CHAPTER 1

Introduction

1.1. The model of first-passage percolation and its history

First-passage percolation (FPP) was introduced by Hammersley and Welsh
[108] in 1965 as a model of fluid flow through a random medium. It has been
a stage of research for probabilists since its origin, but despite all efforts through
the past decades, most of the predictions about its important statistics remain to
be understood. Most of the beauty of the model lies in its simple definition (as a
random metric space) and that several of its fascinating conjectures do not require
much effort to be stated. During these 50 years, FPP has attracted the attention
of theoretical physicists, biologists, and computer scientists, and also gave birth
to some now fundamental mathematical tools, like the sub-additive ergodic theo-
rem. Here, we will focus on the model defined on the lattice Z¢ with independent
and identically distributed (i.i.d.) edge-weights; some variants will be discussed in
Chapter 7.

The model is defined as follows. We place a non-negative random variable 7,
called the passage time of the edge e, at each nearest-neighbor edge in Z?. The
collection (7.) is assumed to be i.i.d. with common distribution function F and
corresponding probability measure v. The random variable 7, is interpreted as the
time or the cost needed to traverse the edge e.

A path T is a finite or infinite sequence of edges e(1),e(2),..., in Z¢ such that
for each n > 1, e(n) and e(n + 1) share at least one endpoint. For any finite path
I' we define the passage time of I' to be
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Given two points x,y € R? one then sets

(1.1) T(x,y) = irllf T(T),

where the infimum is over all finite paths I" that contain both 2’ and %', and 2’ is
the unique vertex in Z? such that z € 2’ + [0,1)¢ (similarly for y’). The random
variable T'(z,y) will be called the passage time between points « and y. In the
original interpretation of the model, T'(x,y) represents the time that a fluid with
source at x takes to reach the location y.

For each t > 0 let

B(t)={yeR? : T(0,y) < t}.

In the case that F'(0) = 0, the pair (Z¢,T(-,-)) is almost surely (a.s.) a metric
space and B(t) N Z<¢ is the (random) ball of radius t centered at the origin. (See
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Figure 1.) The ultimate goal of first-passage percolation is to understand the large-
scale properties of this metric. Some of the main questions include the following.
We write | - | for the 2 norm in R%.

(1) What is the typical distance between two points that are far from each
other in the lattice? Or in other words, what can we say about T'(z,y) as
|x — y| — oo? Does it converge, when possibly rescaled and recentered?
If so, what is the rate of convergence?

(2) What does a ball of large radius look like? Is there a scaling limit and
fluctuation theory for the set B(t)?

(3) What is the geometry of geodesics (time-minimizing paths) between two
distant points? How different are they from straight lines?

(4) What role does the distribution of the passage times play in describing
the metric?

In this book, we will discuss progress on these and related questions. The
purpose is twofold. First, we hope that this book will serve as a quick guide for
readers who are not necessarily experts in the field. We will try to provide not
only the main results, but also the main techniques and a large collection of open
problems. Second, the field has had a burst of activity in the past five years and
the most complete survey is more than a decade old. We hope that this book
will fill this gap, or at least share some of the beautiful mathematical ideas and
constructions that arise through FPP and which have enchanted many throughout
these years.

Let us return to questions 1 to 4. The original paper of Hammersley and
Welsh [108] considered question 1 for a class of passage times in Z2. If we write e;
for the first coordinate vector, they showed that T'(0, ne;) grows linearly in n. Their
result was extended in the famous work of Kingman [44,128,129]. It was also the
building block for the classical “shape theorem” of Richardson [155], improved by
Cox and Durrett [62] and Kesten [125], that gives the analogue of the law of large
numbers for the random ball B(t). The shape theorem roughly says that B(t) grows
linearly in ¢ and, when properly normalized, it converges to a deterministic subset
B of R4, called the limit shape. The set B = B, is not universal and depends on the
distribution v of the passage times. Chapter 2 is devoted to explaining the shape
theorem and certain properties of the limit shape B.

In Chapter 3, we discuss the variance and the order of fluctuations of the
passage time 7'. In two dimensions, it is expected that under certain assumptions
on v the fluctuations are governed by the predictions of physicists, including Kardar,
Parisi, and Zhang [76,120,121,132]. In higher dimensions, the picture is less clear
and some of the predictions disagree. After stating what is conjectured, we focus our
attention on presenting proofs of more recent results, including sublinear variance
of T(0,z) in z valid under minimal assumptions on the passage time.

Chapter 4 is devoted to the study of geodesics. We discuss the existence and
properties of finite geodesics between any two points, then move to the study of
geodesic rays. We present results on coalescence, directional properties of geodesic
rays, and a proof sketch of the absence of geodesic lines (or bigeodesics) in the
upper half-plane. We also present the important connection between geodesic lines
and ground states of the two-dimensional Ising ferromagnet.

In Chapter 5 we describe the role of Busemann functions in the model. We
explain a beautiful argument by Hoffman for the existence of two or more geodesic
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FIGURE 1. Simulation of the ball B(t) at ¢ = 0,t = 70,t = 135
and t = 250. The passage times 7, have exponential distribution
with mean one. Simulations by Si Tang.

rays. We then focus on Busemann-type limits and their relation to limiting geodesic
graphs. Chapter 6 introduces the vast relation between FPP, growth processes, and
infection models. We focus on questions of coexistence of multiple species and the
limiting interface.

Chapter 7 is our attempt to show the reader what this book is not about. In
the literature, there are thousands of pages of related (and equally fascinating)
questions and models, similar to or inspired by FPP. We collect a few of these ex-
amples and point out the appropriate references. In particular, we briefly discuss
FPP with non-independent weights, FPP on different graphs, the maximum flow
problem, and exactly solvable models for last-passage percolation. Chapter 8 re-
calls open questions spread throughout this manuscript, put in one place for easy
reference.

This book is intended to serve as an introduction to the field for researchers, as
a reference, and also as a textbook for a graduate course. No previous knowledge
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of percolation theory is assumed. A first-year graduate course in probability theory
should suffice.
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