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WHEN IS AN AUTOMATIC SET AN ADDITIVE BASIS?

JASON BELL, KATHRYN HARE, AND JEFFREY SHALLIT

(Communicated by Matthew A. Papanikolas)

Abstract. We characterize those k-automatic sets S of natural numbers that
form an additive basis for the natural numbers, and we show that this char-
acterization is effective. In addition, we give an algorithm to determine the
smallest j such that S forms an additive basis of order j, if it exists.

1. Introduction

One of the principal problems of additive number theory is to determine, given
a set S ⊆ N, whether there exists a constant j such that every natural number
(respectively, every sufficiently large natural number) can be written as a sum of at
most j members of S (see, e.g., [23]). If such a j exists, we say that S is an additive
basis (resp., an asymptotic additive basis) of order j for N.

Variants of this problem date back to antiquity, with Diophantus asking whether
every natural number could be expressed as a sum of four squares. More generally,
Waring’s problem asks whether the set of k-th powers forms an additive basis for
the natural numbers, which was ultimately answered in the affirmative by Hilbert
[23, Chapter 3]. The problem of finding bounds on the number of k-th powers
required to express all natural numbers and all sufficiently large natural numbers,
as well as whether restricted subsets of k-th powers form additive bases, continues
to be an active area of research [30–32].

Independent of Hilbert’s work on Waring’s problem, the famed Goldbach con-
jecture asks whether every even positive integer can be expressed as the sum of at
most two prime numbers. If true, this would then imply that every sufficiently large
natural number is the sum of at most three prime numbers. Vinogradov [23, Chap-
ter 8] has shown that every sufficiently large natural number can be expressed as
the sum of at most four prime numbers, and so the set of prime numbers is an
asymptotic additive basis for the natural numbers.

From these classical beginnings, a general theory of additive bases has since
emerged, and the problem of whether given sets of natural numbers form additive
bases (or asymptotic additive bases) has been considered for many classes of sets.

If one adopts a computational point of view, subsets of natural numbers can be
divided into two classes: computable sets (i.e., sets that can be produced using a
Turing machine) and those sets that lie outside the realm of classical computation.
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Historically, the explicitly given sets for which the problem of being an additive
basis has been considered are computable, and a natural problem is to classify the
computable subsets of the natural numbers that form additive bases. However, a
classical theorem of Kreisel, Lacombe, and Shoenfield [16] implies that the question
of whether a given computable subset of N forms an additive basis is, in general, re-
cursively unsolvable. Even for relatively simple sets, the problem seems intractable,
as it applies to many sets of natural numbers, such as the set of twin primes, for
which it is still open as to whether it is infinite, let alone whether it is an additive
basis, which heuristics indicate should be the case [33]. Thus it is of interest to
identify some classes of sets for which the problem is decidable.

One mechanism for producing computable sets is to fix a natural number k ≥ 2
and consider natural numbers in terms of their base-k expansions. A set of natural
numbers can then be regarded as a sublanguage of the collection of words over the
alphabet {0, 1, . . . , k − 1}. In this setting, there is a coarse hierarchy, formulated
by Chomsky, that roughly divides complexity into four nested classes: recursively
enumerable languages (those that are produced using Turing machines); context-
sensitive languages (those produced using linear-bounded non-deterministic Turing
machines); context-free languages (those produced using pushdown automata); and
regular languages (those produced using finite-state automata). The simplest of
these four classes is the collection of regular languages. When one uses a regular
sublanguage of the collection of words over {0, 1, . . . , k− 1}, the corresponding col-
lection of natural numbers one obtains is called a k-automatic set (see, for example,
[2]).

In this paper we completely characterize those k-automatic sets of natural num-
bers that form an additive basis or an asymptotic additive basis. In the case of a
k-automatic set S of natural numbers, there is a well-understood dichotomy: either
πS(x) := #{n ≤ x : n ∈ S} is O((log x)d) for some natural number d or there is a
real number α > 0 such that πS(x) = Ω(xα) (see Section 2 and specifically Corol-
lary 2.7 for details). In the case where πS(x) is asymptotically bounded by a power
of log x, we say that S is sparse. Our first main result is the following theorem (see
Theorem 4.1 and the remarks that follow).

Theorem 1.1. Let k ≥ 2 be a natural number and let S be a k-automatic subset
of N. Then S forms an asymptotic additive basis for N if and only if the following
conditions both hold:

(1) S is not sparse;
(2) gcd(S) = 1.

Moreover, if S is a non-sparse set and gcd(S) = 1, then there exist effectively
computable constants M and N such that every natural number greater than or
equal to M can be expressed as the sum of at most N elements of S.

We note that a necessary condition for a set S to be an additive basis is that 1
be in S. If S is not sparse and gcd(S) = 1 and 1 ∈ S, then S is an additive basis,
and these conditions are necessary. We give explicit upper bounds on M and N
in terms of the number of states in the minimal automaton that accepts the set S,
and we show that these bounds are in some sense the correct form for the type of
bounds one expects to hold in general. An interesting feature of our proof is that it
uses results dealing with sums of Cantor sets obtained by the second-named author
in work with Cabrelli and Molter [7].
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Our second main result is the following.

Theorem 1.2. Let k ≥ 2 be a natural number and let S be a k-automatic subset of
N. There is an algorithm that determines whether the conditions of Theorem 1.1
hold and, if so, also determines the smallest possible N in that theorem and the
corresponding smallest possible M .

The outline of this paper is as follows. In Section 2 we recall some of the basic
concepts from the theory of regular languages and automatic sets, including the
notion of a sparse automatic set, which play a key role in the statement of Theorem
1.1. In Section 3 we give some of the necessary background on Cantor sets and
prove a key lemma involving these sets. In Section 4 we prove a strengthening of
Theorem 1.1 (see Theorem 4.1) that gives explicit bounds on M and N appearing
in the statement of the theorem. In Section 5, we give an algorithm that allows
one to find optimal bounds for given automatic sets, and in Section 6, we give some
examples to illustrate the usage of our algorithm.

For other recent results connecting additive number theory and formal language
theory, see [15, 19, 24, 25].

2. Basics

We are concerned with words and numbers. A word is a finite string of symbols
over a finite alphabet Σ. If x is a word, then |x| denotes its length (the number of
symbols in it). The empty word is the unique word of length 0, and it is denoted
by ε.

The canonical base-k expansion of a natural number n is the unique word over
the alphabet Σk = {0, 1, . . . , k− 1} representing n in base k, without leading zeros,
starting with the most significant digit. It is denoted (n)k. Thus, for example,
(43)2 = 101011. If w is a word, possibly with leading zeros, then [w]k denotes the
integer that w represents in base k.

A language is a set of words. Three important languages are

(i) Σ∗, the set of all finite words over the alphabet Σ;
(ii) Σn, the set of words of length n; and
(iii) Σ≤n, the set of words of length ≤ n.

Given a set S ⊆ N, we write (S)k for the language of canonical base-k expansions
of elements of S.

There is an ambiguity that arises from the direction in which base-k expansions
are read by an automaton. In this article we always assume that these expansions
are read starting with the least significant digit.

We recall the standard asymptotic notation for functions from N to N:

• f = O(g) means that there exist constants c > 0, n0 ≥ 0 such that f(n) ≤
cg(n) for n ≥ n0;

• f = Ω(g) means that there exist constants c > 0, n0 ≥ 0 such that f(n) ≥
cg(n) for n ≥ n0;

• f = Θ(g) means that f = O(g) and f = Ω(g).

Given a language L defined over an alphabet Σ, its growth function gL(n) is
defined to be |L ∩ Σn|, the number of words in L of length n. If there exists a real
number α > 1 such that gL(n) > αn for infinitely many n, then we say that L has
exponential growth. If there exists a constant c ≥ 0 such that gL(n) = O(nc), then
we say that L has polynomial growth.



WHEN IS AN AUTOMATIC SET AN ADDITIVE BASIS? 53

A deterministic finite automaton or DFA is a quintuple M = (Q,Σ, δ, q0, F ),
where Q is a finite non-empty set of states, Σ is the input alphabet, q0 is the initial
state, F ⊆ Q is a set of final states, and δ : Q× Σ → Q is the transition function.
The function δ can be extended to Q× Σ∗ → Q in the obvious way. The language
accepted by M is defined to be {x ∈ Σ∗ : δ(q0, x) ∈ F}. A language is said to be
regular if there is a DFA accepting it [13].

A non-deterministic finite automaton or NFA is like a DFA, except that the
transition function δ maps Q×Σ to 2Q. A word x is accepted if some path labeled
x causes the NFA to move from the initial state to a final state.

We now state three well-known results about the growth functions of regular
languages. These lemmas follow by combining the results in, e.g., [9, 10, 14, 28, 29].

Lemma 2.1. Let L be a regular language. Then L has either polynomial or expo-
nential growth.

Define hL(n) = |L ∩ Σ≤n|, the number of words of length ≤ n.

Lemma 2.2. Let L be a regular language. The following are equivalent:

(a) L is of polynomial growth;
(b) there exists an integer d ≥ 0 such that hL(n) = Θ(nd);
(c) L is the finite union of languages of the form z0x

∗
1z1x

∗
2 · · · zi−1x

∗
i zi for words

z0, z1, . . . , zi, x1, x2, . . . , xi;
(d) there exist a constant j and words y1, y2, . . . , yj such that L ⊆ y∗1y

∗
2 · · · y∗j .

Lemma 2.3. Let L be a regular language, accepted by a DFA or NFA M =
(Q,Σ, δ, q0, F ). The following are equivalent:

(a) L is of exponential growth;
(b) there exists a real number ρ > 1 such that hL(n) = Ω(ρn);
(c) there exists a state q of M and words w0, x0, x1, z0 such that x0x1 �= x1x0

and δ(q0, w0) = δ(q, x0) = δ(q, x1) = q, and δ(q, z0) ∈ F ;
(d) there exist words w, x, y, z with xy �= yx such that w{x, y}∗z ⊆ L;
(e) there exist words s, t, u, v with |t| = |u| and t �= u such that s{t, u}∗v ⊆ L.

We will also need the following result, which appears to be new.

Lemma 2.4. In Lemma 2.3(e), the words s, t, u, v can be taken to obey the following
inequalities: |s|, |v| < n and |t|, |u| < 3n, where n is the number of states in the
smallest DFA or NFA M accepting L.

Proof. Consider those quadruples of words (w0, x0, x1, z0) satisfying the conditions
of Lemma 2.3(c), namely, that there is a state q of M such that δ(q0, w0) =
δ(q, x0) = δ(q, x1) = q, and δ(q, z0) ∈ F , and x0x1 �= x1x0. We can choose w0

and z0 minimal so that no state is encountered more than once via the paths Pw0

and Pz0 through M labeled w0 and z0, respectively. Thus without loss of generality
we can assume |w0|, |z0| < n.

Next, among all such x0, x1, assume x0 is a shortest non-empty word and x1 is
a shortest non-empty word paired with x0. Consider the set of states encountered
when going from q to q via the path Px0

labeled x0. If some state (other than q)
is encountered twice or more, this means there is a loop we can cut out and find a
shorter non-empty word x′

0 with δ(q, x′
0) = q. By minimality of the length of x0, we

must have that x′
0 commutes with all words w such that δ(q, w) = w. In particular,

x′
0 commutes with x0 and x1. Since the collection of words that commute with a
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non-trivial word consists of powers of a common word [18, Proposition 1.3.2], we
see that if this were the case, then x0 and x1 would commute, a contradiction. Thus
|x0| ≤ n. By construction |x1| ≥ |x0|. If x0 is a proper prefix of x1, then we have
x1 = x0x

′
1 for some non-empty word x′

1 with δ(q, x′
1) = q, and since x0x1 �= x1x0,

we have x0x0x
′
1 �= x0x

′
1x0. Cancelling x0 on the left gives x0x

′
1 �= x′

1x0. But this
contradicts minimality of the length of x1.

Thus x1 has some prefix p with |p| ≤ |x0| such that x1 = pp′ and p is not a prefix
of x0. Let q′ = δ(q, p). If q′ = q, then we have δ(q, p) = q, and x0p �= px0, since p
is not a prefix of x0. Thus in this case, by minimality of x1, we have x1 = p and
so |x1| ≤ n. Thus we may assume that q′ �= q. Then δ(q′, p′) = q. Let u be the
label of a shortest path from q′ to q. Then |u| < n since by removing loops, we
may assume the path Pu visits no state more than once and it does not revisit q′.
Observe that |pu| < 2n and δ(q, pu) = q. Moreover, x0pu �= pux0 since p is not a
prefix of x0. Thus, by the minimality of x1, we have |x1| ≤ |up| < 2n.

Thus we can assume that |x0| ≤ n and |x1| < 2n. Setting s = w0, t = x0x1,
u = x1x0, and v = z0 gives the desired inequalities. �

Remark 2.5. The bound 3n − 1 in Lemma 2.4 is optimal. For example, consider
an NFA M = ({q1, . . . , qn}, {a, b}, δ, q1, {q1}) with n states q1, q2, . . . , qn connected
in a directed cycle with transitions labeled by a. Add a directed edge labeled b
from qn back to q2. Then the smallest words obeying the conditions are x = an

of length n and y = an−1ban−1 of length 2n − 1. Then t = xy and u = yx and
|t| = |u| = 3n− 1.

Theorem 2.6. Given a regular language represented by a DFA or NFA, we can
decide in linear time whether the language has polynomial or exponential growth.

Proof. See, for example, [9]. �

Now let us change focus to sets of integers. Given a subset S ⊆ N we define

(2.1) πS(x) = #{n ≤ x : n ∈ S}.

If there exists an integer d ≥ 0 such that πS(x) = O((log x)d), then we say that S
is sparse. Otherwise we say S is non-sparse.

Then the corollary below follows immediately from the above results.

Corollary 2.7. Let k ≥ 2 be an integer and let S be a k-automatic subset of N.
Then S is non-sparse iff there exists a real number α > 0 such that πS(x) = Ω(xα).

Given sets S, T of real numbers, we let S + T denote the set

{s+ t : s ∈ S, t ∈ T}.

Furthermore, we let Sj =

j︷ ︸︸ ︷
S + S + · · ·+ S; this is called the j-fold sum of S. We let

S≤j =
⋃

1≤i≤j S
i. Note that S≤j and Sj denote, respectively, the set of numbers

that can be written as a sum of at most j elements of S and those that can be
written as a sum of exactly j elements of S. Finally, if S is a set of real numbers
and α is a real number, then αS = {αx : x ∈ S}.
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3. Sums of Cantor sets

In this section, we quickly recall the basic notions we will make use of concerning
Cantor sets. Specifically, we will be dealing with central Cantor sets, which we now
define. Let (rk)k≥1 be a sequence of real numbers in the half-open interval (0, 1

2 ].
Given real numbers α < β, we define a collection of closed intervals {Cw : w ∈
{0, 1}∗}, where each Cw ⊆ [α, β], inductively as follows. We begin with Cε = [α, β].
Having defined Cw for all binary words of length at most n, given a word w of
length n + 1, we write w = w′a with |w′| = n and a ∈ {0, 1}. If a = 0, we define
Cw to be the closed interval uniquely defined by having the same left endpoint as
Cw′ and satisfying |Cw|/|Cw′ | = rn+1. If a = 1, we define Cw to be the closed
interval uniquely defined by having the same right endpoint as Cw′ and satisfying
|Cw|/|Cw′ | = rn+1. We then take Cn to be the union of the Cw as w ranges over
words of length n. It is straightforward to see that

C0 ⊇ C1 ⊇ C2 ⊇ · · · ,

and the intersection of these sets is called the central Cantor set associated with
the ratios rk and initial interval [α, β]. The associated real numbers rk are called
the associated ratios of dissection, and in the case when there is a fixed r such that
rk = r for every k ≥ 1, we simply call r the ratio of dissection. A key example is
the classical “middle thirds” Cantor set, which is the central Cantor set with ratio
of dissection 1

3 and initial interval [0, 1].
Let k ≥ 2 be a natural number and let u, y, z ∈ Σ∗

k with |y| = |z| and y �= z.
In particular, y and z are non-empty. We define C(u; y, z) to be the collection
of real numbers whose base-k expansion is of the form 0.uw1w2w3 · · · with each
wi ∈ {y, z}. For example, when k = 3, u is the empty word, y = 0, and z = 2,
C(u; y, z) is the usual Cantor set. A key lemma used in our considerations rests
on a result of Cabrelli, the second-named author, and Molter [7], which says that
a set formed by taking the sum of N elements from a Cantor set with a fixed ratio
of dissection is equal to an interval when N is sufficiently large. We use this result
to prove the following lemma.

Lemma 3.1. Let k ≥ 2 and t ≥ 1 be natural numbers and let u, y, z ∈ Σ∗
k with

|y| = |z| and y �= z. Suppose that |u| = L and |y| = |z| = s. Then every real
number γ ∈ [kL+s+1, kL+s+1+t] can be expressed as a sum of at most k2L+2s+t+1

elements from C(u; y, z).

Proof. Let s = |y| = |z| and write y = y1 · · · ys, z = z1 · · · zs, and u = u1 · · ·uL.
Define

Y =
s∑

j=1

yjk
−j ,

Z =
s∑

j=1

zjk
−j ,

U =
L∑

j=1

ujk
−j .
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We may assume without loss of generality that Y < Z. Consider the compact set
C = C(ε; y, z), the numbers whose base-k expansion is of the form 0.x1x2x3 · · ·
where xi ∈ {y, z}. The two contractions S1(x) = k−sx+ Y and S2(x) = k−sx+ Z
clearly map C into C; hence C contains S1(C) ∪ S2(C). We claim that this
containment is in fact an equality. To see this, let x be a real number with base-k
expansion 0.x1x2x3 · · · with xi ∈ {y, z}. Then x is mapped to 0.yx1x2 · · · under
S1 and to 0.zx1x2 · · · under S2. In particular, x = S1(0.x2x3 · · · ) if x1 = y and
x = S2(0.x2x3 · · · ) if x1 = z.

Next, consider C ′, the set obtained by beginning with the non-trivial interval
[α, β] where α = (1 − k−s)−1Y and β = (1 − k−s)−1Z and forming the central
Cantor set with ratio of dissection k−s.

Then C ′ also has the property that C ′ = S1(C
′) ∪ S2(C

′). Indeed, the set C ′
n

that arises at level n in the Cantor set construction is the union of the images of
[α, β] under the n-fold compositions Sj1 ◦· · ·◦Sjn , where ji ∈ {1, 2} for i = 1, . . . , n.
Then C ′ is simply the intersection of the C ′

n for n ≥ 1.
Since there is a unique non-empty compact set with the above invariance prop-

erty under the two contractions S1 and S2, we must have C = C ′. Thus C has a
central Cantor set construction with ratio of dissection k−s. It now follows from
[7, Proposition 2.2] that the m-fold sum Cm equals the interval [mα,mβ] whenever
m ≥ ks − 1.

The set C(u; y, z) is equal to
∑L

j=1 ujk
−j + k−LC := U + k−LC. Observe that

if Cm = [c, d], then (k−LC)m = [k−Lc, k−Ld] and the m-fold sum of U + k−LC is
simply the intervalmU+[k−Lc, k−Ld]. Thus for allm ≥ ks−1, C(u; y, z)m contains
the non-trivial interval mI where I = [U +k−Lα,U +k−Lβ]. The intervals mI and
(m+ 1)I overlap whenever

(m+ 1)(U + k−Lα) ≤ m(U + k−Lβ),

which occurs precisely when m ≥ (kLU + α)(β − α)−1. Since β − α ≥ 1/ks and
U, α ≤ 1, we see that for m ≥ kL+s + ks, the intervals mI and (m + 1)I overlap.
Thus ⋃

m≥kL+s+ks

mI ⊇ [kL+s+1,∞).

Consequently, we have that the interval [kL+s+1, kL+s+1+t] is contained in the union
of the m-fold sums of C(u; y, z) with m = kL+s + ks, . . . , N whenever N is such
that N(U + k−Lβ) ≥ kL+s+t+1. Since U + k−Lβ ≥ k−L−s we see that we can take
N = k2L+2s+t+1. This proves that every number in [kL+s+1, kL+s+1+t − 1] can be
expressed as a sum of at most N elements from C(u; y, z). �

4. The first main result

In this section we prove the following theorem.

Theorem 4.1. Let k ≥ 2 be a natural number and let S be a non-sparse k-
automatic subset of N with gcd(S) = 1. Then there exist effectively computable
natural numbers N = N(S) and M = M(S) such that every natural number n ≥ M
can be expressed as a sum of at most N elements from S. Moreover, if the minimal
DFA accepting S has m states, then N ≤ 5k16m+3 and M ≤ 3k16m+5.

Remark 4.2. We note that the non-sparse and gcd hypotheses on S are, in fact,
necessary to obtain the conclusion of the statement of the theorem.
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If gcd(S) = g > 1, then every sum of elements of S is divisible by g.
On the other hand, if S is a sparse k-automatic set, then πS(x) = O((log x)d)

for some d ≥ 0. In particular, there is some C > 0 such that for all x ≥ 2 there are
at most C(log x)d elements of S that are < x. Thus there are at most Ci(log x)di

elements of S smaller than x that can be written as the sum of i elements of S.
Hence there are at most

∑
0≤i≤I C

i(log x)di elements of S smaller than x that can

be written as the sum of at most I elements of S. But this is O((logx)dI+1), which
for large x is smaller than x.

This remark combined with Theorem 4.1 easily gives Theorem 1.1.

Remark 4.3. The bounds in Theorem 4.1 are close to optimal. If one considers the
set S of all natural numbers whose base-k expansion has j digits, for j ≥ 0 and
j ≡ −1 (mod m), then the minimal DFA accepting S has size m. On the other
hand, every element of S has size at least km−2. So for each natural number d ≥ 1
the interval [1, kmd−2 − 1] ∩ S has size at most km(d−1)−1 − 1. Thus kmd−2 − 1
cannot be expressed as a sum of fewer than km−2 elements of S for m ≥ 2.

Before we prove Theorem 4.1, we need some auxiliary results. We recall that
a subset T of the natural numbers is c-syndetic for a natural number c if n ∈ T
implies that there exists i ∈ {1, . . . , c} such that n + i ∈ T . If T is c-syndetic for
some c, we say that T is syndetic.

Proposition 4.4. Let k ≥ 2 be a natural number and let S be a non-sparse k-
automatic subset of the natural numbers whose minimal accepting DFA has m
states. If T is the set of all numbers that can be written as a sum of at most
k11m+1 elements of S, then for each M > k7m+1 there exists n ∈ T such that
|M − n| < k12m+1. In particular, T is (2k12m+1)-syndetic.

Proof. Since S is non-sparse, by Lemma 2.4 we have that there exist words u, y, z, v
∈ Σ∗

k with y �= z and |u|, |v| ≤ m, |y| = |z| ≤ 3m such that L(S) contains u{y, z}∗v.
Let L = |u| and s = |y| = |z|. By Lemma 3.1, taking t = s, each α ∈ [kL+s+1,
kL+2s+1] can be expressed as a sum of at most k2L+3s+1 ≤ k11m+1 elements from
C(u; y, z).

Now let 0 ≤ α < β < 1 be real numbers. Suppose that M is a natural number
with base-k expansion x0x1 · · ·xd (and x0 �= 0) with d ≥ max(L + 2s + 1,K +
2L + s + 2). We let x denote the k-adic rational number with base-k expansion
0.x0x1 · · ·xd. Then for j ∈ {0, 1, . . . , s − 1}, the number kL+s+2+jx has base-k
expansion

x0x1 · · ·xL+s+j+1.xL+s+j+2 · · ·xd ∈ [kL+s+1, kL+2s+1],

and so by Lemma 3.1 there exist r ≤ k2L+3s+1 and y1, . . . , yr ∈ C(u; y, z) such that
y1 + · · ·+ yr = kL+s+2+jx.

Let 	 be a positive integer and let C�(u, v; y, z) denote the set of k-adic rationals
whose base-k expansions are of the form 0.uw1w2 · · ·w�v with w1, . . . , w� ∈ {y, z}
and let K denote the length of v. Observe that given ε > 0 we have that there
is a natural number N such that whenever x ∈ C(u; y, z) and 	 > N there ex-
ists x′ ∈ C�(u, v; y, z) such that |x − x′| < k−�s−L. In particular, there exist
y1,�, y2,�, . . . , yr,� ∈ C�(u, v; y, z) such that |yi,� − yi| < k−�s−L for i = 1, . . . , r.

Thus

|y1,� + · · ·+ yr,� − kL+s+2+jx| < rk−�s−L ≤ k2L+3s+1k−�s−L = kL+(3−�)s+1.
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Observe that kL+�s+Kyi,� ∈ S for i = 1, . . . , r and so kL+�s+Ky1,�+· · ·+kL+�s+Kyr,�
is a sum of at most k2L+3s+1 elements of S. By construction it is at a distance of
at most kL+�s+KkL+(3−�)s+1 = k2L+3s+K+1 from k(�+1)s+2L+K+2+jx. Since j can
take any value in {0, 1, . . . , s − 1} and since d > K + 2L + s + 2, we see that we
can find an element in S≤r that is at a distance of at most k2L+3s+K+1 from M .
Finally, since L+2s+1,K +2L+ s+2 ≤ 7m+1 and 2L+3s+K +1 ≤ 12m+1,
we obtain the desired result. �

Before proving Theorem 4.1 we need two final results about automatic sets.

Lemma 4.5. Let k ≥ 2, and suppose S ⊆ N is a k-automatic set whose minimal
accepting DFA has m states. If gcd(S) = 1, then there exist distinct integers
s1, s2, . . . , s� ∈ S, all less than k2m+2, such that gcd(s1, s2, . . . , s�) = 1.

Proof. If 1 ∈ S, there is nothing to prove, so we may assume that 1 �∈ S. Let
N denote the smallest natural number such that gcd(S ∩ [1, N + 1]) = 1 and let
d = gcd(S ∩ [1, N ]). In particular, gcd(d,N + 1) = 1. By assumption, d > 1. We
claim that N ≤ k2m+2. We write d = k0d0, where gcd(d0, k) = 1 and with k0
dividing a power of k.

We first consider the case when k0 > 1. Let a ∈ {0, 1, . . . , k − 1} be such that
N + 1 ≡ a (mod k). Then gcd(a, k0) = 1 since if this is not the case then there
is some prime p that divides both a, d, and k, and so p would divide N + 1 and
d, which is a contradiction. Then notice that Sa := {n ≥ 0: kn + a ∈ S} contains
(N + 1 − a)/k and contains no natural number smaller than (N + 1 − a)/k, since
if kn + a ∈ S for some n < (N + 1 − a)/k, then d|(kn + a) and so k0|(kn + a).
But this is impossible, because if p is a prime that divides k0 (and consequently
k), then it must divide a, which we have shown cannot occur. Notice that Sa must
have a minimal accepting DFA with at most m states. But it is straightforward to
see that a non-empty set whose minimal accepting DFA has at most m states must
contain an element of size at most km and so N + 1 < km+1 + k.

Next consider the case when k0 = 1, so gcd(d, k) = 1. We let ts · · · t0 denote the
base-k expansion of N+1. We claim that s ≤ 2m. To see this, suppose that s > 2m
and let Ti := {n ≥ 0: ki+1n + [ti · · · t0]k ∈ S} for i = 0, . . . ,m. Then since the
minimal DFA accepting S has m states we see there exist i, j ≤ m with i < j such
that Ti = Tj . Also, since each T� has a minimal accepting DFA with at most m
states and each T� is non-empty, we have that there is some least element r� ∈ T�

with r� < [ts · · · t�+1]k ∈ T�. Observe that r′� := k�+1r� + [t� · · · t0]k < N + 1
and so d divides r′�. Moreover, for all r < [ts · · · t�+1]k with r ∈ T� we have
k�+1r + [t� · · · t0]k ≡ 0 (mod d). Thus since k and d are relatively prime, we
see that T� ∩ [0, [ts · · · t�+1]k − 1] is non-empty and contained in a single arithmetic
progression of difference d, but [ts · · · t�+1]k is not in this arithmetic progression.

But now we have that Ti = Tj with i < j and so Tj ∩ [0, [ts · · · ti+1]k − 1]
is contained in a single arithmetic progression mod d. On the other hand, Tj ∩
[0, [ts · · · tj+1]k − 1] is non-empty and contained in a single arithmetic progression
mod d, and by the above remarks, [ts · · · tj+1]k < [ts · · · ti+1]k is not in this pro-
gression, a contradiction. Thus we see that s ≤ 2m and so N < k2m+2. �
Lemma 4.6. Let k ≥ 2, let m and c be natural numbers, and let S ⊆ N be a
k-automatic set with gcd(S) = 1 whose minimal accepting DFA has m states. If U
is the set of elements that can be expressed as a sum of at most 2ck4m+2 elements
of S, then there is some N ≤ ck4m+4 such that U contains {N,N +1, . . . , N + c}.



WHEN IS AN AUTOMATIC SET AN ADDITIVE BASIS? 59

Proof. From Lemma 4.5 we know there exist s1, s2, . . . , s� ∈ S with s1 < · · · < s� ≤
k2m+2 such that gcd(s1, . . . , s�) = 1.

It follows from a result of Borosh and Treybig [4, Theorem 1] that there exist
integers a1, . . . , a� ∈ Z with |ai| ≤ k2m+2 such that

∑
aisi = 1.

Now let t = ck2m+2 and consider the number N := ts1 + · · · + ts�. For each
i = 1, . . . , c we have thatN+i = (t+ia1)s1+· · ·+(t+ia�)s� is a non-negative integer
linear combination of s1, . . . , s� and |t+ iaj | ≤ 2ck2m+2 for j ∈ {1, . . . , 	}. Thus we
see that if U is the set of integers that can be expressed as at most 2ck2m+2	 elements
of S, then U contains {N,N +1, . . . , N + c}, where N = ts1 + · · ·+ ts� ≤ ck2m+2	.
Since 	 ≤ k2m+2, we obtain the desired result. �

We are now ready for the proof of our first main result.

Proof of Theorem 4.1. Let m be the size of the minimal accepting DFA for S. By
Proposition 4.4 if T is the set of elements that can be expressed as the sum of
at most k11m+1 elements of S, then T is 2k12m+1-syndetic. Let c = 2k12m+1.
By assumption gcd(S) = 1, and so by Lemma 4.6 there is some N1 ≤ 2ck4m+2 =
4k16m+3 and some natural number M1 ≤ ck4m+4 ≤ 2k16m+5 such that each element
from {M1,M1 + 1, . . . ,M1 + c} can be expressed as a sum of at most N1 elements
of {s1, . . . , sd} ⊆ S. Then let M0 denote the smallest natural number in T . Since
T ⊇ S and the minimal DFA for S has size at most m, we see that M0 ≤ km.

We claim that every natural number that is greater than M := M0 + M1 ≤
3k16m+5 can be expressed as a sum of at most N := k11m+1 + N1 ≤ 5k16m+3

elements of S. To see this, suppose, in order to get a contradiction, that this is
false. Then there is some smallest natural number n > M that cannot be expressed
as a sum of at most N elements of S. Observe that n−M1 > M0; since T is syndetic
and M0 ∈ T , there is some t ∈ T with t ≤ n−M1 < t+ c. Thus n = t+M1 + j for
some j ∈ {0, 1, . . . , c− 1}. Since M1 + j is a sum of at most N1 elements of S and
t is the sum of at most k11m+1 elements of S, we see that n is the sum of at most
N elements of S, contradicting our assumption that n has no such representation.
The result follows. �

5. An algorithm

In this section, we prove Theorem 1.2, giving an algorithm to find the smallest
number j (if it exists) such that S is an asymptotic additive basis (resp., additive
basis) of order j for the natural numbers, where S is a k-automatic set of natural
numbers. We use the fact that there is an algorithm for deciding the truth of
first-order propositions (involving + and ≤) about automatic sequences [1, 6, 8].

Proof of Theorem 1.2. From Theorem 4.1 and Remark 4.2, we know that S forms
an asymptotic additive basis of order j, for some j, if and only if S is non-sparse and
has gcd 1. This sparsity criterion can be tested using Lemma 2.1. The condition
gcd(S) = 1 can be tested as follows: compute the smallest non-zero member m of
S, if it exists. Then gcd(S) must be a divisor of m. For each divisor d of m, form
the assertion

∀n ≥ 0 (n ∈ S) =⇒ ∃t such that n = dt

and check it using the algorithm for first-order predicates mentioned above. (Note
that for each invocation d is actually a constant, so that td actually is shorthand
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for

d︷ ︸︸ ︷
t+ t+ · · ·+ t, which uses addition and not multiplication.) The largest such d

equals gcd(S).
Once S passes these two tests, we can test if S is an asymptotic additive basis

of order j by writing and checking the predicate
(5.2)
∃M ∀n ≥ M ∃x1, x2, . . . , xj such that x1, x2, . . . , xj ∈ S ∧ n = x1+x2+ · · ·+xj ,

which says every sufficiently large integer is the sum of j elements of S. We do this
for j = 1, 2, 3, . . . until the smallest such j is found. This algorithm is guaranteed
to terminate in light of Theorem 4.1.

Finally, once j is known, the optimal M in (5.2) can be determined as follows
by writing the predicate in (5.2) together with the assertion that M is the smallest
such integer. Using the decision procedure mentioned above, one can effectively
create a DFA accepting (M)k, which can then be read off from the transitions of
the DFA.

To test if S is an additive basis of order j, we need, in addition to the non-
sparseness of S and gcd(S) = 1, the condition 1 ∈ S, which is easily checked. If S
passes these tests, we then write and check the predicate

∀n ≥ 0 ∃x1, x2, . . . , xj such that x1, x2, . . . , xj ∈ S ∧ n = x1 + x2 + · · ·+ xj ,

which says every integer is the sum of j elements of S. We do this for j = 1, 2, 3, . . .
until the least such j is found. �
Remark 5.1. The same kind of idea can be used to test if every element of N (or
every sufficiently large element) is the sum of j distinct elements of a k-automatic
set S. For example, if j = 3, we would have to add the additional condition that

x1 �= x2 ∧ x1 �= x3 ∧ x2 �= x3.

We can also test if every element is uniquely representable as a sum of j elements
of S. Similarly, we can count the number f(n) of representations of n as a sum of
j elements of S. It follows from [8] that, for k-automatic sets S, the function f(n)
is k-regular and one can give an explicit representation for it.

6. Examples

In this section, we give some examples that illustrate the power of the algorithm
provided in the preceding section.

Example 6.1. Let S be the 3-automatic set of Cantor numbers

C = {0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, 162, . . .},
that is, those natural numbers (including 0) whose base-3 expansions consist of only
the digits 0 and 2. Then every even number is the sum of exactly two elements of
C. To see this, consider an even natural number N . Write N/2 = x + y, choosing
the base-3 expansions of x and y digit-by-digit as follows:

(a) if the digit of N/2 is 2, choose 1 for the corresponding digit in both x and
y;

(b) if the digit of N/2 is 1, choose 1 for the corresponding digit in x and 0 for
the corresponding digit in y;

(c) if the digit of N/2 is 0, choose 0 for the corresponding digit in both x and
y.
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Then N = 2x+ 2y gives the desired representation.

Example 6.2. Let S be the 2-automatic set of “evil” numbers

E = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, . . .},

that is, those natural numbers (including 0) for which the sum of the binary digits
is even (see, e.g., [3, p. 431]). Then every integer other than {1, 2, 4, 7} is the sum
of three elements of E . In fact, every integer except {2, 4} ∪ {2 · 4i − 1 : i ≥ 1}
is the sum of two elements of E .

Example 6.3. Let S be the 2-automatic set

R = {n : r(n) = −1}
= {3, 6, 11, 12, 13, 15, 19, 22, 24, 25, 26, 30, 35, 38, 43, 44, 45, 47, . . .},

where r(n) is the Golay-Rudin-Shapiro function [11,12,26,27]. Then every integer
except {0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 20} is the sum of two elements of R.

Example 6.4. Let S be the 4-automatic set

D = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, . . .}

of integers representable in base 4 using only the digits 0 and 1. See, for example,
[5,20]. Then every natural number is representable as the sum of three elements of
D. In fact, even more is true: every natural number is uniquely representable as
the sum of one element chosen from D and one element chosen from 2D.

All these examples can be proved “automatically” by the Walnut theorem-
proving software [22]. On a laptop each proof is completed within 21 milliseconds.

7. Concluding remarks

It is natural to ask if our results can be extended to k-context-free sets [17, 21].
In this more general setting, however, Theorem 1.1 no longer holds. The following
example was shown to the third author by a participant of the Knuth 80 conference
held in January 2018 in Pite̊a, Sweden.

Example 7.1. Let k = 2 and consider the set

S = {n : (n)2 = 10nx, where |x| = n ≥ 0} ∪ {0}.

It is easy to see that this set is 2-context-free. Furthermore, we have πS(x) =
Θ(x1/2).

However, to represent numbers of the form 2n(2n−1) with elements of S we need
at least n/2 summands, because adding together elements of S in decreasing order
introduces at most two additional 1’s in the high order bits with each additional
summand. One 1 bit can derive from the block at the beginning, and the other can
derive from a carry from the least significant digits.

So S cannot have an asymptotic basis of any finite order, even though it has the
right density.
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