Index

2-connected partial linear 2-tree, 266

\(Ac\), 8, 266
\(Az\), 119
\((\alpha, \beta)\)-linkage, 116
\((\alpha, \beta)\)-rigid, 116
\((\alpha, \beta)\)-rigid shortest linkage, 121
\(\alpha(G)\), 261
active, 189
active vertex, 188
adjacency matrix, 8, 266
adjacent, 261
adjacent twins, 103, 262
adjoint operator, 91
ancillary problems, 17
anomalous, 28
average of a graph parameter, 200

\(B_k\), 264
\(B_n(s)\), 157, 264
balanced inertia, 28
Barioli-Fallat Tree, 99
big-oh, 267
big-omega, 267
big-theta, 267
block, 263
book, 264
boundary, 159
branch of \(T\) at \(v\), 22
broom graph, 157, 264

\(C_1\), 28
\(C_n\), 20, 262
\(c(G)\), 197
capt\((G)\), 225
capt\(_t\)(\(G)\), 225
capture, 196
capture set, 196
capture time, 225
Cartesian product, 263
cc\((G)\), 262
center, 10
characteristic matrix of \(A\), 119
characteristic polynomial, 11

chord path, 185
chordal, 266
chronological list of \(X\)-forces, 160
chronological list of forces, 153
circulant graph, 265
clique, 262
clique cover, 262
clique cover number, 262
clique decomposition, 266
closed neighborhood, 261
closure, 20, 160
cograph, 28, 266
Colin de Verdière number, 33
Colin de Verdière parameter, 33
Colin de Verdière type parameters, 35
color change rule, 20
color change rule requires adjacency, 204
complement, 36, 262
complement of \(G\), 10
complete bipartite graph, 264
complete edge subdivision, 157, 263
complete graph, 10, 262
complete multipartite graph, 264
composite state, 228
connected, 262
connected component, 262
connected OS number, 163
connected zero forcing number, 179
connected zero forcing set, 179
connectivity, 262
consecutive circulant, 265
consecutive multiple eigenvalues, 69
contracted, 263
contraction, 263
\(COS(G)\), 163
cop number, 197
cop throttling number, 251
cop-win, 197
corner, 198
corona, 264
cut-vertex, 27, 263
cut-vertex decomposition, 27, 263
cycle, 20, 262
INDEX

$D$-perturbation space, 79
$\Delta(G)$, 261
$\Delta_2(A_x)$, 120
decomposable graph, 28, 266
degree, 261
derived set, 20, 160
diagonal degree matrix, 266
diam$(G)$, 262
diameter, 262
diamond, 264
diffeomorphism, 78
digraph, 116
direct product, 263
disconnected, 262
disjoint, 263
disjoint cycle union, 116
dismantlable, 198
dist$(U,v)$, 204
dist$G(v,u)$, 262
distance, 204, 262
dominate, 191
dominating set, 191
domination number, 191
double generalized star, 99, 265
double path, 99, 265
double star, 265
$DS(p,q)$, 265
$\partial(W)$, 159
$E(G)$, 261
$E_{ij}$, 45
$E[x]$, 200
ecc$(U)$, 205
 eccentricity, 204
edge, 9
double generalized star, 99, 265
double path, 99, 265
double star, 265
dominating set, 191
domination number, 191
double generalized star, 99, 265
double path, 99, 265
double star, 265
$DS(p,q)$, 265
$\partial(W)$, 159
$E(G)$, 261
$E_{ij}$, 45
$E[x]$, 200
ecc$(U)$, 205
 eccentricity, 204
edge, 9
double generalized star, 99, 265
double path, 99, 265
double star, 265
dominating set, 191
domination number, 191
double generalized star, 99, 265
double path, 99, 265
double star, 265
dominating set, 191
domination number, 191
double generalized star, 99, 265
double path, 99, 265
double star, 265
$DS(p,q)$, 265
$\partial(W)$, 159

$\emptyset$, 182
$G = (V(G), E(G))$, 261
$\overline{G}$, 263
$G' \preceq G$, 263
$G \ast G'$, 264
$G - U$, 263
$G - e$, 263
$G - u$, 263
$G/e$, 263
$G[U]$, 261
$G \cap G'$, 263
$G \cup G'$, 263
$G \boxtimes G'$, 263
$G \circ G'$, 264
$G \cong G'$, 262
$G \cong G'$, 263
$G \sqcup G'$, 263
$G \sqcup G'$, 263
$G \vee G'$, 263
$G \alpha G'$, 263
$G(\alpha)$, 263
$G_e$, 263
g$(G)$, 262
$\gamma_p$-propagation time, 222
$\gamma_p$-propagation time of $G$, 222
$\gamma_p$-throttling number, 248
$\gamma(G)$, 191
GCC, 36
generalized 3-sun, 68
generalized cycle, 171
generalized power domination, 201
generalized star, 25, 99, 265
generalized wheel, 194, 264
girth, 262
Givens, 102
graph, 9, 261
Graph Complement Conjecture, 36
graph infection, 151
graph of $A$, 10
graph of the $n \times n$ matrix $A$, 6
graph of two parallel paths, 154
grid, 264

$F$, 153
$F_2$, 264
faithful orthogonal representation, 30
fast mixed graph searching, 151
Fiedler index, 23
final coloring, 20
flipped-cycle matrix, 55
force, 227

forces, 20
forces $w$ by a hop, 187
forcing chain, 153
forcing chain cover, 153
forcing path, 153
forcing spider $S_x$, 193
forcing spider cover, 193
forcing tree $T_b$, 163
forcing tree cover, 163
forward problem, 3
friendship graph, 264
full $X$-forcing, 205
full $X$-propagation time interval, 205

$\emptyset$, 182
$G = (V(G), E(G))$, 261
$\overline{G}$, 10, 36, 262
$G'$, 263
$G' \preceq G$, 263
$G \ast G'$, 264
$G - U$, 263
$G - e$, 263
$G - u$, 263
$G/e$, 263
$G[U]$, 261
$G \cap G'$, 263
$G \cup G'$, 263
$G \boxtimes G'$, 263
$G \circ G'$, 264
$G \cong G'$, 262
$G \cong G'$, 263
$G \sqcup G'$, 263
$G \sqcup G'$, 263
$G \vee G'$, 263
$G \alpha G'$, 263
$G(\alpha)$, 263
$G_e$, 263
g$(G)$, 262
$\gamma_p$-propagation time, 222
$\gamma_p$-propagation time of $G$, 222
$\gamma_p$-throttling number, 248
$\gamma(G)$, 191
GCC, 36
generalized 3-sun, 68
generalized cycle, 171
generalized power domination, 201
generalized star, 25, 99, 265
generalized wheel, 194, 264
girth, 262
Givens, 102
graph, 9, 261
Graph Complement Conjecture, 36
graph infection, 151
graph of $A$, 10
graph of the $n \times n$ matrix $A$, 6
graph of two parallel paths, 154
grid, 264
minor, 119, 263
minor monotone, 34
minor monotone ceiling, 191
minor monotone floor, 187
minor monotone floor of maximum PSD nullity, 190
minor monotone floor of maximum standard nullity, 190
mr($G$), 18
mr$^-$($G$), 167
mr$^0$($G$), 167
mr$^+$($G$), 30
mult($G$), 96
multiplicity list, 96
mz($G$), 154
mz$^-$($G$), 168
mz$^+$($G$), 162
N$_C$(v), 261
N$_C$[v], 261
N$_b$, 264
$v$, 35
nearly periodic Jacobi matrix, 100
necklace, 264
neighbor trading, 154
neighborhood, 261
Nilpotent-Jacobian Method, 50
no initial cost product throttling, 255
nondegenerate, 18
Nordhaus-Gaddum (sum) problem, 36
nowhere zero, 107
Nylen path, 24
$O(g)$, 267
$o(g)$, 267
$\Omega(g)$, 267
odd cycle zero forcing number, 182
optimal X-set for $k$-propagation time, 204
optimal X-throttling set, 231
optimal chain set extendible to $v$, 156
order, 115, 261
order (projective plane), 198
order of $G$, 9
order of a generalized cycle, 171
ordered multiplicity list, 96
ordered multiplicity list of $A$, 45
ordered set of vertices, 162
ordered state list for $B$, 228
orthogonal matrix, 18
orthogonal projector, 134
orthogonal representation, 30
OS($G$), 162
OS number, 162
outer, 78
outerplanar, 266
$P(G)$, 262
$P_n$, 262
$[p](G)$, 187
$P_A(x)$, 11
Parter vertex, 23
Parter-Wiener Theorem, 23
Parter-Wiener vertex, 23
partial linear $k$-tree, 189
partial two-sided $k$-tree, 190
path, 262
path cover, 262
path cover number of $G$, 262
pattern, 115
pattern manifold, 46
pattern perturbation, 83
pendent generalized star, 25
pendent path, 25
pendulum, 71
pentasun, 182
perfect [1, 2]-factors, 171
periodic Jacobi matrix, 100
pfaffian, 172
planar, 266
polygonal path, 29, 154, 266
positive semidefinite zero forcing, 31
positive semidefinite zero forcing number, 31
power dominating set, 191
power domination number, 191
power domination set of forces, 193
power domination throttling number, 248
power propagation time, 222
power propagation time of $G$, 222
probabilistic color change rule, 227
probabilistic propagation time, 227
probabilistic zero forcing, 227
product cop throttling number with initial cost, 255
product power throttling number with no initial cost, 255
product throttling with initial cost, 255
product throttling with no initial cost, 255
projective plane, 197
propagating chronological list of forces, 204
propagating reversal, 208
propagating set of forces, 204, 222
proper path-width, 189
PSD $k$-throttling number, 240
PSD color change rule, 31, 160
PSD forcing, 31
PSD forcing number, 31
PSD propagation time, 212
PSD throttling number, 240
pt($G$), 206
pt($G; B$), 206
pt$^+_4(G)$, 212
pt$^+_4(G; B)$, 212
pt$^-_4(G)$, 216
pt$^-_4(G; B)$, 216
pt$^+_X(G)$, 203
INDEX 285

pt\(_X\) (G; B), 203
pt\(_X\) (G, k), 204
pt\(_{p,\mathbb{P}}\) (G, k), 222
pt\(_{p,\mathbb{P}}\) (G; B), 227
Q\(_d\), 264
q(A), 96
q(G), 96
qualitative class, 49
r-th power, 263
r-th strong power, 263
\(\rho\) (A), 30
rad\(_k\) (G), 205
radius, 205
reachable set, 72
reduced part of A, 137
refinement, 58, 97
regular, 261
representation of G of dimension d, 18
reversal, 154
reverse chronological list of forces of a chronological list of forces \(\mathcal{F}\), 154
rigid, 116
rigid linkage color change rule, 184
rigid linkage forcing process, 184
rigid linkage number, 116
rigid shortest linkage, 121
rigid shortest linkage number, 121
RL, 184
RL-chain set, 185
RL-force, 184
RL-forcing chains, 185
RL-forcing process, 184
round, 227
\(\mathcal{S}\), 228
S\(_{ij}\), 61
S\(_{ij}^{*}\), 76
S\(_{ij}\) (A), 171
S\(_{ij}\) (R), 10
S\(_{ij}\) (R), 76
S\(_{ij}\) (G), 46
S\(_{ij}\) (G), 83
sp(G), 193
spec(A), 11
S(G), 10
S\(_{+}\) (G), 30
S\(_{+}\) (R), 10
sp(G), 193
spec(A), 11
S(G), 10
SAP, 33
SAP tangent space matrix, 90
SAP verification matrix \(\Psi_A\), 63
SAP zero forcing game, 72
scaling and shifting, 61
Schur complement, 109
set of X-forces, 160
set of forces, 153
sign pattern, 49
sign-similar, 100
sign-symmetric, 22
\text{sim}(A), 98
simple, 261
simple state for B, 228
SIPP, 50
size, 261
skew \(k\)-throttling number, 244
skew color change rule, 167
skew forcing, 167
skew forcing chain, 170
skew forcing chain cover, 170
skew propagation time, 216
skew symmetric inverse eigenvalue problem of a graph, 167
skew throttling number, 244
skew zero forcing, 167
smooth, 77
SMP, 46
SMP tangent space matrix, 90
SMP verification matrix \(\Psi_M\), 63
spanning, 115
spanning disjoint cycle union, 117
spanning generalized cycle, 171
spanning subgraph, 261
spectral diffeomorphism, 79
spectrally arbitrary pattern, 49
spectrum, 11
spider, 25, 99, 265
spider cover number, 193
split graph, 265
SSP, 46
SSP tangent space matrix, 90
SSP verification matrix \(\Psi_S\), 63
SSP zero forcing game, 72
staircased \((0,1)\)-matrix, 137
standard \(k\)-propagation time, 282
standard \(k\)-throttling number, 235
standard color change rule, 151
standard throttling number, 235
standard zero forcing, 151
standard zero forcing number, 151
standard zero forcing set, 151
star, 10, 264
strictly diagonally dominant, 18
strong Arnold’d property, 33
Strong Arnold Property with respect to H, 86
Strong Inner Product Property, 50
Strong Multiplicity Property, 46
Strong Multiplicity Property with respect to H, 86
strong product, 263
Strong Spectral Property, 46
Strong Spectral Property with respect to H, 86
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strongly regular</td>
<td>266</td>
</tr>
<tr>
<td>subdivision</td>
<td>263</td>
</tr>
<tr>
<td>subgraph</td>
<td>261</td>
</tr>
<tr>
<td>subgraph of G induced by U</td>
<td>261</td>
</tr>
<tr>
<td>supergraph</td>
<td>261</td>
</tr>
<tr>
<td>superpattern</td>
<td>50</td>
</tr>
<tr>
<td>supertriangle</td>
<td>264</td>
</tr>
<tr>
<td>support</td>
<td>56</td>
</tr>
<tr>
<td>T, 195</td>
<td>163</td>
</tr>
<tr>
<td>$T_k$, 264</td>
<td></td>
</tr>
<tr>
<td>$T_n$, 50</td>
<td></td>
</tr>
<tr>
<td>$T_{BF}$, 99</td>
<td></td>
</tr>
<tr>
<td>$\Theta(g)$, 267</td>
<td></td>
</tr>
<tr>
<td>tensor product</td>
<td>263</td>
</tr>
<tr>
<td>th($G$), 235</td>
<td></td>
</tr>
<tr>
<td>th($G, k$), 235</td>
<td></td>
</tr>
<tr>
<td>th($G, B$), 235</td>
<td></td>
</tr>
<tr>
<td>th($G, k, B$), 235</td>
<td></td>
</tr>
<tr>
<td>th($G, k$), 231</td>
<td></td>
</tr>
<tr>
<td>th($G, B$), 231</td>
<td></td>
</tr>
<tr>
<td>th($G, k, B$), 231</td>
<td></td>
</tr>
<tr>
<td>th($G$, 244</td>
<td></td>
</tr>
<tr>
<td>th($G, B$, 244</td>
<td></td>
</tr>
<tr>
<td>th$\tau_p(G)$, 248</td>
<td></td>
</tr>
<tr>
<td>th$\tau_p(G, S)$, 248</td>
<td></td>
</tr>
<tr>
<td>th$_X(G)$, 251</td>
<td></td>
</tr>
<tr>
<td>th$X(G, B)$, 231</td>
<td></td>
</tr>
<tr>
<td>th$X(G, k)$, 231</td>
<td></td>
</tr>
<tr>
<td>th$X(G, B)$, 231</td>
<td></td>
</tr>
<tr>
<td>th$X(G)$, 256</td>
<td></td>
</tr>
<tr>
<td>threshold graph</td>
<td>266</td>
</tr>
<tr>
<td>throttling number</td>
<td>235</td>
</tr>
<tr>
<td>total zero forcing number</td>
<td>179</td>
</tr>
<tr>
<td>total zero forcing set</td>
<td>179</td>
</tr>
<tr>
<td>transmission</td>
<td>159</td>
</tr>
<tr>
<td>transversally</td>
<td>43</td>
</tr>
<tr>
<td>tree, 12, 264</td>
<td></td>
</tr>
<tr>
<td>tree cover number</td>
<td>163</td>
</tr>
<tr>
<td>tree-width, 188, 266</td>
<td></td>
</tr>
<tr>
<td>tw($G$), 188, 266</td>
<td></td>
</tr>
<tr>
<td>twins, 103, 262</td>
<td></td>
</tr>
<tr>
<td>two-sided k-tree</td>
<td>190</td>
</tr>
<tr>
<td>two-sided tree-width, 190</td>
<td></td>
</tr>
<tr>
<td>underlying simple graph</td>
<td>182</td>
</tr>
<tr>
<td>unfilled vertex force, 168</td>
<td></td>
</tr>
<tr>
<td>union, 263</td>
<td></td>
</tr>
<tr>
<td>unique, 116</td>
<td></td>
</tr>
<tr>
<td>unique shortest path, 55</td>
<td></td>
</tr>
<tr>
<td>unit interval graph</td>
<td>206</td>
</tr>
<tr>
<td>universal full PSD forcing, 213</td>
<td></td>
</tr>
<tr>
<td>universal vertex</td>
<td>261</td>
</tr>
<tr>
<td>$V(G)$, 261</td>
<td></td>
</tr>
<tr>
<td>$v \sim u$, 261</td>
<td></td>
</tr>
<tr>
<td>$v \sim u$, 261</td>
<td></td>
</tr>
<tr>
<td>variable $\mathcal{G}$-matrix, 61</td>
<td></td>
</tr>
<tr>
<td>vec$_E(B)$, 63</td>
<td></td>
</tr>
<tr>
<td>vec$_n(B)$, 62</td>
<td></td>
</tr>
<tr>
<td>vector representation, 75</td>
<td></td>
</tr>
<tr>
<td>vertex connectivity, 262</td>
<td></td>
</tr>
<tr>
<td>vertex partition, 133</td>
<td></td>
</tr>
<tr>
<td>vertex set, 261</td>
<td></td>
</tr>
<tr>
<td>vertices, 9</td>
<td></td>
</tr>
<tr>
<td>vital, 116</td>
<td></td>
</tr>
<tr>
<td>$W_n$, 264</td>
<td></td>
</tr>
<tr>
<td>walk, 262</td>
<td></td>
</tr>
<tr>
<td>wavefront, 158</td>
<td></td>
</tr>
<tr>
<td>weighted throttling, 260</td>
<td></td>
</tr>
<tr>
<td>wheel, 264</td>
<td></td>
</tr>
<tr>
<td>X-final coloring</td>
<td>160</td>
</tr>
<tr>
<td>X-propagation time</td>
<td>203</td>
</tr>
<tr>
<td>X-propagation time interval</td>
<td>205</td>
</tr>
<tr>
<td>X-propagation time of $G$, 203</td>
<td></td>
</tr>
<tr>
<td>X-throttling number, 231</td>
<td></td>
</tr>
<tr>
<td>X-zero forcing number, 160</td>
<td></td>
</tr>
<tr>
<td>X-zero forcing set, 160</td>
<td></td>
</tr>
<tr>
<td>$X^k$-subgraph, 185</td>
<td></td>
</tr>
<tr>
<td>$\xi(G)$, 35</td>
<td></td>
</tr>
<tr>
<td>$Y_n$, 72</td>
<td></td>
</tr>
<tr>
<td>$Z(G)$, 20</td>
<td></td>
</tr>
<tr>
<td>$Z_+(G)$, 31</td>
<td></td>
</tr>
<tr>
<td>$Z_-(G)$, 168</td>
<td></td>
</tr>
<tr>
<td>$<a href="G">Z</a>$, 188</td>
<td></td>
</tr>
<tr>
<td>$<a href="G">\tilde{Z}</a>$, 190</td>
<td></td>
</tr>
<tr>
<td>$<a href="G">Z_+</a>$, 190</td>
<td></td>
</tr>
<tr>
<td>$Z^#(G)$, 184</td>
<td></td>
</tr>
<tr>
<td>$Z_q(G)$, 183</td>
<td></td>
</tr>
<tr>
<td>Z-color change rule, 20, 151</td>
<td></td>
</tr>
<tr>
<td>$Z_+$-color change rule, 31, 160</td>
<td></td>
</tr>
<tr>
<td>$[Z]-$color change rule, 188</td>
<td></td>
</tr>
<tr>
<td>$[Z_+]$-color change rule, 189</td>
<td></td>
</tr>
<tr>
<td>Z-forcing, 151</td>
<td></td>
</tr>
<tr>
<td>Z-forcing, 160</td>
<td></td>
</tr>
<tr>
<td>Z-forcing set, 151, 160</td>
<td></td>
</tr>
<tr>
<td>Z-propagation time, 206</td>
<td></td>
</tr>
<tr>
<td>Z-throttling number, 235</td>
<td></td>
</tr>
<tr>
<td>$Z_+$-propagation time, 212</td>
<td></td>
</tr>
<tr>
<td>$Z_-$-propagation time, 216</td>
<td></td>
</tr>
<tr>
<td>$Z_+$-throttling number, 240</td>
<td></td>
</tr>
<tr>
<td>$Z_-$-throttling number, 244</td>
<td></td>
</tr>
<tr>
<td>$Z_q$-forcing game, 183</td>
<td></td>
</tr>
<tr>
<td>$Z_q$-number, 183</td>
<td></td>
</tr>
<tr>
<td>$Z_{SAP}$-color change rule, 71</td>
<td></td>
</tr>
<tr>
<td>$Z_{SAP}$-zero forcing number, 71</td>
<td></td>
</tr>
<tr>
<td>$Z_{SAP}$-zero forcing set, 71</td>
<td></td>
</tr>
<tr>
<td>$Z_{SSP}$-color change rule, 72</td>
<td></td>
</tr>
<tr>
<td>$Z_{SSP}$-zero forcing number, 72</td>
<td></td>
</tr>
<tr>
<td>$Z_{SSP}$-zero forcing set, 72</td>
<td></td>
</tr>
<tr>
<td>$\zeta(n)$, 200</td>
<td></td>
</tr>
<tr>
<td>zero forcing, 151</td>
<td></td>
</tr>
<tr>
<td>zero forcing number, 20, 151</td>
<td></td>
</tr>
</tbody>
</table>
zero forcing number of a loop graph, 182
zero forcing set, 20
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse Problems and Zero Forcing for Graphs</td>
<td>Leslie Hogben, Jephian C.-H. Lin, and Bryan L. Shader</td>
<td>2022</td>
</tr>
<tr>
<td>Completion Problems on Operator Matrices</td>
<td>Dragana S. Cvetković Ilić</td>
<td>2022</td>
</tr>
<tr>
<td>Amenability of Discrete Groups by Examples</td>
<td>Kate Juschenko</td>
<td>2022</td>
</tr>
<tr>
<td>Sampling in Combinatorial and Geometric Set Systems</td>
<td>Nabil H. Mustafa</td>
<td>2022</td>
</tr>
<tr>
<td>Diagrammatic Algebra</td>
<td>J. Scott Carter and Seiichi Kamada</td>
<td>2021</td>
</tr>
<tr>
<td>Ridge Functions and Applications in Neural Networks</td>
<td>Vugar E. Ismailov</td>
<td>2021</td>
</tr>
<tr>
<td>Maximal Cohen–Macaulay Modules and Tate Cohomology</td>
<td>Ragnar-Olaf Buchweitz</td>
<td>2021</td>
</tr>
<tr>
<td>Asymptotic Geometric Analysis, Part II</td>
<td>Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman</td>
<td>2021</td>
</tr>
<tr>
<td>Hopf Algebras and Galois Module Theory</td>
<td>Lindsay N. Childs, Cornelius Greither, Kevin P. Keating, Alan Koch, Timothy Kohl, Paul J. Truman, and Robert G. Underwood</td>
<td>2021</td>
</tr>
<tr>
<td>Integral Domains Inside Noetherian Power Series Rings</td>
<td>William Heinzer, Christel Rotthaus, and Sylvia Wiegand</td>
<td>2021</td>
</tr>
<tr>
<td>Perverse Sheaves and Applications to Representation Theory</td>
<td>Pramod N. Achar</td>
<td>2021</td>
</tr>
<tr>
<td>Maximal Function Methods for Sobolev Spaces</td>
<td>Juha Kinnunen, Juha Lehrbäck, and Antti Väihäkangas</td>
<td>2021</td>
</tr>
<tr>
<td>Local Operators in Integrable Models I</td>
<td>Michio Jimbo, Tetsuji Miwa, and Fedor Smirnov</td>
<td>2021</td>
</tr>
<tr>
<td>One-Dimensional Turbulence and the Stochastic Burgers Equation</td>
<td>Alexandre Boritchev and Sergei Kuksin</td>
<td>2021</td>
</tr>
<tr>
<td>Numerical Algorithms for Number Theory</td>
<td>Karim Belabas and Henri Cohen</td>
<td>2021</td>
</tr>
<tr>
<td>The Adams Spectral Sequence for Topological Modular Forms</td>
<td>Robert R. Bruner and John Rognes</td>
<td>2021</td>
</tr>
<tr>
<td>The Cremona Group and Its Subgroups</td>
<td>Julie Déserti</td>
<td>2021</td>
</tr>
<tr>
<td>Linear and Quasilinear Parabolic Systems</td>
<td>David Hoff</td>
<td>2020</td>
</tr>
<tr>
<td>Unitary Representations of Groups, Duals, and Characters</td>
<td>Bachir Bekka and Pierre de la Harpe</td>
<td>2020</td>
</tr>
<tr>
<td>Davenport–Zannier Polynomials and Dessins d’Enfants</td>
<td>Nikolai M. Adrianov, Fedor Pakovich, and Alexander K. Zvonkin</td>
<td>2020</td>
</tr>
<tr>
<td>Geometric Set Theory</td>
<td>Paul B. Larson and Jindrich Zapletal</td>
<td>2020</td>
</tr>
<tr>
<td>Hopf Algebras and Root Systems</td>
<td>István Heckenberger and Hans-Jürgen Schneider</td>
<td>2020</td>
</tr>
<tr>
<td>Attractors Under Autonomous and Non-autonomous Perturbations</td>
<td>Matheus C. Bortolan, Alexandre N. Carvalho, and José A. Langa</td>
<td>2020</td>
</tr>
<tr>
<td>Ordinary Differential Operators</td>
<td>Aiping Wang and Anton Zettl</td>
<td>2019</td>
</tr>
<tr>
<td>Nonlinear Dirac Equation</td>
<td>Nabile Boussaid and Andrew Comech</td>
<td>2019</td>
</tr>
<tr>
<td>Jordan Triple Systems in Complex and Functional Analysis</td>
<td>José M. Isidro</td>
<td>2019</td>
</tr>
<tr>
<td>Perfectoid Spaces</td>
<td>Bhargav Bhatt, Ana Caraiani, Kiran S. Kedlaya, Peter Scholze, and Jared Weinstein</td>
<td>2019</td>
</tr>
<tr>
<td>Groupoid C*-Algebras</td>
<td>Dana P. Williams</td>
<td>2019</td>
</tr>
<tr>
<td>Jordan Structures in Lie Algebras</td>
<td>Antonio Fernández López</td>
<td>2019</td>
</tr>
<tr>
<td>The Dirichlet Space and Related Function Spaces</td>
<td>Nicola Arcozzi, Richard Rochberg, Eric T. Sawyer, and Brett D. Wick</td>
<td>2019</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at [www.ams.org/bookstore/survseries/](http://www.ams.org/bookstore/survseries/).