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Preface

It is in the early 2000’s that persistence emerged as a new theory in the field of
applied and computational topology. This happened mostly under the impulsion
of two schools: the one led by H. Edelsbrunner and J. Harer at Duke University,
the other led by G. Carlsson at Stanford University. After more than a decade of
a steady development, the theory has now reached a somewhat stable state, and
the community of researchers and practitioners gathered around it has grown in
size from a handful of people to a couple hundred!. In other words, persistence has
become a mature research topic.

The existing books and surveys on the subject [48, 114, 115, 119, 141, 245]
are largely built around the topological aspects of the theory, and for particular
instances such as the persistent homology of the family of sublevel sets of a Morse
function on a compact manifold. While this can be useful for developing intuition,
it does create bias in how the subject is understood. A recent monograph [72] tries
to correct this bias by focusing almost exclusively on the algebraic aspects of the
theory, and in particular on the mathematical properties of persistence modules
and of their diagrams.

The goal pursued in the present book is to put the algebraic part back into
context?, to give a broad view of the theory including also its topological and
algorithmic aspects, and to elaborate on its connections to quiver theory on the
one hand, to data analysis on the other hand. While the subject cannot be treated
with the same level of detail as in [72], the book still describes and motivates the
main concepts and ideas, and provides sufficient insights into the proofs so the
reader can understand the mechanisms at work.

Throughout the exposition I will be focusing on the currently most stable in-
stance of the theory: 1-dimensional persistence. Other instances, such as multi-
dimensional persistence or persistence indexed over general partially ordered sets,
are comparatively less well understood and will be mentioned in the last part of
the book as directions for future research. The background material on quiver the-
ory provided in Chapter 1 and Appendix A should help the reader understand the
challenges associated with them.

Reading guidelines. There are three parts in the book. The first part (Chap-
ters 1 through 3 and Appendix A) focuses on the theoretical foundations of per-
sistence. The second part (Chapters 4 through 7) deals with a selected set of

1As evidence of this, the Institute for Mathematics and its Applications at the University
of Minnesota (http://www.ima.umn.edu/) was holding an annual thematic program on Scientific
and Engineering Applications of Algebraic Topology in the academic year 2013-2014. Their first
workshop, devoted to topological data analysis and persistence theory, gathered around 150 people
on site, plus 300 simultaneous connections to the live broadcast.

2Let me mention a recent short survey [234] that pursues a similar goal.

vii



viii PREFACE

applications. The third part (Chapters 8 and 9) talks about future prospects for
both the theory and its applications. The document has been designed in the hope
that it can provide something to everyone among our community, as well as to
newcomers with potentially different backgrounds:

e Readers with a bias towards mathematical foundations and structure the-
orems will find the current state of knowledge about the decomposabil-
ity of persistence modules in Chapter 1, and about the stability of their
diagrams in Chapter 3. To those who are curious about the connections
between persistence and quiver theory, I recommend reading Appendix A.

e Readers with a bias towards algorithms will find a survey of the methods
used to compute persistence in Chapter 2, and a thorough treatment of
the algorithmic aspects of the applications considered in Part 2.

e Practitioners in applied fields who want to learn about persistence in
general will find a comprehensive yet still accessible exposition spanning
all aspects of the theory, including its connections to some applications.
To those I recommend the following walk through Part 1 of the document:

a) The general introduction,

b) Sections 1 through 3 of Chapter 1,

c¢) Sections 1.1 and 2.1 of Chapter 2,

d) Sections 1, 2.1 and 4 of Chapter 3.
Then, they can safely read Parts 2 and 3.

For the reader’s convenience, the introduction of each chapter in Parts 1 and 2
mentions the prerequisites for reading the chapter and provides references to the
relevant literature. As a general rule, I would recommend reading [115] or [142]
prior to this book, as these references give quite accessible introductions to the
field of applied and computational topology.

Acknowledgements. First of all, I want to express my gratitude towards the peo-
ple who have contributed to shape persistence theory as we know it today. Among
them, let me thank my co-authors, with whom I had an exciting time developing
some of the ideas presented in this book: Jean-Daniel Boissonnat, Mickaél Buchet,
Mathieu Carriere, Frédéric Chazal, David Cohen-Steiner, Vin de Silva, Jie Gao,
Marc Glisse, Leonidas Guibas, Benoit Hudson, Clément Maria, Facundo Mémoli,
Gary Miller, Maksim Ovsjanikov, Donald Sheehy, Primoz Skraba, and Yue Wang.

Second, I want to thank the people who have helped me design the book and
improve its content. Among them, my gratitude goes primarily to Michael Lesnick,
for his careful reading of early versions of the manuscript and for his insightful
comments that greatly helped improve Part 1 and Appendix A. I am also grateful
to the anonymous referees, who provided me with valuable feedback on the flow of
the book and on its readability. I also want to thank the people who have proof-
read excerpts from the manuscrit and helped me improve the content and exposition
locally: Eddie Aamari, Jean-Daniel Boissonnat, Frédéric Chazal, Jérémy Cochoy,
Pawel Diotko, Marc Glisse, Bertrand Michel. Let me apologize in advance to those
whose names I may have forgotten in this list.

Finally, I want to thank Sergei Gelfand, Christine Thivierge, and the Amer-
ican Mathematical Society for their interest in the book and for their support to
finalize it.

Palaiseau, June 2015



Introduction

A picture being worth a thousand words, let us introduce our subject by show-
ing a toy example coming from data analysis. Consider the data set of Figure 0.1,
which is composed of 176 points sampled along 11 congruent letter-B shapes ar-
ranged into a letter A in the plane. When asking about the shape represented by
this data set, one usually gets the answer: “It depends”, followed by a list of pos-
sible choices, the most common of which being “eleven B’s” and “one A”. To these
choices one could arguably add a third obvious possibility: “176 points”. What
differentiates these choices is the scale at which each one of them fits the data.

FIGURE 0.1. A planar point set with several underlying geometric
structures at different scales.

Finding the ‘right’ scale(s) at which to process a given data set is a common
problem faced across the data analysis literature. Most approaches simply ignore
it and delegate the choice of scale to the user, who is then reduced to tuning some
parameter blindly, usually by trial-and-error. Sometimes the parameter to tune
does not even have a direct interpretation as a scale, which makes things even
harder. This is where multiscale approaches distinguish themselves: by processing
the data at all scales at once, they do not rely on a particular choice of scale. Their
feedback gives the user a precise understanding of the relationship between the
choice of input parameter and the output to be expected. Eventually, finding the
‘right’ scale to be used to produce the final output is still left to the user, however
(s)he can now make an informed choice of parameter.

As an illustration, Figure 0.2 shows the result obtained by hierarchical ag-
glomerative clustering on the aforementioned data set. The hierarchy reveals three
relevant scales: at low levels (between 0 and 4), the clustering has one cluster per
data point; at intermediate levels (between 8 and 12), the clustering has one cluster
per letter B; at the highest level (above 16), there is only one cluster left, which
spans the entire letter A.
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FIGURE 0.2. The hierarchy (also called dendrogram) produced by
single-linkage clustering on the data set of Figure 0.1.

Connected Components

Holes

| | | |
2 3 4 5 6

Figure 0.3. The barcode produced by persistence on the data
set of Figure 0.1. The abscissa line represents the geometric scale
with a logarithmic graduation. Left (resp. right) arrows mark left-
(resp. right-) infinite intervals, while thin (resp. bold) bars mark
intervals with multiplicity 1 (resp. 11).

Persistence produces the same hierarchy but uses a simplified representation
for it, shown in the upper half of Figure 0.3. This representation forgets the actual
merge pattern between the clusters. When two clusters are merged, they no longer
produce a new cluster corresponding to their union in the hierarchy. Instead, one
of them ceases to be treated as an independent cluster, to the benefit of the other.
The choice of the winner is arbitrary in this case, however in general it is driven by a
principle called the elder rule, which will be illustrated in the upcoming Figure 0.5.
The resulting collection of horizontal bars is called a persistence barcode. Each bar
is associated to a single data point and represents its persistence as an independent
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Connected Components
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FIGURE 0.4. Left: a collection of 72 color images of size 128 x 128
pixels coming from the Columbia Object Image Library [203]. The
images were obtained by taking pictures of an object while rotat-
ing around it. Each image gives a data point in 49 152 dimensions,
where by construction the data set lies near some simple closed
curve. Right: the corresponding barcode produced by persistence,
where the abscissa line represents the geometric scale with a loga-
rithmic graduation, and where left (resp. right) arrows mark left-
(resp. right-) infinite intervals.

— Pictures used in the left part of the figure are courtesy of the Computer

Vision Laboratory at Columbia University.

cluster. Although weaker than the full hierarchical representation, the barcode is
still informative enough to allow for an interpretation. In the present example, the
11 bars with multiplicity 1 come from the 11 B’s merging into a single A around
scale 2* = 16. Before that, the 15 bars with multiplicity 11 come from each letter B
having 16 points that get merged into a single cluster around scale 23 = 8. It takes
a bit of time to get used to this kind of representation, in which the actual hierarchy
(who is merged with whom) is lost. Nevertheless, this is the price to pay for more
stability and generality.

Persistence is indeed able to produce such barcodes for higher-dimensional topo-
logical features as well. For instance, the bottom half of Figure 0.3 shows a barcode
encoding the lifespans of ‘holes’ across scales in the data set of Figure 0.1. To un-
derstand what is meant by this, imagine each data point being replaced by a ball
of radius r at scale r. Persistence detects the holes in the resulting union of balls
at every scale, and tracks their persistence across scales. Each bar in the resulting
barcode corresponds to a particular hole, and it encodes its lifespan in the growing
family of balls. The same can be done for voids in higher dimensions. In the ex-
ample of Figure 0.3, the 2 bars with multiplicity 11 appearing at lower scales come
from each letter B having 2 holes, while the long bar with multiplicity 1 appearing
at larger scales comes from the letter A having a single hole. The rest of the bars
indicate holes created at intermediate steps in the ball growing process, for instance
in places where B’s are arranged into a triangle.

Being able to detect the presence of topological features of arbitrary dimensions
in data, and to represent these features as a barcode whatever their dimension, is
what makes persistence an interesting tool for data visualization and analysis, and
a nice complement to more classical techniques such as clustering or dimensionality
reduction [183]. Besides, being able to do so in high dimensions and in a robust way,
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as illustrated in Figure 0.4, is an asset for applications. It is also an algorithmic
challenge, as dealing with high-dimensional data requires to develop a computing
machinery that scales up reasonably with the ambient dimension.

Persistence in a nutshell. The theory works at two different levels: topological,
and algebraic. At the topological level, it takes as input a sequence of nested
topological spaces, called a filtration:

(0.1) X1 CXeC--- C X,

Such sequences come typically from taking excursion sets (sublevel sets or superlevel
sets) of real-valued functions. For instance, in the example of Figure 0.3, the
filtration is composed of the sublevel sets of the distance to the point cloud, the
r-sublevel set being the same as the union of balls of same radius r about the
data points, for every » > 0. Here already comes a difficulty: in (0.1) we are
using a finite sequence, whereas the sublevel sets of a function form a continuous
1-parameter family. While algorithms only work with finite sequences for obvious
reasons, the theory is stated for general 1-parameter families. The connection
between discrete and continuous families is not obvious in general, and determining
the precise conditions to be put on a continuous family so that it behaves ‘like’ a
discrete family has been the subject of much investigation, as will be reflected in
the following chapters.

Given a sequence like (0.1), we want not only to compute the topological struc-
ture of each space X; separately, but also to understand how topological features
persist across the family. The right tool to do this is homology over a field, which
turns (0.1) into a sequence of vector spaces (the homology groups H..(X;)) connected
by linear maps (induced by the inclusions X; < X;11):

(0.2) H.(X1) — Ho(X2) — - — Ho (X5).

Such a sequence is called a persistence module. Thus we move from the topological
level to the algebraic level, where our initial problem becomes the one of finding
bases for the vector spaces H.(X;) that are ‘compatible’ with the maps in (0.2).
Roughly speaking, being compatible means that for any indices 4,7 with 1 <1 <
7 < n, the composition

H*(X,L) — H*(X'H-l) — s —> H*(Xj_1> — H*(Xj)

has a (rectangular) diagonal matrix in the bases of H.(X;) and H,(X;). Then,
every basis element can be tracked across the sequence (0.2), and its birth time b
and death time d defined respectively as the first and last indices at which it is part
of the current basis. At the topological level, this basis element corresponds to some
feature (connected component, hole, void, etc.) appearing in X, and disappearing
in Xgy1. Its lifespan is encoded as an interval [b, d] in the persistence barcode®.
The very existence of compatible bases is known from basic linear algebra when
n < 2 and from the structure theorem for finitely generated modules over a principal
ideal domain when n is arbitrary (but finite) and the vector spaces H,(X;) have
finite dimensions. Beyond these simple cases, e.g. when the index set is infinite or
when the spaces are infinite-dimensional, the existence of compatible bases is not
always assured, and when it is, this is thanks to powerful decomposition theorems
from quiver representation theory. Indeed, in its algebraic formulation, persistence

3Some authors rather use the equivalent notation [b,d + 1) for the interval. We will come
back to this in Chapter 1.
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is closely tied to quiver theory. Their relationship will be stressed in the following
chapters, but for now let us say that quiver is just another name for (multi-)graph,
and that a representation is a realization of a quiver as a diagram of vector spaces
and linear maps. Thus, (0.2) is a representation of the quiver

o e e Y
1 2 n

Computing a compatible basis is possible when the filtration is simplicial, that
is, when it is a finite sequence of nested simplicial complexes. It turns out that
computing the barcode in this special case is hardly more complicated than com-
puting the homology of the last complex in the sequence, as the standard matrix
reduction algorithm for computing homology can be adapted to work with the fil-
tration order. Once again we are back to the question of relating the barcodes of
finite (simplicial) filtrations to the ones of more general filtrations. This can be
done via the stability properties of these objects.

Stability. The stability of persistence barcodes is stated for an alternate rep-
resentation called persistence diagrams. In this representation, each interval* b,d
is viewed as a point (b,d) in the plane, so a barcode becomes a planar multiset.
The persistence of a topological feature, as measured by the length (d — b) of the
corresponding barcode interval b, d, is now measured by the vertical distance of the
corresponding diagram point (b, d) to the diagonal y = z. For instance, Figure 0.5
shows the persistence diagrams associated to the filtrations of (the sublevel-sets of)
two functions R — R: a smooth function f, and a piecewise linear approximation
f'. As can be seen, the proximity between f and f’ implies the proximity between
their diagrams dgm(f) and dgm(f’). This empirical observation is formalized in

the following inequality, where || - || denotes the supremum norm and dy, denotes
the so-called bottleneck distance between diagrams:
(0-3) dp(dgm(f), dgm(f")) < [If = f'll-

Roughly speaking, the bottleneck distance provides a one-to-one matching between
the diagram points corresponding to highly persistent topological features of f and
/!, the topological features with low persistence being regarded as noise and their
corresponding diagram points being matched to the nearby diagonal.

Stability, as stated in (0.3) and illustrated in Figure 0.5, is an important prop-
erty of persistence diagrams for applications, since it guarantees the consistency of
the computed results. For instance, it ensures that the persistence diagram of an
unknown function can be faithfully approximated from the one of a known approxi-
mation. Or, that reliable information about the topology of an unknown geometric
object can be retrieved from a noisy sampling under some reasonable noise model.

The proof of the stability result works at the algebraic level directly. For this
it introduces a measure of proximity between persistence modules, called the inter-
leaving distance, which derives naturally from the proximity between the functions
the modules originate from (when such functions exist). In this metric, the stability
result becomes in fact an isometry theorem, so that comparing persistence mod-
ules is basically the same as comparing their diagrams. From there on, persistence
diagrams can be used as signatures for all kinds of objects from which persistence
modules are derived, including functions but not only.

4We are omitting the brackets to indicate that the interval can be indifferently open, closed,
or half-open.
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FIGURE 0.5. Left: A smooth function f : R — R (red) and a piece-
wise linear approximation f (blue). Top-right: Superimposition of
the persistence diagrams of f (red) and f’ (blue). Every red dia-
gram point (b, d) corresponds to some local minimum of f creating
an independent connected component in the sublevel set of f at
time b, and merging it into the component of some lower mini-
mum at time d, as per the elder rule. Idem for blue points and f'.
Bottom-right: The size function corresponding to the persistence
diagram of f.

The isometry theorem is the cornerstone of the current theory, and its main
asset for applications. It is also what makes persistence stand out of classical quiver
theory.

Connections to other theories. As mentioned previously, there is a deep con-
nection between the algebraic level of persistence and quiver theory. Meanwhile,
the topological level has strong bonds with Morse theory:

e In the special case where the input filtration is given by the sublevel sets
of a Morse function f, i.e. a C'°°-continuous real-valued function with
non-degenerate critical points such that all the critical values are distinct,
Morse theory describes when and how the topology of the sublevel sets
of f changes in the filtration [195, theorems 3.1 and 3.2], thus providing a
complete characterization of its persistence diagram. Persistence general-
izes this analysis beyond the setting of Morse theory, to cases where the
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function f may not be differentiable nor even continuous, and where its
domain may not be a smooth manifold nor a manifold at all.

e In a similar way, persistence for simplicial filtrations is related to the
discrete version of Morse theory [130]. There are indeed filtered counter-
parts to the discrete gradient fields and to their associated discrete Morse
complexes. These are defined on simplicial filtrations rather than on sin-
gle simplicial complexes, with the expected property that the persistent
homology of the filtered Morse complexes is the same as the one of the
filtrations they come from. This connection has been exploited in various
ways, for instance to speed up the persistence computation [198].

e Finally, the O-dimensional aspects of persistence are related to Morse the-
ory in a particular way [55, 213]. Given a Morse function f, the hierarchy
on the local minima of f produced by persistence from the family of its
sublevel sets is equivalent to the join tree of f. Similarly, the hierarchy
on the local maxima of f produced from its superlevel sets is equivalent
to the split tree of f. Once merged together, these two trees form the
contour tree of f, which is the loop-free version of the Reeb graph and is
equal to it when the domain of f is both connected and simply connected.
There are also some relations between the 1-dimensional persistence of f
and the loops of its Reeb graph [86, 108].

As we saw earlier, the connection between the topological and the algebraic
levels of persistence happens through the use of homology, which turns sequences
of topological spaces into sequences of vector spaces. Using the metaphor of a
space changing over time to describe each sequence, we can view persistence as a
generalization of classical homology theory to the study of time-evolving spaces. In
this metaphor, persistence modules such as (0.2) are the time-dependent analogues
of the homology groups, and their barcodes are the time-dependent analogues of the
Betti numbers. Although somewhat restrictive, this view of the theory is convenient
for interpretation.

Persistence is also a generalization of size theory [97, 131], whose concern is
with the quantity

rank HQ(XZ) — Ho(Xj)

defined for all pairs (¢, 7) such that 1 < i < j < n, and called the size function of
the filtration (0.1). The value of the size function at (4,j) measures the number
of connected components of X; that are still disconnected in X;. The level sets
of this function look like staircases in the plane, whose upper-left corners are the
points recorded in the O-dimensional part of the persistence diagram—see Figure 0.5
for an illustration. The stability result (0.3) appeared in size theory prior to the
development of persistence, however in a form restricted to 0-dimensional homology.

Finally, the algorithmic aspects of persistence have close connections to spectral
sequences [81]. Roughly speaking, the spectral sequence algorithm outputs the same
barcode as the matrix reduction algorithm, albeit in a different order.

These connections at multiple levels bear witness to the richness of persistence
as a theory.
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Applications. This richness is also reflected in the diversity of the applications,
whose list has been ever growing since the early developments of the theory. The
following excerpt® illustrates the variety of the topics addressed:

analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution [158],

analysis of social and spatial networks, including neurons, genes, online
messages, air passengers, Twitter, face-to-face contact, co-authorship [210],
coverage and hole detection in wireless sensor fields [98, 136],

multiple hypothesis tracking on urban vehicular data [23],

analysis of the statistics of high-contrast image patches [54],

image segmentation [70, 209],

1d signal denoising [212],

3d shape classification [58],

clustering of protein conformations [70],

measurement of protein compressibility [135],

classification of hepatic lesions [1],

identification of breast cancer subtypes [205],

analysis of activity patterns in the primary visual cortex [224],
discrimination of electroencephalogram signals recorded before and during
epileptic seizures [237],

analysis of 2d cortical thickness data [82],

statistical analysis of orthodontic data [134, 155],

measurement of structural changes during lipid vesicle fusion [169],
characterization of the frequency and scale of lateral gene transfer in
pathogenic bacteria [125],

pattern detection in gene expression data [105],

study of plant root systems [115, §IX.4],

study of the cosmic web and its filamentary structure [226, 227],
analysis of force networks in granular matter [171],

analysis of regimes in dynamical systems [25].

In most of these applications, the use of persistence resulted in the definition of new
descriptors for the considered data, which revealed previously hidden structural
information and allowed the authors to draw original conclusions.

Contents. There are three parts in the book. The first part focuses on the
theoretical foundations of persistence. It gives a broad view of the theory, including
its algebraic, topological, and algorithmic aspects. It is divided into three chapters
and an appendix:

Chapter 1 introduces the algebraic aspects through the lense of quiver
theory. It tries to show both the heritage of quiver theory and the novelty
brought in by persistence in its algebraic formulation. It is supplemented
with Appendix A, which gives a formal introduction to quiver representa-
tion theory and highlights its connections to persistence. Concepts such
as persistence module, zigzag module, module homomorphism, interval
decomposition, persistence diagram, quiver, representation, are defined in
these two chapters.

5Much of the list was provided by F. Chazal, F. Lecci and B. Michel, who recently took an
inventory of existing applications of persistence.
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e Chapter 2 introduces the topological and algorithmic aspects of persis-
tence theory. It first reviews the topological constructions that are most
commonly used in practice to derive persistence modules. It then focuses
on the algorithms designed to compute persistence from filtrations: the
original algorithm, described in some detail, then a high-level review of
its variants and extensions. Concepts such as filtration, zigzag, pyramid,
persistent (co-)homology, are defined in this chapter.

e Chapter 3 is entirely devoted to the stability of persistence diagrams, in
particular to the statement and proof of the Isometry Theorem, which
is the central piece of the theory. After introducing and motivating the
measures of proximity between persistence modules and between their
diagrams which are used in the statement of the theorem, it develops the
main ideas behind the proof and discusses the origins and significance of
the result. Concepts such as interleaving distance, bottleneck distance
and matching, snapping principle, module interpolation, are defined in
this chapter.

The second part of the document deals with applications of persistence. Rather
than trying to address all the topics covered in the aforementioned list, in a broad
and shallow survey, it narrows the focus down to a few selected problems and
analyzes in depth the contribution of persistence to the state of the art. Some of
these problems have had a lasting influence on the development of the theory. The
exposition is divided into four chapters:

e Chapters 4 and 5 introduce the problem of inferring the topology of a
geometric object from a finite point sample, which was and continues to
be one of the main motivations for the development of the theory. The
general approach to the problem is presented in Chapter 4, along with
some theoretical guarantees on the quality of the output. Algorithmic
aspects are addressed in Chapter 5, which introduces recent techniques to
optimize the running time and memory usage, improve the signal-to-noise
ratio in the output, and handle a larger variety of input data.

e Chapter 6 focuses more specifically on the 0-dimensional version of topo-
logical inference, also known as clustering. It formalizes the connection
between persistence and hierarchical clustering, which we saw earlier. It
also draws a connection to mode seeking and demonstrates how persis-
tence can be used to stabilize previously unstable hill-climbing methods.
Finally, it addresses the question of inferring higher-dimensional struc-
ture, to learn about the composition of each individual cluster as well as
about their interconnectivity in the ambient space. This part comes with
comparatively little effort once the persistence framework has been set up.

e Chapter 7 shifts the focus somewhat and addresses the problem of compar-
ing datasets against one another. After setting up the theoretical frame-
work, in which datasets and their underlying structures are treated as
metric spaces, it shows how persistence can be used to define descriptors
that are provably stable under very general hypotheses. It also adresses
the question of computing these descriptors (or reliable approximations)
efficiently. Down the road, this chapter provides material for comparing
shapes, images, or more general data sets, with guarantees.



10 INTRODUCTION

The third part of the document is more prospective and is divided into two
short chapters: one is on current trends in topological data analysis (Chapter 8), the
other is on further developments of the theory (Chapter 9). This part gathers the
many open questions raised within the previous parts, along with some additional
comments and references.



