CHAPTER 1

Stationary Fokker—Planck—Kolmogorov Equations

In this chapter we introduce principal objects related to elliptic equations
for measures, an important example of which is the stationary Fokker—Planck—
Kolmogorov equation for invariant probabilities of diffusion processes. Although
our approach is purely analytic, some concepts related to diffusion processes are
explained. Our principal problems are explained and in the rest of this chapter
we present the results on existence of densities of solutions to elliptic equations for
measures and their local properties such as Sobolev regularity. Thus, it turns out
that under broad assumptions our equations for measures are reduced to equations
for their densities. However, these equations have a rather special form, which leads
to certain properties of solutions that are different from the case of general second
order equations.

1.1. Background material

Throughout we shall use the following standard notation. The inner product
and norm in R? are denoted by (-,-) and | - |, respectively. The diameter of a set
Q is diam Q = sup,, ,cq [+ — y|. The open ball of radius r centered at a is denoted
by Ul(a,r) or U,(a). The unit matrix is denoted by I. The trace of an operator A
is denoted by tr A. The inequality A < B for operators on R? means the estimate
(Ah,h) < (Bh,h), where h € R%, for their quadratic forms. In expressions like
a"x;y; and b'z; the standard summation rule with respect to repeated indices will
be meant. Set ut = max(u,0), v~ = —min(u,0), i.e., u =u" —u".

Throughout “positive” means “larger than zero”.

The class of all smooth functions with compact support lying in an open set
Q C R? is denoted by C§°(Q); the classes of the type CF(2), CF(Q) of functions
with &k continuous derivatives etc. are defined similarly; C(2) and Cy(£2) are the
classes of continuous and bounded continuous functions. The class of functions
whose derivatives up to order k have continuous extensions to the closure of € is
denoted by the symbol C*(2). The support of a function f, i.e., the closure of the
set {f # 0}, is denoted by supp f.

A measure 1 on a o-algebra A in a space ) is a function u: A — R! that is
countably additive: w(A) = Y7, p(A,) whenever A,, € A are pairwise disjoint
and their union is A. Such a measure is automatically bounded and can be written
as u = ut — pu~, where the measures ™ and p~, called the positive and negative
parts of u, respectively, are nonnegative and concentrated on disjoint sets QT € A
and QF € A, respectively, such that Q = Q1 UQ~. The measure

lul == p* +p”
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2 1. STATIONARY FOKKER-PLANCK-KOLMOGOROV EQUATIONS

is called the total variation of the measure p. The variational norm or the variation
of the measure p is defined by the equality ||| := |x](Q). Let M(2) be the class
of all bounded measures on (€2,.A) and P(Q) the class of all probability measures
on (92, A4) (i.e., measures p > 0 with p(Q) = 1). The simplest probability measure
is Dirac’s measure 0, at a point a € €2, it equals 1 at the point a and 0 at the
complement of a. If ;x> 0 and u(Q2) < 1, then p is a subprobability measure.

It is useful to admit also unbounded measures with values in [0, +oo] defined
similarly. Such a measure is called o-finite if the space is the union of countably
many parts of finite measure. The classical Lebesgue measure on R? provides an
example. Lebesgue measure of a set Q will be occasionally denoted by |Q2]. For
most of the results discussed below we need only the classical Lebesgue measure
and other measures absolutely continuous with respect to it (see below).

We recall that the Borel og-algebra B(FE) is the smallest o-algebra containing
all open sets of a given space E. The term “a Borel measure p” will normally mean
a finite (possibly signed) countably additive measure on the o-algebra of Borel
sets; cases where infinite measures (say, locally finite measures) are considered will
always be specified, except for Lebesgue measure. A Borel measure p on a subset
in R? is called locally finite if every point has a neighborhood of finite |u|-measure.

A finite Borel measure p on a topological space X is called Radon if, for every
Borel set B C X and every € > 0, there is a compact set K. C B such that
|p|(B\K;) < e. By Ulam’s theorem, on all complete separable metric spaces all
finite Borel measures are Radon. Throughout we consider only Borel measures.

The integral of a function f with respect to a measure p over a set A is denoted

by the symbols
[ f@utao. [ ran
A A

For a nonnegative measure p and p € [1,00), the symbols LP(u) or LP (€2, 1) denote
the space of equivalence classes of y-measurable functions f such that the function
|f|P is integrable. This space is equipped with the standard norm

1/p
1l = 1l = ( / | f|pdu) |

The notation LP(2) always refers to the classical Lebesgue measure; sometimes we
write LP(Q, dx) in order to stress this.

Let L°°(u) denote the space of equivalence classes of bounded p-measurable
functions equipped with the norm || f||o := infy~ s sup, |g(z)|.

A measure p is called separable if L'(p) is separable (and then so are also all
spaces LP(u) for p < 00).

As usual, for p € [1,400) we set

The classical Holder inequality says that

/Q Faldn < 11 lglys  f e LP(), g € LP ().

It yields the generalized Holder inequality

/\f1-~-fn|du<Hf1||p1~-~|\fn pus fi € LP(p), pytH -4 pt =1
Q
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In addition, if pg > p+¢q, f € LP(u) and g € L9(p), then by Holder’s inequality
fg € L"(p) and

(1.1.1) Ifgll- < [ £1Ipllgllq it r = pa/(p+ q)-

The integrability of a function with respect to a signed measure p is under-
stood as its integrability with respect to the total variation |u| of the measure u;
the corresponding classes will be denoted by LP(u) or LP(|u|) and by LP(U, u) or
LP(U, |u|) in the case where p is restricted to a fixed set U C €.

For a Radon measure y, the class L{ (u) consists of all functions that are
integrable with respect to p on all compact sets.

Let I4 denote the indicator function of the set A, ie., I4(x) = 1if z € A,
Is(z)=0if z ¢ A.

A measure v on a og-algebra A is called absolutely continuous with respect to
a measure p on the same o-algebra if the equality |u|(A) = 0 implies the equality
v(A) = 0; notation: v < u. By the Radon—Nikodym theorem this is equivalent to
the existence of a function p integrable with respect to |u| such that

v(A) = /A o(x) u(dx), A€ A

The function p is called the density (the Radon—Nikodym density) of the measure v
with respect to the measure p and is denoted by the symbol dv/du. It is customary
to write also
V=9-4 Or vV=gp.

If v < pand p < v, then the measures v and p are equivalent; notation: v ~ p.
This is equivalent to the following property: v < p and dv/dp # 0 |p|-almost
everywhere. The term “almost everywhere” is shortened as p-a.e. (for a signed
measure p, the term “p-a.e.” is understood as “|ul-a.e.”).

A sequence of Borel measures p,, converges weakly to a Borel measure p if for
every bounded continuous function f one has

lim [ fdu, = /fdu.
n—oo

A family M of Radon measures on a topological space X is called uniformly tight
if for each ¢ > 0 there is a compact set K. C X such that |u|(X\K.) <e for
all measures p € M. According to the Prohorov theorem, a bounded family of
Borel measures on a complete separable metric space is uniformly tight precisely
when every infinite sequence in it contains a weakly convergent subsequence (see
Bogachev [125, Chapter §]).

Given an open set 2 C R? and p € [1,4+00), we denote by W»(Q) or HP-1(Q2)
the Sobolev class of all functions f € LP(Q2) whose generalized partial derivatives
0y, f are in LP(Q). A generalized (or Sobolev) derivative is defined by the equality
(the integration by parts formula)

/gaawifdx:—/famgodas, v € Cr ().
U U

This space is equipped with the Sobolev norm

d
1 llpa = 1F 1l + D 10z, £l

i=1
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We also use higher-order Sobolev classes WP*(Q) = HP*(Q) with k € N, con-
sisting of functions whose Sobolev partial derivatives up to order k are in LP(£2)
and equipped with naturally defined norms || f||,x, and fractional Sobolev spaces
HP" () with noninteger r (the definition is given in § 1.8); the notation with the
letter H will normally be used in the case of fractional or parabolic Sobolev classes.

The class Wk (Q) consists of functions with bounded Sobolev derivatives up
to order k; for example, W°1(Q) is the class of bounded Lipschitzian functions.
Let Vf = (0p, f,.-.,05,f)-

The class WE™*(Q) is defined as the closure of C§°(€) in W»+(Q).

The space C%°(Q) consists of Holder continuous of order § € (0, 1) functions f
on 2 with finite norm

I fllcos :=sup [f(@)[+ sup [f(z) = f(y)l/|x =yl
ze z,yeQ,x#y

Symbols like W2 (R), W2 (), L2 (2, ;1) denote the classes of functions f
such that ¢ f belongs to the corresponding class without the lower index “loc” for
every ¢ € C5°(R?) or ¢ € C§°(12), respectively.

Let WP ~1(R%) denote the dual space to W?"1(R?) with p’ = p/(p —1), p > 1.

Let us define weighted Sobolev spaces or classes. Let a nonnegative measure g
on R? be given by a locally integrable density o with respect to Lebesgue mea-
sure. The class WP*(u) is defined as the completion of C§°(RY) with respect to
the Sobolev norm || - ||p.%,,, defined similarly to || - ||, %, but with the measure p in
place of Lebesgue measure. If the density o is continuous and positive, then WP (1)
coincides with the class of functions f € Wlﬁ’f (RY) with [|f]|pk.. < 0o. Weighted
classes are used below only in a very few places, mostly the classes WP:!(u), more-
over, in such cases the measure p has some additional properties, for example,
possessing a continuous positive density or a weakly differentiable density, so that
the weighted Sobolev classes are well-defined (see, e.g., Bogachev [126, §2.6]).

We shall need the class Wlfl;c“l (Q) consisting of all functions f on an open set
such that the restriction of f to each ball U with closure in Q belongs to WPv1(U)
for some pyy>d, and also the class Li-" () defined similarly.

In the theory of Sobolev spaces and its applications a very important role is
played by the following Sobolev embedding theorem (the case p = 1 is called the

Gagliardo—Nirenberg embedding theorem).

1.1.1. Theorem. (i) If p > d or p =d =1, then one has the embedding

WPLR?Y) ¢ Cy(RY) = C(RY) N L= (RY).

Moreover, there exists a number C(p,d) > 0 such that
(1.1.2) Flloe < C. s € WPR.

(i) If p € [1,d), then WP (R%) C L®/(@=P)(RY), hence LI(RY) c WP~ 1(RY) if
qg=dp/(dp+p—d), p>1. Moreover, there is a number C(p,d) > 0 such that
(1.1.3) 1 lapsap) < CE D lprs £ € WPLRY),

For any bounded domain Q with Lipschitzian boundary analogous embeddings hold
with some number C(p,d, Q).

Note that p’ = ¢d/(d — ¢) in (ii). Actually in place of (1.1.3) the inequality
(1.1.4) 1 £llap/a—p) < C DIV, VFeWPHRT)
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holds, which for p = 1 is called the Galiardo—Nirenberg inequality; it shows that an
integrable function on R¢ with an integrable gradient belongs in fact to the class
L (@1 (R4, hence also to all LP(R?) with 1 < p < d/(d — 1). For functions with
support in the unit ball U we obtain the inequality

(1.1.5) Il <COVA,, fewWdu).
Note also the Poincaré inequality
A1) = ful, <COIVA, FeWrO). fu= [ fio

A function from the class W%!(R%) need not be even locally bounded, but on
every ball U it belongs to all L"(U).
For higher derivatives the following assertions are valid.

1.1.2. Corollary. One has the following embeddings.

() If kp < d, then WPE(RY) C Lp/(d=kp)(RT),

(ii) If kp > d, then WPk(R?) C C(R%) N L>(RY).

(iii) WH4(R?) ¢ C(RY) N L*°(RY).

Holder norms of Sobolev functions admit the following estimates.

1.1.3. Theorem. Let rp > d, let U be a ball of radius 1 in R?, and let
f € WPT™(U). Then [ has a modification fo which satisfies Holder’s condition

with exponent o = min(1,r — d/p), and there exists C(d,p,r) > 0 such that for all
x,y € U one has the inequality

(1.1.7) [fo(x) = fo(y)| < C(d,p, )| fllp.rlx —yI*.
If f e W (U), then
(1.1.8) |[fo(z) = fo(y)| < C(d,p, )| D" fll Lo le — yI*,

where || D" f|| Loy denotes the LP(U)-norm of the real function

T sup |DTf(.’£)(’U1, cee a’UT)|'
lvi|<1
A similar assertion is true for domains with sufficiently regular boundaries, but
the constants will depend also on the domains.
Unlike the whole space, for a bounded domain Q C R?, one has the inclusion
LP(Q) C L"(2) whenever p > r. This yields a wider spectrum of embedding
theorems. We formulate the main results for a ball U ¢ R?. Let us set W0 := L9,

1.1.4. Theorem. (i) Let kp < d. Then

dp

WPtk Wi (U <
U) c U), a e

j€{0,1,...}.
(ii) Let kp = d. Then
WPIith(U) c W (U), q<oo, j€{0,1,...}.

If p=1, then Wit4L(U) C CJ(U).
(iii) Let kp > d. Then

writky c ¢j(U), je{o,1,...}.

In addition, these embeddings are compact operators, with the exception of case (i)
with ¢ = dp/(d — kp).
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Proofs of all these classic results can be found in the book Adams, Fournier [3].
For p > d and any function f € W?!(R9) with support in a ball of radius R
one has the estimate

1Fllze < Clod, RY|I9 S]]

Neither this estimate nor (1.1.4) hold for functions on bounded domains (for ex-
ample, for constant functions). Also a constant C(p,d, R) cannot be taken inde-
pendently of R (excepting the case d = p = 1), as simple computations with the
functions f;(z) = max(1 — |z|/4,0) show.

Under broad assumptions about a set Q in R?, the class W}’ #(Q) (defined above
as the closure of C§°(Q) in WP*(Q)) admits the following description (see Adams,
Fournier [3, Theorem 5.29 and Theorem 5.37]).

1.1.5. Theorem. Let 2 be a bounded open set with smooth boundary. Then
the class WE*(Q) coincides with the set of functions in WP*(Q) whose extensions
by zero outside Q belong to WPF(R?).

1.1.6. Corollary. Let Q2 be a bounded open set with smooth boundary. Suppose
that f € WPk(Q), where p > d. If the continuous version of f vanishes on S along
with its derivatives up to order k — 1, then f € WE*(Q).

Let Ugr be an open ball of radius R. First we want to recall some simple
properties of the space WP ~1(Ug), which is the dual of Wop/’l(UR) for p € (1, 00).
It is known (see, e.g., Adams, Fournier [3, Chapter III, Theorem 3.12]) that every
u € WP —Y(Ug) can be written as

(1.1.9) uw=0,f, flelP(Ug),i=1,...,d,
and, for all representations (1.1.9), one has

(1.1.10) lullwe.—1@wg)y < IfllLe@z)-

By using scaling to control the norms of the embeddings, we arrive at the
following well-known lemma (see, e.g., Gilbarg, Trudinger [409, Theorem 7.10]).

1.1.7. Lemma. (i) Let d' <r < oo and R > 0. Then we have the continuous
embedding L™+ (Ugr) ¢ W»=YUg). In addition, there exists a number N
independent of R such that

(1.1.11) lullwr=1@wn) < Nl prasero @y

for allu € L™ +D(Ug) and all R > 0.

(ii) Let 1 <r < d and R > 0. Then L*(Ug) C W™~ (Ug) and the embedding
operator is bounded. In addition, there exists a number N independent of R such
that

(1.1.12) ullwe - my < NEZ |l 0y

for all w € LY(Ug) and all R > 0.
(iii) Let r = d', s > 1, and R > 0. Then L*(Ug) C W™~ 1(Ug). In addition,
there exists N independent of R such that

(1.1.13) [ullwr. gy < NRZFY [l Lo )
for all w € L*(Ug) and all R > 0.
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1.2. Elliptic equations

For convenience of later references we collect here a number of known results
about second order elliptic equations. Throughout A = 8%1 +- - ~—|—8§d is the Laplace
operator. An elliptic operator (or a “nondivergence form elliptic operator”) is an
expression

Lapcu= aijcp)‘xﬁ%u + biaziu + cu,

where a/, b® and c are functions on R, A = (a'/); j<a, b = (b*)%_; and the summa-
tion over repeated upper and lower indices is meant, moreover, A = A* > 0. Such
operators should be distinguished from “divergence form” operators

Lapeu = 0y, (a”0y;u+b'u) + cu,

to which it is customary to ascribe also more general operators
Lappeu= 05, (a0u+b'u) + '0p,u+cu, B=(8).

As we shall see below, different forms of operators lead not only to different prop-
erties of solutions to the equations of the form L4, .u=f (a “direct” or “nondi-
vergence form” equation) or L4, .v = f (a “divergence form” equation), but even
to different settings of problems. We note at once that our principal object —
a stationary Fokker—Planck—Kolmogorov equation — is in general something third.

Nondivergence and divergence form equations are most often solved in Holder
classes (functions with Hélder continuous derivatives up to the second order) and
in Sobolev classes. Let us mention the basic facts about Dirichlet problems on
domains and about equations on the whole space.

A function v in the class WZ' (Q) on an open set  in R? is called a solution
of the equation

Lappeu=v, whereve WP (Q),p>1,

if a¥, b, 3%, ¢ are measurable, a®|Vul, b'u, 8¢ |Vu|,cu € LP(Q2), and
/ [—(AVu — ub, V) + (B, Vu) + cup]| dx = v(p)
Q

for all functions ¢ € Wop/(p_l)’l(Q) or, equivalently, for all ¢ € C§°(€2), where v(p)
is the value of the functional v at ¢. In the case of bounded coefficients the required
integrability conditions are automatically fulfilled.

Let Q be a bounded domain in R? with smooth boundary, let functions a*
be Holder continuous on the closure of €, and let the matrix A(x) be symmetric
and positive definite on Q. It is known (see, for example, Gilbarg, Trudinger [409,
Theorem 6.14], Krylov [552, Theorem 6.5.3]) that for every function f € C5°()
there is a function u € C2(2) such that u = 0 on 9§ and

aijarif)‘xju =f onQ.

It is known (see [409, Lemma 9.17] or Krylov [556, Theorem 2, p. 242]) that for
every r > 1 there is a number C,. independent of f such that

(1.2.1) llullwr2) < Coll fllLr )

If A is merely continuous on Q, then for any f € L"(2) the equation L .u= f
with lower order terms b?, ¢ € L>(€2) has a solution in the space W™2(Q) "W, (Q)
if ¢ <0 (say, if ¢ =0). In this case also the indicated estimate holds.
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The most general known conditions on the second order coefficients ensuring the
solvability in Sobolev classes are formulated in terms of the class VMO consisting of
locally integrable functions a on R? for each of which there is a positive continuous
function w on [0, +00) with w(0) = 0 such that

sup r72d/ la(z) — a(y)|dzdy < w(R) VR >0.
2€ER4 r<R U, (2)xU,(z)

This class contains all uniformly continuous functions, but includes also some locally
unbounded functions. Note that the inclusion W%!(R?) ¢ VMO holds. About
these conditions, see Dong [308], [309], Krylov [557] and the references given
there. The following result is proved in Krylov [555].

1.2.1. Theorem. Suppose that
a € VMO, A(z) =¢e-1, |a”| + [b'| + |8 + |c| < K.

Then, for every p > 1, there are numbers Ao and M depending only on p,d, K, e
and a common for all a¥ function w from the condition of the membership in VMO
such that for all X > \g and f,g",...,g% € LP(R?) the equations

Lapet=du=f and Lapsev—c=f+divg g=(g"....9%,
have unique solutions u€WP?2(R%) and ve WP (R?) and
(1.2.2) Alully + [l < MI[(Lap,e = Aullp,
(1.2.3) [ollpa < Ml +1lgllp)-

Thus, the operator Lap. — A is an isomorphism between the spaces Wr2(R9)
and LP(RY), Lapp.c — A is an isomorphism between WPH(R?) and WP ~H(R?).

Estimate (1.2.3) means that ||v||p1 < M||L4p.8,c0 — A0|lp.—1-

1.2.2. Corollary. Under the conditions indicated in the theorem, for every
ball U, whenever X\ = X\g, we have the estimate

(1.2.4) lullypr @y < MlILappew—dullwe 1), ue Wi ().

ProoOF. Note that by defining u by zero outside U we obtain a function in
WP1(RY) with the same norm, but the norm of L4445 .u will change, so for
justifying (1.2.4) we use a different reasoning. We take a sequence of functions
u, € C§°(U) converging to u in WP (U). Set L =L .. Then

lunllwer @y = llunllwrawey < M| Lun = Xunllwe. -1 (we) = M| Ltin = At [l w11,

where the left-hand side converges to |uy, ||w».1 () and the right-hand side converges
to M||Lu — Aullyr.~1(1r), which follows by the estimate

1£vllwe-1oy < [[[AV] + B Vo] + [bo] + [evl | o )
and the boundedness of the coefficients. O

For equations without lower order terms (or under some other additional condi-
tions) one can take A = 0. For the proof of the following result under more general
conditions (in particular, with a bounded domain with C*-boundary in place of a
ball), see Auscher, Qafsaoui [78], Byun [214]. Let us derive it from the previous
corollary.
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1.2.3. Proposition. Under the conditions on A from the theorem, for the
operator Lo = L40,0,0 and every ball U one can find M > 0 such that

(1.2.5) lullypr @y < MlLaullwr -y, e Wi ().

Moreover, for any f,g',...,g¢ € LP(U) the equation
Liu=f+divg, g=(¢"...,9%

has a unique solution in W' (U).

PROOF. First we observe that our estimate yields the existence of a solution
taking into account that the number M in (1.2.4) according to Theorem 1.2.1
depends on A only through p,d, K, e and the function w. Indeed, we can approx-
imate A in LP(U) by a sequence of smooth mappings Ay with common parame-
ters indicated above. The sequence of solutions uy € W[ ’1(U ) of the equations
L, u, = f+div g turns out to be bounded in WZ"! (U), hence a subsequence {uy, }
converges weakly in W o1 (U) to some function u, which obviously will be a solution
to Lau = f+divyg.

We now establish estimate (1.2.5). Suppose that it fails. Then there exist
functions u,, € W' (U) such that

”Un”W(fJ(U) =1, ||£Aun)||WPv*1(U) < 1/”-

We observe that {u,} converges in W' (U), since otherwise there is a subsequence
{vn} with [Jon = vkl[yyw1 ) 2 ¢ > 0, whence we obtain
0

(L4 = Ao)(vn — vi)lwe—1v) = ¢/M,

hence [|v, — v |lwr. 1) = ¢/(2M o) for sufficiently large n. This contradicts the
compactness of the embedding W& (U) ¢ WP ~(U). Thus, there is u = lim u,,

n— oo
in Wé”l(U). Then Hu||W§,1(U) =1, but L4u = 0, i.e., the integral of (AVu, V)
vanishes for all functions ¢ € C§°(U), then also for all p € W I’I(U ), whence it
follows that w = 0. Indeed, if p > 2, then the integral of (AVu, Vu) over U vanishes,
which is only possible if u = 0, since u € Wé”l(U). The estimate proven for p > 2
yields also the existence of a solution, as observed above.

We can now complete our proof of (1.2.5) in the case 1 < p < 2. It remains to
show that u = 0 if u€ W' (U) and £au = 0. As shown above, we can solve the
equation L4w = signwu in ng’l(U). Then the integral of |u| equals the integral
of —(AVw, Vu), which equals the vanishing integral of —(Vw, AVu). O

1.2.4. Corollary. Let the conditions on A indicated in Theorem 1.2.1 hold
and u € WO’I(U) for some g > 1. If
Lau=f+divg, g=(g"-..,97),
where f,g" € LP(U) and p > q, then u € WP (U).
PROOF. Let w € W' (U) be a solution of the equation £4u = f+div g, which
exists by Proposition 1.2.3. Then the difference v = u —w € W(‘)]’l(U) satisfies the

homogeneous equation £4v = 0, but this equation has only zero solution in the
class W, ’I(U). Therefore, u = w almost everywhere. |
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Below we need the following technical assertion which follows from the previous
proposition and embedding theorems.

1.2.5. Lemma. Let p and q be two numbers satisfying the estimates p = d,
q = p', but not such that p = d = ¢'. Let Ry > 0. Assume that the functions
a € WP (Ug,) are continuous and A > X\ -1 for some X > 0. Then, there exist
N >0 and Ry > 0 depending only on p,q,d, \, Ry, the modulus of continuity of A,
" lwr1(ug,), and the rate of decreasing to zero of [|[Va™||La(y,) as R — 0, such

that for all R < Ry and ¢ € W& (Ug), one has
(126)  f:=0a"0,,00,0 € WO H(UR) and [[VollLawy) < N fllwa-1 -

PROOF. We may assume that By = 1. Note f € W%~ (Ug). This follows from
the fact that, for every bounded function ¢ € WP1(Ug), the operator ¢ + (¥ is

continuous on ng’l(UR) by the estimate

IV 2ot gy < CIVOI Lo 7)-
Indeed, if ¢ < d, we have |V¢| € LP(Ug) and ¢ € L9%¥@=4)(Ug). Hence by
Holder’s inequality V(| € L*(Ugr), where
_ pedild-¢) _  pid _, pd >
p+dd/d—q)  pd—p¢ +qd " pd—pg +qd” "
In addition,

¥ V(]

Lowr) S ¥l Lorasa-an ) V€I Lr i)
S ClIVY Lo @) IVEllr@n)-

The case ¢’ > d, where 9 is bounded and ¢’ < p (since ¢ > p’), and the case ¢’ = d,
where ¢’ < p and 1 is in all L™ (Ug), r < oo, are similar. We note that

02,(a”0y,0) = [+ 05,07 05,0 =: f + 9.
By the previous proposition
(1:27) 1Vlzewn < N (llglhve 1w + 1flws s )

where Nj is independent of R € (0,1] and ¢. Let a = (a?), a/ = 0,,a".
Now we consider three cases.
Case ¢ > d'. By Lemma 1.1.7(i) and (1.1.1) we have
lgllwae 1) < Nallall L IVellawn),
which along with (1.2.7) yields
(1.2.8) IVellLawn) < NilNallalLawa) IVelLawn) + Nl fllwae-r@g)-

We emphasize that N; and Ny are independent of R and f and note that, since
|Va®| € LP(Ug) and p > d, we can choose R so small that

NiNa|lallpayy < 1/2.
For such an R, inequality (1.2.8) implies (1.2.6).
Case p' < q < d'. In that case it follows from ¢ > p’ that, for r defined by
rd/(r +d) = pq/(p + q), we have r > d’ > q. Therefore, for R € (0,1), we obtain
lgllwa—1(way < NsRC=DVCD gl 117y < Nllall 2o ) IVl Lo (),

and we can finish the proof as above.
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Case ¢ = p/ < d'. As is easy to see, this is the only remaining case. By
Lemma 1.1.7 and (1.1.1), for R € (0, 1), we have

lgllwe—1wm) < NaB*™ P gll 11wy < Nallall oo |Vl Lo @)

and the argument from the first case applies again to complete the proof. O

In §1.7 we return to divergence form equations.

An important role in the theory of partial differential equations is played by
various maximum principles. These principles can be of the following types:

1) the weak maximum principle asserts that, under certain conditions, if Lu < 0
in a domain Q, ulgpg = 0, then v > 0 in ; this maximum principle is discussed in
Chapter 2; note that if Lu = 0 and L1 = 0, then the maximum and minimum of u
are attained at the boundary;

2) the strong maximum principle asserts that, under certain conditions (see
Gilbarg, Trudinger [409, §3.2]), if Lu = 0 and u attains its minimum or maximum
in the interior of 2, then u is a constant. Let us give a precise formulation.

1.2.6. Theorem. Suppose that Lapu = 0 in a connected open set ), where
u € C?*(Q), c1 -1 < A(z) < o+ 1 with constant c1,co > 0, and b is bounded. If u
attains its mazximum in the interior of 2, then w is constant in Q.

1.3. Diffusion processes

Fokker—Planck—Kolmogorov equations arise naturally in the study of diffusion
processes. Here we recall basic concepts and consider some examples. These con-
cepts are not used in the main part of the book, but some acquaintance with them
is useful for understanding the origins of the central problems of the book and the
character of the most important applications of the presented analytical results.

First we define the concept of a Markov transition function on a measurable
space (X, X) in which all singletons belongs to X'. Suppose we are given a nonempty
set T C R. A function (s,z,t, B) — P(s,z,t, B) defined for all s,t € T with s < ¢,
xz € X and B € X is called a Markov transition function if

1) for all fixed s,t,x, the function B — P(s,z,t, B) is a probability measure
on X and for s =t it is Dirac’s measure at the point x;

2) for all fixed s, ¢, B, the function x — P(s,x,t, B) is measurable with respect
to X;

3) whenever s,t,u € T and s < ¢t < u, for all x € X and B € X we have the
equality

(1.3.1) P(s,z,u, B) :/ P(t,y,u, B) P(s,z,t,dy),
b'e
called the Chapman—Kolmogorov equation.

A random process {& }rer with values in X is called a Markov process with
the given transition function P(s,z,t, B) if, for all t,uw € T with t < w and B € X,
the function P(t,&;,u, B) serves as a conditional probability P(&, € B|Fg;) with
respect to the o-algebra F¢; generated by the random elements £, with s < ¢.

The quantity P(s,x,t, B) can be interpreted as the probability of hitting the
set B by the process at the time ¢ under the condition that it is at the point = at the
time s < t. So the measures P(s,x,t, -) are also called the transition probabilities
of the process. It is also possible to consider Markov families {; ..} for which
s <tand &, s =x. Certainly, in the general case there is no requirement that the
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process must be at a fixed point at the initial time. If P(s,x,t, -) depends on s,
through ¢t — s, then the process is called homogeneous; in this case

P(s,z,t,-)=P(0,z,t—s, ) =: Pla,t—s, -).

The one-dimensional distributions P; of the process {&; }+cr are defined by the
equality P;(B) := P(& € B). A necessary and sufficient condition that a process
be Markov with the given transition function is the equality

(1.3.2) P((&,,---,&,) €0) / /IC Ty, Tp)
XP(tn_1,Tn-1,tn,dxy,) - -P(t1, 21, t2,dx2) Py, (dz1)

forallC € X" and t; € T with t; < -+ < t,.

A somewhat more general concept is obtained if in place of the family of the
o-algebras F¢; we take an increasing family of o-algebras F; with the property
that & is Fy-measurable.

Let U(x,e) ={y: |z —y| <e}, V(z,e) = {y: |z —y| > e}. A Markov process
with values in R? with transition probabilities P(s,z,t,B) is called a diffusion
process or a diffusion (see Wentzell [937] or Gikhman, Skorokhod [408]) if there
is a mapping b: RYx [0, +00) — R? called the drift coefficient, and a mapping
(w,t) — A(z,t) with values in the space of symmetric operators on R?, called the
diffusion coefficient or diffusion matriz, such that

(i) for all € > 0, ¢ > 0 and = € R? we have

lim h ™' P(t,2,t+ h,V(z,e)) =0,
h—0

or some € > anda a t xT € we nave
(i) f Oandallt >0,z € R weh

lim h_l/ (y —z) P(t,z,t + h,dy) = b(z,t),
h—0 U(ac E)

(iii) for some € > 0 and all t > 0, z, 2 € R? we have

lim h~* / (y —x,2)2 P(t,z,t + h,dy) = 2(A(z,t)z, 2).
h—0 U(gc E)

If A and b do not depend on ¢, then the diffusion is homogeneous.

1.3.1. Proposition. Suppose that relations (i)—(iii) hold locally uniformly in x
and the functions a¥, b* are locally bounded. Then the transition probabilities satisfy
the parabolic Fokker—Planck—Kolmogorov equation

Op = 0,0z, (0" ) — By, (b'11)

i

in the sense of generalized functions (see Chapter 6). If v is a finite Borel measure
on R4 and

e (dx) = /Rd P(0,y,t,dx) v(dy),

then the measure p = p(dz)dt gives a solution to the Cauchy problem with the
initial condition “|t:0 =v.
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PrOOF. We give a brief justification, see details in Wentzell [937, §11.2] or
Gikhman, Skorokhod [408, Chapter 1, §1]. Let f € C§°(R%). Then

d

E Rd f(y) P(S,%t,dy)

=t ([ s Pt o) - [ 1) Pt ).
h—0 Rd R4

By the Chapman—Kolmogorov equation the right-hand side equals

Jim /R ht /R (F(y) — £(2)) Pt, 2,1 + b, dy) P(s,, 1, dz).

h—0

By using conditions (i)—(iii) and Taylor’s expansion for f, we obtain

i 1 [ (1) = ) P62t + hdy)
h—0 Rd

= a‘ij(za t)aZi,aij(Z) + bi('za t)az7f(z)
Since convergence as h — 0 is uniform in z, we have

d

E R f(y) P(S,J},t,dy)

= lim (a¥(2,1)0.,0s, f(2) + b (2,t)0., f(2)) P(s,x,t,dz).

h—0 Rd

Thus, we have proved that the transition probabilities satisfy the indicated equa-
tion. In addition, for each function ¢ € C§°(R4), condition (i) gives the equality

lim C(y) P(s,z,s+ h,dy) = ((z),
h—0 Rd

i.e., P(s,z,t,dy) satisfies the condition P‘t:s = §,. This proves the last assertion
in the case where v = §,. The general case follows by integration with respect
to v. (]

In the case where the transition probabilities P(s, z,t, dy) are given by densities
o(s, z,t,y) with respect to Lebesgue measure, in the variables (y, t) they satisfy the
above Fokker-Planck—Kolmogorov equation (also called the forward Kolmogorov
equation)

atQ(S, Zz, t7 y) = 6%8?!] (aij (yv t)g(57 Zz, t7 y)) - ayz (bz(ya t)g(sa Z, tv y))v

and in the variables (z, s) they satisfy the backward Kolmogorov equation
D05, 3,1,y) = 7 (2, 5)00,0r, 005, 2,6, ) + V' (2, )0, 0(5. 7,1, ).
If A and b do not depend on ¢, then
P(s,z,t,dy) = P(0,z,t — s,dy)

under broad assumptions, i.e., the transition probabilities are determined by the
probabilities
P(z,t,dy) = P(0,x,t,dy).
In case the latter have densities o(x, t, y), the backward Kolmogorov equation takes
the form
Oro(z,t,y) = aij(x)amiamj o(z,t,y) + b (x)0y, 0(x, t,y).
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The differential operator
LAJ)(P = aijami 8;Ej -+ bza;mgo

is called the generator of the given process. This terminology is connected with the
fact that under suitable conditions the operators

Tif(z) = Rdf(y)P(af,t,dy)

form a semigroup in a suitable functional space (semigroups will be discussed in
Chapter 5). Then the forward Kolmogorov equation (which is the Fokker—Planck—
Kolmogorov equation) reads 0;T;f = TiLf and the backward equation becomes
T, f = LT, f. Say, if A=1,b" € Cg° (R9), then the given formal relations have
the usual meaning for f € C°(R%).

In the case of a homogeneous process an important concept of a stationary
distribution or invariant measure of the process (or of its transition semigroup)
arises. This is a probability measure p such that

w(B) = /]R P(y,t,B) u(dy) Yt >0, B e BR?).

It follows from what has been said that any stationary distribution satisfies the
stationary Fokker—Planck—Kolmogorov equation

O, On, (@) = 0y, (b'p) = 0,

which will be the main object of study in Chapters 1-5.

Diffusion processes can be considered also in a broader sense, for example, one
can consider almost surely continuous Markov processes in R? such that their tran-
sition probabilities P(s,z,t,dy) satisfy the Fokker—Planck—Kolmogorov equation
with the initial condition P ‘ +—, = 0. Such processes are called quasi-diffusions.

Since the distribution of a Markov process (or the family of its finite-dimensional
distributions) is completely determined by its initial distribution and its transition
probabilities, uniqueness of a probability solution to the Cauchy problem for the
Fokker—Planck—Kolmogorov equation yields the weak uniqueness of the diffusion
process whose transition probabilities satisfy this equation.

We recall that the conditional expectation of an integrable function £ on a
probability space (2,4, 1) with respect to a o-algebra B C A is a B-measurable
integrable function E,[¢|B] such that

du= [ nE,[¢|B]d
/Qnéu /Qn pl€|B] dp

for every bounded B-measurable function 7.
Jensen’s inequality for the conditional expectation says that if V' is a convex
function and V(£) € L' (i), then a.e.

V(E,[§]B]) < EL[V(§)[B].

A real or vector random process {&;}+cr with a directed index set T is called a
martingale with respect to a family of o-algebras F; that is increasing in the sense
that s C F; whenever s < ¢, provided that the element &, is measurable with
respect to F, integrable and almost surely &, = E[&:|F] for ¢ > s, where E[&;|Fs]
is the conditional expectation (the existence of the conditional expectation follows
by the integrability).
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One of the most important examples of a Markov process which is also a mar-
tingale (and one of the most important for applications processes) is the Wiener
process.

1.3.2. Example. A Wiener process (or a Brownian motion) {w;};>¢ is a real
random process with the following properties:

(i) the trajectory ¢ — w(w) is continuous for every w and wg = 0,

(ii) the random variables wy, , wy, —wy, , . .., wy, —wy,_, are independent, when-
ever 0 <ty <to < -+ <y,

(iii) for each ¢ the random variable w; is Gaussian with zero mean and variance ¢,
ie., Ew? =t.

A Wiener process in R? is just a collection (w}, ..., w) of independent Wiener
processes. The existence of Wiener processes is not straightforward and is proved
in many textbooks (see, e.g., Wentzell [937]).

Let F; be the o-algebra generated by the variables w, with s < ¢. Then
with respect to this family the Wiener process is a martingale, since for s < ¢ the
conditional expectation of w; — ws with respect to Fy vanishes by condition (ii). In
addition, the Wiener process is Markov with respect to the indicated family with
the transition function P(s,z,t, -) defined as follows: if s = ¢, then this is Dirac’s
measure at the point x, if s < ¢, then this is the Gaussian measure with mean z and
variance t — s, i.e., the measure with density y — (2m)~%/2exp[—(y—=)?/(2t—2s)].
The Chapman—Kolmogorov equation is verified directly. The Markov property is
verified by means of (1.3.2).

n—1

A diffusion process with a nonzero drift is not a martingale, which can be seen
from the It6 equation (see below).

The most important way of constructing diffusion processes is solving stochastic
differential equations. First we introduce the It6 integral.

Suppose we are given a Wiener process {w; };>0 and a process {£; };>0 measur-
able in (w, t) such that the variable & is measurable with respect to the o-algebra F;
generated by the variables w, with s < ¢ (such a process is called adapted). Let
also T' > 0. Suppose that

T
/ E|&|? dt < occ.
0
The stochastic It6 integral
T
| eedu
0
is defined as follows. If there are points 0 = t; < .-+ < ¢, = T such that

& = &, whenever t; < t < t;41, then this integral is naturally defined as the
sum 7 &, (w) (we,,, (w) — wy, (w)). In the general case the function & (w) is ap-
proximated in L?(P®dt) by a sequence of functions of the indicated form and it is
proved that the stochastic integrals of the approximations converge in L?(P); the
limit is taken for the stochastic integral of the original process.

Similarly one defines the stochastic integral with respect to a Wiener process
in R? of a real-valued or operator-valued process.

Suppose now we are given Borel functions o and b on R. If

ft = Eto +/ U(fs) dws +/ b(fs) d37 to <t<T,

to
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then the adapted process {&;}ie[r,,r] is called a strong solution of the stochastic
differential equation

on [tg,T] with the initial distribution &,. This equation is a symbolic expression
for the previous integral equation. Similarly stochastic equations are introduced
for processes in R%, when b is a vector field, o is an operator-valued mapping.

It is known (see Wentzell [937] or Krylov [551]) that in the case of Lipschitzian
coeflicients o and b for any F;,-measurable square-integrable random variable &,
this stochastic equation has a unique solution and this solution is a diffusion process
with the drift b and the diffusion coefficient oo*/2. There are also more subtle
results (see Ikeda, Watanabe [473]). The following theorem on existence of a strong
solution is proved in Gyongy, Krylov [432] (we give its version for the whole space).

1.3.3. Theorem. Suppose that o = (O’ij)i,jgd and b are Borel mappings from
R?x [0, 4+00) to the space of matrices on R and to RY, respectively, such that for
every k € N there are a positive function My, integrable on [0,k] and a number
e > 0 such that

|Uij(xat) - o—ij(yvt)|2 < Mk(t)‘x - y|27 ‘b(xat)‘ + |O—ij(xat)‘ < Mk(t)v

Az, t) =27 o(z, t)o" (2, t) > e -1 if x| <k, t€0,k],4,j<d.
Let V = 0 be a function on R4x[0, +-00) with continuous first and second derivatives
i x and a continuous derivative in t such that for some increasing sequence of
bounded domains Dy, covering R® for each T > 0 we have

. .
LapVi(z,t) < M)V (¢, ), reag)ljthV(x,t) — +o00,

where M is a locally integrable function on [0,4+00). Then (1.3.3) has a unique
strong solution on [0, +00).

In Chapter 9 also the concept of weak solution will be mentioned and the related
concept of martingale problem (which in turn is strongly related to Fokker—Planck—
Kolmogorov equations).

Apart from the Wiener process, the Ornstein—Uhlenbeck process is very useful
in applications. This process is given by the linear stochastic equation (scalar or
vector)

d& = dw, — 271, dt.

It can be expressed via the Wiener process by the formula

t
& = 67t/2§0 + eft/z/ e*/? dws.
0
For & = xo the process & = e~t/2x0 + e t/2w.._; has the same finite-dimensional
distributions as & (but does not satisfy the above stochastic equation). The gen-
erator of the Ornstein—Uhlenbeck process has the form L/2, where the operator

Lo(z) = Ap(x) — (z, Ve(z))
is called the Ornstein—Uhlenbeck operator.
We observe that the Wiener process has no stationary probability measures,
but the standard Gaussian measure is invariant for the Ornstein—Uhlenbeck pro-

cess and the Ornstein—Uhlenbeck semigroup (see also Examples 1.4.7, 5.1.1 and
Exercise 5.6.57).
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Let us also mention the [té6 formula. If the process & = (&},...,¢&3) in RY
satisfies the equation d&; = o (&;)dw; + b(&)dt, then for any smooth function f the
scalar process f(&;) satisfies the equation

d d
=0 € + 5 Y 00, f(E)AEIE]

i=1 ij*l
d
F(&)a™ (&) dwf + Z O, f (&)™ (&)1 (&) dt
1719:1 i,k=1
% Z 0z, 0, f(&t)o Zk(gt)ajk(gt)
i,5,k=1

The It6 formula will not be used in this book, but some acquaintance with it is
useful for better understanding the methods of obtaining certain estimates. For
example, the integral of the function f with respect to the solution of the parabolic
Fokker—Planck—Kolmogorov equation at the moment ¢ is usually the expectation
of f(&:). For example, if 0 =1, then by the It6 formula this gives the expectation

B(G) +E [ [(V1(€).0(60) + 5A7(6)]

Under the integral we have Lf(&;), L = A/24b-V. If Lf < C+Cf, then the right-
hand side is estimated by the integral of C + CEf(&;) over [0, t], which enables us
to estimate Ef(&) by means of the known Gronwall inequality (see Exercise 7.5.3).

1.4. Basic problems

Suppose we are given a locally finite Borel measure u (possibly signed) on an
open set 2 C R%, a Borel function ¢ on Q, a Borel vector field b = (b*) on ©, and
a matrix-valued mapping A = (a%); j<q4 on € such that the functions a* are Borel
measurable. For ¢ € C* () let us set

Lapp:= Y a"90:,00,0+ Y V'0sp, Lape=Lapp+ce.
i,5<d i<d
We shall also consider the divergence form operators
Lapp = Z awi(aijawj ®) + Z biawi‘P
i,j<d i<d
and the correspondingly defined operators L4 c.

1.4.1. Definition. We say that p satisfies the equation

(1.4.1) Lypept=0

in Q if a¥, b, c € L] (|u|) and one has

(1.4.2) [ Lasep@)utdn) =0 ¥ e CR(@),
Q

For a given measure v on {2 the equation

(1.4.3) Lypeh=v

is defined similarly as the identity / Lapcpdy = / pdv.
Q Q
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For ¢ = 0 we arrive at the equations L7 ,u = 0 and L7 ,u = v, the first of
which is called the stationary Fokker—Planck—Kolmogorov equation; when ¢ # 0 it
is called the Fokker—Planck—Kolmogorov equation with a potential.

Equation (1.4.1) can be written as the equality

6178I7 (a‘ij:u‘) - aza (bz:u‘) +cp=0
in the sense of generalized functions. If it is known in advance that the measure p
is given by a density o of class Wlf)cl (which is true under broad assumptions, as we
shall see below) and the functions a* are locally bounded and belong to Wlicl and
the functions d,,a" ¢ are integrable, then the integration by parts in (1.4.2) yields
the equation
92, (a7 0y, 0) — 0y, (0" — 0s,0")0) 4+ co =0,

also understood in the sense of generalized functions.

If the coefficients are smooth and it is known in advance that the measure p is
given by a smooth density o (which is true if the matrix A(z) is not degenerate),
then the double integration by parts in (1.4.2) yields the usual equation

aiﬂ'az,.azj o+ 28@(1”896]. 0— biaz,., 0— &Hbig +co=0.

Unlike the direct elliptic equations of the form L4 ; .u = 0, the density of a solution
of equation (1.4.1) even with Lipcshitzian coefficients and a nondegenerate matrix
A may fail to belong to the second class Wlf)f (simple examples are given below).

The equation

Ejzl,b,cﬂ =0

is defined similarly, but it requires additional assumptions about either a* or
(which will be made in appropriate places), because it is necessary to give meaning
to the integral of £4 4 . with respect to p. For example, if a7 € C1(Q2), then we
write 0, (a¥/ Oz, ) as 0y, a¥ Oz, P + a' 0,0z, and use the previous definition.

Let us give a precise definition of a solution of the elliptic equation
(1.4.4) Ly peit =0

for Borel measures p on €2, where L is an elliptic second order operator of divergence
form

Lo(x) := 0y, (0" (2)0s, () + b ()0, 0 ().
The interpretation of this equation is as usual: the functions a” and b* must be
integrable on every compact set in €2 with respect to the measure p and, for every
function ¢ € C§°(€2), we must have the equality

/ Loapepdp=0.
Q

However, the latter can be understood in one of the following two ways.

(I) One has o € WL} (), the functions a*/, d,,a™, and b’ are Borel measurable

and locally integrable with respect to |u|, and
(1.4.5) / [0 0,04, 0 + 03,07 0,0 + 17 0y, 0] dpu = 0.
Q

(IT) The measure p possesses a density ¢ in the class W, (€) such that the
functions a*d,, 0 and b%p are locally Lebesgue integrable and

(1.4.6) / [—a" 8y, 005, + b0y, 0] dz = 0.
Q
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Clearly, if the coefficients a'/ are locally Sobolev and the functions d,,a* o are
locally integrable, then (1.4.6) can be written as (1.4.5).

Throughout we deal with the case where the matrix A is symmetric and non-
negative, but this is not needed for the definition (unlike for most of the results).

Probability solutions are those that are probability measures. Integrable solu-
tions are those given by integrable densities (possibly signed).

In general, equation (1.4.1) can fail to have nonzero solutions in the class of
bounded measures (take = R, A = 1, b = 0, then the equation y” = 0 means
that the density of p is linear), it can have many solutions even in the class of
probability measures, and its solutions can be quite singular (e.g., if A = 0 and
also b = 0, then any measure is a solution). However, even in the generality under
consideration some positive information is available.

The one-dimensional case is much simpler than the multidimensional case.

1.4.2. Proposition. Let d = 1 and let Q be an interval (xzg,2z1). Suppose
that A>0 on Q. Then, any measure p satisfying the equation L, .po = v is
absolutely continuous with respect to Lebesque measure and has a density o of the
form o = po/A, where oy is absolutely continuous on every compact subinterval
in €.

If c=0 and b/A is locally Lebesgue integrable, xo € (x9,x1) is fized, then

(1.4.7) o(z) = A(x) " E(z) <01 + /: @gfg(t) dt),

_ exp/ A0 dt F(z) :=v((zg,2)).

IfA=1,¢=0,v=0, Q= (-1 1) and b is locally Lebesgue integrable on the
interval (—1,1), then

(1.4.8) o(z) = <k1 + ko /O ' exp<— /0 0 dt> ds) exp /0 oL

where k1 and ko are constants.

PrOOF. We have the identity

/(Aso” + by’ + cp) dp = / pdv Yy e C5°(Q),
Q Q
which can be written as the equality

(A" = (bp) +ep=v

in the sense of distributions. Hence the distributional derivative of (Au)" — by is a
locally bounded measure, i.e., (Au)’ —bu is a function of locally bounded variation.
This shows that the distributional derivative of Ay is a locally bounded measure
as well. Hence Ap is absolutely continuous and has a density gg. Therefore, u is
absolutely continuous. Now it is seen from our reasoning that the distributional de-
rivative of Ay is a locally integrable function, so that gy admits a locally absolutely
continuous version. In the case A = 1, ¢ = 0, v = 0, we arrive at the equation

" — (bp) = 0, whence p' — bu = ko for some constant k. If b is locally Lebesgue
integrable, this equation can be explicitly solved. The general case reduces to this
one by passing to the measure Apu. (I



20 1. STATIONARY FOKKER-PLANCK-KOLMOGOROV EQUATIONS

Even in this simplest one-dimensional case we observe that a solution p can
fail to have a continuous density if A is positive but not continuous. We actually
see that in the case of nondegenerate A (i.e., det A # 0) the regularity of solutions
is essentially the regularity of A. We shall see below that in higher dimensions the
picture is similar, although the proofs involve much deeper techniques. Another
simple observation is that without any assumptions of nondegeneracy on A we
obtain that the measure A-p is absolutely continuous. A highly nontrivial analogue
of this is true also in the multidimensional case.

Sometimes it is useful to construct an equation for which a given function is a
solution.

1.4.3. Example. In the one-dimensional case for any two smooth functions
f and g with everywhere nonzero Wronskian W = f’'g — f¢’ it is easy to write the
equation L7, .u = 0 with smooth coefficients for which they form a basis in the
space of solutions. To this end we equate the determinant of the matrix with the
rows (u,u',u”), (f, ', "), (9,9',9") to zero, which gives a second order equation
—Wu" + Au' + Bu = 0 satisfied by f and g. Dividing by —W we obtain the equation
u" — (A/W)u' — (B/W)u = 0, which can be written as L}, u =0, b = A/W,
¢ ="V — B/W. For nonzero c it is not always possible to find an explicit solution,
but a new degree of freedom appears, which leads to some effects impossible in the
case where ¢ = 0.

Let us consider one more instructive example.

1.4.4. Example. Let ¢ ¢ Wlicl (R%) and let 1 = odz. Then u satisfies the
equation Lj,p = 0 with

b:= @, where b(x) := 0 whenever p(x) = 0.
o

Indeed, |b| is locally |u|-integrable. For any ¢ € C§°(R?), by the integration by
parts formula we have

/[Asa + (b, V)| odr = /[—<Vs0, Vo) + (b,Vy)oldx =0

since bp = Vp almost everywhere due to the fact that Vo vanishes almost every-
where on the set {9 = 0} (see Exercise 1.8.19).

1.4.5. Definition. Let ¢ € Wlicl (R?). The mapping Vo/p, where we set by
definition Vo(z)/o(x) := 0 if o(z) = 0, is called the logarithmic gradient of the
measure u or of the density p.

In this example, we can even choose g to be infinitely differentiable, but b can be
quite singular with respect to Lebesgue measure. For instance, given a proper closed
subset Z C R?, we can find a probability density o € C(R%) with Z = {o = 0}; in
this way one can even obtain b that is not Lebesgue locally integrable on a closed
set of positive Lebesgue measure. The simplest example of a singularity is this:

(1.4.9) o(z) = 2% exp(—22/2)/V2r, b(zx) =z 42271

In the case of smooth coefficients and nondegenerate A all solutions are smooth.
This is a corollary of the following classical result (see Taylor [894, Chapter III],
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Treves [898, Chapter I)), which is often referred to as Weyl’s regularity theorem
for the equation

Lapep=r.

1.4.6. Theorem. Suppose that a', b, ¢ € C*(Q) and det A > 0. If p is a
distribution on Q such that L .p € C®(Q), then pn € C(Q).

Therefore, if a measure v on Q has an infinitely differentiable density, then
any measure p on S satisfying the equation L% , b = v possesses an infinitely
differentiable density.

The second assertion follows from the first one, since in the case of smooth
coefficients the equation L7, .0 = v can be written as the equality

02,05, (a7 ) — 0y, (W' 1) + cp = v
in the sense of distributions, which can be rewritten as
aij(‘?ziazju + (02, 0s; a N+ 25‘miaij81jp — (O, D)t — D O, 1+ cpp = v,
i.e., as L4 py,cott = v with some smooth coefficients by and cp.

Explicitly solvable equations are rather rare, although there are important cases
when they appear.

1.4.7. Example. Let p be the standard Gaussian measure on R, i.e., a prob-
ability measure with the standard Gaussian density

o(x) = (2m) =2 exp(—|z[*/2).
Its logarithmic gradient has an especially simple form:

Vo(z)

o(x)
According to the previous example, p satisfies the equation L*u = 0, where L is
the Ornstein—Uhlenbeck operator

Lp(z) = Ap(x) = (2, V()

already encountered above. This operator plays an important role in analysis,
probability theory, and the most diverse applications. We shall see below that any
bounded measure o on R? satisfying the equation L*c = 0 has the form o = ky,
where k is a constant. It is worth noting that the operator L has an eigenbasis
in L2(). For d = 1 an eigenbasis is formed by the Hermite-Chebyshev polynomials

-1 "
Hy=1, H,(t)= %61&2/2%(6{2/2), n > 0.

Here LH,, = —nH,,. For R? an eigenbasis is formed by the polynomials
Hpy . kg(T15 -y 2a) = Hi, (21) -+ Hyy(7a), ki 2 0.
Here
LHy, kg =—(k1 4+ +ka)Hg, .k,

In this case the operator L is obviously symmetric in L?(x) on the domain of
definition C§°(R?), but this is not always true, as one can see from the following
result.
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1.4.8. Proposition. Suppose that a nonnegative locally finite measure p with
a density o € Wlﬁ’cl (RY) satisfies the equation L%y = 0, where a € Wlﬁ’cl (R%),
bl € LY (R%), p > 2. Then the symmetry of the operator L4, on domain C§°(RY)

in L2(u), i.e., the identity

/ @LA,bd) dﬂ = / ¢LA,b<P d/J“a 2 77& € C(())o(Rd)a
R4 R4

is equivalent to the almost everywhere equality
d
AV = gby, by :=10b" — Z@z].a”.
j=1

For A =1 the symmetry is equivalent to the equality Vo = gb.

PROOF. Indeed, by the integration by parts formula the indicated identity is
equivalent to the identity

/d <<PV1/J - ¢V¢a Av@ - Qb0>QdCIJ = Oa
R L
which by the identity

/Rd (V(p1p), AV o — 0bg) dz =0

that follows from the equation turns out to be equivalent to the relation
/d ©(Vih, AV — obg) dz =0, ¢, € C°(RY).
R

The latter is equivalent to the equality
(Vp, AV o — obg) = 0 a.e. for every function ¢ € C5°(R%),

i.e., is the announced equality, since for v we can take a function that coincides with
the coordinate function z; on a given cube, which yields that (AVp)* = oby. (]

Note that the symmetry of the operator L4; on domain C§°(RY) in L2(p)
implies that L% ,u = 0 under the much weaker assumption that a,bt € LE (1),

loc
since for ¢ € C§°(RY) we can take ¢ € C§°(R?) in such a way that 1) = 1 on the
support of ¢.
We shall see below that under broad assumptions any solution of the equation
L% j ot = 0 has the same smoothness as the diffusion coefficient A. However, even
in the one-dimensional case it is easy to find an example where the smoothness of
the solution does not exceed that of A.

1.4.9. Example. Let us take a probability measure p with a smooth density
that satisfies the equation Lf, pu =0, e.g., let p be the standard Gaussian measure
and bp(x) = —z. If now g is any Borel function with 1 < g < 2, then the measure
g - 1 satisfies the equation L) ypv = 0 with A=g'Tand b= g 'by. In particular,
in this way we can obtain an example, where A and b are Holder continuous and
A is uniformly nondegenerate, but the density of u is not weakly differentiable and
its Holder order is not greater than that of A.
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1.5. Existence of densities

We now turn to conditions for the existence of densities of solutions. Suppose
that A = (a"j)f’j=1 is a Borel measurable mapping on an open set  C R? with
values in the space of nonnegative symmetric operators on R?. The main results
of this section assert that under broad assumptions any solution of the equation
L7 p .10 = 0 has a density on the set where det A > 0, and it is possible to estimate
certain LP-norms of the density.

For the proof we need the classical result following from the Riesz theorem and
asserting that every linear functional A defined on a linear subspace E in LP(\),

where A is a nonnegative o-finite measure and p € [1, 00), and satisfying the estimate
ACf) < C|fllzeny, fEE,

is given by means of some function g € LP/(P=1()) in the form

A(f)z/fgdk, fek.

In addition, we also need the following corollary of a very deep maximum
principle due to A.D. Aleksandrov.

1.5.1. Theorem. For every smooth positive function f on a uniformly convex
smooth domain Q) (the principal curvatures of 99 are separated from zero, e.g., ) is
a ball) there is a conver function z € C*() N C(Q) such that z|pq =0 and

aijami(p)‘mjz > d|det(a?)|Vef  on Q
for every monnegative symmetric matriz (o) and

sup |2(z)] < C(d, D[ fllLage-

PrROOF. Tt is known (see Gilbarg, Trudinger [409, Theorem 17.23]) that for
every smooth positive function f on a uniformly convex smooth domain (2 there
exists a convex solution z € C?(2) N C(Q) of the Dirichlet problem

(1.5.1) det(D?z) = f¢, 2| =0.
Then by A.D. Aleksandrov’s maximum principle (see [409, Theorem 9.1]) we have
sup 2(z)| < C(d, DIl oce-
If now a = (a%) is a nonnegative symmetric d x d-matrix, we have
a7 0,,0,,2 = tr (aD?z) > d| det adet(D?2)[Y? = d| det o/ f,

since tr (AB) > d|det(AB)|*/? for any nonnegative symmetric d x d-matrices, be-
cause tr (AB) = tr (VBAvB) and vV’ BAV/B is a nonnegative matrix. O

Here is one of the main results in this section.

1.5.2. Theorem. Suppose that the matriz A(z) is symmetric and nonnegative-
definite for every x. Let p be a locally finite Borel measure on Q (possibly signed)
such that a¥ € LL (Q,u), and for some C > 0 one has

loc
(1.5.2) /Qa”amiazjwdu < C(Sgp o] + sup IVel)

for all nonnegative ¢ € C§° (). Then the following assertions are true.
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(i) If p is nonnegative, then (det A) %y has a density in L{ (2, dz).

(ii) If A is locally Hélder continuous and det A > 0, then u has a density which
belongs to L, .(Q,dx) for every r € [1,d’).

loc

ProOOF. We shall start with case (ii) which is simpler. Let Uy be a ball with
compact closure in €2 and let ¢ € C§°(€2) be such that 0 < ¢ <1, (=1 on U and
the support of ¢ belongs to a ball U C 2. Let us consider the measure v = ( u. By
substituting ¢t in place of ¢ in (1.5.2), for every nonnegative smooth function
on (), we obtain

(1.5.3) / aijaziaxjw dv < Cy(sup [¢] + sup |V)),
U U U
where

C1=C+ (C+2d*sup||a” || 1 (7)) Sup IV¢T+ [la™ || 21w, Sup |02, 0z, €|
2,3

is independent of ¢. It is easily seen that (1.5.3) remains true for every nonnegative
Y € C?(U). By considering the function v + sup |1)|, we arrive at the estimate

/ a0y, 0y,1p dv
U

Now let r > d. As we noted in §1.2, for every f € C§°(U) there exists a function
u € C%(U) such that

(1.5.4)

< Calsup [9] +sup V) Vo) € C*(U).

aijﬁxiag;ju =f
on U and v = 0 on OU. Moreover, there exists a constant C; independent of f such
that

lullwrz@y < Col| fllLr@)-
By the Sobolev embedding theorem, we obtain

sup |Vu| + sup |u| < C3|| f]| L)
U U
Together with (1.5.4) this yields
(1.5.5) | tv<acilvw viecEw)
U

Hence v is absolutely continuous with v = gdx, g € L (U).

Let us now consider case (i). The above reasoning does not work in this case
even for bounded uniformly nondegenerate A, since the equation a% Op; Op,u = f
need not be solvable; for continuous A, the solution w of this equation is only in
W2 and not in C?, hence one cannot pass from C§°-functions to u in (1.5.4). In
order to overcome this difficulty, we need the assumption that u is nonnegative. As
above, by considering a suitable function ¢, we arrive at estimate (1.5.4) for the
measure v = (p on the open ball Ug,(z¢). Note that the support of the measure
v is contained in a ball Ug(xg) of radius R = Ry — 2r, where r > 0. In that case,
instead of solving the elliptic equation, we shall employ Theorem 1.5.1, according
to which, for every nonnegative continuous function f on R? vanishing outside
the closed ball Ug,(x0), there exists a nonnegative continuous concave function z
(the convex function from the theorem with the minus sign) on Ug,(zo) with the
following property:

—00,,0,,2 > | det(a™) M/ f
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in Ug, (7o) for every nonnegative matrix () and

sup 2 < N[ fllawn, (z0))-
Urg (zo
where N is independent of f and (a%). Let g be a fixed smooth probability density
on R whose support is contained in the unit ball centered at the origin. For any
locally integrable function v, we set

ve = vk g, ge(w) = Tg(e ).
Then, for every nonnegative matrix (/) and every ¢ € (0,7), one has the estimates
(1.5.6) —a"10,,0,, 2 (x) > |det(a)|V 4 f.(2),
(1.5.7) sup |ze| < N[ fellLawn, (o)) < NI lzewn, (z0))

Ur(zo

on Ury,(x0), where N is independent of f, a%, and e. Clearly, the functions z. are
smooth, nonnegative and concave on Ug.(x¢) if € < r. We observe that, for every
nonnegative continuously differentiable concave function w on Ug, (o), one has

Vw(z)| <r~t  sup  w(y) Yz € Ug(wo).
YEUR+r(20)

This estimate follows by considering the one-dimensional case. Together with
(1.5.4), (1.5.6) applied to o™ = a*(x) and (1.5.7), this yields the estimate

/\det(aij)|1/df6 dv < ’/a"ja@a@zg dv

SOINA 47" Yl Lty (w0))-

As in case (ii), we complete the proof. a

< Cp sup (|V25| + |Zs|>

Ur (o)

Notice that in assertion (ii) one cannot expect that the density of p is continuous
even for infinitely differentiable a*/, which is seen if one takes d = 1, Q = (-1, 1),
A=1and p(dr) = I 4oo) da.

We do not know whether assertion (i) remains true for signed measures.

1.5.3. Corollary. Let u be a locally finite (possibly signed) Borel measure
on Q and let a, b', c € Ll (9, p). Assume that

(1.5.8) / (Lapp +cp)dpu <0 for all nonnegative ¢ € C5°(Q).
Q

Then the following assertions are true.

(1) If p is nonnegative, then the locally finite measure (det A)
in LE (2, dz).

(ii) If A is locally Hélder continuous and det A > 0, then u has a density which
belongs to L, .(Q,dz) for every r € [1,d’).

In particular, the above statements are true if (1.4.1) holds.

1 has a density

PRrOOF. It suffices to note that, for every bounded open €y C Qy C €, one has

/ (00,0 + cp) dpt
Qo

< sup| V| / bl dlul + sup || / | dlul
Qo Qo Qo Qo

for every smooth function ¢ with support in Q. O
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In assertion (ii) of this corollary one cannot expect the density of i to be Holder
continuous, since for d = 1 and A = 1 one can take the measure p with density

exp/ b(t) dt
0

with a suitable function b (see Exercise 1.8.11).

The previous corollary has the following important generalization with the same
proof concerned with the nonhomogeneous equation L , .pu = v with a measure
on the right.

1.5.4. Corollary. Let p and v be two locally finite (possibly signed) Borel
measures on 0 and let a, b', ¢ € LL (O, p). Assume that

(1.5.9) / [LAJ,QD + cgo} dy = / wdv  for all nonnegative ¢ € C3°(Q).
Q Q

Then the following assertions are true.
(i) If p is nonnegative, then the locally finite measure (det A)'/ %y has a density
in LE (Q, dx).

(ii) If A is locally Hélder continuous and det A > 0, then u has a density which
belongs to LT _(Q,dx) for every r € [1,d').

loc

1.5.5. Remark. (i) Assertions (i) of Theorem 1.5.2, Corollary 1.5.3, and
Corollary 1.5.4 for nonnegative measures extend to the case when p is a o-finite
nonnegative Borel measure on ) (not necessarily locally bounded). Indeed, (1.5.2),
(1.5.8), and (1.5.9) make sense also for o-finite x provided that a™,b%,c € L{ _(Q, p).
One can find a probability measure g such that u = f ug, where f is a positive
Borel function. Let

agj = fa”, b(l) = fbl, Co ‘= fC, AO = (aéj)iﬁjgd, bo = (b%)lgd
Clearly, af biy,co € L (1o) and o satisfies the hypotheses of the above men-
tioned assertions with Ag, by, and c¢g in place of A, b, and ¢. Hence the mea-
sure (det Ag)"/po has a density 0 € L (Q,dzr). Since we have the equality
(det Ag)'/4 = f(det A)'/¢, this means that (det A)'/%y has the same density.

(ii) Assume that the hypotheses of Corollary 1.5.3(i) are fulfilled. Suppose that
the ball Ug, (x¢) of radius R; > 0 centered at a point zq is contained in 2. Then,
for every R < Ry and r < d’, there exists a number N depending only on Ry, R,7,d
such that the density p4 of (det A)Y/¢u satisfies the estimate

”QAHL"V(UR) < NHl + [b] + ‘C|||L1(UR17H).

In addition, for fixed d, the number N can be chosen as a locally bounded function
of Ry, R,r. This follows from the proof of Theorem 1.5.2.

(iii) Assume that the hypotheses of Corollary 1.5.3(ii) are fulfilled. Let Ug, (xo)
belong to Q. Then, for every R < R; and r < d’, there exists a number N depending
only on Ry, R,r.d, infy, detA, sup,; SUPgy, la¥|, and the Holder norm of A on
Ug, such that the density o of p satisfies the estimate

||Q||LT(UR) < NHl + ‘bl + |C‘HL1(UR17#).

In addition, for fixed d, the number N can be chosen as a locally bounded function
of the indicated quantities. This also follows from the proof of Theorem 1.5.2.
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Let us consider an elliptic operator
Lu = aijaxiamju + biaziu + cu,

where the coefficients ¢*, b* and ¢ are bounded Borel measurable functions on a
domain © C R?, the matrix A(z) = (a" (:v))1<l.j<d is symmetric and for some
positive constants A > 0 and v > 0 one has

ML A@@) <A Veeq.

Moreover, we assume that for every ball U(xzg,r) C Q we have

sup {r|b(x)| + 7"2|c(x)|} <AL
z€U(zo,r)

The following theorem was obtained in Bauman [94]. We say that a nonnegative
Borel measure p satisfies the inequality L*p < 0 in § if

/ Lodp <0 whenever ¢ € C5°(2),¢ > 0.
Q

1.5.6. Theorem. Suppose that U(xzg,r) C Q and 0 < o <y < 1. There exists
a constant C > 0 depending only on ~y, o, A, and d such that if a Borel measure p
18 a nonnegative solution of the inequality L*u < 0, then

1w(U(wo,~vr)) < Cu(U(zo,07)).

PRrROOF. The theorem follows if we prove that there exists a number 6 € (0, 1)
such that for all v € (6, 1) there holds the estimate

(U (zo,yr)) < Cu(U(zo,0r)),

where C' depends only on «, 6, A\, and d. Indeed, iterations of the above estimate
will imply that

1(U(zo,97)) < CFu(U(mo, 0%r /4%~ 1)).

By choosing k so that 8% < 07*~! we obtain the assertion of the theorem. Changing

variables we may assume that » =1 and xg = 0.
Set o(u) = exp(—u~t) if u > 0 and @(u) = 0 if u < 0. We have

Lo(1 = |2?) = —=¢'(1 = [o*) (2trA(2) + 2(b(@), 2))
— 4" (1 = [2){A(z)z, 2) + () p(1 - [a]*)
> (1= [al)(1 ~ o) ((A@)z, 2) (4 = 2(1 — [2f)
— (1= 222 (2t A(2) + 2(b(), 7)) + e(@)(1 - |2]2)*).
We can choose 6 € (0,1) such that
(A(z)z,z) (4 —2(1 — |z*)) — (1 = |=*)*(2trA(z) + 2(b(z), z))
+c(z)(1— |x\2)4 >Cy>0

for every x with 6 < |z| < 1. Here Cy depends only on A, 8, and d. We have Ly > 0
on U(0,1)\ U(0,8) and for every v € (0,1) we have Ly > Cy on U(0,7) \ U(0,0),
where C7 depends only on A, 6, v, and d. Note also that there exists a constant
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C3 > 0 depending only on A and d such that |Ly| < C2 on U(0,1). Since p > 0
and L*u < 0, we obtain

Cip(U(0,7)\ U(0,6)) </ Ly du </ Ly du
U(0,9)\U(0,0) U(0,1)\U(0,0)

< —/ L dp < Cop(U(0,0)).
U(0,0)

Hence p(U(0,7)) < (C1 4+ Co)u(U(0,6)). O

The following theorem is a type of reverse Holder’s inequality. It follows im-
mediately from Theorem 1.5.6 and Theorem 1.5.2.

1.5.7. Theorem. Suppose that u is a nonnegative solution of the inequality
L*uy <0 on Q. Lety > 1. Then p has a density o with respect to Lebesgue measure
and there exists a constant C > 0 depending only on X, v, and d such that for every
ball U(xg,r) with U(zg,yr) C 2, one has

(d—1)/d
( [ g dx) <o) [ pd
U(zo,r) U(zo,r)

The next interesting fact was discovered in Gehring [403].

1.5.8. Lemma. Let Q be an arbitrary cube in R% and let g be a nonnegative
function in L{ (R?) with ¢ > 1. Suppose that for almost all x € Q the inequality

loc
q
|U|_1/qua:<C(U|_1/ gdw)
U U

holds for every ball U centered at x. Then, there is a number € > 0, depending only
on q, C and d, such that g € LP(Q) for every p € [q,q + ¢€) and

) c . p/q
IM_/fW<———(®_/¢M)~
Q gt+te—p Q

1.5.9. Corollary. Let pu be a nonnegative solution of the inequality L*u < 0
on Q and let U be a ball with closure in Q). Then p has a density o with respect to
Lebesgue measure such that there is a number € > 0, depending only on A and U,
with the property that o € LP(U) for every p in the interval [1, d/(d—1)+ E).

Recall that a Borel measure p belongs to the Muckenhoupt class A, if for
every € > 0 there exists a § > 0 such that p(E) < ep(U) whenever U C € is a ball
and E C U is a Borel set with |E| < §|U]|.

1.5.10. Corollary. Let i be a nonnegative solution of the inequality L*pu < 0
on ). Let v > 1. Then there exists a constant C' > 0, depending only on X, ~y
and d, such that for every ball U(xg,r) with U(xg,yr) C Q and for every Borel set
E C U(xg,r) we have

1(E) (Bl \4
M(U(fvo,?“))S (lU(wo,T)l) ’

in particular, p belongs to Ass on every subdomain Q' with ' C Q.
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PRrROOF. Let g be a density of the measure p. Applying Holder’s inequality and
Theorem 1.5.7 we obtain

(d—1)/d
w(E) :/ Ipodz < |E|Y4 (/ o/ (d=1) dx)
U(xo,r) U(zo,r)

< C‘E|1/d‘U(x0a T)|71/d:u’(U(an ’I”)),
as required. 0

1.5.11. Remark. (i) According to Coifman, Fefferman [254, Theorem V]
and Muckenhoupt [728, Theorem 1], the last corollary implies that ¢ is in the
Muckenhoupt class A, for some p > 1 on every subset {2’ with Q' C Q, ie., there
exists a constant C7 > 0 such that

! ! -y g\
] odr 7] 0 dx < O,
U U

for every ball U C €', where C; depends only on A, d, and Q.
(ii) Moreover, for every € > 0 there exists a constant 8 such that, for every ball
U cC @, Lebesgue measure of the set

{yEU: 5|U|1/Ugd:l:<9(y)<ﬂl|[]1/UQdI}

is not less than (1 — ¢)|U|. This assertion may be interpreted as a generalized
Harnack principle.
(iii) There exist constants Cy > 0 and k > 1 depending only on A, d, and

such that
1/(kp) 1/p
</ Iw’”’gdx) <02(/ |W|pgdx>
o% Q

for every ¢ € C§°(§'). See Fabes, Kenig, Serapioni [347] for a proof.

1.6. Local properties of densities

We now proceed to the regularity results. Throughout this section we assume
that A(x) is symmetric and positive and A(x) is continuous in x. By the Sobolev
embedding theorem, the continuity assumption is automatically satisfied for some
version of A if a¥ € V[/f)"cl, where p > d. In Theorem 1.4.6 we have already
considered the case of smooth coefficients.

Let us consider the case where the coefficients are only Holder continuous. The
following result was proved in Sjogren [861].

1.6.1. Theorem. Suppose that the coefficients a, b*, ¢ are locally Hélder
continuous in  and det A > 0. Then any solution u of the equation L%, =0
has a locally Holder continuous density.

Note that the solutions in [861] were a priori locally integrable functions, but
by the above results the theorem remains true for measures. It would be interest-
ing to study the case where only the coefficients a* are Hélder continuous. The
continuity of all coefficients does not guarantee the Holder continuity of a solution
even if d =1 and A > 0. However, it is not clear whether densities of solutions are
continuous in the case where the coeflicients are just continuous and A is uniformly
elliptic. Without the requirement of uniform ellipticity, when A is just nondegen-
erate and continuous, one can construct a discontinuous probability solution on R¢
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with d > 1, using an example from Bauman [95] (which in turn employs a con-
struction from Modica, Mortola [720]). In this example on a disc U in the plane
a uniformly elliptic operator L4 with continuous A is such that there is a locally
unbounded integrable function ¢ > 0 on R? with L% (odz) = 0. Taking a diffeo-
morphism G: R? — U, G = (g%, g?) with a positive Jacobian, we obtain that the
measure g with the locally unbounded density o o G det DG satisfies the equation
L§ i = 0 with continuous coefficients, where @ = (q™F), ¢™F = aijazjgkazigm,
and bF = aijaxiam].gk.

We now proceed to the most difficult case where the diffusion coefficient is
somewhat better than Holder continuous, but is not smooth, and we want to have
some Sobolev regularity of densities of solutions. One of the reasons why this is
important is that, having established the Sobolev regularity of our solution, we can
rewrite the equation L7 , .pp = 0 for p as a classical equation for its density o in
the sense of weak solutions: indeed, integrating by parts, we find that

/ (90,00, + 0z, a7 0y 00 + b0y 00 + col dz =0 ¥ € C5(Q).
Q

The difference between the main idea of the proofs in this section and that of the
previous one is that now we verify that the solution determines a functional not
on LP, but on a negative Sobolev class, which gives the membership of the measure
in a positive Sobolev class.

1.6.2. Theorem. Letd > 2, p > d, 1 < g < oo, and Ry > 0. Suppose that
a € WPL(Ug,) and A > N, where A > 0. Then there exist numbers Ry > 0 and
Ny > 0 with the following properties. Let R < Ry and let p be a measure of finite
total variation on Ug such that for any ¢ € C3(Ug) := C*(Ur) N {u: u|ov, = 0}
we have the bound

(1.6.1)

/ a“am,;amjsadu\ < N|Vellzewn)
Ur

with a number N independent of p. Furthermore, assume one of the following:
a)p>d or
b) p=d>q and p€,-, L"(Ur), where we identify pu with its density.

Then u € Wg/Ap’l(UR) and

(1.6.2) < No.

HMHWSI/AP‘](UR)
In addition, the radius Ry can be taken such that it depends only on p,q,d, \, Ry,
||aij||Wp,1(URl), and the rate of decrease of |Va' ||y, as R — 0, and Ny depends
on the same quantities and N.

PrROOF. We break the proof into three cases. L
Caseq>p andq# d'. Take f = (f1,..., f¢) € C*(Ug) and solve the equation

a0y, 04,0 = O, f*

in Ur with zero boundary conditions. If a) holds, then p > d and A is Holder
continuous in Ugr and, by Holder space theory (see §1.2), there exists a unique
solution ¢ € CZ(UR) of our problem, which we can substitute into estimate (1.6.1).
If b) holds, then, since A is continuous, 9,,0,,¢ are summable to any power by
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LP-theory (see §1.2), and, owing to p € |J,-, L"(Ugr), we again can substitute ¢
into inequality (1.6.1). By Lemma 1.2.5 and (1.6.1) we have

O, [* pda
Ur

< N0, llwe-1n)»

which implies our claim. We emphasize that we have established the inclusion of
i to Wg/’l(UR), not just to W7 1(Ug), since the dual to W%~1(Ug) is the former
smaller space.

Case ¢ = d’ > p’. In this case by our assumptions we have p > d, so that
Lemma 1.2.5 is still applicable.

Casel < g < p' < d'. Asis easy to see, this is the only remaining case. Observe
that, of course, (1.6.1) is satisfied with r = (p’ 4+ d’)/2 in place of ¢ and, by the first
case, we have 1 € W /’1(U r) if R is sufficiently small. Since r’ > d, by the Sobolev
embedding theorem, p is bounded in Ug. Furthermore, we note that (1.6.1) means
that

o~ | 0900, ppdx
Ur
is a linear functional defined on a dense subspace CZ(Ug) of Wg’l (Ur) and bounded
in the W' (Ug)-norm. By the duality between W' (Ug) and W41 (Ug), we have
that
/ a0y, 00, ppdr = | foda,
Ur Ur

where f € W'=Y (Ug) ¢ W»~'(Ug). Thus, p is a generalized solution of the
equation

Here 0,,a% p € LP(Ug), since u is bounded, so that g € W?~1(Ug). Since u belongs

to Wor/’l(UR) and ' > d > 2, we conclude that p € W' (Ug) by Corollary 1.2.4,
which is applicable, since p > d. O

1.6.3. Remark. The proof of this theorem actually shows that if p has com-
pact support in Ug, and (1.6.1) holds for all ¢ € C°(Ug,), then u € W P (Ug)
for some R < Ry,. Moreover, even without the assumption of compactness of

support, one can show that yu € VVI%ICAP ’I(UR), but this requires some extra work
(Exercise 1.8.16).

This theorem yields at once a certain low regularity of solutions to our elliptic
equations.

1.6.4. Corollary. Suppose thatp > d > 2, a¥ € Wlﬁ’cl (), det A >0, and u
satisfies the equation Ly =0, where b € Ly (1) for some r > 1. Then p has a

loc

density in the class VVﬁcl(Q) for each o < dr/(dr —r+1).

PROOF. Let us take n € C§°(2) with support in a ball U C Q and 0 < 7 < 1.
Consider the measure pg = 7 - p. We know that p has a density in Lf (2) with

loc

any s < d/(d — 1), which will be denoted also by u. For every ¢ € C§°(U) we have

10" 03,05, = Lap,c(np) = 00" 0y, 05,10 — 20" 8,00y, — pb' Dy 1) = 'Oy, 0 — €1 p.
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Let ¢ = o'. By Hélder’s inequality, the integral of nbd,,¢ with respect to u is
estimated by

ro)

(r—a)/(
Lrw el s @) ’

Vol s lInbull Loy < IVellLa)lndl
where s = (ra —a)/(r —a) < d(d — 1), since o < dr/(dr —r + 1), so ||u| s is
finite. The integrals of the remaining terms are estimated similarly. In particular,
the integral of ncyp is estimated by |[¢|oc|[n¢]|L1 () and the norm [|¢||o is estimated
by C||V| reuy, since ¢ > d due to the inequality dr/(dr —r 4 1) < d/(d — 1),
which is readily verified. Therefore,

/ 00,,0,, 0 dpo < C(n, A,b, )|V,
U

Hence np € W' ’I(U ), which yields our assertion. |

More can be obtained if b is better integrable.
1.6.5. Theorem. Let = pdx, o € L. (Q,dzx), a” € WPH(Q), where p > d,

loc loc

r € (p',00). Suppose that the mapping A~' is locally bounded and we are given
functions

BelLl (Qdr)+LP (Qp) and ~e LPYPTD(Q dz)+ L2YPTD(qQ p)

loc loc loc loc

such that for every ¢ € C3°(§2) we have
/ 0" (2)0, 0, (@) p(da)| < / (le@) ()] + V()| |B)]) |ul(de).
Q Q

Then o € WPH(Q).

loc

PROOF. Let vy =y +72, 71 € Lpd/(erd)(Q7 dr) and 3 € Lpd/(ﬁd)(ﬂ, w). Let

loc loc

also 8 = 1 + B2, where 31 € LY. (Q,dz) and B2 € LY. (Q, p).

loc loc
Note that we can assume that r # p’d/(d — p’), since otherwise we could just
slightly decrease the number r. Since r > p’, we have pr > p + r. Then

S T )
pr—p—r_ " p+r

According to (1.1.1), 10 € Lf;C(Q) provided 1 € LY .
B2 € LY (2, 1), since

loc

> 1.

q:

(©). The same is true for

|52|q’|g|q’ _ |52|pr/(p+r)|Q|T/(p+r)‘g‘(pr—r)/(p-irr)’

where | By [P/ (PF7) | o7/ (P+7) € L5 (Q) and || =)/ P+7) € ¥ (Q) with the number
s=(p+r)/r
Since r # p'd/(d — p'), we have ¢ # d. If ¢ > d, then r > p'd/(d — p’) and for
every ball Ur with Ur C 2 we have by Hdélder’s inequality
[vellrwn) < ||’71HLPd/(P+d>(UR)”Q”Lp’d/(d—p’)(UR) + 12l @wr ) -
Let ¢ < d. Define k by kdq'/(d + ¢') = r, which gives
K'dq  pd
d+q p+d
because (d+¢')/(dq") = 1/r+1/p+1/d due to 1/¢' = 1/r+1/p. Hence by Holder’s
inequality with the exponents ¥’ and k we obtain

||79||qu’/<d+q’)(UR) < ||71||Lpd/(p+d>(UR)||QHLT(UR) + H“Y2||Lpd/<p+d>(UR,m\)||QHLS(UR)a
where s =r(1 — (d+¢')/d¢’) < r.
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Observe that for every number R > 0 such that Ur := Ug(zo) C 2, whenever
n € C$°(Ug) and ¢ € CZ(Ug), one has

/ 0" 0,05, (10) der| < / 0" 9;,00, (pm) o de
Ugr Ur
(1.6.3)
+| [ avon0.nteords| +2 [ 14 1Val[llel do
Ugr Ur

<N /U (Il + IV DBl d < NallBell . IVl Loy = NallVel Laquny:
R

where the constants Ny, Ny, and N3 are independent of ¢. The last inequality
above is due to the estimate |[¢||pas/@-0 (@, < NI|V@lLawy) if ¢ < d and the
estimate ||| L,y < NVl Lawy) if ¢ > d with some constant N. It follows by
Theorem 1.6.2 that np € Wg//\p’l(UR) if R is small enough, and, since we can take
any point as z¢ and ¢’ < p, we have

(1.6.4) e WL ().

loc

Moreover, if ¢ < d, then by the Sobolev embedding ¢ € L} (©2) with
d

=qd/(d—q") = __pre .

T1 q /( Q) (p—l—r)d—p?“

The inequality ¢’ < d is equivalent to r < pd/(p — d). Thus, on the interval

(p/(p—1),pd/(p — d))
we obtain a mapping T': r — r; with the property that if o € L] (), then we
have o € L1 (). It is easy to see that
71 pd pd d
v pd—r(p—d) = = - Pp—d) o
where the first inequality is due to pr > p + r and the second one is due to p > d.
Hence after finitely many applications of T' to the given number r we will come to

s € (p/(p—1),pd/(p— d))
such that t = T'(s) > pd/(p—d) and u € L*(Ug). Actually, without loss of generality
we may assume that ¢ > pd/(p — d), since otherwise we could just slightly decrease
the initial point 7 (and increase the number of iterations of 7T'). This shows that
we could assume from the very beginning that r» > pd/(p — d) that is ¢/ > d. In
that case (1.6.4) implies that the function p is locally bounded, which shows that
(1.6.3) is true with ¢’ = p. Now it only remains to apply again Theorem 1.6.2. O

> 1,

1.6.6. Remark. The condition on the density of y in Theorem 1.6.5 can be
replaced by the condition that 3,v € L{ (€, ). This follows by Theorem 1.5.2.

1.6.7. Corollary. Let pu be a locally finite Borel measure on € satisfying the
equation L , = 0. Let A~ be locally bounded in Q with a* € WPHQ), where
p > d, and let either

(i) b € LD, (2, dz), c € LI/ "7 (Q, du)
or

(i) b* € L}

loc
1s locally Holder continuous.

(Q ), ce v/ p+d)(Q ). Then p has a density in WP

loc loc

(Q) that
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ProoF. It suffices to take 8 = |b|, v = |c| and apply Theorem 1.6.5. |

1.6.8. Corollary. Let pu be a locally finite Borel measure on Ug. Suppose
that the mapping A~' is locally bounded on Ur with a¥ € V[/l’(’)’cl(UR), where p > d,
Op,a € LY (), and b, c € LY (u). Suppose that

loc loc

/ [aij(?mi@zjgo—kaziaij@mj@—i—biamicp—kcgo dup=0 VYeeCiUg).
Ur

Then p has a density in Wp’l(UR) that is locally Holder continuous.

loc

Corollary 1.6.7 can be generalized as follows.

1.6.9. Corollary. Let p > d, let a¥ € Wlﬁ’cl(Q), b, fi, ce LY (Q), and let
A=Y be locally bounded in Q. Assume that p is a locally finite Borel measure on §2

such that b*, ¢ € L _(Q, 1) and, for every function p € C§°(S2), one has

loc
[ [a90501, 6+ ¥0r0+ e du= [ £0,000
Q Q

Then 1 has a density in WP ().

loc

It is easily seen that in Corollary 1.6.7 one cannot omit the hypotheses that
A~1 is locally bounded and a% € Wlﬁ’cl . Indeed, if A and b vanish at a point
T, then Dirac’s measure at zg satisfies our elliptic equation. In particular, if it
is not given in advance that p is absolutely continuous, then one cannot take an
arbitrary Lebesgue version of A. We have already seen in Example 1.4.9 that a
solution may fail to be more regular than A. Also, the condition p > d is essential
for the membership of 1 in a Sobolev class even if A =T (see the example below).
However, if u is a probability measure on R?, then the condition |b| € L?(x) implies
that 1 = odr with o € WHL(R?) and |Vo|?/0 € L' (RY) (see §3.1).

1.6.10. Example. Let d > 3 and

L*F = AF — div (Fb) — F = AF 4 ad,,(z|x| ?F) — F,
where a = d — 3 and
b(z) = —azlz|~* = V(jz|7*) /x|~
Then the function F(z) = (¢" —e ")r~(4=2) r = |z, is locally Lebesgue integrable
and L*F = 0 in the sense of distributions, but F' does not belong to leocl (R).
Here |b| € L (R?) for all € > 0. In a similar way, if the term —F is omitted in

loc
the equation above, then the function F(x) = r~(4=3) has the same properties.

PROOF. Observe that 0, F', 0,0, F are locally Lebesgue integrable. Hence
the equation L*F = 0 follows easily from the equation

(dfiJra) d72f—f:0

fita
on (0,00), which is satisfied for the function f(r) = (¢" — e ")r=(@=2) Tt re-
mains to note that F, VF, and AF are locally Lebesgue integrable, since f(r)rd=1,
f'(r)yrd=1, and f”(r)r?=! are locally bounded, but VF is not Lebesgue square-
integrable at the origin. If d > 6, then F' is also not Lebesgue square-integrable at
the origin. In the case without the term —F in the equation similar calculations
show that F(z) = r—(¢=3) has the same properties. O

f// +

r2
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1.7. Regularity of solutions to divergence type equations

Here we present several important results related to divergence form equations.
First we consider the equation

(1.7.1) 0w, (0" 0y,u) = 0.

Suppose that A; - T < A(z) < Ay - 1. What we call its solution can be defined in
different ways depending on the properties of the coefficients a™/ (see §1.4). If the
functions ¥ are merely measurable and locally bounded, then we require that the
solution must satisfy the inclusion u € T/Vlicl and the identity

/ a7 0,,00,udr =0 Ve C&°(RY).
Rd

In this case E. De Giorgi (see De Giorgi [286]) showed that any solution in W} is
locally Holder continuous. J. Serrin (see Serrin [842]) constructed an example show-
ing that the membership in WIZZ)’Cl with p < 2 does not ensure the local boundedness
of a solution, and his conjecture that in the case of Holder continuous coefficients
any solution in Wlf)cl belongs automatically to Wlicl was proved by H. Brezis (see
Brezis [207], Ancona [48]), even under somewhat weaker assumptions: the solution
must belong to the class of functions of bounded variation and the coefficients must
be Dini continuous. In addition, in the case of merely continuous a*/, Brezis proved
that any solution in VVlf)C1 with some p > 1 belongs to all Wl%’cl with ¢ < co. How-
ever, in Jin, Maz’ya, Van Schaftingen [492] an example was constructed showing
that for p = 1 this is not true.

Let now all functions a/ be locally Lipschitzian. Then equation (1.7.1) can
be written as L7 ,u = 0 with b= 2?21 dz,a", hence a priori solutions from Li
are admissible. In this situation, in Zhang, Bao [955] the conjecture of Brezis was
proved that all solutions belong to all classes Wl‘f)’f with ¢ < oo; the problem was

to prove the inclusion in VVlic1 , then the classical results increase the regularity.

Let us consider a general divergence form equation. Set
(1.7.2) Lu = 8y, (a"0,,u — b'u) + B0y, u+ cu,

where functions a*, b, 3° and ¢ are measurable on a bounded open set  C R%.
Suppose that

)\11<A(£L’)<>\QI, )\1,)\2>0,

g=|c + Zle [la'[? + |b'[?] e L*(Q), fe L(Q), g" € L**(Q), s > d/2. We shall say
that a function u € W2 () satisfies the equation

Lu = f+ divg

if we have the equality

/gi(AVu,V@ dz +u(b, V) + (3, Vu)p + cugo} dxz/g[(g,Vgo) - fo] dx

for every function ¢ € C§° (). For such solutions the following important result of
Trudinger [904] holds (its first assertion was proved already in the first edition of
the book Ladyzhenskaya, Ural’tseva [577, Theorem 14.1]).
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1.7.1. Theorem. Any solution u has a locally Hélder continuous version and
for every ball Ur(z) in Q and r < R one has the inequality

sup [u(x) — u(y)| < Cor®( sup [uf + || fll L= (@) + max ||g°[| 2+ (@)
z,y€U,(z) Ur(z) v

where the numbers Cy and o > 0 depend only on d, s, R, A\, A2, ||g|
and g =0 and u > 0, then u satisfies Harnack’s inequality

Loy If f=0

sup u(z) < Cy inf w(z),
z€U,(z) z€Ur(2)

where the number Cy depends only on the same quantities as Cf.
For solutions of the equation L , .o = 0 we obtain the following.

1.7.2. Corollary. Let pu be a nonnegative locally finite Borel measure on a
domain Q in RY satisfying the equation Ly et =0. Let A1 be locally bounded

in Q with a¥ € VV{;;(Q), where p > d, and let b' € L (Q,dx), c € LfO/CQ(Q,da:).
Then the continuous density o of u has the following property: for every compact

set K contained in a connected open set U with compact closure in ), one has

sup o < C'inf g,
K K

where the number C depends only on the quantities ||a™ ||y o107y, bl ey, el Lo,
infy det A, and K. In particular, o does not vanish in U if it is not identically zero
i U.

The dependence of C' on the indicated quantities will be studied in Chapter 3.
The assumption that b* € LY (Q,dz) in Theorem 1.7.2 cannot be replaced by
the alternative assumption from Corollary 1.6.7 that b* € LY (Q, ). Indeed, it
suffices to take b = Vp/o such that g is a probability density which has zeros,
but [b| € LP(u) (for example, we can take o which behaves like exp(—z~2) in a
neighborhood of the origin).

1.7.3. Proposition. Suppose that the hypotheses of the previous corollary are
fulfilled and Q is connected. Let p be some positive measure on ) satisfying the
equation L7 , .pv = 0. Then, any other solution pio can be written as po = fu,

where f € WE2(Q).

loc

PROOF. Suppose first that d > 1. Then p > 2. We know that p and pg
have continuous densities ¢ and gg, respectively, in the class VVIIC’)C1 (Q) and that o

has no zeros in 2. Set f = oo/0. Then po = f-p and f € VVII;CI(Q) We have

at = Z?Zl Oy,a" € LY, (). Set a := (a’). Let us verify that f satisfies the elliptic
equation

(1.7.3) a" 08,,0x, f + (V f,20a 4+ 2AV 0 — gb) =0

in the sense of weak solutions in the class Wlﬁ’cl (), i.e., in the sense of the identity

/ [—90s,(a" 0)8y, [ — (0AV [, V) + (V f,20a + 2AV 0 — 0b)p] dz =0
Q

for all p € C§°(£2). This will yield the desired inclusion f € VVIIZ)CQ(Q), since we
have pa* € Wp’l(Q), oA is nondegenerate, ag, bo, co € LP (Q). In order to

loc loc
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establish equality (1.7.3) we observe that the equality L% , .po = L7, .4 = 0 and
the integration by parts formula give the identities

(1.7.4) / (=04, (a7 0f)0s, 0 + (fob, Vo) + cofig] da = 0,

(1.7.5) /[—8@ (a" 0)8y, 0 + (0b, Vo) + cop] dz = 0

for all p € C§°(2). Since a, o, f € V[/'f;’cl () and p > 2, it follows that equality
(1.7.5) remains true for all functions ¢ of the form ¢ = f with ¢ € C§°(€2). This
yields the identity

/ (02, (0" 0) fOu, 0 — O, (0™ 0) 00z, f + (0b, [V @) + (0b, oV f) + cofep] dx =0

for all ¢ € C§°(€2). Subtracting this identity from (1.7.4) and differentiating the
products by the Leibniz formula we arrive at (1.7.3). In the case d = 1 this reasoning
does not apply if p < 2, but in this case a simple direct proof works: we have
(Afo) = fob+1 and (Ap)’ = bo+ k, where 1) is the indefinite integral of c¢fo and
k is constant. Then f' = (1) — kf)(Ap)~ . O

In the rest of this section we discuss a priori estimates of solutions on a bounded
domain Q C R?, which will play an important role in the proofs of the theorems on
existence and regularity of solutions. The simplest a priori estimate is obtained by
substituting in the identity defining the equation Lu = f + divg the function up,
where the function ¢ € C§°(f2) equals 1 on €’ and Q' C Q. Suppose for simplicity
that b= 38 =c=0and f,g' € L?(Q). Then we immediately obtain

lullwz1 oy < C(llullr2@) + 1 f Iz + l9llL2@))-

The next result generalizes this estimate to the case of the operator £ of the form
(1.7.2) with all coefficients and the space WP

For functions on  we shall write that a® € VMO if a¥ extends to all of R? as
a function in VMO. We recall that the membership of a function @/ in the class
VMO is expressed in terms of a certain function w denoted below by the symbol w4
(see §1.2). This condition is weaker than the uniform continuity. In the case of
uniformly continuous coefficients we can take for w4 the modulus of continuity. For
Holder continuous coefficients, w4 can be easily expressed in terms of their Holder
norms.

Suppose that the coefficients a'/, b, 8 and c satisfy the following conditions with
some numbers Ay, Ay > 0:

a9 eVMO, a9 =a’', N\ T< A(z) < Ag - 1,

b, B e LYQ), ce LY?(Q) if 2 < g < d,

b, B e L3(Q), ce L¥/?(Q) with some s>d if 2 < ¢ = d,
bi, Bie LI(Q), ce L/ @+ (Q) if ¢ > d.

As above, let U(z,r) denote the ball of radius r centered at  and let |U(x,r)]|
be its volume.
For v > 1,r > 0 and n € L7(Q) we set

1/~
©,.4(r) = sup ( [ wwr dy) |
z€Q\JU (z,r)NQ

(1.7.6)
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We recall Young’s inequality. If x > 0, y > 0, ¢ >0, > 0, v > 0, and

51 4+~71 =1, then
20

(1.7.7) Y < &5 +e

1.7.4. Theorem. Suppose that the coefficients of the operator L satisfy con-
ditions (1.7.6) and g > 2. Let g € Li(QY), f € LP(Q), where p = dq/(d + q) if
q#dandp>d/2if g=d. If a function u € WT1(Q) is a solution to the equation
Lu = f+divg on Q, then for every open set Q' with compact closure in Q we have
the estimate

Y
1Y

ullwar @y < C(llullpr@) + l9llLa@) + 1 fllr @),

where the constant C depends only on ,9',d, A1, X\2,q, wa and on the rate of
convergence of the quantities ©qy(r), ©a,5(7), Od/2,.(r) to zero as r — 0 in case
2 < ¢ < d and on the number s and the norms ||b%| L=, ||8||Ls, |lcllper2 in case
q=d, and, finally, on the norms |[b'|| e, [|6'||z, . ||l pae/ @+ in case g > d.

PrOOF. Let U=U(a,r) be a ball with closure in Q@ and 0 < r < 1 and let a
function ¢ in C§°(U) be such that 0<{<1, {(x) > 0 in U and ¢(z) = 1 on the
twice smaller ball U(a,r/2), and also

J(s) :=sup [V((2)|¢(2) ™" + sup |0, 0, ((z)|¢(x) ™* <00, 0<s <1
xr 2,7,
These conditions can be easily ensured by taking ((z) = ¥(|z|/r), ¥ € C§°(R),
0<¢ <L) =0iffyl >1,¢(y) >0if |yl <1, P(y) = 11if [y] < 1/2 and
P(y) = exp[(y2 — 1)*1] near the points —1 and 1. We shall use as a cut-off function
only this (.

1. We first prove the theorem for ¢ = 2. To this end, we shall estimate the
norm [[u¢||y21 (). Substituting in the identity defining the equation Lu = f+div g
the function ¢ = u(? and integrating, we have

/ [aijua;j uaziCQ dr + 2aijumj UCCJCL + blumlugq + QbZUQCmC
Q
+ g'ue,C + 29"uCl, + Cugul® + WP+ fu?] de = 0.
Using inequality (1.7.7) with o = § = 2 and a sufficiently small € > 0 and the first
condition in (1.7.6), we find that
ICVullze < Cr(lluvellze + [lbuclZe + | Buc]Z:

(1.7.8) + VIelu¢ iz + I9¢lze + 1l fuc®||e),

where Cy = C1(d, m, M). Let us estimate the summands in the right-hand side of
this inequality separately. Set t = d if d > 2 and t = (s +2)/2 if d = 2. It is clear
that 2 < ¢ < s if n = d. In order to estimate |[nu¢||z, where n equals b, ¢ or \/]h],
we apply Holder’s inequality with the exponent ¢/2 and the Sobolev embedding
W2 ¢ L2/(=2) We have

(1.7.9) Inucllz < lInllelluclize -2y < C(d; t)[[nlle]lud]

where [[7]ly = Oay(r) if t = d, [[nlle < |U(a,r)"""*|In]ls if 2 <t < s. Applying
Hélder’s inequality with the exponents p, p’ = p(p — 1)~1, where p = 2d(d + 2)~*

2,1
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ifd>2and p>1ifd=2 inequality (1.7.7) with v = § = 2 and the Sobolev
embedding W' C Lp/7 we obtain
1Fuc? s < IfClpllucly < Cd, p)IFCIpllug]iz
< fluclzy +e72C(d )| £CI -

Let us estimate |[uV(| 2. Let I =4(d+2)"'ifd>2and 0 <l < 1ifd=2. By
the Sobolev embedding theorem W2 ¢ L(2-D/0-D _ Applying Hélder’s inequality,
we arrive at the inequalities

1/2
hmmz|w@W%@””ww<Ja4m(/lemwﬁ
U

<=2l NG5 gy < (1= 1/2)C 0Dl fuc 5577
Young’s inequality (1.7.7) with o = 2/1 and 8 =2/(2 — 1) gives
[u¥V¢ll2 < eflugllzg +e/E0C(d, D ull -
According to estimate (1.7.9) with n = 1, we have
[l p2(ary) < Cd, )T (@, )Y [ug]2,1-

Substituting the obtained estimates in (1.7.8) and taking into account that by the
Leibniz formula

[ucll2,1 < JuVCll2 + ICVull2 + [luc]l2,
we find that

[ugllw2wy < Coe™ (luller@wy + gl 2wy + I fllze @)
+02(Hb||Lt(U) + 18Il Lty + ||C\|Lt/2(U +1U(a, )V + e) [ugllw= (v
where Cy = C3(d, p,t,m, M). Choosing r > 0 and € > 0 such that

1
O (10024 0y + el ey + DY gy + U@ €) < 5
we arrive at the estimate |[uC[l21 < 2C2e™([Jully + [lgll2 + || f]lp). By using a
smooth partition of unity associated with a finite covering of the domain Q' by
balls of radius r with closure in §2, we obtain the required estimate.

2. Let us consider the case 2 < g < d. As above, we start with an estimate
of the quantity [|uC|lywa1(ry. We may assume that A is extended to the whole
space R? with preservation of all conditions. By Theorem 1.2.1, for a sufficiently
large number A=A(d, ¢, m, M,w,) >0 there is a number N=N(d,q, m, M,ws)>1
such that for every function w € W% (R?) with compact support the generalized
function Aw = 8,, (a"9,,w) — Aw satisfies the inequality

(1710) ||w||Wq,l(Rd) < N”AU)”Wq,fl(Rd).
The function w = (u satisfies the equation
(1.7.11)  Aw = —A(u+ a7 8,,(0p,u + Oy, (" udy, ¢) — (Oy, (b'w)
+ 8105, uC + cu — (0 g" + fC.

According to (1.7.10) it suffices to estimate the norm of the right-hand side in
W%=Y(U) through the parameters indicated in the theorem. Let us rewrite the
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right-hand side of the last equality in the following form convenient for our later
use:

(1.7.12) Aw = 0,, (aijuc“)mj{ —biu¢ — ¢'¢) — Mu + aijé‘micazju

+ V' uB,y, ¢ + B0y, (u) — B'uda, ¢ + cul + g'05, ¢ + fC.
We recall that ||0,,7"]q,—1 < |n]lq for every vector function € LY and by the
embedding theorem we have LP C W% =1 if p = dq(d + q)~!. Therefore, the norm
of the right-hand side is estimated by
(1.7.13)  [laud,Cllq + [[6"uCllq + [lg°¢llq + C(d, p) [lICull

+ 1107 02, C0z, ullp + 10w Cllp + 1180, (uC)lp + [| 8 10z, Clp
+ 1hudllp + (19 0z, Cllp + 1 £<I1]

where C'= C(d, p) is the constant from the embedding theorem. We observe that

la7ude,Clly < MIuVClys lg'0u,Cly < IVCIalgle

Applying Holder’s inequality with the exponents d/q, d/(d — ¢) and the exponents
(d+q)/q, (d+ q)/d, we obtain

16 ully + C(d, p) [[16*udz €l + llc"Ba, (uC)lp + 115 udz, ¢l ]
< C(d,q,p)[(lIlla + llella)llucllq,s + (Iblla + 18lla)[u V]

Hoélder’s inequality with the exponents (d + ¢)/2q, (d+ ¢)/(d — ¢) and the Sobolev
embedding theorem give

NCull, + lleudlly < O(d, @) (AU, r) P2/ + el gy ) ucllg,

It remains to estimate ||[uV(]||Lqa. Let I = ¢*/(dg+q—d). We observe that 0 < 1 < 1
and (¢ —1)/(1 —1) =dgq/(d — q). By the Sobolev embedding theorem and Holder’s

inequality we have

1/q
mvmq=n&*muc4“Mvausaml—U@(/VMW%uvmo
U
l —1 l —
< (1= gl uclE=)E < T (1= 1/g)C(d, L g) ully 9| Cull 507,
According to Young’s inequality (1.7.7) with o = ¢/, 8 = q/(q — ), we obtain
[uV¢llg < ellucllgr + C(d,1, g, &) [[ullx.
Similarly to the case ¢ = 2 we pick € > 0 and r > 0 sufficiently small. We obtain
[uCllgr < Cs(IVuVElly + llulls + llgllg + 1£11)-
By using a partition of unity we arrive at the estimate
lullwar oy < Calllullwrr@ry + llullLi@) + lgllze@) + [ L))

for any domains Q' C Q" c Q with @/ € Q”, Q” c Q. The constant C; depends
only on ©/,Q" Q and the quantities indicated in the hypotheses of the theorem.
Let us set

Pk = dpr—1(d + pr—1), po =4q, p1 =Dp.
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Since pg/pr—1 < d/(d+ 1), we can find a natural number K such that px < 2. Let
{4 Yo<k<x be a family of open sets such that Q' C Q C Q and Qi C Qx41. Then,
as shown above, whenever 0 < k < K, we have the estimate

(L7.14) Jullyre o,
< CR) (lullwrrr o) + llullr@) + lgllzaw) + [ fllzr@))-

Since py < 2 for k = K, we estimate |[ullyyrx.1 via |Jul|p21 and use the already
established estimate for the case ¢ = 2. Repeatedly applying inequality (1.7.14)
for each k, in finitely many steps we obtain the required estimate for ||u(|yyso.1 (),
which completes the proof in the case 2 < ¢ < d.

Let us consider the case ¢ > d. As in the previous case, the norm of the right-
hand side in equality (1.7.11) is estimated by (1.7.13). Applying condition (1.7.6)
and Holder’s inequality with the exponents (d 4 ¢)/q and (d + ¢)/d, we obtain the
following inequalities:

la*7udz,Cllg + C(d, p) [IIb" 6z Cllp + 150z, ]
< C(d, p)(M + [[blla + [[Blla) [uVCllq
< Cd,p) (M +1U(a,r)| = blly + U (a,7) [T~ D/ 9 8]l ) |V C -
Let us estimate ||[uV(]|4. Since ¢ > d, by the Sobolev embedding theorem

[u€]l o (U (ary) < C(ny p)r ™D ul |l wa 17 (ar)-
Then

1/q
Ve, = ( [t vcwcl-qczx)
—1 1 15
< C(d,q)I (g = 1)/a) 1l ullt/? < ellullgn + e C(d, q)|ullr.
Applying again the Sobolev embedding theorem, we obtain

16wl + C(d, p) [Mucllp + lleug]l,]
< O(d, g, p)r' =1L+ |lbllg + lellp) g1

It remains to observe that

18°0, (uO)llp < 1U (@, )= 418l lullg1s 119°0a:Cllp < lgllaI VEa-

Similarly to the previous cases we pick € > 0 and r > 0 sufficiently small and obtain
that

lucllq,s < Cs(IVuVCllp + llull + llgllg + 1£1lp)-
By using a partition of unity, we arrive at the estimate

lullwai(ay < C6(||UHWP~1(Q“) +llullr) + ll9lla) + ”fHLP(Q))
for any domains Q' C Q" C Q with O € Q”, Q7 c Q. Note that p < d and we can

use the previous step for estimating the norm ||u||,1. The proof in the case ¢ = d
is similar. 0

It is clear that the norm ||ul|z1(q) can be replaced (by Hélder’s inequality) with
the norm ||ul| za(q)-

The next assertion describes the dependence of the constant from the theorem
on the diameter of the domain in the simplest case where b= =0and ¢ = f = 0.
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1.7.5. Corollary. Let Q@ = U(z, R), where R < 1, and let u € Wl (U(z, R))

loc
satisfy the equation Oy, (a*8,,u—g') = 0, where ¢ > d and (1.7.6) is fulfilled. Then,
whenever A < 1, we have
lullworwezary < BHC([ullLawzry) + RlglLawiz.r)):

where C = C(d, q,,wa, \).

PROOF. Let us change the coordinates x = z+ Ry. Then the obtained function
v(y) = u(z + Ry) satisfies in U(0, 1) the equation

3y, (a” (2 + Ry)dy,v(y) + Rg' (2 + Ry)) = 0.

By assumption, a” € VMO with the function w4, so we may assume that the
function w4 does not change, since R < 1. Then for the function v we have

||UHW‘171(U(0,>\)) <CO(d,q, 0, || Al cos, A)(””HL‘I(U(OJ)) + RH9‘|L‘1(U(O,1)))~

Making the inverse change of coordinates and taking into account that R < 1 we
obtain

[vllwar o) = B Yl Lawary) + BVl Lo oar))
> Rl war m(z 2R)) -
Similarly, we have
0]l Laqro,1) +BIBl Lawo,1y) = Bl Laqu i, m) + BNl Loz 1)
= R~ (||ul| (s, m)) + RlIgll Lazry))-
On the basis of these estimates we obtain
lullwarweary) < C(d g, o | Allcos, VR ([ull Lawz,r)) + BlIglLaw (= r)))

as required. 0

From Theorem 1.7.4 we deduce an estimate on the whole domain ) for the
function u € WO’I(Q) in the case where the boundary 012 is sufficiently regular.

Recall that the boundary 0 is of class C! if it can be locally made flat by a
diffeomorphism of class C*.

1.7.6. Corollary. Suppose that the coefficients of the operator L satisfy con-
ditions (1.7.6) and q > 2. Let also g € L1(RY), f € LP(Y), where p =dq/(d + q) if
q#dandp > d/2 if ¢ =d. If Q is a bounded domain with boundary of class C*
and a function u € Wg’l(Q) is a solution of the equation Lu = f + divg in §, then

ullywar oy < Clullzi@) + lgllca) + [1fllr@),
where the constant C' depends only on the same quantities as in Theorem 1.7.4.
PROOF. It suffices to consider the following situation: v € W%!(K), where
K is a cube one of the faces of which belongs to the hyperplane {x4 = 0} and the
cube itself belongs to the open half-space {x4 > 0}. Suppose that uy) € WO’I(Q)
for every function 1) € C'°°(K) vanishing in a neighborhood of every face excepting

xq = 0. This actually means that w = 0 when z4 = 0. Set y = (z1,...,24-1). For
any zq < 0 we set u(y,zq) = —u(y, —z4) and

A(y’ xd) = A(y’ _xd)’ b(ya .Z‘d) = _b(y’ —Jid), ﬁ(ya J)d) = _/B(ya —J)d),
c(y,xa) = cly, —xq), f(y.2a) = [y, —za), 9" (Y, 24) = —9'(y, —Ta).



1.8. COMPLEMENTS, COMMENTS, AND EXERCISES 43

Let K’ be the cube obtained by reflecting K with respect to {x4 = 0}. The function
u belongs to Wol’q(K U K') and satisfies the equation Lu = f + divg in K U K.
Let K; be a cube inside of K such that all faces of K; are strictly inside of K,
excepting one face belonging to the hyperplane {z4 = 0}. By Theorem 1.7.4 we
have

[ullwar z,) < C(llullr zurry + gl zeorny + 11fllLrur)-
Thus, we obtain the required estimate up to the boundary {4 = 0}. ([l

Existence of solutions to divergence form equations is discussed in Chapter 2,
the increasing of the Sobolev regularity is considered in § 1.8(ii).

1.8. Complements, comments, and exercises

(i) Fractional Sobolev classes (43). (ii) Increasing Sobolev regularity of solu-
tions (47). (iii) Renormalized solutions (48). (iv) Generalizations of the max-
imum principle of A.D. Aleksandrov and k-Hessians (49). Comments (50).
Exercises (53).

1.8(i). Fractional Sobolev classes

In the case where the diffusion matrix A is infinitely differentiable a somewhat
more special result holds in terms of the scale of fractional Sobolev classes. Given
p € (1,400) and s € R, we set

HP®(RY) = (I = A)"2(LPR), | fllps = 11 = A)*2f |,

where the operator (I — A)_S/ 2 is applied in the sense of the space of tempered dis-
tributions S’(R%); it can be defined via the Fourier transform by using the operator
of multiplication by the function (1 + |2|?)~%/2. If s > 0, then the space HP*(R%)
is continuously embedded into LP(RY). For s € N the class HP**(R?) coincides
with WP*(R?) and the respective norms are equivalent. The class HY'(R?), where
s € R, p > 1, consists of all functions f such that ¢ f € HP*(R%) for all p € C5°(RY).

In the proofs below we use the following well-known lemma. Let €2 be a domain
in R? and A a mapping on  with values in the space of positive symmetric operators
on R%,

1.8.1. Lemma. Suppose that a”’ € C°°(Q) and det A > 0.
(i) Letr € (—o00,00) and p > 1. If u is a distribution such that Lau € H{"(Q),

loc

then u € Hlpo’:"'Q(Q); also if u € HP"(Q), then 8, u € HP"1(Q), 1 <i < d.

loc loc

(ii) We have H”!(Q) Lflfc/(d_p) (Q) and L? (Q) C Hfi’::/(d_p)’_l(ﬁ) whenever

loc loc

1 <p<d, and Hp’l(Q) - C’l_d/p(Q) if p > d, so that in the latter case all

loc loc
functions in Hﬁ)cl(ﬂ) are locally bounded. In addition, whenever ¢ > p > 1, we
have the inclusion LY () C Hflo’g/q*d/p(ﬁ).

(iii) If p is a locally bounded Radon measure on Q, then p € H™ (), when-
everp >1 and m > d(1 —1/p).

PROOF. Assertion (i) is well-known: its first statement is a well-known elliptic
regularity result (see Taylor [894, Chapter III]) and the second statement follows
from the boundedness of Riesz’s transforms. Assertion (ii) is just the Sobolev em-
bedding theorem (mentioned in §1.1 for HP!). Assertion (iii) follows from this
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embedding theorem, because for any regular sub-domain U of € one has the em-
bedding H¢™(U) C C(U) if gm > d, whence by duality we obtain that the space
HY/@=D:=m(U) = [H@™(U)]* contains all finite measures on U. O

We formulate the following result for d > 1 just because the case d = 1 is ele-
mentary and has already been discussed. In addition, we include in the formulation
some assertions which follow also from the already mentioned results (but the proof
we give is direct and does not use the results above).

1.8.2. Theorem. Under the same assumptions about A as in the lemma, let
d > 2 and let p and v be Radon measures on 0 (possibly signed). Let a mapping
b= (b): Q — R? and a function c: Q — R be such that |b|, ¢ € LL _(Q,p).
Suppose that L7 , .jt = v. Then the following assertions are true.

(i) One has p € Hﬁ)’i_d(p_l)/p_e(ﬂ) for any p > 1 and any € > 0. Here
1—dlp—1)/p >0 ifp 6[1,d/(d — 1)) and, in particular, p admits a density
FeLl (Q) foranyp e [1,d/(d—1)).

(ii) If [b| € L (% 1), c € Lg)/f(Q,u) and v € Lfo/c(d_'YH)(Q) where d = v > 1,
then F := du/dz € HPX(Q) for anyp € [1,d/(d—y+1)). In particular, F € L?, (Q)
Jor any p € [1,d/(d — 7)), where we set d/(d — ) := oo if y = d.

(iii) If v > d and either

(a) [b] € L] (Q) and c,v € L] (@),

loc loc
or

(b) bl € LY (), ¢ € LYY(Q 1), and v e L)Y (),

loc loc loc

then p admits a density F € H"M(Q). In particular, F € led/'y(Q).

loc loc

PROOF. (i) We have in the sense of distributions
(1.8.1) Lap =0y, ((bz — 8xjaij),u) — axiaijaw —cpu+tv

on Q. Here by Lemma 1.8.1(iii) the right-hand side belongs to HF:Z™ ' (Q) if
m > d(1— 1/p). By Lemma 1.8.1(i) we conclude u € H?. ™ (Q), which leads to
the result after substituting m = d(1 —1/p) +¢.

Before we prove (ii) and (iii), we need some preparations. Fix p; > 1 and

assume that F' = du/dz € L (Q). Such a number p; exists by (i). Set

loc
P1
y—1+pm
and observe that owing to the inequalities 1 < v and p; > 1, we have 1 < r < 7.
Next, starting with the formula

BRI = (Bl M) | E

(1.8.2) ri:=r(p1) =

and using Holder’s inequality (with s =v/r > 1and t :=s/(s—1) =~/(y—r) and
the relations |b| |F|'/7 € L] (Q) and F € L' (), we obtain that b°F € L ().

loc loc loc
By Lemma 1.8.1(i) one has
(1.8.3) V'F e HXQ), F),, €H ' (Q).
(ii) Set
(1.8.4) q:=q(p1) := Pty

Coy—=2+42p
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and note that ¢ > 1 < v > 2 < ¢ < /2, in particular, ¢ < 7 in any case. Hence
repeating the above argument with the triple ¢, /2, ¢ in place of |b|, v, r, we obtain
that

(1.8.5) cF e L (Q).
Fix p; > 1 such that F := % e LY (9) and let r, ¢ be as in (1.8.2), (1.8.4),

respectively. Since v < d, we have ¢ < d, which by (1.8.5) and assertions (ii)
and (iii) of Lemma 1.8.1 implies that cF € HM/@=D:71Qy if ¢ > 1 and that

loc

cF e H>7'(Q) for any s € (1,d/(d—1)) if ¢ = 1.

loc

It turns out that if p; < d/(d — ), then
(1.8.6) cF e H) N D).

loc

Indeed, if ¢ > 1, then (1.8.6) follows from the fact that if p; € (1, d/(d— 7)), then
the inequality r < dg/(d — ¢) holds. If ¢ = 1, then v < 2 and (1.8.6) follows from
the fact that r < d/(d —v+1) < d/(d—1) for p; < d/(d — 7).

Finally, by Lemma 1.8.1 (ii) we obtain that v € Hi/c(dfwﬂ)’*l((l) if v > 2
and v € HS7H(Q) for any s € (1,d/(d — 1)) if ¥ < 2. In the same way as above,
v € H 7' (Q) whenever 1 < p; < d/(d — 7). This along with (1.8.3) and (1.8.6)
shows that the right-hand side of (1.8.1) is now in H{’.'(Q). By Lemma 1.8.1(i)

loc
we have

(1.8.7) pe HiL(Q)
and by Lemma 1.8.1(ii) we have F' € L}? (2), where
dr d
p2 = - = f(p1)-

d—r dy—d+(d—~y)p
Thus, we obtain
d .
p1 € (1, E) and F € LV (Q) = F e L{")(q).

One can easily check that po = f(p1) > p1 if p1 < d/(d — 7), and that the only
positive solution of the equation ¢ = f(q) is ¢ = d/(d — 7). Therefore, by taking p;
in (1,d/(d — 1)), which is possible by (i), and by defining pr11 = f(px) we obtain
an increasing sequence of numbers py 1 d/(d — ), which implies that F' € L} ()
for any p < d/(d — 7).

But as pr * d/(d — 7), the sequence of numbers r(p;) defined according to
equality (1.8.2) increases to the limit

vdjfd=v) __d
vy—1+d/(d—~) d—~v+1"
By (1.8.7) this proves (ii).
(iii) First we consider case (b). By the last assertion in (ii) we have F € L} (Q)
for any finite p; > 1. Let r := r(p1) be defined as in (1.8.2). Then 1 < r < v and
inclusions (1.8.3) hold. Set

dry
dty P1

Ea
iy Tl

If 2 < d < 7, then dy/(d +v) > 1. Therefore, since p; > 1, it follows that
1 < ¢ < dv/(d+7). Hence repeating the arguments that led to (1.8.3) with the triple

(1.8.8) q:=q(p1) :=
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¢, ﬁF—WW, q in place of |b], v, 7, we obtain cF € LL (), thus, cF € Hﬁl)‘i/(dfq)’fl(ﬂ)

loc
by assertion (ii) of the lemma. Observe that, as p; — oo, we have

dy dq
r17, — — 1.
Tvoaty T d—q Ty
Therefore, combining this with our assumption that v is contained in the class
Ldn’/(d—M)(Q), which by assertion (i) of the lemma is contained in H’ *(€2), and

loc loc

by taking p; large enough, we see that the right-hand side of (1.8.1) is in ch’)za’_l (Q)
for any ¢ € (0,7 — 1). By Lemma 1.8.1(ii) we conclude that F € H,/_*"'(Q). Since
~v > d, the function F' is locally bounded. Now we see that above we can take
p1 = oo and therefore the right-hand side of (1.8.1) is in H;".'(Q), which by
assertion (i) of the lemma gives us the desired result.

In the remaining case (a) we take p; > v/(y—1) and assume that F' € LV ().
Then instead of (1.8.2) and (1.8.8) we define

dy
P1 aty P1
1.8.9 ri=r(p1):=———, q:=q(p1):=—"V1
(189) () = 22 =0

and observe that, since p; > 7/(y — 1), we have r > 1, which (because of the
relation pfl + 71 = r71) allows us to apply Hélder’s inequality starting with
|bF|" = |b|"| F'|" to conclude that (1.8.3) holds. Since ¢ € L (Q, i),

loc

dry dy \
——>1 and (——) +pl=¢"
d+'y> an (d 7) D1 q -,

we also have that ¢F' € L{ (Q). Obviously, ¢ < d. As in part (ii) this yields that

loc

cF € HIY D71 Q) if g > 1 and ¢F € HS7H(Q) for any s € (1,d/(d—1)) if ¢ = 1.

loc loc

We assert that (1.8.6) holds (with » = r(p;) as in (1.8.9)) for all p; > v/(y — 1),
p1 # dy/(dy —d—7).

Indeed, if ¢ > 1, then dg/(d —q) =r. If ¢ = 1, then p; < dvy/(dy—d—+). But
since py # dvy/(dy — d — 7), we have p; < dv/(dy — d — ), which is equivalent to
the inequality r < d/(d —1).

Thus, since v € le; (d+7)(Q) c HY:7HQ) € HZH(Q), because 7 < 7, asser-
tion (i) in the lemma yields the following:

gl dy
1.8.1
(1.8.10) (p1>,y_1,p17éd,y_d_

If r < d, then the latter in turn implies by assertion (ii) in Lemma 1.8.1 that

loc loc

,FeIl (Q)) — Fe Q).
5

F e L}2.(Q). Let us summarize what has been shown:
d
(h> 5 p1 £ s, o= 2 < d, F e L,(9))
(1.8.11) — F e LI? (),

where
dr dypy dy

= > D1-
d=r  dy—(y—djpp ~ dy—(y—d)"
Also, note that v/(y—1) < d/(d—1) < #, so that by (i) we can find a number
p1 to start with. Then starting with p; close enough to d/(d — 1), by iterating

(1.8.11) we always increase p by some factor greater than dvy/(dy — (y — d)) > 1.
While doing this, we can obviously choose the first p so that the iterated numbers

P2 =
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p will never be equal to dy/(dy — d — ) and the corresponding numbers r will not
coincide with d. After several steps we shall come to the situation where r > d,
and then we conclude from (1.8.10) that F' is locally bounded (one cannot keep
iterating (1.8.11) infinitely because of the restriction r < d). As in case (b), we can
now easily complete the proof. O

Example 1.6.10 shows that assertion (iii) of this theorem may fail if v > d is
replaced by v = d — e. Then F does not even need to be in Hz'!(£2).

loc

1.8(ii). Increasing the Sobolev regularity of solutions

The following result of Morrey is known (see Morrey [723, Theorem 5.5.3,
p. 154], where A is continuous) about raising the integrability of a solution of
the full equation with the operator £4 4 8. on a domain Q C R4, d > 1, where
a7 €V MO and A(z) > § -1 with some 6 > 0.

1.8.3. Theorem. Let d/(d —1) < q < 7 and let u € W(Q) satisfy the
equation
Lappeu=f+divg, g=(g"....99,
where f € Lﬁ:c/(d"_r)(ﬂ), g € LT (), v,8" € L (), c € LL, (), s =d and
t=d/2ifr<d s>dandt>d/2ifr=d, s=randt=dr/(d+7r)ifr>d.
Then u € VV{;; ().

PrROOF. 1. Under the assumptions of the theorem for every ball U(xg,€) in Q
of a sufficiently small radius ¢ there is a function v € VVOT’1 (U(:vo, 5)) satisfying the
equation

(1.8.12) 02, (a7 05,0 — b'0) + B0y v = [+ 049"

It suffices to establish the existence in the case of smooth coefficients, since approx-
imating the coefficients by smooth functions and using the estimate

[l et zeey) S NUGHLr ooy + [ lLars@n o))

one can construct a sequence of smooth functions converging to the solution. How-
ever, it is important that the radius € of the ball U(xg,e) could depend only on w4
and the quantities 0, ||8||Ls, and ||b||L- and be independent of the smoothness of
the coefficients.

For constructing a solution in the case of smooth coefficients it suffices to show
that for a sufficiently small ball U(zg,e) the solution of the homogeneous equation
(f = ¢g* = 0) in the class Woz’l(U(xo,e)) must be zero. Then, by the Fredholm
alternative (see Proposition 2.1.4), there exists a solution of the nonhomogeneous
equation on this ball. Thus, let v € VVOZ’1 (U(xo, 5)) and

0z, (a7 0y;0 — b'0) + B'Oy,v = 0.

i

Multiplying by v and integrating by parts we obtain

5/ |Vo|? dx < / [b+ Bl |v| |Vv]| dz.
U(Io,e’;‘) U(wo,é‘)

We recall that by the Sobolev inequality [|v[|p2a/—2) (/(z,e)) < (@) VO] L2(U(20,6))5
where ¢(d) does not depend on €. Applying Holder’s inequality, we obtain

/U( )|b+ﬂ| o] Vol dz < e(d)l[b + Bll Law o o) IVOIL2 (0 (0 2
xo,&€
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Choosing ¢ so small that c¢(d)|[b + Bl La(t/(z0,c)) < /2, We obtain the inequality

/ |Vo|? dz < 0.
U(QZQ,E)
Therefore, v = 0 on U(xg,¢).

. - 2,1 :
Thus, we have shown uniqueness of a solution in W}’ (U (zo, 5)), hence also in

Wy 1 (U (zo, a)) with r > 2. We observe once again that for constructing a solution
in the smooth case this uniqueness is enough. If r < 2, then some additional
reasoning is required.

We show that the solution v is unique. It suffices to show that the solution v of
the homogeneous equation must be zero. To this end we solve the adjoint equation
with the right-hand side f = signv and g =0, i.e.,

O, (0¥ 0y, w — Biw) 4 biw = sign v.
Since the right-hand side is bounded, there is a solution we W§™" (U(zo, €)) with m
as close to d as we wish (so w € LP(U(zo,¢)) for any p). Multiplying this equation
by v and integrating by parts we conclude that v = 0. Thus, on a sufficiently small
ball U (o, ) there is a unique solution v € W (U(wo,)) of equation (1.8.12).

2. Let r < d and ¢ € C§°(Q2), where the support of ¢ belongs to a ball U of a
sufficiently small radius indicated above. Then

1.8.13

( O, (;ijamj (u¢) = b (uC)) + B0z, (uC) = Ba, (a7 uds; ¢ — g'¢) + a7 02, (0x;u
+ b'udy, ¢ — B'udy, ¢ + cu + g'92,C + fC.

Set

f=0"0,,00u,u+ b'uds, ¢ — Buds, ¢ + cuC + g'02,C + £, § = audy, ¢ — g'C.
Then

O, (070, (u€) = V' (uC)) + 50, (uC) = f + 0, "

We observe that f € LY(U) and §* € L%/(4=9)(U). Then by the previous step
we have u( € W:q/(dfq)’l(U). Note that dg/(d — q) > ¢q(d — 1)/(d — 2), since
q > d/(d —1). Repeating this reasoning on a smaller ball we again increase the

smoothness of our solution until we obtain the inclusion to the class W™, The
cases r = d and r > d are similar. O

1.8(iii). Renormalized solutions

Let Q C R, Suppose we are given a nonnegative nonzero function W € L ()
satisfying the equation

(1.8.14) By, D, (@TW) = 0,

where A= A* is infinitely differentiable, A\=! - I< A(z) <A -1, € Q. A renormalized
with respect to W solution of equation (1.8.14) is a function w such that we have
wW € Ll () and wW in place of W satisfies (1.8.14). It turns out that the
renormalized solutions possess many nice properties. For example, the maximum
principle holds for them. Indeed, the function w satisfies the equation

a0y, 05, w + 2W 10, (W), w = 0,
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for the solutions of which the classical strong maximum principle holds. In the
next theorem we have collected some typical results from the papers Bauman [94],
Escauriaza [341], [342].

1.8.4. Theorem. Let w be a renormalized with respect to W solution of
equation (1.8.14). Then the following assertions are true.

(i) Harnack’s inequality. Let w > 0. For every ball U(xg,r) with U(zg,5r) C Q
one has the inequality

sup w(z) < C(A,d) inf w(z).
U(zo,r) U(zo,r)

(ii) Holder’s continuity. There is a number a = a(\,d) € (0,1] such that for

every ball U(zg,r) C Q one has the estimate

i) =) < €O, (F2) e

(iii) Boundedness of solutions. For every ball U(xzq,r) C Q one has the estimate

~1
sup |w(z)| < C(A,d) (/ |w|Wda:> (/ Wd:v) .
U(zo,r/2) U(zo,r) U(zo,r)

The constants C'(A\,d) and a(\,d) depend only on A and d and are independent of
the smoothness of A.

Assertion (i) is obtained in [94, Theorem 4.4]. Assertion (ii) is a corollary of (i)
and the fact that any constant is a renormalized solution. Finally, (iii) is proved in
[341, Theorem 2.3]. In [342], these results are used for obtaining some estimates
on the Green’s function.

1.8(iv). Generalizations of the maximum principle of
A.D. Aleksandrov and k-Hessians

For the proof of the existence of densities in § 1.5 we have used the maximum
principle of A.D. Aleksandrov (see Theorem 1.5.1). Here we consider some of
its generalizations. Let Q be a convex bounded domain in R¢ with boundary of
class C1, e.g., a ball. It is known (see Gilbarg, Trudinger [409, Theorem 8.15]) that
if u € C%(Q) (N Co(Q) satisfies the equation Au = f, then

sup lul < C(d, )| fllzr )

for any p > d/2. According to Aleksandrov’s maximum principle, if a convex
function u € C%(Q) (N Co(N) satisfies the equation det D?u = f, then

1/d
sup ul < C(d, Q|If 110y
It turns out that some intermediate estimates hold.
Let Si(u) be the sum of the principal k-minors in the matrix D?u. In this case
S1(u) = Au = trD?u and Sg(u) = det D?u. The expression Si(u) is called the

k-Hessian. A function u € C?(Q) (N Co(R) is called k-admissible if S;(u) > 0 for all
indices j < k. The set of all k-admissible functions will be denoted by ®&(12). Let

1/(k+1)
wﬁﬁz(éw&ww) .

The next result was proved in Wang [934, Theorem 5.1].
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1.8.5. Theorem. Let u € ®L((Q).

(i) If 1 <k < d/2, then ||ul|Lr+1(0) < Cllullgr(q) for each p+1 € [1,k*], where
we set k* =d(k+1)/(d — 2k).

(i) If k = d/2, then |[ullLr (o) < Cllullgpq) for all p > 1.

(ili) If d/2 <k < d, then ||lul|r= () < Cllullgxq)-

The number C' depends only on d, k, and diam Q.

Note that in the case k = d/2 in Tian, Wang [895] the following was proved:
there are numbers a(d) > 0 and C(d, 2) > 0 such that

B
/ exp(a(L) ) de < C(d,Q), where 1 <8< (d+2)/d.
Q ||UH<1>§(Q)
By using Moser’s iterations, one can derive from this result analogs of Alek-
sandrov’s maximum principle for k-Hessians. The next corollary is proved in [934,
Theorem 5.5].

1.8.6. Corollary. Let u € ®5(Q) and S(u) = f. Then
1/k
supul < CILf g,
where p > d/(2k) if k < d/2 andp=1if k> d/2.

Let 04(A\) = X 1< iy, <in<dNia = Aip, be the kth elementary symmetric
polynomial. Set

Th={NeR: 0;(\) 20,5 =1,2,....k}, T;={NcR%: (\pu)>0VucTi}

Let A be a symmetric matrix and let A(A4) be the vector of eigenvalues of A. Suppose
that A(A) € T'f. Set

0i(A) = inf {(M(A), p): pp € Di, () = 1}

For example, A\(A) € T’} precisely when A = g-1, where g is a nonnegative number.
In this case g} (A4) =g.
The next related result is proved in Kuo, Trudinger [565].

1.8.7. Corollary. Let u € C*(Q)(Co(Q) and tr(AD?*u) > f. Suppose that
A(A) € T and 0}, (A) > 0. Then

supu < Cllf /e (All oy,

where ¢ = k if k > d/2 and ¢ > d/2 if k < d/2. The number C depends only
ond,k,q, and .

Comments

Bibliographic materials related to the outstanding Russian mathematician An-
drey Nikolaevich Kolmogorov and the great German physicist, a Nobel prize win-
ner Max Planck, whose names are in the title of this book, can be found in Kol-
mogorov [530] and Klyauc, Frankfurt [517], where some additional references are
given. Adriaan Daniél Fokker (17.VIII.1887 — 24.IX.1972) is a Dutch physicist,
a member of the Royal Dutch Academy. He was born in the island of Java, a Dutch
colony at the time, in 1904 — 1905 was a student at the Polytechnic school in Delft,
in 1906 — 1913 studied physics at the University of Leiden with H. Lorentz, on
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October 24, 1913, defended his thesis “Over Brown’sche bewegingen in het stral-
ingsveld, en waarschijnlijkheids-beschouwingen in de stralingstheorie”, the main
results of which were published in his paper [377] (where the stationary equation
was considered). Later he continued his studies with Albert Einstein. After his mil-
itary service in World War I he worked in 1917 — 1918 as an assistant of H. Lorentz
and P. Ehrenfest, in 1923 — 1927 he was Professor at the High Technical School in
Delft, in 1928 — 1955 he was curator of the physical cabinet of the Teylers Museum
in Haarlem and was Professor at the University of Leiden. Fokker’s main scien-
tific works are devoted to radiation, X-rays, physics of electron, general relativity,
gravitation, the theory of fluctuations, and the theory of gyroscope. The equation
bearing his name was needed for establishing the distribution law of the average
energy of a rotating electric dipole, for this purpose Fokker developed a method
first used by Einstein [329] for describing the Brownian motion. In addition, Fokker
was an expert in music theory, he was enthusiast of the 31 equal temperament, his
31-tone equal-tempered organ, which was installed in Teyler’s Museum in Haarlem
in 1951, is called the Fokker organ. It is worth mentioning that Kolmogorov and
Planck also were amateurs and connoisseurs of music, moreover, Planck was playing
at a professional level.

There is an extensive literature on the theory of Sobolev spaces, see Adams [2],
Adams, Fournier [3], Besov, II'in, Nikolskii [112], Bogachev [126], Brezis [208],
Burenkov [212], Evans, Gariepy [344], Gol’dshtein, Reshetnyak [412], Haroske,
Triebel [440], Krylov [556], Kufner, Sandig [558], Leoni [602], Maz’ja [682], [683],
Runst, Sickel [828], Stein [877], Triebel [899], [900], and Ziemer [965], where
numerous additional references can be found. In [126], [558] and Zhikov [961] also
weighted Sobolev classes are considered.

Many books are devoted to the general theory of elliptic second order linear
partial differential equations, see Agmon [5], Agmon, Douglis, Nirenberg [6], Bers,
John, Schechter [109], Borsuk [198], Borsuk, Kondratiev [199], Chen, Wu [237],
Demengel, Demengel [293], Egorov, Kondratiev [325], Gilbarg, Trudinger [409],
Han, Lin [438], Hormander [461], Helffer [447], Kenig [501], Kondrat’ev, Lan-
dis [533], Koshelev [537], Kozlov, Maz’ya, Rossmann [541], Kresin, Maz’ya [542],
Krylov [552], [556], Ladyzhenskaya, Ural’tseva [577], Landis [581], Lions, Ma-
genes [618], Maugeri, Palagachev, Softova [681], Maz’ya, Rossmann [685], Mi-
randa [713], Nazarov, Plamenevsky [737], Oleinik, Radkevi¢ [757], Radke-
vich [798], Rempel, Schulze [803], Sauvigny [834], Shimakura [857], Shish-
marev [859], Stampacchia [870], Stroock [882], Troianiello [901], Volpert [924],
Wu, Yin, Wang [944], and also Garroni, Menaldi [400].

However, Fokker—Planck—Kolmogorov equations have significant specific fea-
tures and so far have not become the subject of a separate exposition, although
some of their aspects are discussed in depth in books with probabilistic motives, see
Gihman, Skorokhod [407], Krylov [549], Kushner [570], Soize [865] (where also
explicit solutions are considered), Stroock [882], Stroock, Varadhan [884]. These
specific features are connected, on the one hand, with the fact that such equations
by their nature are equations with respect to measures (sometimes they are called
“double divergence form” equations and their solutions are called “adjoint solu-
tions”, in the case of irregular coefficients they cannot be written as divergence
form equations or as direct equations), and, on the other hand, with unusual for
the classical theory classes of solutions (say, integrable on the whole space, but
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without any restrictions on growth or smoothness class). A study of such equations
goes back to Kolmorogov’s works [527], [528], [529] and a series of earlier works in
physics by Fokker [377], Smoluchowski [863], Planck [781], and Chapman [235],
where equations for probability densities were considered (see also Hostinsky [466]).
The informative survey Fuller [394] lists also Lord Rayleigh and L. Bachelier among
predecessors.

Connections between elliptic operators and diffusions are discussed in the books
Bass [91] and Pinsky [780].

Traditionally, second order elliptic equations are solved in Holder classes or in
Sobolev classes depending on the properties of the coefficients. It is more convenient
to consider the major problems of this book in Sobolev classes even in the case of
smooth coefficients, which is due to the significant role of various a priori estimates
in terms of quantities like Sobolev norms.

The existence of densities of solutions under minimal assumptions is based on
the A.D. Aleksandrov estimates (see [34]-[37]). Unlike direct elliptic equations
and divergence form equations, Fokker—Planck—Kolmogorov equations can have so-
lutions whose regularity is not higher than the regularity of the diffusion coefficients.
There are many works devoted to generalizations of Aleksandrov’s estimates, see
Cabré [215], Kuo, Trudinger [565]. Elliptic inequalities of the type L*u > 0 were
considered long ago, see, for example, Littman [628], [629].

Theorem 1.7.4 makes precise the statement of a result formulated by Ch. Mor-
rey in his book [723, p. 156] not quite correctly (with ' = Q). The assertion
given there with ' = Q would be false, for example, for the Laplace equation on a
ball. A proof of Morrey’s estimate with an investigation of the dependence of the
constant on the coefficients was given in Shaposhnikov [843] with the same inac-
curacy as in [723]. Actually, the reasoning in Shaposhnikov [843] yields exactly
the estimate we give, as explained in Shaposhnikov [846], and an estimate with
Q = € is possible only for solutions with zero boundary values on a domain with
a sufficiently regular boundary (see Corollary 1.7.6). We observe that in the exist-
ing applications of Morrey’s theorem actually only the presented correct statement
was used, although in some papers it was formulated with the indicated inaccuracy
(see, for example, Bogachev, Rockner [160] and Bogachev, Krylov, Rockner [152]).
The proof of the corrected statement was given in Bogachev, Réckner, Shaposh-
nikov [165] and Shaposhnikov [846], where even a more general fact is proved.

Various results which can be regarded as results about properties of densities
of solutions to elliptic Fokker—Planck—Kolmogorov equations with coefficients of a
rather general form were obtained in the books cited above and also in the papers
Krylov [547], Sjogren [861], Bauman [94], [95], Escauriaza [341], [342], Escauri-
aza, Kenig [343], Fabes, Stroock [348], Gushchin [430], Maz’ya, McOwen [684];
note also a more abstract approach of Herve [452]. A systematic study of the
whole complex of these problems was initiated in Bogachev, Rockner [157], [158],
[160], Bogachev, Krylov, Rockner [149], [152] and continued by many authors.
Stationary Fokker—Planck—Kolmogorov equations with various special restrictions
on the coefficients are considered in Arapostathis, Borkar [55], Bensoussan [105],
Noarov [745]-[749] and in the works cited on concrete occasions in the subsequent
chapters. Fokker—Planck—Kolmogorov equations can be also considered on more
singular manifolds such as fractals and metric measure spaces.
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Exercises

1.8.8. Suppose that probability measures 4 and v on the real line satisfy the
equations Ly, . p=0and L], . v =0. Show that the measure o = u®v satisfies

the equation Lib,cg = 0 with b(x7 y) = (bl (J?), bQ(y))a C(Z‘, y) =C (l‘) + C?(y)'

1.8.9. Let a measure p on R? satisfy the equation L yp = 0. Write down
the equation to which the measure v = po F~! satisfies, where F = (F?) is a
diffeomorphism of R? with inverse G = (G?).

HINT: Make the change of variable z = G(y) in the integral identity, sub-
stituting ¢ = o F', obtain the equation Lg, ,v = 0 with the matrix @ = (g™*),
where ¢"*(y) = a" (G(y)) 9, F*(G(y))0x, F™(G(y)), and the drift h = (h*), where
h*(y) = a" (G(y)) 0,02, F*(G(y)) + V' (G(y)) 0, F* (G ()

1.8.10. Suppose that a probability measure p on the real line satisfies the
equation Lj ,u = 0 on (—o0,0) and on (0, +o0) with some continuous function b on
the real line. Is it true that u satisfies this equation on the whole real line?

1.8.11. Give an example of an absolutely continuous function on [0,1] that
does not satisfy the Holder condition of any order.

1.8.12. (Bogachev, Réckner [160]) Let Ay = (a? ) be a sequence of continuous
mappings on R? with values in the space of symmetric matrices and let by, = (b)
be a sequence of Borel vector fields on R?. Suppose that for every ball U, C R? of
radius r there exist numbers ¢, > 0, a,, > 0, and p = p, > d such that

Ak = C?"Ia ||a2;j||val(U7v) + HbZHLP(UT) < ap for all iaj7 k.

Assume that there are probability measures pj, on R? such that Ly, btk = 0.
Then the measures p; have continuous strictly positive densities that are uniformly
Hélder continuous on every ball. If the sequence {uy} is uniformly tight, then it
has compact closure in the variation norm, and every measure p in its closure has
a continuous strictly positive density of class W?1(U,.) for every r > 0.

HinT: It follows from our hypotheses and Theorem 1.6.5 that the measures p
have continuous densities fj. Since the functions fj are probability densities, we
obtain by (1.6.2) that, for every r > 0, the sequence {fx} is bounded in W»(U,.).
By the Sobolev embedding theorem {f;} is uniformly Hélder continuous on U,
in particular, has compact closure with respect to the sup-norm. If {u;} is uni-
formly tight, then some subsequence {ug,} converges weakly to some probability
measure 4. Passing to a subsequence once again we may assume that the functions
fx, converge uniformly on compact sets and are uniformly bounded in W7:1(U,.) for
each r > 0. Hence u has a density f € WP(U,.). Then we obtain a continuous and
strictly positive version of f. Therefore, the probability measures ux, converge to p
in the variation norm. This reasoning applies to any subsequence in {u}, whence
we obtain the desired conclusion.

1.8.13. (Bogachev, Rockner [160]) The assertion of the previous exercise can
be generalized as follows. Let  be an open set in R? that is the union of increasing
open sets . such that the closure of 2 is compact and contained in Q1. Let
i be probability measures on ), satisfying the equations L7 , ur =0 on €,
where each Ay is a continuous mapping on 25 with values in the set of nonnegative
symmetric matrices, the mappings Ay, are uniformly bounded on compact sets in the
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WPl norm with some p > 1, the mappings A;l are uniformly bounded on compact
sets, and Borel vector fields by on the sets €, are uniformly bounded in the LP(R%)-
norm on compact sets. Then the analogue of the assertion of the previous exercise
is true. The same is true for Riemannian manifolds of dimension d.

1.8.14. Let (X, B, i) be a probability space, where the measure p is separable,
and let (S, S) be a measurable space. Suppose that for each s € S we are given a
p-integrable function &, such that for every set B € B the integral of £, over B is
an S-measurable function of s. Prove that for every s € S one can choose a version
of & such that the function (z, s) — &;(z) is B®S-measurable.

HiNT: If g is Lebesgue measure on [0,1] and f; € L%*(u), then we can take
the standard trigonometric basis {e,} in L?(x) and set &s(x) = > o0 | (&, €n)en ()
at the points of convergence, by using the Carleson theorem on convergence of
this series almost everywhere and making £ zero outside; the set of convergence
belongs to B® S, which ensures the B® S-measurability of the obtained version.
In the general case we can use the existence of a Schauder basis {¢,} in L' (u)
consisting of B-measurable functions with the property that for each f € L!(u)
the series f =0 | ¢n(f)py converges p-a.e.; the coefficients ¢, (f) are continuous
linear functionals on L'(u), hence they are represented as the integrals of fi,
with certain 1, € L% (u), which ensures the measurability of s — ¢, (fs). Finally,
a Schauder basis with the indicated property can be constructed as follows: by the
separability of the measure there is a countable collection of sets B,, € B the linear
span of the indicators of which is dense in L'(u); the o-algebra B,, generated by
By, ..., B, can be also generated by a partition of X into finitely many disjoint parts
Bni,...,Bnk,, the conditional expectations of f with respect to B,, converge to f
in norm and almost everywhere by the martingale convergence theorem, and these
conditional expectations can be represented as partial sums of a series in Haar-type
functions constructed by means of the indicated decreasing partitions. Another
construction can be found in the hint to Exercise 6.10.71 in Bogachev [125].

1.8.15. Let &: [0,1] — L'(u) be a continuous mapping, where y is a probability
measure on a measurable space (€, B). Prove that there is a function n: QxR — R,
called a measurable modification of &, such that it is measurable with respect to
B®B(R) and for each t € R the equality n(w,t) = &(t)(w) holds for p-a.e. w.

HinT: Use the previous exercise considering p on the o-algebra generated
by £(t),t € Q; see also Neveu [742, §I11.4].

1.8.16. Justify Remark 1.6.3.

1.8.17. Prove that if on the closed ball in R¢ a uniformly Hélder continuous
sequence of functions converges in measure, then it converges uniformly.

1.8.18. Let u € WP2(U) N WE' (U), where the set U ¢ R? is bounded and
open and p > d. By using Corollary 1.1.6 show that for all ¢ > 0 and « > 1 the
function w := (u 4 ¢)* — ¢* belongs to WF?(U).

1.8.19. Let f € WL (R?). Show that Vf(z) =0 a.e. on f~1(0).

1.8.20. Prove that the diffusion process on the real line given by the equation
d¢; = dw,+ f(&;)dt, where f'(x)+ f(z)? = az?+bx +c, has an invariant probability
measure only under the condition that f(x) = ax + 8, a < 0.

HINT: See Zeitouni [953].



