Preface

Inspired by earlier work exhibiting v_1-periodicity in the topological cyclic homology of the integers \([30], [31], [148], [149]\), and subsequent work exhibiting v_2-periodicity in the topological cyclic homology of the connective complex K-theory ring spectrum and its Adams summand \([19], [18]\), the authors started an investigation into the topological Hochschild homology and topological cyclic homology of the topological modular forms ring spectrum, aiming to study the v_3-action on $F_*\text{TC}(\text{tmf})$ for suitable finite type 3 spectra F. In particular, at the prime $p = 2$ we can take F to be the homotopy cofiber of a map $v_2^{32} : \Sigma^{192} M(1,4) \to M(1,4)$ as in \([26]\), and then $F \wedge \text{tmf} \simeq \text{tmf}/(2, B, M)$ for certain Bott and Mahowald elements $B \in \pi_8(\text{tmf})$ and $M \in \pi_{192}(\text{tmf})$.

The Adams spectral sequence, in conjunction with the computer software package ext described in \([41]\), provides a flexible and powerful tool for making calculations with tmf, $\text{THH}(\text{tmf})$ and approximations to $\text{TC}(\text{tmf})$. The additive structure of the Adams spectral sequence for tmf, and parts of its multiplicative structure, have been known to Mahowald and some other experts for many years \([76], [54, \text{Ch. 13}]\), but for our project we expect to need full information about the multiplicative structure. Since we believe that this detailed information will be of use and interest also to other researchers in algebraic topology, we have composed the following account of the Adams spectral sequence for tmf, and related spectra such as $\text{tmf}/(2, B, M)$, aiming to give complete information and proofs of results that have otherwise mostly been available as folklore.

The first author would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program $\text{Homotopy Harnessing Higher Structures}$ during which some of the work in this book was done. This program was supported by EPSRC grant number EP/R014604/1. The first author also received funding from the Simons Foundation, project number 245786, the Research Council of Norway (RCN), project number 239015, and the Pure Mathematics in Norway project of the Trond Mohn Foundation (TMF).