

Hint: See Zeitouni [953].


