CHAPTER 1

Algebraic Persistence

As we saw in the general introduction, the algebraic theory of persistence deals
with certain types of diagrams of vector spaces and linear maps, called persistence

modules. The simplest instances look like this, where the spaces Vi, --- ,V,, and the
maps v, ,Un_1 are arbitrary:
Vi1 2 LY

Diagrams such as this one are representations of the so-called linear quiver L.
More generally, all persistence modules are representations of certain types of quiv-
ers, possibly with relations. Quiver theory provides us not only with a convenient
terminology to define persistence modules and describe their properties, but also
with a set of powerful structure theorems to decompose them into ‘atomic’ repre-
sentations called interval modules. Thus, in its algebraic formulation, persistence
owes a lot to the theory of quiver representations.

Yet, algebraic persistence cannot be quite reduced to a subset of quiver theory.
Shifting the focus from quiver representations to signatures derived from their inter-
val decompositions, it provides very general stability theorems for these signatures
and efficient algorithms to compute them. Over time, these signatures—known as
the persistence diagrams—have become its main object of study and its primary
tool for applications. This is the story told in this part of the book: first, how
persistence develops as an offspring of quiver theory by focusing on certain types
of quivers, and second, how it departs from it by shifting the focus from quiver
representations to their signatures.

The first part of the chapter introduces persistence modules using the language
of quiver theory. It begins naturally with an overview of the required background
material from quiver theory (Section 1), followed by a formal introduction to persis-
tence modules and a review of the conditions under which they can be decomposed
(Section 2). The emphasis is on the legacy of quiver theory to persistence.

The second part of the chapter introduces persistence diagrams as signatures for
decomposable persistence modules (Sections 3). It then shows how these signatures
can be generalized to a class of (possibly indecomposable) representations called the
q-tame modules (Section 4). The stability properties of these signatures are deferred
to Chapter 3.

The chapter closes with a general discussion (Section 5).

Prerequisites. No background on quiver theory is required to read the chap-
ter. However, a reasonable background in abstract and commutative algebra, cor-
responding roughly to Parts I through IIT of [111], is needed. Also, some basic
notions of category theory, corresponding roughly to Chapters I and VIIT of [184],
can be helpful although they are not strictly required.
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14 1. ALGEBRAIC PERSISTENCE

1. A quick walk through the theory of quiver representations

This section gives a brief overview of the concepts and results from quiver
theory that will be used afterwards. It also sets up the terminology and notations.
The progression is from the more classical aspects of quiver theory to the ones more
closely related to persistence. It gives a limited view of the theory of representations,
which is a far broader subject.

A more thorough treatment is provided in Appendix A for the interested reader.
It includes formal definitions for the concepts introduced here, and a proof out-
line for Gabriel’s theorem, the key result of this section. It also includes further
background material, and draws some connections between tools developed inde-
pendently in persistence and in quiver theory—e.g. Diamond Principle of Carlsson
and de Silva [49] versus reflection functors of Bernstein, Gelfand, and Ponomarev
[24].

Quivers. Quivers can be thought of as directed graphs, or rather multigraphs,
with potentially infinitely many nodes and arrows. Here is a very simple example
of quiver:

(1.1) . = . °

and here is a more elaborate example:

/\

04>o

(1.2)

The quivers we are most interested in are the so-called A, -type quivers, which are
finite and linear-shaped, with arbitrary arrow orientations, as in (1.1). Here is a
formal general description, where a headless arrow means that the actual arrow
orientations can be arbitrary:

(1.3) ° s

N J

[ ]
n—1

The special case where all arrows are oriented to the right is called the linear quiver,
denoted L,,. Not only A, -type quivers but also their infinite extensions are relevant
to persistence theory.

Quiver representations. Representations of a quiver Q over a field k are just
realizations of Q as a (possibly non-commutative) diagram of k-vector spaces and k-
linear maps. For instance, a representation of the quiver (1.1) can be the following:

1 1 10
(14) k (0) k2 (1) L (01) k2 (01) k2
or the following:
(1.5) k—"s02 kel k—"50
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Here is an example of a representation of the quiver (1.2)—mote that none of the
triangles commute:

(01)
(1.6) /

k2
—>
0

A morphism ¢ : V — W between two representations of Q is a collection of linear
maps ¢; : V; — W, at the nodes e of Q, such that the following diagram commutes

a
for every arrow e —— e of Q:
i J

Va

(1.7) V, —2 v
¢¢J l%‘
W; — W,

For instance, a morphism ¢ from (1.4) to (1.5) can be the following collection of
vertical maps making every quadrangle commute:

k ((1)) k2 (%) k (01) k2 ((1)(1J) kf2

(1‘8) 1 0 —1| (0 -1) 0

k—" 02—kt k—220
¢ is called an isomorphism between representations when all its linear maps ¢;

are ismormophisms between vector spaces. The commutativity condition in (1.7)
ensures then that V and W have the same algebraic structure.

The category of representations. The representations of a given quiver Q over a
fixed base field k, together with the morphisms connecting them, form a category
denoted Repy(Q). This category turns out to be abelian, so some of the nice prop-
erties of single vector spaces (which can also be viewed as representations of the
quiver e having one node and no arrow) carry over to representations of arbitrary
quivers. In particular:

e There is a zero object in the category, called the trivial representation. It
is made up only of zero vector spaces and linear maps. For instance, the
trivial representation of the quiver (1.1) is

0 0 0 0 0

e We can form internal and external direct sums of representations. For
instance, the external direct sum of (1.4) and (1.5) is the following rep-
resentation of (1.1), where the spaces and maps are naturally defined as
the direct sums of their counterparts in (1.4) and (1.5):

o (08 L (1) (8D (8D,
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e We can define the kernel, image and cokernel of any morphism ¢ : V. — W.
These are defined pointwise, with respectively ker ¢;, im ¢; and coker ¢;
attached to each node . of Q, the linear maps between nodes being in-

duced from the ones in V and W. For instance, the kernel of the morphism
in (1.8) is

0 0 0 ((1))
0 k2 0 k k>

As expected, ¢ is an isomorphism if and only if both ker ¢ and coker ¢ are
trivial.

Not all properties of single vector spaces carry over to representations of arbitrary
quivers though. Perhaps the most notable exception is semisimplicity, i.e. the
fact that a subspace of a vector space always has a complement: there is no such

thing for representations of arbitrary quivers. For instance, W = 0 % sk isa

subrepresentation of V= k Lk , 1.e. its spaces are subspaces of the ones in V
and its maps are the restrictions of the ones in V, yet W is not a summand of V|
i.e. there is no subrepresentation U such that V= U @ W. This obstruction is what
makes the classification of quiver representations an essentially more challenging
problem than for single vector spaces.

Classification of quiver representations. Given a fixed quiver Q and a fixed base
field k, what are the isomorphism classes of representations of Q over k7?7 This central
problem in quiver theory has a decisive impact on persistence, as it provides decom-
position theorems for persistence modules. Although solving it in full generality
is an essentially impossible task, under some restrictions it becomes remarkably
simple. For instance, assuming the quiver Q is finite and every representation of Q
under consideration has finite dimension (defined as the sum of the dimensions of
its constituent vector spaces), we benefit from the Krull-Remak-Schmidt principle,
that is:

THEOREM 1.1 (Krull, Remak, Schmidt). Let Q be a finite quiver, and let k be
a field. Then, every finite-dimensional representation V of Q over k decomposes as
a direct sum

(1.9) V=Vlg .-V

where each V' is itself indecomposable i.e. cannot be further decomposed into a di-
rect sum of at least two nonzero representations. Moreover, the decomposition (1.9)
s unique up to isomorphism and permutation of the terms in the direct sum.

The proof of existence is an easy induction on the dimension of V, while the
proof of uniqueness can be viewed as a simple application of Azumaya’s theo-
rem [14]. This result turns the classification problem into the one of identifying the
isomorphism classes of indecomposable representations. Gabriel [133] settled the
question for a small subset of the finite quivers called the Dynkin quivers. His result
asserts that Dynkin quivers only have finitely many isomorphism classes of inde-
composable representations, and it provides a simple way to identify these classes.
It also introduces a dichotomy on the finite connected quivers, between the ones
that are Dynkin, for which the classification problem is easy, and the rest, for which
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the problem is significantly harder if at all possible!. Luckily for us, A,-type quivers
are Dynkin, so Gabriel’s theorem applies and takes the following special form:

THEOREM 1.2 (Gabriel for A,-type quivers). Let Q be an A, -type quiver, and
let k be a field. Then, every indecomposable finite-dimensional representation of Q
over k is isomorphic to some interval representation Ig[b, d], described as follows:
0 0

1 1 0 0

0—2 k kE—2—0
[1,6-1] [b, d] [d+1, n]

0 0

Combined with Theorem 1.1, this result asserts that every finite-dimensional
representation of an A,,-type quiver Q decomposes uniquely (up to isomorphism and
permutation of the terms) as a direct sum of interval representations. This not only
gives an exhaustive classification of the finite-dimensional representations of Q, but
it also provides complete descriptors for their isomorphism classes, as any such class
is fully described by the collection of intervals [b, d] involved in its decomposition.
This collection of intervals is at the origin of our persistence barcodes.

Unfortunately, Theorems 1.1 and 1.2 are limited in two ways for our pur-
poses. First, by only considering quivers indexed over finite sets, whereas we
would like to consider arbitrary subsets of R. Second, by restricting the focus
to finite-dimensional representations, whereas in our case we may have to deal with
representations including infinitely many nontrivial spaces, or spaces of infinite di-
mension. The rest of Section 1 is a review of several extensions of the theorems
that address these limitations.

Infinite-dimensional representations. Theorems 1.1 and 1.2 turn out to be still
valid if infinite-dimensional representations are considered as well. This is thanks
to a powerful result of Auslander [12] and Ringel and Tachikawa [217] dealing with
left modules over Artin algebras?. The connection with quiver representations is
done through the construction of the so-called path algebra of a quiver Q, denoted
kQ, which in short is the k-algebra generated by the finite oriented paths in Q,
with the product operator induced by concatenations of paths. The path algebra
is an Artin algebra whenever Q is finite with no oriented cycle, which happens e.g.
when Q is an A,-type quiver. There is then an equivalence of categories between
Rep,(Q) and the left modules over kQ. The result of Auslander [12] and Ringel
and Tachikawa [217], combined with Gabriel’s and Azumaya’s theorems, gives the
following decomposition theorem for finite- or infinite-dimensional representations
of A,-type quivers:

THEOREM 1.3 (Auslander, Ringel, Tachikawa, Gabriel, Azumaya). Let Q be an
A, -type quiver, and let k be a field. Then, every indecomposable representation of Q
over k is isomorphic to an interval representation Ig[b, d], and every representation
of Q, whether finite- or infinite-dimensional, is isomorphic to a (possibly infinite)
direct sum of interval representations. Moreover, this decomposition is unique up
to isomorphism and permutation of the terms.

IThere is in fact a trichotomy: beside the Dynkin quivers are the so-called tame quivers, for
which the classification problem is still feasible (albeit harder); the rest of the quivers are called
wild because for them the classification problem is an essentially impossible task.

2An Artin algebra is a finitely generated algebra over an Artinian ring, i.e. a commutative
ring that satisfies the descending chain condition on ideals: every nested sequence of ideals I1 D
Is O - stabilizes eventually.
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Inifinite extensions of L,,. As a first step toward expanding the index set, con-
sider the following countable extensions of the linear quiver L,,, indexed respectively
over N and Z:

N: ° . °
0 1 2

Z: ° ° ° ° °
—2 —1 0 1 2

Webb [238] has extended Theorems 1.1 and 1.2 to the quiver Z in the following
way, where a representation V of Z is called pointwise finite-dimensional when
each of its constituent vector spaces has finite dimension®. The decomposition of
representations of N is obtained as a special case, in which the vector spaces assigned
to nodes with negative index are trivial. The uniqueness of the decomposition (for
both Z and N) follows once again from Azumaya’s theorem.

THEOREM 1.4 (Webb). Let k be a field. Then, any pointwise finite-dimensional
representation of Z over k is a direct sum of interval representations.

As it turns out, there is an equivalence of categories between the representations
of Z and the Z-graded modules over the polynomial ring k[t]. Webb’s proof works
in the latter category. In light of this equivalence, Theorem 1.4 can be viewed as
a generalization of the classical structure theorem for finitely generated (graded)
modules over a (graded) principal ideal domain [163, §3.8]. The importance of the
pointwise finite-dimensionality assumption is illustrated by the following example.

EXAMPLE 1.5 (Webb [238]). For each integer m > 0, let k,,, denote a copy of
the field k. Let then V = (V;,v]) be the representation of Z defined by:

¥i>0, V=[] k.,

m>0

Vi<0,Vi= [] km

m>—1i

Vi < g, vzj is the inclusion mapV; — V;.

For i > 0, V; is isomorphic to the space of sequences (zg, x1, Z2, - - - ) of elements in k,
and is therefore uncountably-dimensional. For ¢ < 0, V; is isomorphic to the space
of all such sequences satisfying the extra condition that =g = --- = x_;_1 = 0.
Suppose V decomposes as a direct sum of interval representations. Since each
map v] is injective for i < 0 and bijective for i > 0, all the intervals must be
of the form (—o0,400) or [i,+00) for some ¢ < 0. Since the quotient Vi11/V;
has dimension 1 for ¢ < 0, each interval [i,4+00) occurs with multiplicity 1 in the
decomposition. Since (,_, V; = 0 (i.e. the only sequence (xg, 21,2, --) such that
0 =29 =21 = 29 = --- is the identically zero sequence), the interval (—oo, 4+00)
does not occur at all in the decomposition. Hence, we have V = @, _ 1[i, +00),
and therefore V} is countably-dimensional, a contradiction. B

3This is a weaker assumption than having V itself be finite-dimensional when the quiver is
infinite.
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Representations of arbitrary subposets of (R, <). We now consider extensions
of the index set to arbitrary subsets T of R. For this we work with the poset (T, <)
directly, rather than with some associated quiver. Regarding (T, <) as a category
in the natural way*, we let a representation of (T, <) be a functor to the category
of vector spaces. What this means concretely is that the representation defines
vector spaces (V;)ier and linear maps (v} : V; — V;)i<jer satisfying the following
constraints induced by functoriality:

vy = 1y, for every i € T', and
(1.10) v = ko) foreveryi<j<keT
i = YR yi<j)g<kel.

More generally, one can define representations for any given poset as functors from
that poset to the category of vector spaces.

Crawley-Boevey [93] has extended Theorems 1.1 and 1.2 to representations
of arbitrary subposets of (R, <). Pointwise finite-dimensionality is understood as
in Theorem 1.4. The proof uses a specialized version of the functorial filtration
method of Ringel [216]. The uniqueness of the decomposition once again follows
from Azumaya’s theorem.

THEOREM 1.6 (Crawley-Boevey). Let k be a field and let T C R. Then, any
pointwise finite-dimensional representation of (T, <) over k is a direct sum of in-
terval representations.

Note that there is a larger variety of interval representations for the posets
(Z,<) and (R, <) than for the A,-type quivers. Indeed, some intervals may be
left-infinite, or right-infinite, or both. Moreover, since R has limit points, some
intervals for (R, <) may be open or half-open. We will elaborate on this point in
the next section.

REMARK. The connection to quiver theory is somewhat more subtle in this
general setting than in the previous ones. First of all, any quiver can be viewed as
a category, with one object per node and one morphism per finite oriented path. Its
representations are then interpreted as functors to the category of vector spaces. In
the case of the quivers N and Z, the corresponding categories are equivalent to the
posets (N, <) and (Z, <) respectively. However, not every quiver is equivalent (as a
category) to a poset, and conversely, not every poset is equivalent to a quiver. The
reason for the latter limitation is that paths sharing the same source and the same
target are not considered equal in a quiver (recall (1.2) and (1.6)), whereas they are
in a poset by transitivity. The workaround is to equip the quivers with relations that
identify the paths sharing the same source and the same target. The representations
of the resulting quivers with relations have to reflect these identifications. This way,
any poset can be made equivalent (as a category) to some quiver with relations,
and its representations can be viewed themselves as quiver representations.

2. Persistence modules and interval decompositions

The background material on quiver theory given in Section 1 provides us with
a convenient terminology to introduce persistence modules—see also Section 5 for
a historical account. From now on and until the end of the chapter, the field k over
which representations are taken is fixed.

4i.e. with one object per element i € T' and a single morphism per couple 7 < j.
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DEFINITION 1.7. Given T' C R, a persistence module over T is a representation
of the poset (T, <).

This definition follows (1.10) and includes the representations of the quivers L,,,
N and Z as special cases. However, it does not include the representations of general
A, -type quivers, which are gathered into a different concept called zigzag module.

DEFINITION 1.8. Given n > 1, a zigzag module of length n is a representation
of an A,-type quiver.

The term ‘zigzag’ is justified by the following special situation motivated by
applications, where every other arrow is oriented backwards:

V1 Vo v3 Un—3 Un—2

Un—1
Vo ——= Vo1 —— V),

(1.11) Vi Vs

Vs

Zigzag modules can also be thought of as poset representations. As a directed
acyclic graph, an A,-type quiver Q is the Hasse diagram® of some partial order

relation < on the set {1,---,n}. Since Q has at most one oriented path between
any pair of nodes, it is equivalent (as a category) to the poset ({1,---,n}, <), and
its representations are also representations of ({1,--- ,n}, <). Thus, we can rewrite

Definition 1.8 as follows, which emphasizes its connection to Definition 1.7:

DEFINITION 1.8 (rephrased). Given n > 1, a zigzag module of length n is a
representation of the poset ({1,---,n}, X), where < is any partial order relation
whose Hasse diagram is of type A,,.

Section 1 provides us with powerful structure theorems to decompose these
objects. The basic building blocks are the interval representations, called interval
modules in the persistence literature. Given an arbitrary index set 7' C R, an
interval of T is a subset S C T such that for any elements i < j < kof T, i,k € S
implies j € S. The associated interval module has the field k at every index i € .S
and the zero space elsewhere, the maps between copies of k being identities and all
other maps being zero. This definition is oblivious to the actual map orientations,
which depend on the order relation =< that equips the index set 7. When this
relation is obvious from the context, we simply write IS for the interval module
associated with S; otherwise we write I<.S, or even [gS when < is specified through
its Hasse diagram Q.

The following theorem summarizes the structural results from Section 1 (The-
orems 1.1, 1.2, 1.3 and 1.6) and can be thought of as our main heritage from quiver
theory. The conditions under which it guarantees the existence of an interval de-
composition are sufficient for our purposes.

THEOREM 1.9 (Interval Decomposition). Given an index set T C R and a par-
tial order relation < on T, a representation V of the poset (T, <) can be decomposed
as a direct sum of interval modules in each of the following situations:

(i) T is finite and the Hasse diagram of = is of type A, (which happens in

particular when =< is the natural order < on T, whose Hasse diagram is Ly, ),

(ii) T is arbitrary, = is the natural order <, and 'V is pointwise finite-dimensional.

Moreover, the decomposition, when it exists, is unique up to isomorphism and per-
mutation of the terms in the direct sum, and each term is indecomposable.

5Defined as the graph having {1,---,n} as vertex set, and one edge i —+ j per couple i < j
such that there is no k with 1 < k < 7.
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So, concretely:

(i) any zigzag module decomposes uniquely as a direct sum of interval mod-
ules,
(i)-(ii) any persistence module whose index set is finite or whose vector spaces
are finite-dimensional decomposes uniquely as a direct sum of interval
modules.

A persistence or zigzag module V that decomposes as a direct sum of interval mod-
ules is called interval-decomposable. The converse (called interval-indecomposable)
means that either V decomposes into indecomposable representations that are not
interval modules, or V does not decompose at all as a direct sum of indecomposable
representations. In principle, interval-decomposability is a stronger concept than
the classical notion of decomposability into indecomposables from quiver theory.
Nevertheless, the tools introduced by Webb [238] can be used to prove both con-
cepts equivalent for modules over (subsets of) Z [192], while to our knowledge the
question is still not settled for modules over R.

3. Persistence barcodes and diagrams

In order to simplify the description of interval modules over arbitrary subsets
of R, including subsets with limit points, we need to decide on a simple and unified
writing convention for intervals. For this purpose we will use decorated real numbers,
which are written as ordinary real numbers with an additional superscript * (plus)
or ~ (minus). Whenever the decoration of a number is unknown or irrelevant, we
will use the superscript *. The order on decorated numbers is the obvious one:
bt < dt if b < d, orif b=d and b* = b~ and d* = b*. The corresponding
dictionary for finite intervals of R is the following one, where b* < d*:

[b—,d” ] stands for [b,d),
[b-,d"| stands for [b,d],
[bt,d~| stands for (b,d),
[bt,dt]| stands for (b,d].

We will also use the symbols —oco and +oo for infinite endpoints. Since intervals
are always open at infinity, these implicitly carry the superscripts —oot and +oo™,
which we will generally omit in the notations, so for instance [—oo,d™ | stands for
the open interval (—oo, d).

Given an arbitrary index set T' C R, we can now rewrite each interval S of T" as
[b*,d* | NT, for some interval [b*, d* | of R. Note that the choice of [bF, d* | may
not be unique when T is a strict subset of R. For instance, letting S = {2,3} and
T ={1,2,3,4}, we can write S indifferently as [2,3]NT, or (1,3]NT, or (1,4)NT,
or [2,4) NT, or more generally [b*,d* | NT for any [2,3] C [b*,d*| C (1,4). To
remove ambiguities, unless otherwise stated we will always pick the interval of R
that is smallest with respect to inclusion, as per the following rule®:

RULE 1.10. Given an interval S of an index set T, among the intervals of
R whose intersection with T is S, pick the one that is smallest with respect to
inclusion, e.g. [2,3] in the previous example.

6This rule has been applied implicitly until now. It is arbitrary and not motivated by math-
ematical considerations. Other rules can be applied as well, leading to different writings of the
same interval S of T
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[bj,d;] = b ,df | [bF,df | = (bj,d;]

7777 377

[ijdj) = [bj_ad]_J ’Vbj_vd]_J = (ijdj)
FIGURE 1.1. The four decorated points corresponding to intervals (b;t, dj[ .
For simplicity we will also omit the index set T in the notation when it is
irrelevant or obvious from the context. Then, any interval-decomposable module V
can be written uniquely (up to permutation of the terms) as

(1.12) v = Pk, df .
jeJ

The set of intervals (bf, dfj, ordered by the lexicographical order on the decorated
coordinates, is called the persistence barcode of V. Technically it is a multiset, as
an interval may occur more than once. Another representation of the persistence
barcode is as a multiset of decorated points in the extended plane R? = [—o0, +-00]?,
where each interval fb;-t,d;tj is identified with the point of coordinates (b;,d;)
decorated with a diagonal tick according to the convention of Figure 1.1. This

multiset of decorated points is called the decorated persistence diagram of V, noted
Dgm(V). From (1.12),

(1.13) Dgm(V) = {(b;,d}") | j€ J}.

The wundecorated persistence diagram of V, noted dgm(V), is the same multiset
without the decorations:

(1.14) dgm(V) = {(bj.d;) | j € J}.

Let us give a concrete example taken from our traditional zoo—the background
details will be given in Chapter 2.

A

F1GURE 1.2. A classical example in persistence theory. Left: a
smooth planar curve X and its y-coordinate or ‘height’ function f :
X — R. Right: the decorated persistence diagram of Ho(F).

— From Chazal et al. [72].

EXAMPLE 1.11. Consider the curve X in R? shown in Figure 1.2, filtered by the
height function f. Take the family F of sublevelsets F}, = f~1((—o0,%]) of f, where
parameter y ranges over R. This family is nested, that is, F,, C F}, whenever y <y’.
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Let us apply the 0-homology functor Hy to F and study the resulting persistence
module Ho(F), which encodes the evolution of the connectivity of the sublevel sets
F, as parameter y ranges from —oo to +oo. This module decomposes as follows:

Ho(F) 2 1a, +00) ® 1[b,c) ®1[d,e) =1[a,+oo] ®I[b,c~ | ®I[d e |,

which intuitively means that 3 different independent connected components appear
in the sublevel set F, during the process: the first one at y = a, the second one at
y = b, the third one at y = d; while the first one remains until the end, the other
two eventually get merged into it, at times y = ¢ and y = e respectively. A pictorial
description of this decomposition is provided by the decorated persistence diagram
in Figure 1.2.

The persistence measure. Let V be an interval-decomposable module. From its
decorated persistence diagram Dgm(V) we derive the following measure on rectan-
gles R = [p, q] X [r,s] in the extended plane with —oco <p < ¢ <r < s < 4o0:

(1.15) v (R) = card (Dgm(V)| ).
where the membership relation for a decorated point (b*,d*) € Dgm(V) is defined
by:

(1.16) (b*,d%) € R <= [g,7] C [b*,dF] C [p,5].

The pictorial view of (1.16) is that point (b,d) and its decoration tick belong to
the closed rectangle R, as illustrated in Figure 1.3. Then, (1.15) merely defines uy

as the counting measure over the restrictions of Dgm(V) to rectangles, which takes
values in {0,1,2,---,+00} (we do not distinguish between infinite values). The

. ~ »

« ) & »

4 R 4 R )

FIGURE 1.3. A decorated point (b*,d*) belongs to a rectangle R
if (b, d) belongs to the interior of R, or if it belongs to the boundary
of R with its tick pointing towards the interior of R.

— From Chazal et al. [72].

term measure is motivated by the fact that py is additive with respect to splitting
a rectangle into two rectangles, either vertically or horizontally, with the convention
that x + 0o = 400 4+ x = 4o00:
Vp<z<qg<r<y<s,
(1.17) { v ([p, g x [r, s]) = pv([p, =] x [r, s]) + pv([z, ] x [r, 5])
v ([p,q] x [r,s]) = pv([p,a] % [r,y]) + pv(lp, q] x [y, ])

This additivity property is illustrated in Figure 1.4, where the claim is that py(R) =
pv(A) + py(B) = py(C) + py(D). Notice how the decoration of a given point on
the border between two subrectangles assigns this point uniquely to one of them.
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R ’ A B ’ C ’
D v
p q 1% X q 1% q

FIGURE 1.4. Additivity of uy under vertical / horizontal splitting.
— From Chazal et al. [72].

When V = (V;, vf ) is a persistence module over R, we can also relate its persis-
tence measure py more directly to V through the following well-known inclusion-
exclusion formulas, which hold provided that all the ranks are finite or, less strin-
gently, that all but rank v, are finite—in which case the values of the alternating
sums are +oo:

Vp<qg<r<seR,

pry([—00,q] % [, +oc]) = rankuy,

(1.18) pv([—00,q] x [r,s]) = rankw; — rank vy,

pv([p,q] X [r,+00]) = rankwv; — rankwvy,

wy([p, q] % [r,s]) = rank v, — rankv; + rank v, — rank vy.
The first formula counts the number of decorated points of Dgm(V) that lie inside
the quadrant Q = [—o00,q| X [r,+00], the second formula inside the horizontal
strip H = [—00, ] x [r, s], the third formula inside the vertical strip V' = [p, q] x

[r, +00], the fourth formula inside the rectangle R = [p, q] x [r, s]. These patterns
are illustrated in Figure 1.5. Notice how the second, third and fourth formulas are
obtained from the first one by counting points inside quadrants and by removing
multiple counts (hence the term ‘inclusion-exclusion formulas’). These formulas are
useful to localize points in the persistence diagram from the sole knowledge of the
ranks of the linear maps in V. As we will see next, they can be used to generalize
the definition of persistence diagram to a certain class of interval-indecomposable
persistence modules.

FI1GURE 1.5. A quadrant, horizontal strip, vertical strip, and finite
rectangle in the half plane above the diagonal.
— From Chazal et al. [72].
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4. Extension to interval-indecomposable persistence modules

So far we have restricted our attention to modules that are decomposable into
interval summands. For these modules we have defined persistence diagrams that
encode their algebraic structure in a unique and complete way. These diagrams,
together with their derived persistence measures, serve as signatures for the mod-
ules, and as we will see in Chapter 3 they can be compared against one another in
a natural and theoretically sound way.

In order to extend the definition of persistence diagram to persistence modules
V that are not interval-decomposable, we proceed backwards compared to Section 3:
first, we use the formulas of (1.18) as axioms to define the persistence measure py
of V; then, we show the existence and uniqueness of a multiset of points in the
extended plane whose counting measure restricted to rectangles coincides with py.
In order to use (1.18), we need to assume that the ranks in the alternating sums
are finite, except rank vy, which brings up the following notion of tameness for V:

DEFINITION 1.12. A persistence module V = (V;,v]) over R is quadrant-tame,
or q-tame for short, if rank v} < 400 for all 7 < j.

The reason for this name is obvious from the first formula of (1.18): when V
is interval-decomposable, rank vf represents the total multiplicity of the diagram
inside the quadrant [—o0,4] X [j, +00]. The g-tameness property allows this multi-
plicity to be infinite when ¢ = j (i.e. when the lower-right corner of the quadrant
touches the diagonal line y = x) but not when ¢ < j (i.e. when the quadrant lies
strictly above the diagonal line). Note that forcing the multiplicity to be finite
even when ¢ = j would bring us back to the concept of pointwise finite-dimensional
module.

For a g-tame persistence module V, we define the persistence measure py by the
formulas of (1.18), which as we saw are well-founded in this case. This measure on
rectangles does take values in {0,1,2,--- , 400} as before, although the fact that it
cannot be negative is not obvious at first sight: it follows from the observation that
the formulas of (1.18) actually count the multiplicity of the summand I[g, r] in the
interval-decomposition of the restriction of the module V to some finite index set J,
which is J = {g¢, r} for the first formula, J = {qg, r, s} for the second, J = {p, ¢, r} for
the third, and J = {p, g, r, s} for the fourth. In each case, the restriction of V to this
finite index set J is interval-decomposable by Theorem 1.9 (i), so the multiplicity
of the summand I[g, r| is well-defined and non-negative—for further details on this
specific point, please refer to [72, §2.1]. In addition to being non-negative, uy is
also additive under vertical and horizontal splittings, a straight consequence of its
definition (the duplicated terms in the alternating sums cancel out).

THEOREM 1.13 ([72, theorem 2.8 and corollary 2.15]). Given a q-tame module
V, there is a uniquely defined locally finite decorated multiset Dgm(V) in the open
extended upper half-plane {(x,y) € R? | x < y} such that for any rectangle
R=[p,q] x[r,s] with —co<p<qg<r<s<+00,
pv(R) = card (Dgm(V)|g) .
The proof of this result works by subdividing the rectangle R recursively into
subrectangles, and by a limit process it eventually charges the local mass of uy to a

finite set of decorated points, whose uniqueness is obtained as an easy consequence
of the construction. A preliminary version of this argument appeared in [71] and was
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based on measures defined on specific families of rectangles. The final version in [72]
is more cleanly formalized and considers general rectangle measures, therefore we
recommend it to the interested reader.

Theorem 1.13 defines the persistence diagram of a g-tame module V uniquely as
a multiset Dgm(V) of decorated points lying above the diagonal line A = {(x,z) |
r € R}. Alternately, one can use a persistence barcode representation, in which ev-
ery diagram point (b*, d*) becomes the interval [b*, d*|. The undecorated version
of Dgm(V), denoted dgm(V), is obtained as in (1.14) by forgetting the decorations.

These definitions agree with the ones from Section 3 in the sense that, if a
persistence module V over R is both g-tame and interval-decomposable, then the
multiset Dgm(V) derived from Theorem 1.13 agrees with the one from (1.13) ev-
erywhere above the diagonal A—see [72, proposition 2.18]. The two multisets may
differ along A though, since the interval-decomposition of V may contain summands
of type I[b,b] = I[b~, b |, which are not captured by the rectangles not touching A.
It turns out that either definition of Dgm(V) can be used in practice, as the natural
measures of proximity between persistence modules and between their diagrams,
which will be presented in Chapter 3, are oblivious to the restrictions of the dia-
grams to the diagonal A. We will therefore be using both definitions indifferently
in the following.

5. Discussion

To conclude the chapter, let us discuss some of its concepts further and put
them into perspective.

Persistence modules: a historical account. Several definitions of a persistence
module coexist in the persistence literature, following the steady development of
the theory towards greater generality and abstraction.

The term persistence module was coined originally by Zomorodian and Carls-
son [243], but the concept appeared already in [118], where it referred to a finite
sequence of finite-dimensional vector spaces connected by linear maps as follows:

U1

Vo Un—1

(1.19) Vi Va Vi,

In other words, a persistence module as per Edelsbrunner, Letscher, and Zomoro-
dian [118] is a finite-dimensional representation of the linear quiver L,. Zomoro-
dian and Carlsson [243] extended the concept to diagrams indexed over the natural
numbers, that is, to representations of the quiver N. Cohen-Steiner, Edelsbrunner,
and Harer [87] further extended the concept to work with diagrams indexed over
the real line. They defined a persistence module as an indexed family of finite-
dimensional vector spaces {V;};cr together with a doubly indexed family of linear
maps {v? : V; = Vj }i<; that satisfy the following identity and composition rules:

Vi, ’U:Z]lvi,

3
T .
Vi < j <k, vf:vfovf.

(1.20)

Such objects are pointwise finite-dimensional representations of the poset (R, <),
the identity and composition rules (1.20) following from functoriality as in (1.10).

Chazal et al. [71] dropped the finite-dimensionality condition on the vector
spaces, and then Chazal et al. [72] replaced R by any subset T' C R equipped with
the same order relation <. Hence Definition 1.7.
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Carlsson and de Silva [49] extended the concept of persistence module in a
different way, by choosing arbitrary orientations for the linear maps connecting the
finite-dimensional vector spaces in (1.19). This gave rise to the concept of zigzag
module, presented in Definition 1.8 without the finite-dimensionality condition.

More recently, Bubenik and Scott [41] then Bubenik, de Silva, and Scott [40]
proposed to generalize the concept of persistence module to representations of ar-
bitrary posets. This generalization reaches far beyond the setting of 1-dimensional
persistence, losing some of its fundamental properties along the way, such as the
ability to define complete discrete invariants like persistence barcodes in a system-
atic way. Nevertheless, it still guarantees some ‘soft’ form of stability, as will be
discussed at the end of Chapter 3 and then in Chapter 9.

Interval decompositions in the persistence literature. Although Theorem 1.9 is
presented as a byproduct of representation theory in the chapter, it actually took
our community some time to realize this connection.

Historically, Zomorodian and Carlsson [243] were the first ones to describe per-
sistence modules in terms of representations. They pointed out the connection be-
tween the persistence modules over N and the graded modules over the polynomial
ring k[t] (mentioned after Theorem 1.4), and they used the structure theorem for
finitely generated modules over a principal ideal domain as decomposition theorem
for finite-dimensional persistence modules over N.

Some time later, Carlsson and de Silva [49] introduced zigzag modules and
connected them to finite-dimensional representations of A,,-type quivers. This con-
nection induces a decomposition theorem for finite-dimensional zigzag modules via
Gabriel’s theorem.

More recently, Chazal et al. [72] pointed out the connection between persistence
or zigzag modules over finite sets and representations of finitely generated algebras,
and they referred to the work of Auslander [12] and Ringel and Tachikawa [217] to
decompose arbitrary persistence or zigzag modules (including infinite-dimensional
ones) over finite index sets—Theorem 1.9 (i).

In the meantime, Lesnick [179] introduced our community to the work of Webb
[238], which generalizes the decomposition theorem used by Zomorodian and Carls-
son [243] to pointwise finite-dimensional modules over N. Crawley-Boevey [93] fur-
ther extended it to a decomposition theorem for persistence modules over arbitrary
subsets of R under the pointwise finite-dimensionality condition—Theorem 1.9 (ii).
His proof turns out to hold under a somewhat weaker (albeit technical) condi-
tion [95], which gives hope for tackling the interval decomposability question in
greater generality, as will be discussed next.

These results have contributed to shape the theory as we know it today. Among
them, let us point out [49] as a key contribution, for bringing the existence of
quiver theory and its connection to persistence to the attention of our community,
and conversely, for creating an opportunity to advertise persistence among the
representation theory community and stimulate interactions. Besides, Carlsson
and de Silva [49] proposed a genuinely new constructive proof of Gabriel’s theorem
in the special case of A,-type quivers, which is self-contained, requires no prior
knowledge of quiver theory, and has eventually led to a practical algorithm for
computing decompositions of zigzag modules [50]. For the interested reader, we
analyze this proof and establish connections to the so-called reflection functors
of Bernstein, Gelfand, and Ponomarev [24] in Section 4.4 of Appendix A.
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q-tameness versus interval-decomposability. The concepts of interval-decompos-
able and g-tame persistence modules over R are closely related but not identical,
and neither of them is a direct generalization of the other. For instance, the module
&b e ]Ifbji, d?[j, where the decorated pairs form a dense subset of the half-plane
above A, is interval-decomposable but not g-tame—in fact its persistence measure
is infinite on every rectangle. By contrast, the module [, I[0, +] is g-tame but
not interval-decomposable.

Both concepts are related though. As we will see in Chapter 3, g-tame mod-
ules are the limits of pointwise finite-dimensional modules in some metric called
the interleaving distance. Recall that pointwise finite-dimensional modules are
themselves g-tame by definition and interval-decomposable by Theorem 1.9 (ii),
so g-tame modules are limits of (a subset of) the interval-decomposable modules.
Furthermore, Crawley-Boevey [95] proved that any g-tame persistence module V
admits interval-decomposable submodules W whose interleaving distance to V is
zero, so (-tame modules are in fact indistinguishable from interval-decomposable
modules in that metric. This result led Bauer and Lesnick [20] to define the undec-
orated persistence diagram of a g-tame module V directly as the diagram of any
interval-decomposable submodule W of V lying at interleaving distance zero from
V. The upcoming Isometry Theorem (Theorem 3.1) implies that this is a sound
definition, all such submodules W having in fact the same undecorated diagram.

One of these submodules stands out: the so-called radical rad(V), defined as
follows (where V = (V;,v7)):

(1.21) Vj €R, rad(V); = imuv!.

1<j
Although not always pointwise finite-dimensional, rad(V) is interval-decompos-
able [95], furthermore it makes the quotient module U = V/rad(V) ephemeral’,
that is:

(1.22) Vi < jeR, ranku! = 0.

Thus, every g-tame module is interval-decomposable ‘modulo’ some ephemeral mod-
ule. Chazal, Crawley-Boevey, and de Silva [63] formalized this idea by introducing
the so-called observable category of persistence modules, defined as the quotient
category of g-tame modules ‘modulo’ ephemeral modules in the sense of Serre’s
theory of localization. In this new category, g-tame modules become interval-
decomposable, and (undecorated) persistence diagrams are a complete invariant
for them.

The conclusion of this discussion is that g-tame modules appear as a natural ex-
tension of (a subset of) the interval-decomposable modules. In addition, experience
shows that g-tame modules occur rather widely in applications. For instance, as we
will see in Chapter 7, the Vietoris-Rips and Cech complexes of a compact metric
space have g-tame persistent homology, whereas they can be very badly behaved
when viewed non-persistently. Such examples support the claim that the g-tame
modules are also a natural class of persistence modules to work with in practice.

"In fact, rad(V) is the smallest submodule of V such that the quotient module is ephemeral.



