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PREFACE

A preliminary idea of writing the present book was formed when I gave the Frank
J. Hahn lectures at Yale University in March, 1992. The title of the lectures was
“Differential operators, nearly holomorphic functions, and arithmetic.” By “arith-
metic” I meant the arithmeticity of the critical values of certain zeta functions, and
I talked on the results I had on GLs and GLo x GLo. At that time the American
Mathematical Society wrote me that they were interested in publishing my lectures
in book form, but I thought that it would be desirable to discuss similar problems
for symplectic groups of higher degree. Though I had satisfactory theories of differ-
ential operators and nearly holomorphic functions applicable to higher-dimensional
cases, our knowledge of zeta functions on such groups was fragmentary and, at any
rate, was not sufficient for discussing their critical values. Therefore I spent the
next few years developing a reasonably complete theory, or rather, a theory ade-
quate enough for stating general results of arithmeticity that cover the cases of all
congruence subgroups of a symplectic group over an arbitrary totally real number
field, including the case of half-integral weight.

On the other hand, I had been interested in arithmeticity problems on unitary
groups for many years, and in fact had investigated some Eisenstein series on them.
Therefore I thought that a book including the unitary case would be more appealing,
and I took up that case as a principal topic of my NSF-CBMS lectures at the
Texas Christian University in May, 1996. The expanded version of the lectures was
eventually published by the AMS as “Euler products and Eisenstein series.”

After this work, I felt that the time was ripe for bringing the original idea to
fruition, which I am now attempting to do in this volume. To a large extent the
present book may be viewed as a companion to the previous one just mentioned,
and our arithmeticity concerns that of the Euler products and Eisenstein series
discussed in it; I did not include the cases of GL, and G Lo x GGLs. Those cases are
relatively well understood, and it is my wish to present something new. Though the
arithmeticity in that sense is the main new feature, as will be explained in detail in
the Introduction, I have also included some basic material concerning arithmeticity
of modular forms in general, and also a treatment of analytic properties of zeta
functions and Eisenstein series on symplectic groups which were not discussed in
the previous book.

It is a pleasure for me to express my thanks to Haruzo Hida, who read the
manuscript and contributed many useful suggestions.

Princeton
February, 2000 Goro Shimura
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NOTATION AND TERMINOLOGY

We denote by Z, Q, R, and C the ring of rational integers, the fields of rational
numbers, real numbers, and complex numbers, respectively. We put

T={zeC|z|=1}.

We denote by Q the algebraic closure of Q in C, and for an algebraic number
field K we denote by K, the maximum abelian extension of K. If p is a rational
prime, Z, and Q, denote the ring of p-adic integers and the field of p-adic numbers,
respectively.

For an associative ring R with identity element and an R-module M we denote
by R* the group of all its invertible elements and by M)" the R-module of all
m X n-matrices with entries in M; we put M = M]" for simplicity. Sometimes an
object with a superscript such as G™ in Section 23 is used with a different meaning,
but the distinction will be clear from the context. For x € R and an ideal a of
R we write x < a if all the entries of = belong to a. (There is a variation of this;
see §1.8.)

The transpose, determinant, and trace of a matrix = are denoted by ‘z, det(z),
and tr(z). The zero element of R is denoted by 07" or simply by 0, and the identity
element of R} by 1,, or simply by 1. The size of a zero matrix block written simply
0 should be determined by the size of adjacent nonzero matrix blocks. We put
GL,(R) = (R})*, and

SLn(R) = {a € GLy(R)| det(a) =1}

if R is commutative. If xy, ..., z, are square matrices, diag[zy, ..., z,] denotes
the matrix with z1, ..., z, in the diagonal blocks and 0 in all other blocks. We
shall be considering matrices  with entries in a ring with an anti-automorphism
p (complex conjugation, for example), including the identity map. We then put
x* =txf and T = (2*)~! if x is square and invertible.

For a complex number or more generally for a complex matrix « we denote by
Re(a), Im(), and @ the real part, the imaginary part, and the complex conjugate
of a. For complex hermitian matrices = and y we write z >y and y < z if x—y
is positive definite, and * >y and y < x if  —y is nonnegative. For r € R we
denote by [r] the largest integer < r.

Given a set A, the identity map of A onto itself is denoted by id4 or 14. To
indicate that a union X = Uiel Y; is disjoint, we write X = |_|ieI Y;. We understand
that Hf:a =1 and Z?:a = 0 if o > B. For a finite set X we denote by #X or
#(X) the number of elements in X. If H is a subgroup of a group G, we put
[G : H] = #(G/H). However we use also the symbol [K : F] for the degree
of an algebraic extension K of a field F. The distinction will be clear from the
context. By a Hecke character x of a number field K we mean a continuous T-
valued character of the idele group of K trivial on K *, and denote by x* the ideal
character associated with x. By a CM-field we mean a totally imaginary quadratic
extension of a totally real algebraic number field.



INTRODUCTION

Our ultimate aim is to prove several theorems of arithmeticity on the values of
an Euler product Z(s) and an Eisenstein series E(z, s) at certain critical points s.
We take these Z and F to be those of the types we treated in our previous book
“Euler Products and Eisenstein Series,” referred to as [S97] here. They are defined
with respect to an algebraic group G, which is either symplectic or unitary. To
illustrate the nature of our problems, let us take a CM-field K and put

(0.1) Glp) =G? ={a € GLy(K) |ap-Tar = ¢},

where p denotes complex conjugation and ¢ is an element of GL,(K) such that
twP = . This group acts on a hermitian symmetric space which we write 3%. We
shall often be interested in the special case where ¢ takes the form

_ |10 14
(0.2) 7]—nq—{1q O]'

In this case we write Hg, or simply H, instead of 3% for the symmetric space.

Given a congruence subgroup I" of G, a Hecke eigenform f of holomorphic type
on 3% with respect to I, and a Hecke character x of K of algebraic type, but not
necessarily of finite order, we can construct a “twisted Euler product” Z(s, f, x),
whose generic Euler p-factor for each rational prime p has degree n[K : Q]. Then
we shall eventually prove that

(03) 2(007 fv X) € ﬂ-sq <f7 f> Q

for o¢ in a certain finite subset of 27'Z and Q-rational f. Here (f, f) is the inner
product defined in a canonical way; ¢ is an integer determined by o, the signature
of ¢, the weight of f, and the archimedean factor of y; g is a certain “period
symbol” determined by x and . This is true for both isotropic and anisotropic
@, and even for a totally definite . In the simplest case in which G = G", we
have q = 1.

Clearly such a result requires the definition of Q-rationality of automorphic
forms. If G is of type G", then we can define the Q-rationality by the Q-rationality
of the Fourier coefficients of a given automorphic form. If [K : Q] = 2, for example,
then H is a tube domain of the form H = {z € Cg|i(z* —z) > 0}, and a
holomorphic automorphic form f has an expansion

(0.4) f(z) =3, c(h) exp (27i - tr(hz)) (z€eH)

with ¢(h) € C, where h runs over all nonnegative hermitian matrices belonging to a
Z-lattice in K. Then for a subfield M of C we say that f is M-rationalif c(h)€ M
for every h. This definition may look simplistic, but actually it is intrinsically the
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right definition. To explain about this point, we first note that I"\ 3 has a structure
of algebraic variety that has a natural model W defined over Q. We call then a I'-
automorphic function (that is, I'-invariant meromorphic function on 3% satisfying
the cusp condition) Q-rational (or arithmetic) if it corresponds to a Q-rational
function on W in the sense of algebraic geometry. Now there are two basic facts:

(0.5) The value of a Q-rational automorphic function at any CM-point of 3%, if
finite, is algebraic.

(0.6) If f and g are Q-rational automorphic forms of the same weight, then f/g
is a Q-rational automorphic function.

Here a CM-point on 3% is defined to be the fixed point of a certain type of torus
contained in G. If G = G" and ¢ = 1, then H is the standard upper half plane,
and any point of H belonging to an imaginary quadratic field is a CM-point and
vice versa. In such a special case, (0.5) and (0.6) follow from the classical theory of
complex multiplication of elliptic modular functions. In more general cases, (0.5)
was established by the author in the framework of canonical models. As for (0.6),
it makes sense if G = G", and we can indeed give a proof, if nontrivial, of (0.6) in
such a case. For ¢ of a more general type, however, (0.6) is a meaningful statement
only when we have defined the Q-rationality of automorphic forms. Thus it is one
of our main tasks to define the notion so that (0.6) holds.

Turning our eyes to Eisenstein series, easily posable questions are as follows:

(i) Assuming that E(z, o) is finite, is E(z, 0¢) as a function of z holomorphic?
(ii) If that is so, is it Q-rational up to a well-defined constant?

Here we take meromorphic continuation of E(z, s) to the whole s-plane, as we
proved in [S97], into account. Every researcher of automorphic forms should be
able to accept such questions naturally, since the answers to them for G = SL2(Q)
are well-known and fundamental. There is a marked difference between the Q-
rationality here and the arithmeticity of Z(og), since the latter concerns oy in
an interval which can be large, while E(z, 0¢) can be holomorphic in z only at a
single point og. Now the interval, or rather the set of critical points belonging to
the interval, is suggested by the functional equation for Z, and we can find such a
set even for E(z, s) by means of its analytic properties. We cannot expect E(z, o)
to be holomorphic in z for every critical point oy in the set. We should also note
a classical example in the elliptic modular case:

2\—1 1; —2 —s
(0.7) (—47?) slir?o Z (cz+d) “|cz +d|
0#(c,d)€Z?
— (my)t 12142y <Z) iz,
n=1 a"n,

This is a nonholomorphic modular form of weight 2, and there are similar non-
holomorphic forms of weight (n 4 3)/2 with respect to a congruence subgroup of
Sp(n, Z). Therefore our next questions are:

(iii) What is the analytic nature of these E(z, 09)?
(iv) Can we still speak of the Q-rationality of such E(z, 0q)?

One of the main purposes of this book is to answer these questions, which are not
only meaningful by themselves, but also closely connected with the arithmeticity of
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Z(0¢). In fact, the answers to (iii) and (iv) are indispensable for the proof of (0.3)
as we shall explain later, but first let us describe our answers.

We first define the notion of nearly holomorphic function on any complex mani-
fold with a fixed Kahler structure. Without going into details in the general case,
let us just say that a function on such a manifold 3 is called nearly holomorphic
if it is a polynomial of some functions ry, ..., 7, on 3, determined by the Kéahler
structure, over the ring of all holomorphic functions on 3. If 3 is the above H
of tube type with a G-invariant K&hler structure, then the r; are the entries of
(2* —2)7!, where z is a variable matrix on H. If 3 is a hermitian symmetric space,
there is also a characterization of such functions in terms of the Lie algebra of the
transformation group on 3.

Now we can naturally define nearly holomorphic automorphic forms by replacing
holomorphy by near holomorphy in the definition of automorphic forms. If G = G",
then such a form f on H has an expansion

(0.8) f(z) =Y pn([mi(z* — 2)] 1) exp (27i - tr(hz)) (z e H),

where ), is the same as in (0.4) and p,(Y’) is a polynomial function in the entries
of Y whose degree is less than a constant depending on f. We say that f is
M-rational if p, has all its coefficients in a field M for every h. For example,
the function of (0.7) is a Q-rational nearly holomorphic modular form. We shall
show that E(z, 0¢) is indeed nearly holomorphic and Q-rational in this sense, up
to a constant, which is a power of 7 if G = G". Moreover, here is a noteworthy
consequence of our definition:

(0.9) If f and g are Q-rational nearly holomorphic automorphic forms of the same
weight, then the value of f/g at any CM-point of H, if finite, is algebraic.

It should be noted that this is anything but a direct consequence of (0.6). Also, for a
general type of ¢ we cannot use (0.8). However, once we have the Q-rationality of
holomorphic automorphic forms, we can at least define the Q-rationality of nearly
holomorphic automorphic forms by property (0.9), though it is of course nontrivial
to show that such a definition is indeed meaningful. So far we have taken G to be
unitary, but the symplectic case can be handled too; in fact it is similar to and easier
than G", though the case of half-integral weight requires special consideration.

Having thus presented our problems in rough forms, we can now set our program
as follows:

(1) We first define the Q-rationality of automorphic forms so that (0.6) holds.

(2) We define nearly holomorhic automorphic forms and their Q-rationality so
that (0.9) holds.

(3) We prove the near holomorphy and Q-rationality of E(z, og) up to a power of
7 in the easiest cases, namely, when G is symplectic or of type G, and E is defined
with respect to a parabolic subgroup whose unipotent radical is a commutative
group of translations on H. Let us call such an F a series of split type.

(4) We prove (0.3) by using the result of (3).

(5) Finally we prove the near holomorphy and Q-rationality of E(z, op) up to a
well-defined constant in the most general case.

Let us now briefly describe the technical aspect of how these can be achieved.
One important point is that certain differential operators on H are essential to
(2) and (3). In the above we tacitly assumed that our automorphic forms are
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scalar-valued, but in order to use differential operators effectively, it is necessary to
consider vector-valued forms. If [K : Q] = 2 and G = G(7,), such a form is defined
relative to a representation {p, X} of a group

& ={(a, b) € GLy(C) x GL,4(C) } det(a) = det(b) },

where X is a finite-dimensional complex vector space and p is a rational rep-
resentation of & into GL(X). Put T = C? and view it as a global holomor-
phic tangent space of H,; define a representation {p ® 7, Hom(T, X)} of R by
[(p®T)(a, b)h](u) = p(a, b)h(*aub) for (a, b) € R, h € Hom(T, X), and u € T For
a function g :H — X we define Hom(T, X)-valued function Dg and D,g on H by

(Dg)(u) = 321 ;— wij09/0zi (uweT),
(Dpg)(2) = p(E(2)) D[p(E(2))9(2)];

where z = (z;;){ ,=; € Hand Z:H — & is defined by =(2) = (i(z—"2), i(2*—2)).
These can also be defined on 3% for ¢ of a general type. Then we can show that
if g is an automorphic form of weight p, then D,g is a form of weight p ® 7. If
g =1, then H is the standard upper half plane, G" N SLy(K) = SLy(Q), & = C*,
p(a) = a* for a € C* with k € Z, and Z(z) = (2y, 2y) where y = Im(z); we can
easily identify Dg with 9g/0z, so that D,g = y~%(9/92)(y*g), and (p ® 7)(a) =
a**+2. Thus D, is the well-known operator that sends a form of weight k to a form
of weight k + 2.

Now iteration of operators of this type, such as D,g,D,, produces an automor-
phic form with values in a representation space of £ of a large dimension if ¢ > 1,
even if we start with X = C. Decomposing the space into irreducible subspaces and
looking particularly at the irreducible subspaces of dimension one, we can define
a natural differential operator A that sends scalar-valued automorphic forms to
scalar-valued forms of increased weight. The significance of these iterated opera-
tors and A are explained by the following fact, which is formulated only for A for
simplicity:

. is of total degree in terms o zii, then m~ reserves near
(0.10) If A is of total degree p i f 0/0z;;, th PA p
holomorphy and Q-rationality.

If G = G, this can be derived from our definition in terms of expression (0.8). Now
property (0.9), if true, would imply that for a Q-rational holomorphic automorphic
forms f and g such that Af and g have the same weight, the value of (7P Af)/g
at any CM-point, if finite, is algebraic. This is highly nontrivial, and in fact we
first prove this special case of (0.9), and derive the general case from that result.

As for problem (3), we first investigate the Fourier expansion of E(z, s) of split
type. In fact, this was done in [S97], but here we examine the behavior of the
Fourier coefficients at a critical value of s. Employing their explicit forms, we find
that F(z, o) is holomorphic in z and Q-rational, or is of the type (0.7), if the
weight of £ and o belong to certain special types. For a more general weight and
a general og, we prove that cE(z, 09) = AE'(z, o) with a suitable A, a nonzero
constant ¢, and a suitable E’ belonging to those special types. Then (0.10) settles
problem (3) for E(z, og).

To treat problems (4) and (5), let us now go back to the Euler product Z(s, f, x)
of (0.3) on G¥; we refer the reader to [S97] for its precise definition. We consider
GY with ¢ = diag[p, 1], where 7 is as in (0.2). Then G¥ x G” can be embedded
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in G¥, and G¥ has a parabolic subgroup whose reductive factor is G¥ x GL,(K).
Given a suitable congruence subgroup I'” of G¥, we can define an Eisenstein series
E(z, s; f, x) for (2, s) € 3% x C with respect to that parabolic subgroup and the
set of data (f, x, I'"). Now we easily see that diag[y), —¢] is equivalent to 7,4,
so that G¥ x G¥ can be embedded into G(7,14), and 3% x 3% can be embedded
into Hy44. Pulling back an Eisenstein series on H,,44 of split type to 3¥ x 3¢, we
obtain a function H(z, w; s) of (2, w; s) € 3¥ x 3¥ x C, with which we proved in
[S97] an equality that takes the form

(011)  c(9)Z(s, £, VE(z 5 £,) = AGs) [ H(z, w; 5)E(w)d(w)™ dw

I'\3%
in the simplest case, where I” is a congruence subgroup of G¥, ¢ is an easy product
of gamma functions, A is a product of some L-functions, dw is a G¥-invariant
measure on 3%, and §(w)™ is a factor, similar to y* in the one-dimensional case,
that makes the integral meaningful. If 1) = ¢, then (0.11) takes the form

(0.12) d(s)Z(s, £, \)f(2) = A(s) H'(z, w; s)f(w)d(w)™dw.

I\3%
We evaluate (0.11) and (0.12) at s = gg for oo belonging to a certain “critical
set,” and observe that H(z, w; o) is nearly holomorphic in (z, w) € 3¥ x 3%, and
even Q-rational up to a power of 7 and a factor q as in (0.3). Then we can show
that

A(oo)H (2, w; o) = 7%q Zgi(z)hi(w)

with some « € Z, and functions g; on 3% and h; on 3%, which are nearly holo-
morphic and Q-rational. The same is true for A’H’; both ¢; and h; are defined
on 3% then. This fact applied to (0.12) produces a proportionality relation

Z(o0, £, x) e mPq(p/, £)Q

with some 3 € Z and a Q-rational nearly holomorhic p’. Now we can show that
Z(s, £, x) # 0 for Re(s) > 3¢/2 if G = G(n,) and for Re(s) > n if G = G¥ with ¢
of a general type. There is one more crucial technical fact that we can replace p’ by
a Q-rational holomorphic cusp form p that belongs to the same Hecke eigenvalues
as f. Choosing g so that Z(oy, f, x) # 0, we can show that (p, f)/(f, f) € Q,
and eventually (0.3) for oy belonging to an appropriate set. Strictly speaking,
(0.12) is true only under a consistency condition on (f, x), and the proof of (0.3)
in the most general case is more complicated.
Next, we evaluate (0.11) at a critical o¢ in a similar way, to find that

Z(so, £, x)E(z, 00; £, x) = 77q(r, ) g(2)

with some Q-rational nearly holomorphic function ¢ on 3% and some r of the
same type as the above p. Dividing this equality by (f, f) and employing (0.3),
we obtain the desired near holomorphy and Q-rationality of E(z, o; f, x), which
is the final main result of this book.

Since the title of each section can give a rough idea of its contents, we shall not
describe them here for every section. However, there are some points which are not
discussed in the above, and on which special attention may be paid. Let us note
here some of the noteworthy aspects.
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(A) As to the arithmeticity of automorphic forms, we stated only (0.6) as a basic
requirement. However, there are other natural questions about arithmeticity whose
answers become necessary in various applications. Let us mention here only a few
facts we shall prove in this connection: (i) all automorphic forms are spanned by the
Q-rational forms; (ii) the group action (defined relative to a fixed weight) preserves
Q-rationality; (iii) in these statements Q can be replaced by a smaller field such as
Q or Q,p, if the group and the weight are of special types.

(B) In Sections 19 through 25 we give a detailed treatment of Z(s, f, x) and
E(z, s; £, x) in the symplectic case, as well as in the case G = G". These cases
were mentioned but not discussed in detail in the previous book [S97]. Also, in
the symplectic case we can define Z and E even with respect to a half-integral
weight, and we believe that the subject acquires the status of a complete theory
only when that case is included. Therefore in this book we treat both integral and
half-integral weights, and present the main results for both, though at a few points
the details of the proof for a half-integral weight are referred to some papers of the
author.

(C) We have spoken of a CM-point, which is naturally related to an abelian
variety with complex multiplication. Thus it is necessary to view I'\3% as a space
parametrizing a family of abelian varieties. This will be discussed in Sections 4 and
6. The topic was treated in [S98], but we prove here something which was not fully
explained in that book. Namely, in Section 9, we prove the reciprocity-law for the
value of an automorphic function at a CM-point, when I\ 3% is associated with a
PEL-type.

(D) In the elliptic modular case it is well-known that the space of all holomor-
phic modular forms is the direct sum of the space of cusp forms and the space
of Eisenstein series. In Section 27 we prove several results of the same nature for
symplectic and unitary groups. For example, we show that the orthogonal comple-
ment of the space of cusp forms in the space of all holomorphic automorphic forms
is spanned by certain Eisenstein series, and the direct sum decomposition can be
done Q-rationally. This will be proven for the weights with which the series are
defined beyond the line of convergence.

(E) Though we are mainly interested in the higher-dimensional cases, in Section
18 we give an elementary theory of Eisenstein series in the Hilbert modular case,
which leads to arithmeticity results on the critical values of an L-function of a CM-
field. Also, in the Appendix we include some material of expository nature such
as theta functions of a quadratic form and the estimate of the Fourier coefficients
of a modular form. Many of them are well-known when the group is SL2(Q) or
even Sp(n, Q) for some statements, but the researchers have often had difficulties
in finding references for the results on a more advanced level. Therefore we have
expended conscious efforts in treating such standard topics in a rather general
setting.
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