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IMPROVEMENT OF THE BERNSTEIN-TYPE THEOREM
FOR SPACE-LIKE ZERO MEAN CURVATURE GRAPHS
IN LORENTZ-MINKOWSKI SPACE
USING FLUID MECHANICAL DUALITY
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(Communicated by Jiaping Wang)

ABSTRACT. Calabi’s Bernstein-type theorem asserts that a zero mean curva-
ture entire graph in Lorentz-Minkowski space L3 which admits only space-
like points is a space-like plane. Using the fluid mechanical duality between
minimal surfaces in Euclidean 3-space E3 and maximal surfaces in Lorentz-
Minkowski space L2, we give an improvement of this Bernstein-type theorem.
More precisely, we show that a zero mean curvature entire graph in L3 which
does not admit time-like points (namely, a graph consists of only space-like
and light-like points) is a plane.

1. INTRODUCTION

Consider a 2-dimensional barotropic steady flow on a simply connected domain
D in the zy-plane R? whose velocity vector field is v = (u,v), with density p and
pressure p. We assume there are no external forces. Then

e the flow is a foliation of the integral curve of v,
e p is a scalar field on D,
e p: R — R is a monotone function of p,

o c:=/p'(p) (p/ :=dp/dp) is called the local speed of sound.
e The following Euler’s equation of motion holds:

(1.1) dp+gd(|v\2) —0.
We also assume the flow is irrotational; that is,

(1.2) 0 = rot(v) = vy — uy,
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where v, 1= 0v/0x, uy = 0u/0y. Here, ‘the equation of continuity’ is equivalent
to the fact that

(13) 0 = div(pv) = (pu), + (pv),-

By (L2)), there exists a function ®: D — R, called the potential of the flow, such
that V& = v, where V® := (., ®,). Since p is a function of p, the fact ¢? = p/(p)
and (LJ) yield that

pluuy + vuy) p(uuy, + vuy)
(14) po = Az 2 V0) Py ),
By ([3]), one can easily check that
(1.5) 0=(" = P)Puy — 20,D, D,y + (¢* — ©7)Dy,.

On the other hand, by (3], there exists a function ¥: D — R, called the stream
function of the flow, such that

(1.6) v, = —pv, U, = pu.
If we set & := pu and 1 := pv, (L4) can be written as

(0% = € = 0*)(Pas py) = —p(EEx + 1z, €&y + 111y).-
Since ¢ ¢
Nz y NPz Py
O=v; —uy=—— = — — + —+,
e e 2 p?
the identity 0 = p(£2 + n? — pc?) (v, — uy) yields that
(1.7) 0=(p*c® = W) Wop + 20, W, U, + (p°c® — U2V,
A flow satisfying
(1.8) pc=1

is called a Chaplygin gas flow (see [, p. 24] and also [I1], Section 4]). For a given
stream function ¥: D — R of the Chaplygin gas flow, we set

. 2 2
(1.9) By i=1-02 - 02,

Let D be a domain in the uv-plane R*. Let f: D — L*® be an immersion into
the Lorentz-Minkowski 3-space L* of signature (+ + —). We set

R fufu fufv
b= <fvfu fv'fv)
and
By = det(P),

where - denotes the canonical Lorentzian inner product of L* and det(P) denotes
the determinant of the 2 x 2 matrix P. A point p € U where By(p) > 0 (resp.,
By(p) <0, Bf(p) =0) is said to be space-like (resp., time-like, light-like). We set

fvu 2% fv'u v)’
where 7 := f, X f, and X is the canonical Lorentzian vector product of L3

Consider the matrix W := PQ and set
Ay = trace(W),
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where P is the cofactor matrix of P. We call f a zero mean curvature surface if
Ay vanishes identically. In this paper, for the sake of simplicity, we abbreviate
‘zero mean curvature’ by ‘ZMC’. A ZMC-surface consisting only of space-like
points is called a mazimal surface. On the other hand, a surface in L* consisting
only of light-like points is called a light-like surface. It is known that the identity
By = 0 implies that Ay = 0 (see [2I} Proposition 2.1]). In particular, any light-like
surfaces are ZMC-surfaces in our sense. Moreover, at a point where By # 0, the
mean curvature function H of f is well-defined, and Ay = 0 is equivalent to the
condition that H = 0.

We now assume that f is written in the form f(z,y) = (z,y, ¥(z,y)). Then it
can be easily checked that By = By (cf. (IY)) and

Ap(z,y) = (1= VD) Wy + 20,0, Uy + (1 — W)U,
Under the condition (L8], the equation () for the stream function ¥ reduces to
(1.10) (1= W)Wy + 20, W, Uy + (1 — V2T, =0,

which implies that A; vanishes identically. So we call this the ZMC-equation in
L?. If pc = 1, then we have 1/p> = ¢* = dp/dp; that is, dp = dp/p? is obtained.
Substituting this into (L)), we get d(|v|?>—1/p?) = 0, and so there exists a constant
u such that

1
(1.11) v +p= F(: ).
By (6l), we can rewrite this as
(1.12) By = pp*.

By (1) and (ITI2), the sign change of By corresponds to the type change of the
Chaplygin gas flow from sub-sonic (|v| < ¢) to super-sonic (|v| > ¢); that is, the
sub-sonic part satisfies By > 0. If p = 0, then By vanishes identically, and the
graph of W gives a light-like surface. Such surfaces are discussed in the appendix,
and we now consider the case u # 0. Since By and g have the same sign (cf.

([TI2)), we can write

1 1- 02— 02
(1.13) p= = ¥,
Vv +p f

By (LII) and the fact that |v|* = ®2 + &2, (LT) can be written as
(1.14) (1 + ) Pyy — 20,0, Dy + (1 + D7) By = 0.
We set

(1.15) e(x,y) == [a®(pz, fy)  (f:=1/3/|pl).

If > 0, then (I4) reduces to

(1.16) (14 @2)pae — 2020y 0y + (14 ¢©2)pyy =0,

which is known as the condition that the graph of ¢(z,y) gives a minimal surface
in the Euclidean 3-space E®. On the other hand, if 4 < 0, then (ICI4) reduces to

(1.17) (1= 02)bwa + 2020y Pay + (1 — ¢2) gy = 0,
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which is the ZMC-equation (cf. (LI0)). It can be easily checked that the graph
of ¢ is a time-like ZMC-surface in L®. In both of the two cases, it can be easily
checked that (e :=sign(u) € {1,-1})

)y ()
Yy P2+l te\Pr

holds, where v := U(ux, iy)/fi. Note that U satisfies (ILI0) if and only if ¢ satisfies
(CI0). Moreover, one can easily check that

(1.18) (=) = \Je(1— 42— ¢2)
pi ) te

(ZZ) - e(1— j/}g —42) <_,(/)$w) '

This means that ¢ <— 1) corresponds to the duality between potentials and stream
functions of Chaplygin gas flows such that

o u==+1(=¢),

e the density p is given as ([LIF)), and

e p=py— 1/p for some constant po.

and

When e = 1 (resp., e = —1), this gives a correspondence between graphs of minimal
surfaces (z,7y) — @(x,y) in E® and graphs of maximal surfaces (x,y) — 1(z, )
in L? (resp., an involution on the set of graphs of time-like ZMC-surfaces in L?)
which we call the fluid mechanical duality.

A part of the above dualities is suggested in the classical book []. Calabi [5]
also recognized this duality for g > 0 and pointed out the following:

Fact 1.1 (Calabi’s Bernstein-type theorem). Suppose that the graph of a function
¥: R* - R gives a maximal surface (that is, a surface consisting only of space-like
points whose mean curvature function vanishes identically). Then ¥ — ¢(0,0) is
linear.

This is an analogue of the classical Bernstein theorem for minimal surfaces in E?.
Moreover, Calabi [5] obtained the same conclusion for entire space-like ZMC-graphs
in L™** (n < 4), and Cheng and Yau [6] extended this result for complete maximal
hypersurfaces in L™ for n > 5. The assumption that the graph consists only of
space-like points is crucial. Entire ZMC-graphs which are not planar actually exist.
Typical such examples are of the form

(1.19) Yo(z,y) =y + g(2),

where g: R — R is any C'*°-function of one variable. A point p = (zg, %) € R?is
a light-like point of v if and only if ¢'(x¢) = 0. Moreover, if the graph of ¢y does
not contain any light-like points, the potential function ¢g corresponding to g is

given by
* du
T,y —i(—y+/ —)
#ol@3) 0 9'(u)

up to a constant, where the sign “+” coincides with that of g’. On the other hand,
Osamu Kobayashi [18] pointed out the existence of entire graphs of ZMC-surfaces
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with space-like points, light-like points, and time-like points all appearing. Such
a surface is called of mized type. Recently, many such examples were constructed
in [9].

By definition, any entire ZMC-graph of mixed type has at least one light-like
point. So we give the following definition.

Definition 1.2. A light-like point p of the function v (i.e., By(p) = 0) is said to
be non-degenerate (resp., degenerate) if VB, does not vanish (resp., vanishes) at p.

At each non-degenerate light-like point, the graph of ¢ changes its causal type
from space-like to time-like. This case is now well understood. In fact, under the
assumption that the surface is real analytic, it can be reconstructed from a real
analytic null regular curve in L* (cf. Gu [12] and also [ITLI6,17]).

On the other hand, there are several examples of ZMC-surfaces with degenerate
light-like points (cf. [IL[2L10,14]). Moreover, a local general existence theorem
for maximal surfaces with degenerate light-like points is given in [21I]. For such
degenerate light-like points, we need a new approach to analyze the behavior of
and . The following fact was proved by Klyachin [I7] (see also [21]).

Fact 1.3 (The line theorem for ZMC-surfaces). Let D be a domain of R* and let
F: D — L? be a C3-differentiable ZMC-immersion such that o € D is a degener-
ate light-like point. Then, there exists a light-like line segment & (C L3) passing
through F (o) of L* such that F (o) does not coincide with one of the two end points
of 6 and F(X) contains &, where ¥ is the set of degenerate light-like points of F'.

Recently, Fact [[3] was generalized to a much wider class of surfaces, including
constant mean curvature surfaces in L%; see [21,22]. (In [21], the general local
existence theorem of surfaces which changes their causal types along degenerate
light-like lines was also shown.) The asymptotic behavior of v along the line [
consisting of degenerate light-like points is discussed in [21].

The purpose of this paper is to prove the following assertion:

Theorem A. An entire C3-differentiable ZMC-graph which is not a plane admits
a non-degenerate light-like point if its space-like part is non-empty.

This assertion is proved in Section 2 using the fluid mechanical duality and
the half-space theorem for minimal surfaces in E® given by Hoffman-Meeks [15].
It should be remarked that the half-space theorem does not hold for time-like
ZMC-surfaces. In fact, the graph of ¢(z,y) := y + log (tanz) (x € (0,7/2)) gives
a properly embedded time-like ZMC-surface lying between two parallel vertical
planes. In Section 2, we give further examples and provide a few questions related
to Theorem [Al As an application, we give the following improvement of Calabi’s
Bernstein-type theorem:

Corollary B. An entire C3-differentiable ZMC-graph which does not admit any
time-like points is a plane.

In fact, if the ZMC-graph admits a space-like point, then the assertion imme-
diately follows from Theorem [Al So it remains to show the case that the graph
consists only of light-like points. However, such a graph must be a plane, as shown
in the appendix (see Theorem [A.T]).
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2. PROOF OoF THEOREM [A]

In this section, we prove Theorem [A]in the introduction. We let ¢: R> — R be
a C3-function satisfying the ZMC-equation ((LI0). We assume ¢ admits a space-
like point gy € R? but admits no non-degenerate light-like points. By Calabi’s
Bernstein-type theorem (cf. Fact[[T]), ¢ has at least one degenerate light-like point.
We set

Fy(z,y) = (z,y,¢(z,y)),

which gives the ZMC-graph of ©». We denote by ds? the positive semi-definite metric
which is the pull-back of the canonical Lorentzian metric of L* by Fy. The line
theorem (cf. Fact [[3)) yields that the image of F;, contains a light-like line segment
&. Then the projection of & is a line segment o on the zy-plane R%. Then o lies
on a line [ on R?. If o # I, then there exists an end point p of o on . Since p is
the limit point of degenerate light-like points, p itself is also a degenerate light-like
point. By applying the line theorem again, there exists a light-like line segment &’
containing Fy(p) as its interior point. We denote by o’ the projection of 6’ to the
xy-plane. Since the null direction at p with respect to the metric ds? is uniquely
determined, ¢’ also lies on the line I. Thus, the entire graph contains a whole
light-like line containing ¢. In particular, degenerate light-like points on the graph
consist of a family of straight lines in R?.

Let [ and I’ be two such straight lines. Then I’ never meets [. In fact, if not,
then there is a unique intersection point ¢ € [ N{’. By Fact [L3] two lines I,!’ can
be lifted to two light-like lines land !’ in L? passing through F(¢). The tangential
directions of [ and I” are linearly independent light-like vectors at F(g). Then by
[19, Lemma 27 in Section 5], ¢ is a time-like point, a contradiction.

Thus, the set of degenerate light-like points of Fy, consists of a family of parallel
lines in the zy-plane. Without loss of generality, we may assume that these lines
are vertical and one of them is the y-axis. Then we can find a domain (A € (0, 0])

Q:={(x,y); 0 <z <2A}

such that go € 2 and F, has no light-like points on €2 and both of the lines [ =
{z =0} and I" = {z = 2A} consist of light-like points unless A = co. Since there
are no light-like points on €2, the potential function ¢: Q — R is induced by 1) as
the fluid mechanical dual. The graph of ¢ is a minimal surface in E3. In particular,
¢ is real analytic. If we succeed in proving that the map Fi(z,y) = (z,y, ¢(z,y))
is proper, then Theorem [Al follows. In fact, by the half-space theorem given in [15]
the image F,(2) lies in a plane in E3. Then the map Fy(x,y) also lies in a plane IT
in L on Q. Since Fy (1) is light-like, the plane II must be light-like, contradicting
the fact that gg € Q.
To prove the properness of F, it is sufficient to show the following:

Lemma 2.1. Let {p,}22, be a sequence of points in Q accumulating to a point on
Lorl. Then {|o(pn)|}32, diverges.

Proof. By switching the roles of [ and !’ if necessary, it is sufficient to consider the
case that {p,}>2; accumulates to a point on /. Taking a subsequence and using a
suitable translation of the xy-plane, we may assume that {p, }5>; converges to the
origin (0,0) € l and p,, = (zn,yn) (n = 1,2,3,...) satisfies the following properties:

e there exists € > 0 such that |y,| < € for each n =1,2,..., and
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o there exists (J,0) € Q (J > 0) such that
O>X1>Xg > > Ly > Tpgy > .

Since [ consists of degenerate light-like points, there exists a neighborhood U of
(0,0) such that (see [10] or [21), (6.1)])

Y(z,y) =y +2°h(z,y)  ((z,y) €U),

where h(z,y) is a C'-differentiable function defined on U (see [21, Appendix A]).
Taking €, d to be sufficiently small, we may assume that

V= {(z,y) € Q; |z| <6, [yl <e} CU.
Since By, > 0, the potential function ¢ associated to ¢ satisfies (cf. (LIS]))

v /
9%:797 p= 1_¢%_¢5

R <(2h + xhy)? + 2hy + x2h§>

Since

is non-negative on the closure V of V, we can write

(2.1) Ve = llk(z,y),
where k(x,y) is a non-negative continuous function defined on V such that k is
positive-valued on V. We set pg := (6,0) and consider the path 7,: [0,1] — V
defined by 7, (s) := (4,2sy,) if 0 < s < 1/2 and

Yn(8) i= (2(xy, — 0)s — xp + 25, yn)

if 1/2 < s <1, which starts at pp and terminates at p,,. This curve 7, is the union
of the vertical subarc 7,1 and the horizontal subarc 7, 2. So we can write

©(pn) — p(po) = / Podx 4 ydy

n

:/ gpxdx—l-/ Pydy.
Yn,2 ot

n,1

Since [—€,€] 3 y — ¢y (d,y) € R is a continuous function, we have that

/ pydy| < /
Yn,1 Y

< emax
lyl<e

Py (57 2tyn) ‘dy|

n,1

wy(é,y)‘ < oo.

So to prove the lemma, it is sufficient to show that fv ) w.dx diverges as n — oo.
We set ’

m = max  k(z, >0),
vt < @Y (20)

where k is the continuous function given in ([ZIJ). On the other hand, we can take
a constant m/(> 0) such that

Yy =14 2°hy(z,y) >m'  (z€[0,0], |yl <e),
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since €, can be chosen to be sufficiently small. Since ¢, = 1, /p, we have

1) 2
1 h
/ puda| = / Lt ohy(@y) g,
Tn,2 Ty z?k (:an)

m' [0 dx m’<1 1)
> =—\|——%5)— o0

2 ) 2
m? [, T m2 \z, O

proving the assertion. O

Remark 2.2. In the above proof, we showed that Fy(€2) lies in a plane using the
fluid mechanical duality. We remark here that this can be proved by a different
method. In fact, ¢ satisfies the assumption of Ecker [7, Theorem G] or is a PS-
graph on the convex domain € in the sense of Fernandez and Lopez [§]. Thus, we
can conclude that () lies in a light-like plane.

FIGURE 1. The ZMC-surfaces in Example [23] (left) and in Exam-
ple 24 (right), where the white lines indicate light-like points.

In [1], the first author constructed several ZMC-surfaces foliated by circles and
at most countably many straight lines. At the end of this paper, we pick up
two important examples of them which contain degenerate light-like points. (In
[1], these two examples are not precisely indicated. Here we show their explicit
parametrization and embeddedness.)

Example 2.3 ([Il Figure 5]). We set
F(u,v) := (u+ acosv,asinv, u),

where a > 0 and (u,v) € R x [0,27). Then the image of F' contains two parallel
degenerate light-like lines which correspond to the special values § = +7/2 (see
Figure Il left). The image of F can be characterized by the implicit function
(r — t)? + y* = a®. This ZMC-surface is properly embedded and is not simply
connected.

Example 2.4 ([Il Figure 2]). We set

1 ar—1 . 1 ar —1
F(r,0) = (r—i— % log (ar n 1) +rcosf,rsinf, %log <a1"—|— 1)),
where a > 0 and 6 € [0,27). This map is defined for r > 1/a or r < —1/a, and the
closure of the image of F' = (x,y,t) can be expressed as
(¥ :=)asinh(at) ((z — t)* + y*) + 2(z — t) cosh(at) = 0.
It can be checked that (¥, ¥,, ¥;) never vanishes along ¥ = 0. So the closure of
F gives a properly embedded ZMC-surface in L? (see Figure[I] right).
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Regarding our main result, we state a few open problems:

Question 1. Does a properly embedded ZMC-surface which consists only of space-
like or light-like points coincide with a plane?

If this question is affirmative, then Corollary [Bl follows as a corollary. Suppose
that we can find such a non-planar ZMC-surface S; it must contain a light-like
line. In fact, if S consists only of space-like points, then S is complete, and such a
surface must be a plane (see [20, Remark 1.2]). So S has a light-like point p. If p is
non-degenerate, then S has a time-like point near p, so p must be degenerate. By
the line theorem (Fact [[3]), S must contain a light-like line consisting of degenerate
light-like points.

Question 2. Are there entire ZMC-graphs of mixed type containing degenerate
light-like points?

This question needs to consider ZMC-graphs of mixed type. In fact, if we choose
a function g(z) satisfying ¢’(0) = 0 as in (.I9]), then the y-axis consists of the de-
generate light-like points. If we weaken ‘entire ZMC-graphs’ to ‘properly embedded
ZMC-surfaces of mixed type’ the answer is ‘yes’. In fact, Example 2.4] gives a prop-
erly embedded ZMC-surface of mixed type which contains a degenerate light-like
line L. Although the space-like points never accumulate to L in the case of this
example, one can show the existence of a function ¢ : U — R defined on a domain
U in R? containing the y-axis such that

e the y-axis corresponds to a degenerate light-like line,
e ¢ is of mixed type or consists only of space-like points except along the
y-axis.
See [3] for details. Also, the following question arises:

Question 3. Are there entire ZMC-graphs of mixed type which are not obtained
as analytic extensions of Kobayashi surfaces given as in [9]7

In fact, all known examples of entire ZMC-graphs of mixed type are obtained
as analytic extensions of Kobayashi surfaces (cf. [9]), and they admit only non-
degenerate light-like points.

APPENDIX A. A PROPERTY OF LIGHT-LIKE SURFACES IN L°

It can be easily checked that an embedded surface S(C L?*) is light-like if and
only if the restriction of the canonical Lorentzian metric on L? to the tangent space
T,S of each p € S is positive semi-definite but not positive definite. The purpose
of this appendix is to prove the following:

Theorem A.1. If an entire C?-differentiable graph of 1: R* — R gives a light-like
surface in L*, then ¢ — 1(0,0) is a linear function.

Proof. We set F(x,y) = (z,y,%(x,y)). Since F is a light-like surface, ¢2 + 42 = 1

holds on R?. Differentiating this with respect to = and y, we get two equations.
Since F is light-like, (¢4, 1) # (0,0). By thinking t;, 1, are unknown variables
of these two equations, the determinant ;41 — @bfcy vanishes identically. So the
Gaussian curvature of F with respect to the Euclidean metric of R® vanishes iden-
tically. Then, by the Hartman-Nirenberg cylinder theorem, F' must be a cylinder.

(The proof of the cylinder theorem in [13] needs only C2-differentiability.) That is,
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there exist a non-zero vector a, a plane Il which is not parallel to a, and a regular
curve v: R — II such that F(u,v) := v(u) + va gives a new parametrization of F.
If F is not a plane, there exists ug € R such that 4'(ug) and " (ug) are linearly
independent. Then the point (u,v) = (ug,0) is not an umbilical point of F. Since
the asymptotic direction is uniquely determined at each non-umbilical point on a
flat surface, the line theorem (cf. Fact [[3]) yields that a is a light-like vector. By
a suitable homothetic transformation and an isometric motion in L®, we may set
a = (1,0,1). Then it holds that

(A.1) 0=9"-a=2"-1t.

Since 7' -7’ = 0, we have 3y’ = 0. So, without loss of generality, we may assume
that y(u) = 0. Differentiating (AJ)), we have 2" — " = 0, contradicting the fact
that v/ (ug) and v”(up) are linearly independent. Thus F' is a plane. O
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