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IMPROVEMENT OF THE BERNSTEIN-TYPE THEOREM

FOR SPACE-LIKE ZERO MEAN CURVATURE GRAPHS

IN LORENTZ-MINKOWSKI SPACE

USING FLUID MECHANICAL DUALITY

S. AKAMINE, M. UMEHARA, AND K. YAMADA

(Communicated by Jiaping Wang)

Abstract. Calabi’s Bernstein-type theorem asserts that a zero mean curva-
ture entire graph in Lorentz-Minkowski space L3 which admits only space-
like points is a space-like plane. Using the fluid mechanical duality between
minimal surfaces in Euclidean 3-space E3 and maximal surfaces in Lorentz-
Minkowski space L3, we give an improvement of this Bernstein-type theorem.
More precisely, we show that a zero mean curvature entire graph in L3 which
does not admit time-like points (namely, a graph consists of only space-like
and light-like points) is a plane.

1. Introduction

Consider a 2-dimensional barotropic steady flow on a simply connected domain
D in the xy-plane R2 whose velocity vector field is v = (u, v), with density ρ and
pressure p. We assume there are no external forces. Then

• the flow is a foliation of the integral curve of v,
• ρ is a scalar field on D,
• p : R → R is a monotone function of ρ,
• c :=

√
p′(ρ) (p′ := dp/dρ) is called the local speed of sound.

• The following Euler’s equation of motion holds:

(1.1) dp+
ρ

2
d(|v|2) = 0.

We also assume the flow is irrotational ; that is,

(1.2) 0 = rot(v) = vx − uy,
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where vx := ∂v/∂x, uy := ∂u/∂y. Here, ‘the equation of continuity’ is equivalent
to the fact that

(1.3) 0 = div(ρv) = (ρu)x + (ρv)y.

By (1.2), there exists a function Φ: D → R, called the potential of the flow, such
that ∇Φ = v, where ∇Φ := (Φx,Φy). Since p is a function of ρ, the fact c2 = p′(ρ)
and (1.1) yield that

(1.4) ρx = −ρ(uux + vvx)

c2
, ρy = −ρ(uuy + vvy)

c2
.

By (1.3), one can easily check that

(1.5) 0 = (c2 − Φ2
x)Φxx − 2ΦxΦyΦxy + (c2 − Φ2

y)Φyy.

On the other hand, by (1.3), there exists a function Ψ: D → R, called the stream
function of the flow, such that

(1.6) Ψx = −ρv, Ψy = ρu.

If we set ξ := ρu and η := ρv, (1.4) can be written as

(ρ2c2 − ξ2 − η2)(ρx, ρy) = −ρ(ξξx + ηηx, ξξy + ηηy).

Since

0 = vx − uy =
ηx
ρ

− ξy
ρ

− ηρx
ρ2

+
ξρy
ρ2

,

the identity 0 = ρ(ξ2 + η2 − ρ2c2)(vx − uy) yields that

0 = (ρ2c2 −Ψ2
y)Ψxx + 2ΨxΨyΨxy + (ρ2c2 −Ψ2

x)Ψyy.(1.7)

A flow satisfying

(1.8) ρc = 1

is called a Chaplygin gas flow (see [4, p. 24] and also [11, Section 4]). For a given
stream function Ψ: D → R of the Chaplygin gas flow, we set

(1.9) BΨ := 1−Ψ2
x −Ψ2

y.

Let D be a domain in the uv-plane R2. Let f : D → L3 be an immersion into
the Lorentz-Minkowski 3-space L3 of signature (+ +−). We set

P :=

(
fu · fu fu · fv
fv · fu fv · fv

)
and

Bf := det(P ),

where · denotes the canonical Lorentzian inner product of L3 and det(P ) denotes
the determinant of the 2 × 2 matrix P . A point p ∈ U where Bf (p) > 0 (resp.,
Bf (p) < 0, Bf (p) = 0) is said to be space-like (resp., time-like, light-like). We set

Q :=

(
fuu · ν̃ fuv · ν̃
fvu · ν̃ fvv · ν̃

)
,

where ν̃ := fu ×L fv and ×L is the canonical Lorentzian vector product of L3.
Consider the matrix W := P̃Q and set

Af := trace(W ),



IMPROVEMENT OF THE BERNSTEIN-TYPE THEOREM 19

where P̃ is the cofactor matrix of P . We call f a zero mean curvature surface if
Af vanishes identically. In this paper, for the sake of simplicity, we abbreviate
‘zero mean curvature’ by ‘ZMC’. A ZMC-surface consisting only of space-like
points is called a maximal surface. On the other hand, a surface in L3 consisting
only of light-like points is called a light-like surface. It is known that the identity
Bf = 0 implies that Af = 0 (see [21, Proposition 2.1]). In particular, any light-like
surfaces are ZMC-surfaces in our sense. Moreover, at a point where Bf �= 0, the
mean curvature function H of f is well-defined, and Af = 0 is equivalent to the
condition that H = 0.

We now assume that f is written in the form f(x, y) = (x, y,Ψ(x, y)). Then it
can be easily checked that Bf = BΨ (cf. (1.9)) and

Af (x, y) = (1−Ψ2
y)Ψxx + 2ΨxΨyΨxy + (1−Ψ2

x)Ψyy.

Under the condition (1.8), the equation (1.7) for the stream function Ψ reduces to

(1.10) (1−Ψ2
y)Ψxx + 2ΨxΨyΨxy + (1−Ψ2

x)Ψyy = 0,

which implies that Af vanishes identically. So we call this the ZMC-equation in

L3. If ρc = 1, then we have 1/ρ2 = c2 = dp/dρ; that is, dp = dρ/ρ2 is obtained.
Substituting this into (1.1), we get d(|v|2−1/ρ2) = 0, and so there exists a constant
μ such that

(1.11) |v|2 + μ =
1

ρ2
(= c2).

By (1.6), we can rewrite this as

(1.12) BΨ = μρ2.

By (1.11) and (1.12), the sign change of BΨ corresponds to the type change of the
Chaplygin gas flow from sub-sonic (|v| < c) to super-sonic (|v| > c); that is, the
sub-sonic part satisfies BΨ > 0. If μ = 0, then BΨ vanishes identically, and the
graph of Ψ gives a light-like surface. Such surfaces are discussed in the appendix,
and we now consider the case μ �= 0. Since BΨ and μ have the same sign (cf.
(1.12)), we can write

(1.13) ρ =
1√

|v|2 + μ
=

√
1−Ψ2

x −Ψ2
y

μ
.

By (1.11) and the fact that |v|2 = Φ2
x +Φ2

y, (1.5) can be written as

(1.14) (μ+Φ2
y)Φxx − 2ΦxΦyΦxy + (μ+Φ2

x) Φyy = 0.

We set

(1.15) ϕ(x, y) := μ̃Φ(μ̃x, μ̃y) (μ̃ := 1/ 4
√

|μ|).

If μ > 0, then (1.14) reduces to

(1.16) (1 + ϕ2
y)ϕxx − 2ϕxϕyϕxy + (1 + ϕ2

x)ϕyy = 0,

which is known as the condition that the graph of ϕ(x, y) gives a minimal surface
in the Euclidean 3-space E3. On the other hand, if μ < 0, then (1.14) reduces to

(1.17) (1− ϕ2
y)ϕxx + 2ϕxϕyϕxy + (1− ϕ2

x)ϕyy = 0,
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which is the ZMC-equation (cf. (1.10)). It can be easily checked that the graph
of ϕ is a time-like ZMC-surface in L3. In both of the two cases, it can be easily
checked that (ε := sign(μ) ∈ {1,−1})(

ψx

ψy

)
=

1√
ϕ2
x + ϕ2

y + ε

(
−ϕy

ϕx

)

holds, where ψ := Ψ(μ̃x, μ̃y)/μ̃. Note that Ψ satisfies (1.10) if and only if ψ satisfies
(1.10). Moreover, one can easily check that

(1.18) (ρ̂ :=)
1√

ϕ2
x + ϕ2

y + ε
=

√
ε(1− ψ2

x − ψ2
y)

and (
ϕx

ϕy

)
=

1√
ε(1− ψ2

x − ψ2
y)

(
ψy

−ψx

)
.

This means that ϕ ←→ ψ corresponds to the duality between potentials and stream
functions of Chaplygin gas flows such that

• μ = ±1(= ε),
• the density ρ̂ is given as (1.18), and
• p = p0 − 1/ρ̂ for some constant p0.

When ε = 1 (resp., ε = −1), this gives a correspondence between graphs of minimal
surfaces (x, y) �→ ϕ(x, y) in E3 and graphs of maximal surfaces (x, y) �→ ψ(x, y)
in L3 (resp., an involution on the set of graphs of time-like ZMC-surfaces in L3)
which we call the fluid mechanical duality.

A part of the above dualities is suggested in the classical book [4]. Calabi [5]
also recognized this duality for μ > 0 and pointed out the following:

Fact 1.1 (Calabi’s Bernstein-type theorem). Suppose that the graph of a function
ψ : R2 → R gives a maximal surface (that is, a surface consisting only of space-like
points whose mean curvature function vanishes identically). Then ψ − ψ(0, 0) is
linear.

This is an analogue of the classical Bernstein theorem for minimal surfaces in E3.
Moreover, Calabi [5] obtained the same conclusion for entire space-like ZMC-graphs
in Ln+1 (n ≤ 4), and Cheng and Yau [6] extended this result for complete maximal
hypersurfaces in Ln+1 for n ≥ 5. The assumption that the graph consists only of
space-like points is crucial. Entire ZMC-graphs which are not planar actually exist.
Typical such examples are of the form

(1.19) ψ0(x, y) := y + g(x),

where g : R → R is any C∞-function of one variable. A point p = (x0, y0) ∈ R2 is
a light-like point of ψ0 if and only if g′(x0) = 0. Moreover, if the graph of ψ0 does
not contain any light-like points, the potential function ϕ0 corresponding to ψ0 is
given by

ϕ0(x, y) = ±
(
−y +

∫ x

0

du

g′(u)

)
up to a constant, where the sign “±” coincides with that of g′. On the other hand,
Osamu Kobayashi [18] pointed out the existence of entire graphs of ZMC-surfaces
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with space-like points, light-like points, and time-like points all appearing. Such
a surface is called of mixed type. Recently, many such examples were constructed
in [9].

By definition, any entire ZMC-graph of mixed type has at least one light-like
point. So we give the following definition.

Definition 1.2. A light-like point p of the function ψ (i.e., Bψ(p) = 0) is said to
be non-degenerate (resp., degenerate) if ∇Bψ does not vanish (resp., vanishes) at p.

At each non-degenerate light-like point, the graph of ψ changes its causal type
from space-like to time-like. This case is now well understood. In fact, under the
assumption that the surface is real analytic, it can be reconstructed from a real
analytic null regular curve in L3 (cf. Gu [12] and also [11, 16, 17]).

On the other hand, there are several examples of ZMC-surfaces with degenerate
light-like points (cf. [1, 2, 10, 14]). Moreover, a local general existence theorem
for maximal surfaces with degenerate light-like points is given in [21]. For such
degenerate light-like points, we need a new approach to analyze the behavior of ψ
and ϕ. The following fact was proved by Klyachin [17] (see also [21]).

Fact 1.3 (The line theorem for ZMC-surfaces). Let D be a domain of R2 and let
F : D → L3 be a C3-differentiable ZMC-immersion such that o ∈ D is a degener-
ate light-like point. Then, there exists a light-like line segment σ̂ (⊂ L3) passing
through F (o) of L3 such that F (o) does not coincide with one of the two end points
of σ̂ and F (Σ) contains σ̂, where Σ is the set of degenerate light-like points of F .

Recently, Fact 1.3 was generalized to a much wider class of surfaces, including
constant mean curvature surfaces in L3; see [21, 22]. (In [21], the general local
existence theorem of surfaces which changes their causal types along degenerate
light-like lines was also shown.) The asymptotic behavior of ψ along the line l
consisting of degenerate light-like points is discussed in [21].

The purpose of this paper is to prove the following assertion:

Theorem A. An entire C3-differentiable ZMC-graph which is not a plane admits
a non-degenerate light-like point if its space-like part is non-empty.

This assertion is proved in Section 2 using the fluid mechanical duality and
the half-space theorem for minimal surfaces in E3 given by Hoffman-Meeks [15].
It should be remarked that the half-space theorem does not hold for time-like
ZMC-surfaces. In fact, the graph of ϕ(x, y) := y + log (tanx) (x ∈ (0, π/2)) gives
a properly embedded time-like ZMC-surface lying between two parallel vertical
planes. In Section 2, we give further examples and provide a few questions related
to Theorem A. As an application, we give the following improvement of Calabi’s
Bernstein-type theorem:

Corollary B. An entire C3-differentiable ZMC-graph which does not admit any
time-like points is a plane.

In fact, if the ZMC-graph admits a space-like point, then the assertion imme-
diately follows from Theorem A. So it remains to show the case that the graph
consists only of light-like points. However, such a graph must be a plane, as shown
in the appendix (see Theorem A.1).
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2. Proof of Theorem A

In this section, we prove Theorem A in the introduction. We let ψ : R2 → R be
a C3-function satisfying the ZMC-equation (1.10). We assume ψ admits a space-
like point q0 ∈ R2 but admits no non-degenerate light-like points. By Calabi’s
Bernstein-type theorem (cf. Fact 1.1), ψ has at least one degenerate light-like point.
We set

Fψ(x, y) := (x, y, ψ(x, y)),

which gives the ZMC-graph of ψ. We denote by ds2 the positive semi-definite metric
which is the pull-back of the canonical Lorentzian metric of L3 by Fψ. The line
theorem (cf. Fact 1.3) yields that the image of Fψ contains a light-like line segment

σ̂. Then the projection of σ̂ is a line segment σ on the xy-plane R2. Then σ lies
on a line l on R2. If σ �= l, then there exists an end point p of σ on l. Since p is
the limit point of degenerate light-like points, p itself is also a degenerate light-like
point. By applying the line theorem again, there exists a light-like line segment σ̂′

containing Fψ(p) as its interior point. We denote by σ′ the projection of σ̂′ to the
xy-plane. Since the null direction at p with respect to the metric ds2 is uniquely
determined, σ′ also lies on the line l. Thus, the entire graph contains a whole
light-like line containing σ̂. In particular, degenerate light-like points on the graph
consist of a family of straight lines in R2.

Let l and l′ be two such straight lines. Then l′ never meets l. In fact, if not,
then there is a unique intersection point q ∈ l ∩ l′. By Fact 1.3, two lines l, l′ can
be lifted to two light-like lines l̃ and l̃′ in L3 passing through Fψ(q). The tangential

directions of l̃ and l̃′ are linearly independent light-like vectors at Fψ(q). Then by
[19, Lemma 27 in Section 5], q is a time-like point, a contradiction.

Thus, the set of degenerate light-like points of Fψ consists of a family of parallel
lines in the xy-plane. Without loss of generality, we may assume that these lines
are vertical and one of them is the y-axis. Then we can find a domain (Δ ∈ (0,∞])

Ω := {(x, y) ; 0 < x < 2Δ}

such that q0 ∈ Ω and Fψ has no light-like points on Ω and both of the lines l =
{x = 0} and l′ = {x = 2Δ} consist of light-like points unless Δ = ∞. Since there
are no light-like points on Ω, the potential function ϕ : Ω → R is induced by ψ as
the fluid mechanical dual. The graph of ϕ is a minimal surface in E3. In particular,
ϕ is real analytic. If we succeed in proving that the map Fϕ(x, y) := (x, y, ϕ(x, y))
is proper, then Theorem A follows. In fact, by the half-space theorem given in [15]
the image Fϕ(Ω) lies in a plane in E3. Then the map Fψ(x, y) also lies in a plane Π

in L3 on Ω. Since Fψ(l) is light-like, the plane Π must be light-like, contradicting
the fact that q0 ∈ Ω.

To prove the properness of Fϕ, it is sufficient to show the following:

Lemma 2.1. Let {pn}∞n=1 be a sequence of points in Ω accumulating to a point on
l or l′. Then {|ϕ(pn)|}∞n=1 diverges.

Proof. By switching the roles of l and l′ if necessary, it is sufficient to consider the
case that {pn}∞n=1 accumulates to a point on l. Taking a subsequence and using a
suitable translation of the xy-plane, we may assume that {pn}∞n=1 converges to the
origin (0, 0) ∈ l and pn = (xn, yn) (n = 1, 2, 3, . . .) satisfies the following properties:

• there exists ε > 0 such that |yn| < ε for each n = 1, 2, . . . , and
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• there exists (δ, 0) ∈ Ω (δ > 0) such that

δ > x1 > x2 > · · · > xn > xn+1 > · · · .

Since l consists of degenerate light-like points, there exists a neighborhood U of
(0, 0) such that (see [10] or [21, (6.1)])

ψ(x, y) = y + x2h(x, y) ((x, y) ∈ U),

where h(x, y) is a C1-differentiable function defined on U (see [21, Appendix A]).
Taking ε, δ to be sufficiently small, we may assume that

V := {(x, y) ∈ Ω ; |x| ≤ δ, |y| < ε} ⊂ U.

Since Bψ > 0, the potential function ϕ associated to ψ satisfies (cf. (1.18))

ϕx =
ψy

ρ
, ρ =

√
1− ψ2

x − ψ2
y.

Since

1− ψ2
x − ψ2

y = −x2

(
(2h+ xhx)

2 + 2hy + x2h2
y

)

is non-negative on the closure V of V , we can write

(2.1)
√
ρ = |x|k(x, y),

where k(x, y) is a non-negative continuous function defined on V such that k is
positive-valued on V . We set p0 := (δ, 0) and consider the path γn : [0, 1] → V
defined by γn(s) := (δ, 2syn) if 0 ≤ s ≤ 1/2 and

γn(s) := (2(xn − δ)s− xn + 2δ, yn)

if 1/2 ≤ s ≤ 1, which starts at p0 and terminates at pn. This curve γn is the union
of the vertical subarc γn,1 and the horizontal subarc γn,2. So we can write

ϕ(pn)− ϕ(p0) =

∫
γn

ϕxdx+ ϕydy

=

∫
γn,2

ϕxdx+

∫
γn,1

ϕydy.

Since [−ε, ε] � y �→ ϕy(δ, y) ∈ R is a continuous function, we have that∣∣∣∣∣
∫
γn,1

ϕydy

∣∣∣∣∣ ≤
∫
γn,1

∣∣∣∣ϕy(δ, 2tyn)

∣∣∣∣ |dy|
≤ εmax

|y|≤ε

∣∣∣∣ϕy(δ, y)

∣∣∣∣ < ∞.

So to prove the lemma, it is sufficient to show that
∫
γn,2

ϕxdx diverges as n → ∞.

We set

m := max
x∈[0,δ], |y|≤ε

k(x, y) (≥ 0),

where k is the continuous function given in (2.1). On the other hand, we can take
a constant m′(> 0) such that

ψy = 1 + x2hy(x, y) > m′ (x ∈ [0, δ], |y| ≤ ε),
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since ε, δ can be chosen to be sufficiently small. Since ϕx = ψy/ρ, we have∣∣∣∣∣
∫
γn,2

ϕxdx

∣∣∣∣∣ =
∫ δ

xn

1 + x2hy(x, y)

x2k2(x, y)
dx

>
m′

m2

∫ δ

xn

dx

x2
=

m′

m2

(
1

xn
− 1

δ

)
→ ∞,

proving the assertion. �

Remark 2.2. In the above proof, we showed that Fψ(Ω) lies in a plane using the
fluid mechanical duality. We remark here that this can be proved by a different
method. In fact, ψ satisfies the assumption of Ecker [7, Theorem G] or is a PS-
graph on the convex domain Ω in the sense of Fernandez and Lopez [8]. Thus, we
can conclude that ψ(Ω) lies in a light-like plane.

Figure 1. The ZMC-surfaces in Example 2.3 (left) and in Exam-
ple 2.4 (right), where the white lines indicate light-like points.

In [1], the first author constructed several ZMC-surfaces foliated by circles and
at most countably many straight lines. At the end of this paper, we pick up
two important examples of them which contain degenerate light-like points. (In
[1], these two examples are not precisely indicated. Here we show their explicit
parametrization and embeddedness.)

Example 2.3 ([1, Figure 5]). We set

F (u, v) := (u+ a cos v, a sin v, u),

where a > 0 and (u, v) ∈ R × [0, 2π). Then the image of F contains two parallel
degenerate light-like lines which correspond to the special values θ = ±π/2 (see
Figure 1, left). The image of F can be characterized by the implicit function
(x − t)2 + y2 = a2. This ZMC-surface is properly embedded and is not simply
connected.

Example 2.4 ([1, Figure 2]). We set

F (r, θ) :=

(
r +

1

2a
log

(
ar − 1

ar + 1

)
+ r cos θ, r sin θ,

1

2a
log

(
ar − 1

ar + 1

))
,

where a > 0 and θ ∈ [0, 2π). This map is defined for r > 1/a or r < −1/a, and the
closure of the image of F = (x, y, t) can be expressed as

(Ψ :=)a sinh(at)
(
(x− t)2 + y2

)
+ 2(x− t) cosh(at) = 0.

It can be checked that (Ψx,Ψy,Ψt) never vanishes along Ψ = 0. So the closure of

F gives a properly embedded ZMC-surface in L3 (see Figure 1, right).



IMPROVEMENT OF THE BERNSTEIN-TYPE THEOREM 25

Regarding our main result, we state a few open problems:

Question 1. Does a properly embedded ZMC-surface which consists only of space-
like or light-like points coincide with a plane?

If this question is affirmative, then Corollary B follows as a corollary. Suppose
that we can find such a non-planar ZMC-surface S; it must contain a light-like
line. In fact, if S consists only of space-like points, then S is complete, and such a
surface must be a plane (see [20, Remark 1.2]). So S has a light-like point p. If p is
non-degenerate, then S has a time-like point near p, so p must be degenerate. By
the line theorem (Fact 1.3), S must contain a light-like line consisting of degenerate
light-like points.

Question 2. Are there entire ZMC-graphs of mixed type containing degenerate
light-like points?

This question needs to consider ZMC-graphs of mixed type. In fact, if we choose
a function g(x) satisfying g′(0) = 0 as in (1.19), then the y-axis consists of the de-
generate light-like points. If we weaken ‘entire ZMC-graphs’ to ‘properly embedded
ZMC-surfaces of mixed type’ the answer is ‘yes’. In fact, Example 2.4 gives a prop-
erly embedded ZMC-surface of mixed type which contains a degenerate light-like
line L. Although the space-like points never accumulate to L in the case of this
example, one can show the existence of a function ψ : U → R defined on a domain
U in R2 containing the y-axis such that

• the y-axis corresponds to a degenerate light-like line,
• ψ is of mixed type or consists only of space-like points except along the
y-axis.

See [3] for details. Also, the following question arises:

Question 3. Are there entire ZMC-graphs of mixed type which are not obtained
as analytic extensions of Kobayashi surfaces given as in [9]?

In fact, all known examples of entire ZMC-graphs of mixed type are obtained
as analytic extensions of Kobayashi surfaces (cf. [9]), and they admit only non-
degenerate light-like points.

Appendix A. A property of light-like surfaces in L3

It can be easily checked that an embedded surface S(⊂ L3) is light-like if and
only if the restriction of the canonical Lorentzian metric on L3 to the tangent space
TpS of each p ∈ S is positive semi-definite but not positive definite. The purpose
of this appendix is to prove the following:

Theorem A.1. If an entire C2-differentiable graph of ψ : R2 → R gives a light-like
surface in L3, then ψ − ψ(0, 0) is a linear function.

Proof. We set F (x, y) = (x, y, ψ(x, y)). Since F is a light-like surface, ψ2
x + ψ2

y = 1

holds on R2. Differentiating this with respect to x and y, we get two equations.
Since F is light-like, (ψx, ψy) �= (0, 0). By thinking ψx, ψy are unknown variables
of these two equations, the determinant ψxxψyy − ψ2

xy vanishes identically. So the

Gaussian curvature of F with respect to the Euclidean metric of R3 vanishes iden-
tically. Then, by the Hartman-Nirenberg cylinder theorem, F must be a cylinder.
(The proof of the cylinder theorem in [13] needs only C2-differentiability.) That is,
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there exist a non-zero vector a, a plane Π which is not parallel to a, and a regular
curve γ : R → Π such that F (u, v) := γ(u) + va gives a new parametrization of F .
If F is not a plane, there exists u0 ∈ R such that γ′(u0) and γ′′(u0) are linearly
independent. Then the point (u, v) = (u0, 0) is not an umbilical point of F . Since
the asymptotic direction is uniquely determined at each non-umbilical point on a
flat surface, the line theorem (cf. Fact 1.3) yields that a is a light-like vector. By
a suitable homothetic transformation and an isometric motion in L3, we may set
a := (1, 0, 1). Then it holds that

(A.1) 0 = γ′ · a = x′ − t′.

Since γ′ · γ′ = 0, we have y′ = 0. So, without loss of generality, we may assume
that y(u) = 0. Differentiating (A.1), we have x′′ − t′′ = 0, contradicting the fact
that γ′(u0) and γ′′(u0) are linearly independent. Thus F is a plane. �
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