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CONFORMAL AND CR MAPPINGS ON CARNOT GROUPS

MICHAEL G. COWLING, JI LI, ALESSANDRO OTTAZZI, AND QINGYAN WU

(Communicated by Jeremy Tyson)

Abstract. We consider a class of stratified groups with a CR structure and
a compatible control distance. For these Lie groups we show that the space of
conformal maps coincide with the space of CR and anti-CR diffeomorphisms.
Furthermore, we prove that on products of such groups, all CR and anti-CR
maps are product maps, up to a permutation isomorphism, and affine in each
component. As examples, we consider free groups on two generators, and show
that these admit very simple polynomial embeddings in CN that induce their
CR structure.

1. Introduction

In this article, we consider the interplay between metric and complex geometry
on some model manifolds. This is the first outcome of a larger project which aims
to develop a unified theory of conformal and CR structures on the one hand, and
to define explicit polynomial embeddings of certain CR manifolds into Cn on the
other. This kind of embedding is what permits the detailed analysis of the ∂b
operator carried out by Stein and his collaborators since the 1970s (see [6]). The
analogy between CR and conformal geometry is well documented in the case of CR
manifolds of hypersurface-type, see, e.g., [7,10–14,17]. The easiest and perhaps the
most studied example in this setting is that of the Heisenberg group, taken with
its sub-Riemannian structure. Here we will focus on those CR manifolds that are
stratified groups and that admit a control metric compatible with the CR structure
in a suitable sense.

The class of stratified groups that we consider have a particular algebraic struc-
ture, which we call tight. These are the indecomposable examples that mimic the
Heisenberg group, in the sense that the metric and algebraic structures are very
closely tied together. It turns out that the only tight stratified groups are either
Heisenberg groups or groups whose Lie algebras have two generators (Corollary 3.2).
Tight groups may be endowed with an abstract CR structure. We will show that
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the space of CR and anti-CR automorphisms coincides with the space of confor-
mal maps with respect to a compatible control metric (Theorem 3.3). Hence, we
consider the problem of realising our spaces as embedded manifolds. The fact that
these groups embed as CR submanifolds of Cn for appropriate n is a consequence
of [1]; see also [9]. We will find explicit embeddings in the cases of free Lie groups
with two generators and step at most 8 (Theorem 4.1). Further, we will show that,
on products of tight groups, all CR maps are product maps, up to a permutation
isomorphism, and are affine in each component, that is, the composition of a trans-
lation with a group automorphism (Theorem 5.5). In order to achieve this, we first
show that differentiable quasiconformal mappings on product stratified groups are
product mappings, up to an automorphic permutation (Theorem 5.1). The last
result is a minor variation of [19, Theorem 1.1].

Here is what follows. In Section 2, we establish the definitions and properties of
Carnot groups and conformal mappings that will be used throughout this paper. In
Section 3, we introduce CR structures on stratified groups and define a compatible
metric when the groups are tight. In this section we prove one of our main results,
Theorem 3.3, and we ask whether we can see these CR groups as boundaries of
domains in some C

n. This is equivalent to constructing explicit embeddings in
some Cn, which is in turn equivalent to solving a system of differential equations.
In Section 4 we find the explicit embeddings for the case of free nilpotent groups
with two generators up to step 8, by solving the differential equations of the pre-
vious section. Finally, in Section 5.5, we prove our result about product groups,
Theorem 5.5, which is a consequence of Theorem 3.3 and Corollary 5.3.

2. Preliminaries

In this section, we define stratified Lie algebras and Lie groups, and show how
to put sub-Riemannian structures on these. We also define the Pansu derivative
and consider quasiconformal mappings for these structures.

2.1. Stratified Lie algebras. A Lie algebra g is said to be stratified of step � if

g = g−1 ⊕ · · · ⊕ g−�,

where [g−j , g−1] = g−j−1 when 1 ≤ j ≤ �, while g−� �= {0} and g−�−1 = {0}; this
implies that g is nilpotent. We assume that dim(g) is at least 3 to avoid degenerate
cases.

We write πj for the canonical projection of g onto g−j , Z(g) for the centre of g,
and Aut(g) for the group of automorphisms of g. In particular, for each s ∈ R+,

the dilation δs ∈ Aut(g) is defined to be
∑�

j=1 s
jπj .

For a linear map of g, preserving all the subspaces g−j of the stratification is
equivalent to commuting with dilations, and to having a block-diagonal matrix
representation. We call such maps strata-preserving. We write Autδ(g) for the
subset of Aut(g) of strata-preserving automorphisms; these are determined by their
action on g−1. A stratified Lie algebra g is said to be totally nonabelian if g−1 ∩
Z(g) = {0}. If g is totally nonabelian, then g has a finest direct sum decomposition
(see [5, Theorem 2.3]):

g =
K⊕

k=1

gk,
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where the gk are nontrivial totally nonabelian stratified Lie algebras that commute
pairwise, with the additional property that, given any direct sum decomposition⊕L

l=1 g̃
l of g into ideals, the set {1, . . . ,K} may be partitioned into disjoint subsets

J1, . . . , JL such that

g̃l =
⊕
j∈Jl

gj ∀l ∈ {1, . . . , L}.

When j, k ∈ {1, . . . ,K}, we write j ∼ k if and only if there is a strata-preserving
isomorphism from gj to gk; then ∼ is an equivalence relation. For each equivalence
class [j] and each k ∈ [j], choose a stratified Lie algebra g[j] isomorphic to gj , and
a strata-preserving isomorphism Ik from g[i] to gk, whose inverse we write as I−k.

When σ lies in S∼
m, the group of permutations of {1, . . . ,m} that preserve the

equivalence classes of ∼, define Iσ ∈ Autδ(g) by first setting

Iσ(X) = Iσ(j)I−j(X)

for all X ∈ gj and all j ∈ {1, . . . ,m}, and then extending this definition to g by
linearity. It is well known and easy to check that the map σ 	→ Iσ embeds S∼

m in

Autδ(g). We denote the image by Perm(g).

2.2. Stratified Lie groups. Let G be a stratified Lie group of step �. This means
that G is connected and simply connected, and its Lie algebra g is stratified with �
layers. The identity of G is written e

Since G is nilpotent, connected, and simply connected, the exponential map exp
is a bijection from g to G, with inverse log. In particular, if {Uj : j = 1, . . . , n}
is a basis of g, we may write every point of G as exp(u1U1 + · · · + unUn), which
we denote by (u1, . . . , un) and call exponential coordinates of the first kind. We
also write δs for the automorphism of G given by exp ◦ δs ◦ log. The differential
T 	→ (T∗)e is a one-to-one correspondence between automorphisms of G and of g,
and T = exp ◦ (T∗)e ◦ log. We denote by Aut(G) the group of automorphisms of

G, and by Autδ(G) the subgroup of automorphisms that commute with dilations.
A stratified connected simply connected Lie group G is called totally nonabelian

or a direct product if its Lie algebra is totally nonabelian or a Lie algebra direct
sum. The finest direct product decomposition of the group is that associated to the
finest direct sum decomposition of the Lie algebra.

First, we state and prove a preliminary lemma.

Lemma 2.1. Suppose that G is a simply connected nilpotent Lie group, with an or-
thonormal basis {Uj : j = 1, . . . , n} for its Lie algebra. Let

∑∞
n=0 cnz

n be the power
series of the function z/(1− e−z) (extended to 0 by continuity), which converges in
the ball with centre 0 and radius 2π. Then the left-invariant vector field X corre-
sponding to X ∈ g, evaluated at exp(Y ) in G, is given in exponential coordinates
of the first kind by

XexpY =

〈( ∞∑
k=0

ck ad
k(Y )

)
X,Uj

〉
∂uj

,

where the sum terminates when k is sufficiently large as ad(Y ) is nilpotent.

Proof. The derivative of the exponential map exp at Y ∈ g is given by

1− exp(− ad(Y ))

ad(Y )
=

∞∑
k=0

(−1)k

(k + 1)!
adk(Y )
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(see, for example, [15, Theorem 2.14.3]), and the series terminates because G is
nilpotent. �

The coefficients cj may be determined inductively from the condition( ∞∑
k=0

(−1)k

(k + 1)!
zk

)( ∞∑
k=0

ckz
k

)
= 1,

and we find that

c0 = 1, c1 =
1

2
, c2 =

1

12
, c3 = 0, c4 =

−1

720
, . . . .

In a stratified group G, more can be said. We say that a function f on G is
homogeneous of degree d if f(δsx) = sdf(x), and a differential operator D on G is
homogeneous of degree e (which may be negative) if Df is homogeneous of degree
d + e whenever f is homogeneous of degree d. We write deg(f) and deg(D) for
these degrees.

If X ∈ g−k, then the associated vector field X is homogeneous of degree −k. If
we take a basis {Uj : j = 1, . . . , n} of g, where each Uj belongs to some g−d(j), and
use exponential coordinates of the first kind on G, that is, we write

(u1, . . . , un) := exp(u1U1 + . . . unUn),

then the coordinate function uj is homogeneous of degree d(j). A vector field
that is homogeneous of degree d is a linear combination of the left-invariant vector
fields U1, . . . , Un, with coefficients cj that are homogeneous functions, and d =
deg(cj) + deg(Uj).

2.3. The Pansu differential. We denote by Lp the left translation by p in G,
that is, Lpq = pq for all q ∈ G. The subbundle HG of the tangent bundle TG
given by HpG = (Lp)∗(g−1) is called the horizontal distribution. We write Ω for an
arbitrary nonempty connected open subset of G. The differential of a differentiable
map f : Ω → G is written f∗. We recall that a continuous map f : Ω → G is Pansu
differentiable at p ∈ Ω if the limit

lim
s→0+

δ−1
s ◦ L−1

f(p) ◦ f ◦ Lp ◦ δs(q)

converges, uniformly for q in compact subsets of G, to a strata-preserving homomor-
phism of G, written Dfp(q). If f is Pansu differentiable at p, then log ◦Dfp ◦ exp
is a Lie algebra homomorphism, written dfp, and

dfp(X) = lim
s→0+

log ◦ δ−1
s ◦ L−1

f(p) ◦ f ◦ Lp ◦ δt ◦ exp(X)

exists, uniformly for X in compact subsets of g. We call Dfp the Pansu derivative
and dfp the Pansu differential of f at p. By construction, both Dfp and dfp
commute with dilations, and so in particular, dfp is a strata-preserving Lie algebra
homomorphism.

Note that if T is a strata-preserving automorphism ofG, then its Pansu derivative
DT (p) coincides with T at every point, and its Pansu differential dT (p) coincides
with the Lie differential log ◦ T ◦ exp at every point. Thus our notation is a little
different from the standard Lie theory notation, but is not ambiguous.
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2.4. The sub-Riemannian distance. We fix a scalar product 〈·, ·〉 on g−1, and
we define a left-invariant Riemannian metric on the horizontal distribution by the
formula

〈V,W 〉p =
〈
(Lp−1)∗(V ), (Lp−1)∗(W )

〉
(2.1)

for all V,W ∈ HpG and all p ∈ G. This gives rise to a left-invariant sub-Riemannian
or Carnot–Carathéodory distance function � on G. To define this, we first say that
a smooth curve γ is horizontal if γ̇(t) ∈ Hγ(t)G for every t. Then we define the
distance �(p, q) between points p and q by

�(p, q) := inf

∫ 1

0

(
〈γ̇(t), γ̇(t)〉γ(t)

)1/2
dt,

where in the infimum we take all horizontal curves γ : [0, 1] → G such that γ(0) = p
and γ(1) = q. The distance function is homogeneous, symmetric, and left-invariant,
that is,

s−1 �(δsp, δsq) = �(p, q) = �(q, p) = �(rq, rp) ∀p, q, r ∈ G ∀s ∈ R
+;

in particular, �(p, q) = �(q−1p, e). The stratified group G, equipped with the
distance �, is known as a Carnot group.

2.5. Quasiconformal automorphisms and maps. We write S(V ) for the unit
sphere in a normed vector space V .

Suppose that λ ≥ 1. We say that T ∈ Autδ(g) is λ-quasiconformal if and only if

max {‖TX‖ : X ∈ S(g−1)} ≤ λmin {‖TX‖ : X ∈ S(g−1)} .

Of course, every T ∈ Autδ(g) is λ-quasiconformal for sufficiently large λ.
Suppose that s ∈ R

+. In a Carnot group, the distortion H(f, p, s) of a map
f : Ω → G at a point p ∈ Ω and at scale s ∈ R+ is defined by

H(f, p, s) =
sup {�(f(x), f(p)) : x ∈ Ω, �(x, p) ≤ s}
inf {�(f(x), f(p)) : x ∈ Ω, �(x, p) ≥ s} .

The map f is λ-quasiconformal in Ω if

lim sup
s→0+

H(f, p, s) ≤ λ ∀p ∈ Ω,

and f is quasiconformal if it is λ-quasiconformal for some λ ∈ R+.
If the map f is C1, then it is λ-quasiconformal in Ω if and only if its Pansu

differential dfp is λ-quasiconformal at all p ∈ Ω. It is known that 1-quasiconformal
maps on Carnot groups and on some sub-Riemannian manifolds are smooth (see
[2, 3]); such maps are also known as conformal maps.

3. CR stratified groups and Carnot groups

In this section, we consider CR structures on stratified groups and Carnot groups;
we consider an example with an illustrious history, and construct many new exam-
ples of Carnot groups as boundaries of domains.
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3.1. CR stratified groups. Let G be a stratified group such that dim g−1 = 2m
and let n be the integer such that 2m+ n = dimG. We define an almost complex
structure on g−1 to be a linear isomorphism J : g−1 → g−1 such that J2 = − Id
and

(3.1) [X,Y ] = [JX, JY ] and [X, JY ] = −[JX, Y ]

for all X,Y ∈ g−1. A stratified group G equipped with such a mapping J is said
to be a CR stratified group of type (m,n). Let L = span{X − iJX : X ∈ g−1}. It
is easy to check that (3.1) is equivalent to L being abelian in the complexification
gC of g.

We say that T ∈ Autδ(g) is a CR automorphism or an anti-CR automorphism if

T |g−1
J = JT |g−1

or T |g−1
J = −JT |g−1

;

equivalently, TC(L) ⊆ L or TC(L) ⊆ L, where TC denotes the linear extension of T
to gC. Notice that the inverse of a CR automorphism is also a CR automorphism.
A diffeomorphism f : Ω → Υ between domains in G is a CR mapping or an anti-
CR mapping if and only if its Pansu differential dfp is a CR automorphism or an
anti-CR automorphism for every p ∈ Ω1. In this section we will study the structure
and the CR diffeomorphisms of CR stratified groups. In particular, we will show
that, for a class of these groups, the space of conformal maps with respect to a
compatible metric coincides with the space of CR maps. Last but not least, we
will show some explicit embeddings of CR stratified groups into Cm+n via a CR
diffeomorphism.

3.2. Tight groups. We say that a stratified group is tight if g is totally nonabelian,
its finest direct product decomposition has only one factor, and dim g−2 = 1. Equiv-
alently,

g−1 = span{X1, . . . , Xm, Y1, . . . , Ym},
where

(3.2) [Xj , Xl] = [Yj , Yl] = 0 and [Xj , Yl] = δjlU ∀j, l = 1, . . . ,m.

It is straightforward to check that the space L, defined by

L := span{Xj − iYj : j = 1, . . . ,m},
satisfies [L,L] = {0}. So tight stratified groups are CR with respect to the almost
complex structure determined by the requirements that JXj = Yj and JYj = −Xj

for every j = 1, . . . ,m.

Lemma 3.1. Let G be a tight CR stratified group. If m > 1, then U is central,
that is, [Xj , U ] = [Yj , U ] = 0 when j = 1, . . . ,m.

Proof. We argue by contradiction. Suppose that [Xj , U ] �= 0 for some j. Renum-
bering if necessary, we may assume that j = 1. Then [X1, [X2, Y2]] �= 0. However,
by the Jacobi identity and (3.2),

[X1, [X2, Y2]] = [[X1, X2], Y2] + [X2, [X1, Y2]] = 0,

which gives a contradiction. We may show that [Yj , U ] = 0 similarly. �

Corollary 3.2. Let G be a tight CR stratified group with dim(g−1) = 2m. Then
exactly one of the following holds:

(i) g−1 = span{X1, Y1} and g−3 �= {0},
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(ii) g−1 = span{X1, . . . , Xm, Y1, . . . , Ym}, g−2 = span{U} and g−3 = {0}. In
this case g is the Heisenberg algebra of dimension 2m+ 1.

When G is tight, we consider the element U∗ ∈ g∗ uniquely defined by U∗(U) = 1
and U∗(X) = 0 for all X ∈

⊕
k �=2 g−k, and the left-invariant one-form θ such that

θe = U∗. Then the bilinear form

Bθ(X,Y ) = dθ(X, JY )

is a scalar product on g−1 for which {X1, . . . , Xm, Y1, . . . , Ym} is an orthonormal
basis. Moreover, Bθ is compatible with J , in the sense that

Bθ(JX, JY ) = Bθ(X,Y ) ∀X,Y ∈ g−1.

We define a Carnot group structure on G using the left-invariant metric on the
horizontal subbundle that coincides with Bθ at the identity.

Theorem 3.3. Let G be a tight stratified group with the Carnot distance determined
by Bθ. Let f : Ω → G be a homeomorphism from a connected open subset Ω of G
onto its image. Then f is 1-quasiconformal if and only if f is CR or anti-CR.

Proof. We say that T ∈ Autδ(g) is conformal if

(3.3) ‖T (X)‖ = λ‖X‖ ∀X ∈ g−1,

or, equivalently, if T tT = λ2 Id for some λ ∈ R+. Here T t denotes the transpose
with respect to Bθ. It is well known that f is 1-quasiconformal if and only if
dfp is conformal for every p ∈ Ω [3]. Therefore, it is enough to show that every
conformal automorphism is a CR or anti-CR automorphism, and vice versa. Since
G is tight, either dim g−1 = 2 or G is the Heisenberg group of dimension 2m + 1.

It is straightforward to show in both cases that for all T ∈ Autδ(g), the condition
T t|g−1

T |g−1
= λ Id is equivalent to T |g−1

J = JT |g−1
or T |g−1

J = −JT |g−1
. �

The theorem above holds for every left-invariant metric that is compatible with
the CR structure. Indeed, let B′ be any scalar product on g−1 with the property
that

B′(JX, JY ) = B′(X,Y ) ∀X,Y ∈ g−1.

Then there is A ∈ GL(2�,R) such that B′(X,Y ) = Bθ(AX,AY ). The compatibility
condition and the definition of A imply that Bθ(JAX, JAY ) = Bθ(AJX,AJY ),
which in turn implies that AJ = JA or AJ = −JA. Therefore A induces a CR or
anti-CR automorphism of g, and so by Theorem 3.3 the left-invariant metrics with
respect to Bθ and B′ are conformally equivalent.

3.3. CR embeddings of tight groups. We are now deriving a system of equa-
tions whose solutions, if they exist, yield explicit CR embeddings of tight groups
G into Cm+n that generalise those considered by Nagel and Stein; our embeddings
are more closely related to work of Andreotti and Hill [1], and generalise work of
the fourth-named author and her collaborators [16, 17]. As the Heisenberg groups
are well understood, we concentrate on the case where dim g−1 = 2 and g−3 is
nontrivial. Our construction involves several steps.

First, extend an orthonormal basis {X,Y } of g−1 to a basis {X,Y, U1, . . . , Un}
of g, where we choose the Uj from the iterated commutators of X and Y in order
to first span g−2, then g−3, and so on. We then extend the inner product on g−1
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to an inner product on g so that our basis is orthonormal. We use exponential
coordinates of the first kind, and take an element of G to be

(x, y, u1, . . . un) := exp(xX + yY + u1U1 + · · ·+ unUn).

By Lemma 2.1, the left-invariant vector field T corresponding to an element T of g
is given in these coordinates by

TexpY = 〈T,X〉 ∂x + 〈T, Y 〉 ∂y +
n∑

j=1

〈( ∞∑
k=0

ck ad
k(Y )

)
T, Uj

〉
∂uj

= aT ∂x + bT ∂y +

n∑
j=1

pT,j(x, y, u1, . . . , un)∂uj
,

where aT = 〈T,X〉, bT = 〈T, Y 〉, and pT,j(x, y, u1, . . . , un) is equal to

n∑
l=1

∞∑
k=0

ck

〈
adk(xX + yY + u1U1 + · · ·+ unUn)T, Ul

〉
∂ul

.

The functions pT,j are polynomials of bounded degree, since the series above has
finitely many nonzero terms, and are homogeneous if T is homogeneous. In partic-
ular,

X = ∂x +
n∑

j=1

pX,j(x, y, u1, . . . , un)∂uj

and

Y = ∂y +

n∑
j=1

pY,j(x, y, u1, . . . , un)∂uj
.

Now we seek to map G into the surface

{(x, y, u1, . . . , un, v1, . . . , vn) ∈ R
2+2n : vj = qj(x, y, u1, . . . , un), j = 1, . . . , n},

where the qj are homogeneous polynomials of positive degree, using the map φ,
defined by taking φ(x, y, u1, . . . , un) equal to

(x, y, u1, . . . , un, q1(x, y, u1, . . . , un), . . . , qn(x, y, u1, . . . , un)).

The map φ is evidently a C∞ embedding, and 0 lies on the surface. In the obvious
extension of our coordinate system, the differential φ∗ of φ satisfies

φ∗(T ) = T +

n∑
j=1

(Tqj)∂vj .

We identify (x, y, u1, . . . , un, v1, . . . , vn) ∈ R
2+2n with (z, w1, . . . , wn) ∈ C

1+n,
where z = x + iy and wj = uj + ivj . When we do this, our embedding is a CR
embedding if and only if the complex (1, 0) vector field Z = X + iY on G maps to
a (1, 0) vector field tangent to the surface in C1+n. Now

φ∗(Z) = φ∗(X) + iφ∗(Y ),

and this is a (1, 0) vector field if and only if the coefficient of ∂vj is i times the
coefficient of ∂uj

for all j, that is,

(Xqj) + i(Y qj) = i
(
pX,j + ipY,j

)
,
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or equivalently,

(3.4)

{
Xqj = −pY,j(x, y, u1, . . . , un),

Y qj = pX,j(x, y, u1, . . . , un).

This is a nontrivial system of differential equations, and we do not know whether it
can be solved in general. There are certainly many examples where this is possible,
for instance, if g is filiform—see [16, 18]. In the next section, we will consider
the case of free nilpotent Lie groups with two generators and use an alternative
coordinate system to solve (3.4) for the case when these Lie groups have step at
most 8.

If the stratified group G is not tight, there is no obvious canonical choice of
a compatible Carnot structure. Hence the extent to which we can generalise our
study of the interplay between conformal and CR structures in the general case is
unclear.

4. Free nilpotent Lie groups

In this section we focus on solving the system of equations (3.4) in the tight case,
that is, for free nilpotent Lie groups whose Lie algebra has two generators and step
at least 2. We introduce some further notation, that in some cases will replace that
of the previous sections. Denote by f2,s the free nilpotent Lie algebra of step s with
two generators, and let n = dim f2,s. Recall that f2,s is the biggest nilpotent Lie
algebra of step s generated by iterated brackets of two generators X1 and X2. The
elements in the linear span of

[Xα1
, . . . , [Xαk−1

, Xαk
] . . . ],

where Xα1
, . . . , Xαk

are vectors in f2,s, are said to have length at most k. We now
recall the recursive definition of the Hall basis [8] for f2,s. Each element in the basis
is a monomial in the generators. The generatorsX1 andX2 are elements of the basis
and of length 1. Assume that we have defined basis elements of lengths 1, . . . , �− 1
and that they are simply ordered in such a way that X < Y if length(X) <
length(Y ). If length(X) = r and length(Y ) = t, and � = r + t, then [X,Y ] is a
basis element of length � if:

1. X and Y are basis elements and X > Y , and
2. if X = [Z,W ], then Y ≥ W .

Number the basis elements using this ordering, i.e., X3 = [X2, X1], X4 =
[X3, X1], X5 = [X3, X2], etc. Consider a basis element Xi as a bracket in the
lower order basis elements, [Xj1 , Xk1

], where j1 > k1. If we repeat this process
with Xj1 , we get Xi = [[Xj2 , Xk2

], Xk1
], where k2 ≤ k1 by the Hall basis condi-

tions. Continuing in this fashion, we end up with

(4.1) Xi = [[. . . [[X2, Xi1 ], Xi2 ], . . . , Xim−1
], Xim ],

where i1 = 1 and i� ≤ i�+1 when 2 ≤ � ≤ m − 1. Since this expansion involves
m brackets, we shall write d(i) = m and define d(1) = d(2) = 0. This process
naturally associates a multi-index I(i) = (a1, . . . , an) to each Hall basis element
Xi, defined by ar = #{t : it = r}. Note that I(i) = (0, . . . , 0) for i = 1, 2. Let
x = (x1, . . . , xn) be coordinates in Rn. For every j ≥ 3, we define the monomial pj
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by

pj(x) :=
(−1)d(j)

I(j)!
xI(j),

where xI(j)=x
I(j)1
1 · · ·xI(j)n

n and I(j)!=I(j)1! · · · I(j)n!, if I(j)=(I(j)1, . . . , I(j)n).
Notice that I(j)1 ≥ 1. It will be convenient to represent the bracket (4.1) by the
vector (2, 1, i2, . . . , im). We stress that any one of the formula (4.1) for Xi, the
vector (2, 1, i2, . . . , im), or the monomial pi, uniquely describes the other two.

The vector fields

X1 =
∂

∂x1
and X2 =

∂

∂x2
+
∑
j≥3

pj
∂

∂xj

generate the Lie algebra f2,s. We now rewrite (3.4) using these vector fields as
generators. Thus, we look for polynomials qj solving{

X1qj = −pj ,

X2qj = 0

for every j ≥ 3. Since pj is a monomial, the first equation integrates to

qj = cjx1pj + rj ,

where cj ∈ (0, 1] and rj = rj(x2, . . . , xn). We substitute this in the second equation
to obtain

cjx1X2pj +X2rj = cjx1

(
∂

∂x2
pj +

∑
k>2

pk
∂

∂xk
pj

)
+

∂

∂x2
rj +

∑
�>2

p�
∂

∂x�
rj = 0.

Since I(t)1 ≥ 1 when t ≥ 3, it follows that ∂rj/∂x2 is the only term that does not
depend on x1, so it is zero, and rj = rj(x3, . . . , xn). Hence for a free nilpotent
Lie algebra with two generators, the system (3.4) can be solved if we can find
rj(x3, . . . , xn) such that

(4.2) cjx1

(
∂

∂x2
pj +

∑
k>2

pk
∂

∂xk
pj

)
+
∑
�>2

p�
∂

∂x�
rj = 0

for all j ≥ 3. We now solve this system of equations for free Lie algebras up to
step 8.

Theorem 4.1. Let f2,s be a free nilpotent Lie algebra of step s at most 8. Then
the system of equations (4.2) admits a solution of the form

rj(x3, . . . , xn) =
∑
k>2

ajkxk +
∑
�>2

bj�x
2
� ,

for some ajk, b
j
� ∈ R. In particular, if s ≤ 5, then bj� = 0.

Vice versa, if s ≥ 9, then there is j ≥ 3 such that
∑

k>2 a
j
kxk +

∑
�>2 b

j
�x

2
� does

not solve (4.2).

For a free nilpotent Lie algebra with two generators, we may represent the mono-
mials p� by the vector (2, 1, �1, . . . , �m). We stress that this vector is not the same
as I(�). Vice versa, in order for such a vector to represent a nonzero monomial
p�, it must be that (2, 1, �1, . . . , �m−1) represents a basis vector higher than X�m

and with X�m > X�m−1
. Using these rules, we may easily construct all vectors for
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Table 1. Monomials up to step 8.

Step Vectors Monomials

2 (2, 1) p3 = −x1

3 (2, 1, 1), (2, 1, 2) p4 = 1
2x

2
1, p5 = x1x2

4
(2, 1, 1, 1), (2, 1, 1, 2)
(2, 1, 2, 2)

p6 = − 1
6x

3
1, p7 = − 1

2x
2
1x2

p8 = − 1
2x1x

2
2

5
(2, 1, 1, 1, 1), (2, 1, 1, 1, 2)
(2, 1, 1, 2, 2), (2, 1, 2, 2, 2)
(2, 1, 1, 3), (2, 1, 2, 3)

p9 = 1
24x

4
1, p10 = 1

6x
3
1x2

p11 = 1
4x

2
1x

2
2, p12 = 1

6x1x
3
2

p13 = − 1
2x

2
1x3, p14 = −x1x2x3

6

(2, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 2)
(2, 1, 1, 1, 2, 2), (2, 1, 1, 2, 2, 2)
(2, 1, 2, 2, 2, 2), (2, 1, 1, 1, 3)
(2, 1, 1, 2, 3), (2, 1, 2, 2, 3)
(2, 1, 2, 4)

p15 = − 1
120x

5
1, p16 = − 1

24x
4
1x2

p17 = − 1
12x

3
1x

2
2, p18 = − 1

12x
2
1x

3
2

p19 = − 1
24x1x

4
2, p20 = 1

6x
3
1x3

p21 = 1
2x

2
1x2x3, p22 = 1

2x1x
2
2x3

p23 = −x1x2x4

7

(2, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 2)
(2, 1, 1, 1, 1, 2, 2), (2, 1, 1, 1, 2, 2, 2)
(2, 1, 1, 2, 2, 2, 2), (2, 1, 2, 2, 2, 2, 2)
(2, 1, 1, 1, 1, 3), (2, 1, 1, 1, 2, 3)
(2, 1, 1, 2, 2, 3), (2, 1, 2, 2, 2, 3)
(2, 1, 1, 3, 3), (2, 1, 2, 3, 3)
(2, 1, 1, 1, 4), (2, 1, 1, 1, 5)
(2, 1, 1, 2, 4), (2, 1, 1, 2, 5)
(2, 1, 2, 2, 4), (2, 1, 2, 2, 5)

p24 = 1
720x

6
1, p25 = 1

120x
5
1x2

p26 = 1
48x

4
1x

2
2, p27 = 1

36x
3
1x

3
2

p28 = 1
48x

2
1x

4
2, p29 = 1

120x1x
5
2

p30 = − 1
24x

4
1x3, p31 = − 1

6x
3
1x2x3

p32 = − 1
4x

2
1x

2
2x3, p33 = − 1

6x1x
3
2x3

p34 = 1
4x

2
1x

2
3, p35 = 1

2x1x2x
2
3

p36 = 1
6x

3
1x4, p37 = 1

6x
3
1x5

p38 = 1
2x

2
1x2x4, p39 = 1

2x
2
1x2x5

p40 = 1
2x1x

2
2x4, p33 = 1

2x1x
2
2x5

8

(2, 1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1, 2)
(2, 1, 1, 1, 1, 1, 2, 2), (2, 1, 1, 1, 1, 2, 2, 2)
(2, 1, 1, 1, 2, 2, 2, 2), (2, 1, 1, 2, 2, 2, 2, 2)
(2, 1, 2, 2, 2, 2, 2, 2), (2, 1, 1, 1, 1, 1, 3)
(2, 1, 1, 1, 1, 2, 3), (2, 1, 1, 1, 2, 2, 3)
(2, 1, 1, 2, 2, 2, 3), (2, 1, 2, 2, 2, 2, 3)
(2, 1, 1, 1, 3, 3), (2, 1, 1, 2, 3, 3)
(2, 1, 2, 2, 3, 3), (2, 1, 1, 1, 1, 4)
(2, 1, 1, 1, 1, 5), (2, 1, 1, 1, 2, 4)
(2, 1, 1, 1, 2, 5), (2, 1, 1, 2, 2, 4)
(2, 1, 1, 2, 2, 5), (2, 1, 2, 2, 2, 4)
(2, 1, 2, 2, 2, 5), (2, 1, 1, 3, 4)
(2, 1, 1, 3, 5), (2, 1, 2, 3, 4)
(2, 1, 2, 3, 5), (2, 1, 1, 2, 6)
(2, 1, 2, 2, 6), (2, 1, 2, 2, 7)

p41 = − 1
5040x

7
1, p42 = − 1

720x
6
1x2

p43 = − 1
240x

5
1x

2
2, p44 = − 1

144x
4
1x

3
2

p45 = − 1
144x

3
1x

4
2, p46 = − 1

240x
2
1x

5
2

p47 = − 1
720x1x

6
2, p48 = 1

120x
5
1x3

p49 = 1
24x

4
1x2x3, p50 = 1

12x
3
1x

2
2x3

p51 = 1
12x

2
1x

3
2x3, p52 = 1

24x1x
4
2x3

p53 = − 1
12x

3
1x

2
3, p54 = − 1

4x
2
1x2x

2
3

p55 = − 1
4x1x

2
2x

2
3, p56 = 1

24x
4
1x4

p57 = − 1
24x

4
1x5, p58 = − 1

6x
3
1x2x4

p59 = − 1
6x

3
1x2x5, p60 = − 1

4x
2
1x

2
2x4

p61 = − 1
4x

2
1x

2
2x5, p62 = − 1

6x1x
3
2x4

p63 = − 1
6x1x

3
2x5, p64 = 1

2x
2
1x3x4

p65 = 1
2x

2
1x3x5, p66 = x1x2x3x4

p67 = x1x2x3x5, p68 = 1
2x

2
1x2x6

p69 = 1
2x1x

2
2x6, p70 = 1

2x1x
2
2x7

a given step. For example, if the step is 2, we only have the monomial p3, corre-
sponding to the vector (2, 1). In step 3, we have to add two more monomials, p4,
and p5, corresponding to the vectors (2, 1, 1) and (2, 1, 2). We write all vectors and
monomials up to step 8 in Table 1.

Theorem 4.1 will be a consequence of the following three lemmas.

Lemma 4.2. Let f2,s be a free nilpotent Lie algebra of step s at most 8. Then for
all j, k ≥ 3,

x1pk
∂

∂xk
pj ∈ span{p�}

for some � = �(j, k).

Proof. We say that Xj has height h(j) if Xj ∈ g−h(j). Observe that pj is homoge-

neous of degree h(j)− 1. It follows that, if x1pk
∂

∂xk
pj �= 0, then it is homogeneous
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of the same degree as pj . If this is the case, for our statement to be true, it must be

that h(�) = h(j). Moreover, ∂
∂xk

pj can only be nonzero if 3 ≤ k ≤ 7. Using these
observations, the claim readily follows by inspecting Table 1. �
Lemma 4.3. Let f2,s be a free nilpotent Lie algebra of step s at most 8. Then for
every j ≥ 3,

x1
∂

∂x2
pj ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
span{p�} if j �= 23,

span{x4p4} if j = 23,

span{x6p6} if j = 68,

span{x7p7} if j = 70

for some � = �(j). In particular, if s ≤ 5, then x1
∂

∂x2
pj ∈ span{p�}.

Proof. Given pj , we study the action of x1
∂

∂x2
on the associated vector (2, 1,

j2, . . . , jm). If jk �= 2 for all k, then x1
∂

∂x2
pj = 0 and we are done. Otherwise,

let k be the smallest integer such that jk = 2. Then the action of x1
∂

∂x2
replaces

the jkth entry with 1, and more precisely,

(2, 1, j2, . . . , jm) 	→ (2, 1, j2, . . . , jk−1, 1, jk+1, . . . , jm).

If (2, 1, j2, . . . , jk−1, 1, jk+1, . . . , jm) represents a monomial p� for some �, then
we are done. By inspecting Table 1, this always occurs except for the vectors
(2, 1, 2, 4), (2, 1, 1, 2, 6), and (2, 1, 2, 2, 7), which represent the monomials p23, p68,
and p70. In these cases,

x1
∂

∂x2
p23 = −x1

∂

∂x2
x1x2x4 = −x2

1x4 = −x4p4

and, similarly, x1
∂

∂x2
p68 = −3x6p6 and x1

∂
∂x2

p70 = −2x7p7. �

Lemma 4.4. Let f2,s be a free nilpotent Lie algebra of step 9. Then there is j for

which
∑

k>2 a
j
kxk +

∑
�>2 b

j
�x

2
� is not a solution of (4.2) for every ajk, b

j
� ∈ R.

Proof. When s = 9, consider the monomial pj = x1x2x4x5, corresponding to the
vector (2, 1, 2, 4, 5). A direct computation shows that every solution rj of (4.2) for
this monomial contains cjx

2
4x5 for some cj �= 0. �

Proof of Theorem 4.1. In view of Lemmas 4.2 and 4.3, if j �= 23 we may rewrite
the equation (4.2) as∑

v>2

avpv +
∑
�>2

p�
∂

∂x�
rj =

∑
�>2

(
a� +

∂

∂x�
rj

)
p� = 0

for some constants av. Then rj = −
∑

�>3 a�x� is a solution. If j = 23, then (4.2)
becomes

−c4x4p4 +
∑

v>2,v �=4

bvpv +
∑
�>2

p�
∂

∂x�
r23 = 0

for some constants bv. Hence r23 = −
∑

v>2,v �=4 bvxv + c4
2 x

2
4 is a solution. A

quadratic solution can be found in the same way for j = 68 and j = 70. �
Theorem 4.1 suggests that all free tight groups can be embedded into C1+n by

means of polynomial functions. The pattern that these polynomials follow is at the
moment unknown to the authors. For example, we find linear solutions for groups
up to step 5 and then again at step 7, whereas quadratic solutions are only sufficient
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up to step 8. However, our result gives an algorithm for finding these embeddings
for anyone to use and that we plan to implement for MAPLE. Hopefully, this will
provide us with enough examples to look again at the global picture.

5. Products

We say that a mapping on G is affine if it is the composition of a left translation
with an element in Autδ(G).

Theorem 5.1. Suppose that G is a totally nonabelian Carnot group, with finest
direct product decomposition G1 × · · · ×Gm, where m > 1. Let f : G → G be a C1

quasiconformal map. Then f is composed of a group automorphism that permutes
the groups Gj and a product bi-Lipschitz map.

Proof. We write either p or (p1, . . . , pm) for a typical element of G.
The Pansu differential of a C1 global quasiconformal mapping f is continuous,

and hence its Perm(g) component is constant. This is an automorphism of g and
by conjugation with the exponential may be considered as an automorphism of G,
and is therefore quasiconformal. By composing with the inverse of this automor-
phism if necessary, we may assume that the Pansu differential dfp of f is a product
automorphism (see [5, Corollary 3.4]).

If we take a horizontal curve γ in one of the factors Gj , then f ◦ γ is again a
horizontal curve, whose Pansu derivative is df ◦ γ̇, and so f ◦ γ moves in the factor
Gj and is fixed in the other factors. The groups Gj mutually commute, and it
follows immediately that f is a product map: we may find maps f j : Gj → Gj such
that

f(p1, . . . , pm) = (f1(p1), . . . , fm(pm)) ∀p ∈ G.

The Pansu differential dfp is also a product map:

dfp = (df1
p1 , . . . , dfm

pm) ∀p ∈ G.

If f is λ-quasiconformal, it follows immediately that when j �= k,

max
{∥∥df j

pj (X)
∥∥ : X ∈ S(gj−1)

}
≤ λmin

{∥∥∥dfk
pk(X)

∥∥∥ : X ∈ S(gk−1)
}

for all p ∈ G. Define

ck = inf
{∥∥∥dfk

pk(X)
∥∥∥ : X ∈ S(gk−1), p

k ∈ Gk
}

for all k, and now fix k such that ck = min{cj : j ∈ {1, . . . ,m}}. Then, when j �= k,

sup
{∥∥df j

pj (X)
∥∥ : X ∈ S(gj−1), p

j ∈ Gj
}
≤ λck.

Fix j different from k. Since

sup
{∥∥∥dfk

pk (X)
∥∥∥ : X ∈ S(gk−1), p

k ∈ Gk
}

≤ λ inf
{
‖df j

pj (X)‖ : X ∈ S(gj−1), p
j ∈ Gj

}
,

it follows that

sup{
∥∥∥dfk

pk (X)
∥∥∥ : X ∈ S(gk−1), p

k ∈ Gk} ≤ λ2ck.

Since f is not constant, ck �= 0, and now each map f j is bi-Lipschitz, and, by
considering horizontal curves, we conclude that

ck �(p, q) ≤ �(f(p), f(q)) ≤ λ2ck �(p, q) ∀p, q ∈ G,

as required. �
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Remark 5.2. The argument above shows that if f is defined in a domain Ω in G,
then f is locally a product mapping. Of course, this does not imply that f is a
product mapping, unless Ω is a product domain. However, if f is 1-quasiconformal,
then stronger conclusions do hold.

Corollary 5.3. Suppose that G is a totally nonabelian Carnot group, with finest
direct product decomposition G1 × · · · ×Gm, where m > 1. Let f : Ω → G be a 1-
quasiconformal map from a domain Ω in G onto its image. Then f is the restriction
to Ω of the composition of a group automorphism that permutes the groups Gj and
a product affine map.

Proof. By [3], f is smooth. By [4, Theorem 4.1], f is an affine map. In particular,
f extends analytically to a conformal map on all of G. By Theorem 5.1, it follows
that f is is the composition of a group automorphism that permutes the groups Gj

and a product map. �

Remark 5.4. We recall that if G is the Heisenberg group Hn, then conformal maps
on a domain in G are restrictions of the action of an element of SU(1, n+ 1) [12].
However, if G is the product of m Heisenberg groups Hnl where m ≥ 2, then most
elements in SU(1, n1 + 1)× · · · × SU(1, nm + 1) do not induce conformal maps on
domains in G. Indeed, from the previous corollary, conformal maps are affine in
this case.

5.1. CR mappings on product groups.

Theorem 5.5. Suppose that G is a totally nonabelian Carnot group, with finest
direct product decomposition G1× · · ·×Gm, where m > 1. Suppose that Gj is tight
when j = 1, . . . ,m. Let f : G → G be a CR mapping. Then f is the composition
of a group automorphism that permutes the groups Gj and a product CR mapping.

Proof. By Theorem 3.3, for tight Carnot groups CR and anti-CR diffeomorphisms
are the same as conformal mappings. The conclusion now follows from Corol-
lary 5.3. �
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