IMPROVEMENT OF THE BERNSTEIN-TYPE THEOREM FOR SPACE-LIKE ZERO MEAN CURVATURE GRAPHS IN LORENTZ-MINKOWSKI SPACE USING FLUID MECHANICAL DUALITY

S. AKAMINE, M. UMEHARA, AND K. YAMADA

(Communicated by Jiaping Wang)

ABSTRACT. Calabi's Bernstein-type theorem asserts that a zero mean curvature entire graph in Lorentz-Minkowski space \mathbf{L}^3 which admits only space-like points is a space-like plane. Using the fluid mechanical duality between minimal surfaces in Euclidean 3-space \mathbf{E}^3 and maximal surfaces in Lorentz-Minkowski space \mathbf{L}^3 , we give an improvement of this Bernstein-type theorem. More precisely, we show that a zero mean curvature entire graph in \mathbf{L}^3 which does not admit time-like points (namely, a graph consists of only space-like and light-like points) is a plane.

1. Introduction

Consider a 2-dimensional barotropic steady flow on a simply connected domain D in the xy-plane \mathbf{R}^2 whose velocity vector field is $\mathbf{v} = (u, v)$, with density ρ and pressure p. We assume there are no external forces. Then

- the flow is a foliation of the integral curve of v,
- ρ is a scalar field on D,
- $p: \mathbf{R} \to \mathbf{R}$ is a monotone function of ρ ,
- $c := \sqrt{p'(\rho)}$ $(p' := dp/d\rho)$ is called the local speed of sound.
- The following Euler's equation of motion holds:

$$(1.1) dp + \frac{\rho}{2} d(|\boldsymbol{v}|^2) = 0.$$

We also assume the flow is *irrotational*; that is,

$$(1.2) 0 = \operatorname{rot}(\boldsymbol{v}) = v_x - u_y,$$

Received by the editors December 18, 2018, and, in revised form, June 25, 2019, and October 5, 2019.

2010 Mathematics Subject Classification. Primary 53A10; Secondary 35M10.

Key words and phrases. Zero mean curvature, Lorentz-Minkowski space, Bernstein-type theorem, fluid mechanics, Chaplygin gas flow.

The first author was supported in part by Grant-in-Aid for Young Scientists No. 19K14527 and for Scientific Research on Innovative Areas No. 17H06466.

The second author was supported in part by Grant-in-Aid for Scientific Research (A) No. 26247005.

The third author was supported in part by Grant-in-Aid for Scientific Research (B) No. 17H02839 from Japan Society for the Promotion of Science.

All three authors were supported by JSPS/FWF Bilateral Joint Project I3809-N32 "Geometric Shape Generation".

where $v_x := \partial v/\partial x$, $u_y := \partial u/\partial y$. Here, 'the equation of continuity' is equivalent to the fact that

$$(1.3) 0 = \operatorname{div}(\rho \mathbf{v}) = (\rho u)_x + (\rho v)_y.$$

By (1.2), there exists a function $\Phi \colon D \to \mathbf{R}$, called the *potential* of the flow, such that $\nabla \Phi = \mathbf{v}$, where $\nabla \Phi := (\Phi_x, \Phi_y)$. Since p is a function of ρ , the fact $c^2 = p'(\rho)$ and (1.1) yield that

(1.4)
$$\rho_x = -\frac{\rho(uu_x + vv_x)}{c^2}, \quad \rho_y = -\frac{\rho(uu_y + vv_y)}{c^2}.$$

By (1.3), one can easily check that

(1.5)
$$0 = (c^2 - \Phi_x^2)\Phi_{xx} - 2\Phi_x\Phi_y\Phi_{xy} + (c^2 - \Phi_y^2)\Phi_{yy}.$$

On the other hand, by (1.3), there exists a function $\Psi: D \to \mathbf{R}$, called the *stream* function of the flow, such that

(1.6)
$$\Psi_x = -\rho v, \qquad \Psi_y = \rho u.$$

If we set $\xi := \rho u$ and $\eta := \rho v$, (1.4) can be written as

$$(\rho^2 c^2 - \xi^2 - \eta^2)(\rho_x, \rho_y) = -\rho(\xi \xi_x + \eta \eta_x, \xi \xi_y + \eta \eta_y).$$

Since

$$0 = v_x - u_y = \frac{\eta_x}{\rho} - \frac{\xi_y}{\rho} - \frac{\eta \rho_x}{\rho^2} + \frac{\xi \rho_y}{\rho^2},$$

the identity $0 = \rho(\xi^2 + \eta^2 - \rho^2 c^2)(v_x - u_y)$ yields that

$$(1.7) 0 = (\rho^2 c^2 - \Psi_y^2) \Psi_{xx} + 2\Psi_x \Psi_y \Psi_{xy} + (\rho^2 c^2 - \Psi_x^2) \Psi_{yy}.$$

A flow satisfying

$$\rho c = 1$$

is called a *Chaplygin gas flow* (see [4, p. 24] and also [11, Section 4]). For a given stream function $\Psi \colon D \to \mathbf{R}$ of the Chaplygin gas flow, we set

$$(1.9) B_{\Psi} := 1 - \Psi_x^2 - \Psi_y^2.$$

Let D be a domain in the uv-plane \mathbb{R}^2 . Let $f: D \to \mathbb{L}^3$ be an immersion into the Lorentz-Minkowski 3-space \mathbb{L}^3 of signature (++-). We set

$$P := \begin{pmatrix} f_u \cdot f_u & f_u \cdot f_v \\ f_v \cdot f_u & f_v \cdot f_v \end{pmatrix}$$

and

$$B_f := \det(P),$$

where \cdot denotes the canonical Lorentzian inner product of L^3 and $\det(P)$ denotes the determinant of the 2×2 matrix P. A point $p \in U$ where $B_f(p) > 0$ (resp., $B_f(p) < 0$, $B_f(p) = 0$) is said to be *space-like* (resp., *time-like*, *light-like*). We set

$$Q := \begin{pmatrix} f_{uu} \cdot \tilde{\nu} & f_{uv} \cdot \tilde{\nu} \\ f_{vu} \cdot \tilde{\nu} & f_{vv} \cdot \tilde{\nu} \end{pmatrix},$$

where $\tilde{\nu} := f_u \times_L f_v$ and \times_L is the canonical Lorentzian vector product of L^3 . Consider the matrix $W := \tilde{P}Q$ and set

$$A_f := \operatorname{trace}(W),$$

where \tilde{P} is the cofactor matrix of P. We call f a zero mean curvature surface if A_f vanishes identically. In this paper, for the sake of simplicity, we abbreviate 'zero mean curvature' by 'ZMC'. A ZMC-surface consisting only of space-like points is called a maximal surface. On the other hand, a surface in L^3 consisting only of light-like points is called a light-like surface. It is known that the identity $B_f = 0$ implies that $A_f = 0$ (see [21, Proposition 2.1]). In particular, any light-like surfaces are ZMC-surfaces in our sense. Moreover, at a point where $B_f \neq 0$, the mean curvature function H of f is well-defined, and $A_f = 0$ is equivalent to the condition that H = 0.

We now assume that f is written in the form $f(x,y)=(x,y,\Psi(x,y))$. Then it can be easily checked that $B_f=B_\Psi$ (cf. (1.9)) and

$$A_f(x,y) = (1 - \Psi_y^2)\Psi_{xx} + 2\Psi_x\Psi_y\Psi_{xy} + (1 - \Psi_x^2)\Psi_{yy}.$$

Under the condition (1.8), the equation (1.7) for the stream function Ψ reduces to

$$(1.10) (1 - \Psi_y^2)\Psi_{xx} + 2\Psi_x\Psi_y\Psi_{xy} + (1 - \Psi_x^2)\Psi_{yy} = 0,$$

which implies that A_f vanishes identically. So we call this the ZMC-equation in \mathbf{L}^3 . If $\rho c=1$, then we have $1/\rho^2=c^2=dp/d\rho$; that is, $dp=d\rho/\rho^2$ is obtained. Substituting this into (1.1), we get $d(|\mathbf{v}|^2-1/\rho^2)=0$, and so there exists a constant μ such that

(1.11)
$$|\mathbf{v}|^2 + \mu = \frac{1}{\rho^2} (=c^2).$$

By (1.6), we can rewrite this as

$$(1.12) B_{\Psi} = \mu \rho^2.$$

By (1.11) and (1.12), the sign change of B_{Ψ} corresponds to the type change of the Chaplygin gas flow from sub-sonic ($|\mathbf{v}| < c$) to super-sonic ($|\mathbf{v}| > c$); that is, the sub-sonic part satisfies $B_{\Psi} > 0$. If $\mu = 0$, then B_{Ψ} vanishes identically, and the graph of Ψ gives a light-like surface. Such surfaces are discussed in the appendix, and we now consider the case $\mu \neq 0$. Since B_{Ψ} and μ have the same sign (cf. (1.12)), we can write

(1.13)
$$\rho = \frac{1}{\sqrt{|\boldsymbol{v}|^2 + \mu}} = \sqrt{\frac{1 - \Psi_x^2 - \Psi_y^2}{\mu}}.$$

By (1.11) and the fact that $|\boldsymbol{v}|^2 = \Phi_x^2 + \Phi_y^2$, (1.5) can be written as

$$(1.14) \qquad (\mu + \Phi_y^2)\Phi_{xx} - 2\Phi_x\Phi_y\Phi_{xy} + (\mu + \Phi_x^2)\Phi_{yy} = 0.$$

We set

(1.15)
$$\varphi(x,y) := \tilde{\mu}\Phi(\tilde{\mu}x,\tilde{\mu}y) \qquad (\tilde{\mu} := 1/\sqrt[4]{|\mu|}).$$

If $\mu > 0$, then (1.14) reduces to

$$(1.16) (1+\varphi_y^2)\varphi_{xx} - 2\varphi_x\varphi_y\varphi_{xy} + (1+\varphi_x^2)\varphi_{yy} = 0,$$

which is known as the condition that the graph of $\varphi(x,y)$ gives a minimal surface in the Euclidean 3-space E^3 . On the other hand, if $\mu < 0$, then (1.14) reduces to

$$(1.17) (1 - \varphi_y^2)\varphi_{xx} + 2\varphi_x\varphi_y\varphi_{xy} + (1 - \varphi_x^2)\varphi_{yy} = 0,$$

which is the ZMC-equation (cf. (1.10)). It can be easily checked that the graph of φ is a time-like ZMC-surface in L^3 . In both of the two cases, it can be easily checked that $(\epsilon := \operatorname{sign}(\mu) \in \{1, -1\})$

$$\begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \frac{1}{\sqrt{\varphi_x^2 + \varphi_y^2 + \epsilon}} \begin{pmatrix} -\varphi_y \\ \varphi_x \end{pmatrix}$$

holds, where $\psi := \Psi(\tilde{\mu}x, \tilde{\mu}y)/\tilde{\mu}$. Note that Ψ satisfies (1.10) if and only if ψ satisfies (1.10). Moreover, one can easily check that

$$(\hat{\rho} :=) \frac{1}{\sqrt{\varphi_x^2 + \varphi_y^2 + \epsilon}} = \sqrt{\epsilon (1 - \psi_x^2 - \psi_y^2)}$$

and

$$\begin{pmatrix} \varphi_x \\ \varphi_y \end{pmatrix} = \frac{1}{\sqrt{\epsilon(1 - \psi_x^2 - \psi_y^2)}} \begin{pmatrix} \psi_y \\ -\psi_x \end{pmatrix}.$$

This means that $\varphi \longleftrightarrow \psi$ corresponds to the duality between potentials and stream functions of Chaplygin gas flows such that

- $\mu = \pm 1 (= \epsilon)$,
- the density $\hat{\rho}$ is given as (1.18), and
- $p = p_0 1/\hat{\rho}$ for some constant p_0 .

When $\epsilon = 1$ (resp., $\epsilon = -1$), this gives a correspondence between graphs of minimal surfaces $(x,y) \mapsto \varphi(x,y)$ in \mathbf{E}^3 and graphs of maximal surfaces $(x,y) \mapsto \psi(x,y)$ in \mathbf{L}^3 (resp., an involution on the set of graphs of time-like ZMC-surfaces in \mathbf{L}^3) which we call the *fluid mechanical duality*.

A part of the above dualities is suggested in the classical book [4]. Calabi [5] also recognized this duality for $\mu > 0$ and pointed out the following:

Fact 1.1 (Calabi's Bernstein-type theorem). Suppose that the graph of a function $\psi \colon \mathbf{R}^2 \to \mathbf{R}$ gives a maximal surface (that is, a surface consisting only of space-like points whose mean curvature function vanishes identically). Then $\psi - \psi(0,0)$ is linear.

This is an analogue of the classical Bernstein theorem for minimal surfaces in E^3 . Moreover, Calabi [5] obtained the same conclusion for entire space-like ZMC-graphs in L^{n+1} ($n \le 4$), and Cheng and Yau [6] extended this result for complete maximal hypersurfaces in L^{n+1} for $n \ge 5$. The assumption that the graph consists only of space-like points is crucial. Entire ZMC-graphs which are not planar actually exist. Typical such examples are of the form

$$\psi_0(x,y) := y + g(x),$$

where $g: \mathbf{R} \to \mathbf{R}$ is any C^{∞} -function of one variable. A point $p = (x_0, y_0) \in \mathbf{R}^2$ is a light-like point of ψ_0 if and only if $g'(x_0) = 0$. Moreover, if the graph of ψ_0 does not contain any light-like points, the potential function φ_0 corresponding to ψ_0 is given by

$$\varphi_0(x,y) = \pm \left(-y + \int_0^x \frac{du}{g'(u)}\right)$$

up to a constant, where the sign " \pm " coincides with that of g'. On the other hand, Osamu Kobayashi [18] pointed out the existence of entire graphs of ZMC-surfaces

with space-like points, light-like points, and time-like points all appearing. Such a surface is called of *mixed type*. Recently, many such examples were constructed in [9].

By definition, any entire ZMC-graph of mixed type has at least one light-like point. So we give the following definition.

Definition 1.2. A light-like point p of the function ψ (i.e., $B_{\psi}(p) = 0$) is said to be non-degenerate (resp., degenerate) if ∇B_{ψ} does not vanish (resp., vanishes) at p.

At each non-degenerate light-like point, the graph of ψ changes its causal type from space-like to time-like. This case is now well understood. In fact, under the assumption that the surface is real analytic, it can be reconstructed from a real analytic null regular curve in L^3 (cf. Gu [12] and also [11,16,17]).

On the other hand, there are several examples of ZMC-surfaces with degenerate light-like points (cf. [1, 2, 10, 14]). Moreover, a local general existence theorem for maximal surfaces with degenerate light-like points is given in [21]. For such degenerate light-like points, we need a new approach to analyze the behavior of ψ and φ . The following fact was proved by Klyachin [17] (see also [21]).

Fact 1.3 (The line theorem for ZMC-surfaces). Let D be a domain of \mathbb{R}^2 and let $F \colon D \to \mathbb{L}^3$ be a C^3 -differentiable ZMC-immersion such that $o \in D$ is a degenerate light-like point. Then, there exists a light-like line segment $\hat{\sigma} (\subset \mathbb{L}^3)$ passing through F(o) of \mathbb{L}^3 such that F(o) does not coincide with one of the two end points of $\hat{\sigma}$ and $F(\Sigma)$ contains $\hat{\sigma}$, where Σ is the set of degenerate light-like points of F.

Recently, Fact 1.3 was generalized to a much wider class of surfaces, including constant mean curvature surfaces in L^3 ; see [21, 22]. (In [21], the general local existence theorem of surfaces which changes their causal types along degenerate light-like lines was also shown.) The asymptotic behavior of ψ along the line l consisting of degenerate light-like points is discussed in [21].

The purpose of this paper is to prove the following assertion:

Theorem A. An entire C^3 -differentiable ZMC-graph which is not a plane admits a non-degenerate light-like point if its space-like part is non-empty.

This assertion is proved in Section 2 using the fluid mechanical duality and the half-space theorem for minimal surfaces in \boldsymbol{E}^3 given by Hoffman-Meeks [15]. It should be remarked that the half-space theorem does not hold for time-like ZMC-surfaces. In fact, the graph of $\varphi(x,y) := y + \log(\tan x)$ ($x \in (0,\pi/2)$) gives a properly embedded time-like ZMC-surface lying between two parallel vertical planes. In Section 2, we give further examples and provide a few questions related to Theorem A. As an application, we give the following improvement of Calabi's Bernstein-type theorem:

Corollary B. An entire C^3 -differentiable ZMC-graph which does not admit any time-like points is a plane.

In fact, if the ZMC-graph admits a space-like point, then the assertion immediately follows from Theorem A. So it remains to show the case that the graph consists only of light-like points. However, such a graph must be a plane, as shown in the appendix (see Theorem A.1).

2. Proof of Theorem A

In this section, we prove Theorem A in the introduction. We let $\psi \colon \mathbf{R}^2 \to \mathbf{R}$ be a C^3 -function satisfying the ZMC-equation (1.10). We assume ψ admits a spacelike point $q_0 \in \mathbf{R}^2$ but admits no non-degenerate light-like points. By Calabi's Bernstein-type theorem (cf. Fact 1.1), ψ has at least one degenerate light-like point. We set

$$F_{\psi}(x,y) := (x, y, \psi(x,y)),$$

which gives the ZMC-graph of ψ . We denote by ds^2 the positive semi-definite metric which is the pull-back of the canonical Lorentzian metric of \mathbf{L}^3 by F_{ψ} . The line theorem (cf. Fact 1.3) yields that the image of F_{ψ} contains a light-like line segment $\hat{\sigma}$. Then the projection of $\hat{\sigma}$ is a line segment σ on the xy-plane \mathbf{R}^2 . Then σ lies on a line l on \mathbf{R}^2 . If $\sigma \neq l$, then there exists an end point p of σ on l. Since p is the limit point of degenerate light-like points, p itself is also a degenerate light-like point. By applying the line theorem again, there exists a light-like line segment $\hat{\sigma}'$ containing $F_{\psi}(p)$ as its interior point. We denote by σ' the projection of $\hat{\sigma}'$ to the xy-plane. Since the null direction at p with respect to the metric ds^2 is uniquely determined, σ' also lies on the line l. Thus, the entire graph contains a whole light-like line containing $\hat{\sigma}$. In particular, degenerate light-like points on the graph consist of a family of straight lines in \mathbf{R}^2 .

Let l and l' be two such straight lines. Then l' never meets l. In fact, if not, then there is a unique intersection point $q \in l \cap l'$. By Fact 1.3, two lines l, l' can be lifted to two light-like lines \tilde{l} and \tilde{l}' in L^3 passing through $F_{\psi}(q)$. The tangential directions of \tilde{l} and \tilde{l}' are linearly independent light-like vectors at $F_{\psi}(q)$. Then by [19, Lemma 27 in Section 5], q is a time-like point, a contradiction.

Thus, the set of degenerate light-like points of F_{ψ} consists of a family of parallel lines in the xy-plane. Without loss of generality, we may assume that these lines are vertical and one of them is the y-axis. Then we can find a domain $(\Delta \in (0, \infty])$

$$\Omega := \{(x, y); 0 < x < 2\Delta\}$$

such that $q_0 \in \Omega$ and F_{ψ} has no light-like points on Ω and both of the lines $l = \{x = 0\}$ and $l' = \{x = 2\Delta\}$ consist of light-like points unless $\Delta = \infty$. Since there are no light-like points on Ω , the potential function $\varphi \colon \Omega \to \mathbf{R}$ is induced by ψ as the fluid mechanical dual. The graph of φ is a minimal surface in \mathbf{E}^3 . In particular, φ is real analytic. If we succeed in proving that the map $F_{\varphi}(x,y) := (x,y,\varphi(x,y))$ is proper, then Theorem A follows. In fact, by the half-space theorem given in [15] the image $F_{\varphi}(\Omega)$ lies in a plane in \mathbf{E}^3 . Then the map $F_{\psi}(x,y)$ also lies in a plane Π in \mathbf{L}^3 on Ω . Since $F_{\psi}(l)$ is light-like, the plane Π must be light-like, contradicting the fact that $q_0 \in \Omega$.

To prove the properness of F_{φ} , it is sufficient to show the following:

Lemma 2.1. Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of points in Ω accumulating to a point on l or l'. Then $\{|\varphi(p_n)|\}_{n=1}^{\infty}$ diverges.

Proof. By switching the roles of l and l' if necessary, it is sufficient to consider the case that $\{p_n\}_{n=1}^{\infty}$ accumulates to a point on l. Taking a subsequence and using a suitable translation of the xy-plane, we may assume that $\{p_n\}_{n=1}^{\infty}$ converges to the origin $(0,0) \in l$ and $p_n = (x_n, y_n)$ (n = 1, 2, 3, ...) satisfies the following properties:

• there exists $\epsilon > 0$ such that $|y_n| < \epsilon$ for each $n = 1, 2, \ldots$, and

• there exists $(\delta,0) \in \Omega$ $(\delta > 0)$ such that

$$\delta > x_1 > x_2 > \dots > x_n > x_{n+1} > \dots$$

Since l consists of degenerate light-like points, there exists a neighborhood U of (0,0) such that (see [10] or [21, (6.1)])

$$\psi(x,y) = y + x^2 h(x,y) \qquad ((x,y) \in U),$$

where h(x, y) is a C^1 -differentiable function defined on U (see [21, Appendix A]). Taking ϵ, δ to be sufficiently small, we may assume that

$$V := \{(x, y) \in \Omega : |x| \le \delta, |y| < \epsilon\} \subset U.$$

Since $B_{\psi} > 0$, the potential function φ associated to ψ satisfies (cf. (1.18))

$$\varphi_x = \frac{\psi_y}{\rho}, \qquad \rho = \sqrt{1 - \psi_x^2 - \psi_y^2}.$$

Since

$$1 - \psi_x^2 - \psi_y^2 = -x^2 \left((2h + xh_x)^2 + 2h_y + x^2 h_y^2 \right)$$

is non-negative on the closure \overline{V} of V, we can write

$$(2.1) \sqrt{\rho} = |x|k(x,y),$$

where k(x,y) is a non-negative continuous function defined on \overline{V} such that k is positive-valued on V. We set $p_0 := (\delta,0)$ and consider the path $\gamma_n \colon [0,1] \to V$ defined by $\gamma_n(s) := (\delta, 2sy_n)$ if $0 \le s \le 1/2$ and

$$\gamma_n(s) := (2(x_n - \delta)s - x_n + 2\delta, y_n)$$

if $1/2 \le s \le 1$, which starts at p_0 and terminates at p_n . This curve γ_n is the union of the vertical subarc $\gamma_{n,1}$ and the horizontal subarc $\gamma_{n,2}$. So we can write

$$\varphi(p_n) - \varphi(p_0) = \int_{\gamma_n} \varphi_x dx + \varphi_y dy$$
$$= \int_{\gamma_{n,2}} \varphi_x dx + \int_{\gamma_{n,1}} \varphi_y dy.$$

Since $[-\epsilon, \epsilon] \ni y \mapsto \varphi_y(\delta, y) \in \mathbf{R}$ is a continuous function, we have that

$$\left| \int_{\gamma_{n,1}} \varphi_y dy \right| \le \int_{\gamma_{n,1}} \left| \varphi_y(\delta, 2ty_n) \right| |dy|$$

$$\le \epsilon \max_{|y| < \epsilon} \left| \varphi_y(\delta, y) \right| < \infty.$$

So to prove the lemma, it is sufficient to show that $\int_{\gamma_{n,2}} \varphi_x dx$ diverges as $n \to \infty$. We set

$$m := \max_{x \in [0,\delta], |y| \le \epsilon} k(x,y) \ (\ge 0),$$

where k is the continuous function given in (2.1). On the other hand, we can take a constant m'(>0) such that

$$\psi_y = 1 + x^2 h_y(x, y) > m'$$
 $(x \in [0, \delta], |y| \le \epsilon),$

since ϵ, δ can be chosen to be sufficiently small. Since $\varphi_x = \psi_y/\rho$, we have

$$\left| \int_{\gamma_{n,2}} \varphi_x dx \right| = \int_{x_n}^{\delta} \frac{1 + x^2 h_y(x, y)}{x^2 k^2(x, y)} dx$$
$$> \frac{m'}{m^2} \int_{x_n}^{\delta} \frac{dx}{x^2} = \frac{m'}{m^2} \left(\frac{1}{x_n} - \frac{1}{\delta} \right) \to \infty,$$

proving the assertion.

Remark 2.2. In the above proof, we showed that $F_{\psi}(\Omega)$ lies in a plane using the fluid mechanical duality. We remark here that this can be proved by a different method. In fact, ψ satisfies the assumption of Ecker [7, Theorem G] or is a PS-graph on the convex domain Ω in the sense of Fernandez and Lopez [8]. Thus, we can conclude that $\psi(\Omega)$ lies in a light-like plane.

FIGURE 1. The ZMC-surfaces in Example 2.3 (left) and in Example 2.4 (right), where the white lines indicate light-like points.

In [1], the first author constructed several ZMC-surfaces foliated by circles and at most countably many straight lines. At the end of this paper, we pick up two important examples of them which contain degenerate light-like points. (In [1], these two examples are not precisely indicated. Here we show their explicit parametrization and embeddedness.)

Example 2.3 ([1, Figure 5]). We set

$$F(u,v) := (u + a\cos v, a\sin v, u),$$

where a > 0 and $(u, v) \in \mathbf{R} \times [0, 2\pi)$. Then the image of F contains two parallel degenerate light-like lines which correspond to the special values $\theta = \pm \pi/2$ (see Figure 1, left). The image of F can be characterized by the implicit function $(x - t)^2 + y^2 = a^2$. This ZMC-surface is properly embedded and is not simply connected.

Example 2.4 ([1, Figure 2]). We set

$$F(r,\theta) := \left(r + \frac{1}{2a}\log\left(\frac{ar-1}{ar+1}\right) + r\cos\theta, r\sin\theta, \frac{1}{2a}\log\left(\frac{ar-1}{ar+1}\right)\right),$$

where a > 0 and $\theta \in [0, 2\pi)$. This map is defined for r > 1/a or r < -1/a, and the closure of the image of F = (x, y, t) can be expressed as

$$(\Psi :=) a \sinh(at) ((x-t)^2 + y^2) + 2(x-t) \cosh(at) = 0.$$

It can be checked that (Ψ_x, Ψ_y, Ψ_t) never vanishes along $\Psi = 0$. So the closure of F gives a properly embedded ZMC-surface in L^3 (see Figure 1, right).

Regarding our main result, we state a few open problems:

Question 1. Does a properly embedded ZMC-surface which consists only of space-like or light-like points coincide with a plane?

If this question is affirmative, then Corollary B follows as a corollary. Suppose that we can find such a non-planar ZMC-surface S; it must contain a light-like line. In fact, if S consists only of space-like points, then S is complete, and such a surface must be a plane (see [20, Remark 1.2]). So S has a light-like point p. If p is non-degenerate, then S has a time-like point near p, so p must be degenerate. By the line theorem (Fact 1.3), S must contain a light-like line consisting of degenerate light-like points.

Question 2. Are there entire ZMC-graphs of mixed type containing degenerate light-like points?

This question needs to consider ZMC-graphs of mixed type. In fact, if we choose a function g(x) satisfying g'(0) = 0 as in (1.19), then the y-axis consists of the degenerate light-like points. If we weaken 'entire ZMC-graphs' to 'properly embedded ZMC-surfaces of mixed type' the answer is 'yes'. In fact, Example 2.4 gives a properly embedded ZMC-surface of mixed type which contains a degenerate light-like line L. Although the space-like points never accumulate to L in the case of this example, one can show the existence of a function $\psi: U \to \mathbf{R}$ defined on a domain U in \mathbf{R}^2 containing the y-axis such that

- the y-axis corresponds to a degenerate light-like line,
- ψ is of mixed type or consists only of space-like points except along the y-axis.

See [3] for details. Also, the following question arises:

Question 3. Are there entire ZMC-graphs of mixed type which are not obtained as analytic extensions of Kobayashi surfaces given as in [9]?

In fact, all known examples of entire ZMC-graphs of mixed type are obtained as analytic extensions of Kobayashi surfaces (cf. [9]), and they admit only non-degenerate light-like points.

Appendix A. A property of light-like surfaces in $oldsymbol{L}^3$

It can be easily checked that an embedded surface $S(\subset L^3)$ is light-like if and only if the restriction of the canonical Lorentzian metric on L^3 to the tangent space T_pS of each $p \in S$ is positive semi-definite but not positive definite. The purpose of this appendix is to prove the following:

Theorem A.1. If an entire C^2 -differentiable graph of $\psi \colon \mathbf{R}^2 \to \mathbf{R}$ gives a light-like surface in \mathbf{L}^3 , then $\psi - \psi(0,0)$ is a linear function.

Proof. We set $F(x,y)=(x,y,\psi(x,y))$. Since F is a light-like surface, $\psi_x^2+\psi_y^2=1$ holds on \mathbf{R}^2 . Differentiating this with respect to x and y, we get two equations. Since F is light-like, $(\psi_x,\psi_y)\neq(0,0)$. By thinking ψ_x , ψ_y are unknown variables of these two equations, the determinant $\psi_{xx}\psi_{yy}-\psi_{xy}^2$ vanishes identically. So the Gaussian curvature of F with respect to the Euclidean metric of \mathbf{R}^3 vanishes identically. Then, by the Hartman-Nirenberg cylinder theorem, F must be a cylinder. (The proof of the cylinder theorem in [13] needs only C^2 -differentiability.) That is,

there exist a non-zero vector \mathbf{a} , a plane Π which is not parallel to \mathbf{a} , and a regular curve $\gamma \colon \mathbf{R} \to \Pi$ such that $F(u,v) := \gamma(u) + v\mathbf{a}$ gives a new parametrization of F. If F is not a plane, there exists $u_0 \in \mathbf{R}$ such that $\gamma'(u_0)$ and $\gamma''(u_0)$ are linearly independent. Then the point $(u,v) = (u_0,0)$ is not an umbilical point of F. Since the asymptotic direction is uniquely determined at each non-umbilical point on a flat surface, the line theorem (cf. Fact 1.3) yields that \mathbf{a} is a light-like vector. By a suitable homothetic transformation and an isometric motion in \mathbf{L}^3 , we may set $\mathbf{a} := (1,0,1)$. Then it holds that

$$(A.1) 0 = \gamma' \cdot \boldsymbol{a} = x' - t'.$$

Since $\gamma' \cdot \gamma' = 0$, we have y' = 0. So, without loss of generality, we may assume that y(u) = 0. Differentiating (A.1), we have x'' - t'' = 0, contradicting the fact that $\gamma'(u_0)$ and $\gamma''(u_0)$ are linearly independent. Thus F is a plane.

Acknowledgment

The authors would like to express their gratitude to Atsufumi Honda for fruitful discussions.

References

- Shintaro Akamine, Causal characters of zero mean curvature surfaces of Riemann type in the Lorentz-Minkowski 3-space, Kyushu J. Math. 71 (2017), no. 2, 211–249, DOI 10.2206/kyushujm.71.211. MR3727218
- [2] Shintaro Akamine and Rahul Kumar Singh, Wick rotations of solutions to the minimal surface equation, the zero mean curvature equation and the Born-Infeld equation, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 3, Art. 35, 18, DOI 10.1007/s12044-019-0479-7. MR3941157
- [3] Shintaro Akamine, Masaaki Umehara, and Kotaro Yamada, Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space, Proc. Japan Acad. Ser. A Math. Sci. 95 (2019), no. 9, 97–102, DOI 10.3792/pjaa.95.97. MR4026357
- [4] Lipman Bers, Mathematical aspects of subsonic and transonic gas dynamics, Surveys in Applied Mathematics, Vol. 3, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR0096477
- [5] Eugenio Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 223–230. MR0264210
- [6] Shiu Yuen Cheng and Shing Tung Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), no. 3, 407–419, DOI 10.2307/1970963. MR431061
- [7] Klaus Ecker, Area maximizing hypersurfaces in Minkowski space having an isolated singularity, Manuscripta Math. 56 (1986), no. 4, 375–397, DOI 10.1007/BF01168501. MR860729
- [8] Isabel Fernandez and Francisco J. Lopez, On the uniqueness of the helicoid and Enneper's surface in the Lorentz-Minkowski space \mathbb{R}^3_1 , Trans. Amer. Math. Soc. **363** (2011), no. 9, 4603–4650, DOI 10.1090/S0002-9947-2011-05133-0. MR2806686
- [9] Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada, Entire zero-mean curvature graphs of mixed type in Lorentz-Minkowski 3-space, Q. J. Math. 67 (2016), no. 4, 801–837. MR3609857
- [10] S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara, K. Yamada, and S.-D. Yang, Zero mean curvature surfaces in L³ containing a light-like line (English, with English and French summaries), C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 975-978, DOI 10.1016/j.crma.2012.10.024. MR2996778
- [11] S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada, and S.-D. Yang, Zero mean curvature surfaces in Lorentz-Minkowski 3-space and 2-dimensional fluid mechanics, Math. J. Okayama Univ. 57 (2015), 173–200. MR3289302

- [12] Chao Hao Gu, The extremal surfaces in the 3-dimensional Minkowski space, Acta Math. Sinica (N.S.) 1 (1985), no. 2, 173–180, DOI 10.1007/BF02560031. MR858565
- [13] Philip Hartman and Louis Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901–920, DOI 10.2307/2372995. MR126812
- [14] Kaname Hashimoto and Shin Kato, Bicomplex extensions of zero mean curvature surfaces in ${\bf R}^{2,1}$ and ${\bf R}^{2,2}$, J. Geom. Phys. 138 (2019), 223–240, DOI 10.1016/j.geomphys.2018.12.017. MR3905317
- [15] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373–377, DOI 10.1007/BF01231506. MR1062966
- [16] Young Wook Kim, Sung-Eun Koh, Heayong Shin, and Seong-Deog Yang, Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae, J. Korean Math. Soc. 48 (2011), no. 5, 1083–1100, DOI 10.4134/JKMS.2011.48.5.1083. MR2850077
- [17] V. A. Klyachin, Surfaces of zero mean curvature of mixed type in Minkowski space (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 2, 5–20, DOI 10.1070/IM2003v067n02ABEH000425; English transl., Izv. Math. 67 (2003), no. 2, 209–224. MR1972991
- [18] Osamu Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math. 6 (1983), no. 2, 297–309, DOI 10.3836/tjm/1270213872. MR732085
- [19] Barrett O'Neill, Semi-Riemannian geometry: With applications to relativity, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. MR719023
- [20] Masaaki Umehara and Kotaro Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006), no. 1, 13–40, DOI 10.14492/hokmj/1285766302. MR2225080
- [21] Masaaki Umehara and Kotaro Yamada, Surfaces with light-like points in Lorentz-Minkowski 3-space with applications, Lorentzian geometry and related topics, Springer Proc. Math. Stat., vol. 211, Springer, Cham, 2017, pp. 253–273. MR3777999
- [22] M. Umehara and K. Yamada, Hypersurfaces with light-like points in a Lorentzian manifold, J. Geom. Anal. 29 (2019), no. 4, 3405–3437, DOI 10.1007/s12220-018-00118-7. MR4015443

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

 $Email\ address: exttt{s-akamine@math.nagoya-u.ac.jp}$

DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO 152-8552, JAPAN

 $Email\ address{:}\ {\tt umehara@is.titech.ac.jp}$

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO 152-8551, JAPAN $Email\ address:$ kotaro@math.titech.ac.jp