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TOPOLOGICAL FACTORS OF RANK-ONE SUBSHIFTS

SU GAO AND CALEB ZIEGLER

(Communicated by Nimish Shah)

Abstract. We study topological factors of rank-one subshifts and prove that
those factors that are themselves subshifts are either finite or isomorphic to
the original rank-one subshifts. Thus, we completely characterize the subshift
factors of rank-one subshifts.

1. Introduction and definitions

In 1965, Chacon [5] introduced the concept of rank-one measure-preserving trans-
formations and constructed the first examples. Since then, rank-one transforma-
tions have come up often as important examples and counterexamples in ergodic
theory and have been studied extensively by many researchers. Ferenczi [10] was
a comprehensive survey summarizing many results and systematically studying
several different definitions of rank-one transformations that had appeared in the
literature. Many rank-one transformations could be shown to satisfy each of the
different definitions. However, the constructive symbolic definition seemed to be-
have somewhat differently from the other definitions, which led to further research
from the perspective of symbolic and topological dynamics, such as in [2], [8], and
[9].

Because the constructive symbolic definition works with a shift space, it was
natural to study systems coming from the constructive symbolic definition in the
setting of topological dynamics. This led to the definition of rank-one subshifts,
which was first studied by the first author and Hill in [11], where they gave a char-
acterization for the topological isomorphism relation of rank-one subshifts based on
the cutting and spacer parameters. In [12] the current authors studied the topo-
logical mixing properties of rank-one subshifts. Because the concept of rank-one
subshifts came from rank-one transformations, the study of their topological dy-
namical properties is often motivated by their ergodic-theoretic counterparts which
tend to have a long history. For example, the motivation for the original rank-one
transformation constructed by Chacon [5] was to build a measure preserving trans-
formation that is weakly mixing but not mixing. Mixing properties of rank-one
transformations were also studied in, e.g., [1], [3], [4], [6], [7], and [13]. In [12]
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we also completely characterized the maximal equicontinuous factors of rank-one
subshifts and showed that they can only be finite.

For some readers it might be worth noting that there is another, different notion
of rank in topological dynamics, as in the context of finite rank Bratteli–Vershik
diagrams. In that context a rank-one Bratteli–Vershik diagram would give rise to
an odometer, whereas a rank-one subshift as we define below cannot be an odometer
unless it is finite.

In this paper we continue to study the topological dynamical properties of rank-
one subshifts. The focus of this paper is the topological factors of rank-one subshifts
which are themselves subshifts. We provide a complete characterization as follows.

Theorem. Let (X,T ) be a rank-one subshift and (Y, S) be a subshift. Suppose
that (Y, S) is a topological factor of (X,T ). Then either Y is finite or (X,T ) is
isomorphic to (Y, S).

We conjecture that the theorem is still true if we drop the assumption that the
factor is itself a subshift.

In this paper, by a subshift we mean a topological dynamical system (X,T )
where X is a closed invariant subset of some bZ = {0, 1, · · · , b − 1}Z for a positive
integer b > 1, and T is the shift map defined by (Tx)(k) = x(k + 1). Since the
shift map is uniformly defined, we sometimes suppress mentioning the shift map
and refer to the subshift as X.

Fixing a sequence (qn)n≥0 of integers > 1 and a sequence (an,i)n≥0,1≤i<qn of
non-negative integers, we define a rank-one sequence (vn)n≥0 of binary words by
setting v0 = 0 and

(1) vn+1 = vn1
an,1vn · · · vn1an,qn−1vn.

Note that each vn is a word that starts and ends with 0, and each vn is an initial
segment of vn+1. This allows us to define a infinite rank-one word V = limn→∞ vn
and a rank-one subshift

XV = {x ∈ 2Z : every finite subword of x is a subword of V }.
The sequence (qn) is called the cutting parameter and the doubly-indexed sequence
(an,i) is called the spacer parameter of the rank-one subshift (XV , T ).

When the spacer parameter of a rank-one subshift X is bounded, X is a minimal
dynamical system, that is, for all x ∈ X, the orbit {T kx : k ∈ Z} is dense in X.
When the spacer parameter is unbounded, X will contain a unique fixed point 1Z,
that is, the constant 1 element. In this case, for every x ∈ X −{1Z}, the orbit of x
is dense in X.

Our proof of the main theorem will be split into two cases, according to whether
the spacer parameter is bounded. The proofs of the two cases will be presented in
Sections 3 and 4. In the case of unbounded spacer parameter, we show a slightly
stronger statement that either the factor is trivial (one-element system) or isomor-
phic to the original rank-one subshift.

2. Preliminaries

If (vn) is a rank-one sequence, then any subsequence of (vn) that starts with
v0 = 0 as the first term is also a rank-one sequence and gives rise to the same rank-
one subshift. This is because, given any m > n, one can write vm in the format of
(1) in terms of vn with appropriately modified cutting and spacer parameters. We
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call this procedure of extracting subsequences of a rank-one sequence telescoping.
It is clear that telescoping changes the cutting and spacer parameters but does not
change the boundedness of the spacer parameter.

We will fix some notation to use in the rest of the paper. If i ≤ j are integers
we let [i, j] denote the set of integers in between (and including) i and j. For a
finite word α we let lh(α) denote the length of α, and think of α as a function with
domain [0, lh(α)−1]. If 0 ≤ i ≤ j < lh(α), we let α[i, j] denote the word β of length
j − i+ 1 where β(k) = α(k + i) for k ∈ [0, j − i].

Let (X,T ) be a subshift of 2Z and (Y, S) be a subshift of bZ for some integer
b ≥ 2. Assume ϕ : (X,T ) → (Y, S) is a factor map, that is, ϕ is surjective and
continuous, and for all x ∈ X,

ϕ(Tx) = Sϕ(x).

It is well-known that, due to the compactness of X and Y , there is a sliding block
code inducing ϕ, that is, there exist integers r ≥ 0 and s, and a partition of 22r+1,
{C0, . . . , Cb−1}, such that for all x ∈ X, k ∈ Z, and j ∈ [0, b− 1],

ϕ(x)(k) = j ⇐⇒ x[k + s− r, k + s+ r] ∈ Cj .

Intuitively, the block of x in between (and including) coordinates k + s − r and
k + s + r completely determines ϕ(x) at coordinate k. Note that the T s−r is
an isomorphism from (X,T ) to itself, and thus we may assume without loss of
generality that s = r. Let R = 2r. Then we have

ϕ(x)(k) = j ⇐⇒ x[k, k +R] ∈ Cj .

In other words, ϕ(x) at coordinate k is completely determined by the block of x of
length R+ 1 in between coordinates k and k +R.

3. Bounded spacer parameters

Throughout this section we assume (X,T ) is a rank-one subshift of 2Z with
bounded spacer parameter. In other words, X = XV , where the infinite rank-one
word V is given by a rank-one sequence (vn), which in turn is determined by a
cutting parameter (qn) and spacer parameter (an,i). Let B be a bound for the
spacer parameter. That is, for all n ≥ 0 and 1 ≤ i < qn, we have an,i ≤ B.

Let (Y, S) be a subshift of bZ for some integer b ≥ 2. Assume ϕ is a factor map
from (X,T ) onto (Y, S). Let {C0, . . . , Cb−1} be the sliding block code corresponding
to ϕ. Assume that the sliding block code has window size R + 1, that is, for any
x ∈ X, k ∈ Z, and j ∈ [0, b− 1],

ϕ(x) = j ⇐⇒ x[k, k +R] ∈ Cj .

By telescoping, we may assume lh(v1) � B + 2R. For each n ≥ 1, let αn be the
block of length lh(vn)− R obtained from the application of the sliding block code
to vn, that is, for k ∈ [0, lh(vn)−R− 1],

αn(k) = j ⇐⇒ vn[k, k +R] ∈ Cj .

For each a ≤ B, let βa be the block of length a+R obtained from the application
of the sliding block code to v1[lh(vn)− R, lh(vn)− 1]1av1[0, R − 1]. Then we have
that, for all n ≥ 1,

αn+1 = αnβan,1
αn . . . αnβan,qn−1

αn.
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Now suppose x ∈ X. Proposition 2.29 of [11] states that, for any n ≥ 1, x can be
written uniquely as

(2) · · · · · · vn1c−1vn1
c0vn1

c1vn · · · · · ·

where ci ≥ 0 for i ∈ Z. Recall that these occurrences of vn are called expected
occurrences of vn. It follows that ϕ(x) can be written as

· · · · · ·αnβc−1
αnβc0αnβc1αn · · · · · ·

Since (X,T ) is minimal when it has bounded spacer parameter, it follows that (Y, S)
is also minimal. From now on we assume that (Y, S) is not finite. Our objective is
to show that the factor map ϕ is indeed a topological isomorphism. In order to do
this, it suffices to show that ϕ is one-to-one, as ϕ is a closed map given that X and
Y are compact.

Toward a contradiction, we assume that there are distinct x, x′ ∈ X with ϕ(x) =
ϕ(x′). Fix such x, x′. Since x and x′ each has a unique decomposition in the form
(2), we have k, k′ ∈ Z with 0 < |k − k′| ≤ 1

2 (lh(αn) + B + R) such that x has
an expected occurrence of vn at coordinate k and x′ has an expected occurrence
of vn at k′. To see this, note first that there must be k ∈ Z such that x has
an expected occurrence of vn at coordinate k while x′ does not, since otherwise
x = x′. Let x have an expected occurrence of vn at coordinate k while x′ does not.
Suppose further that x′ does not have an expected occurrence of vn at k′ for any
k′ ∈ [k− 1

2 (lh(αn)+B+R), k+ 1
2 (lh(αn)+B+R)]. Then for an interval of length

lh(αn) + R + B = lh(vn) + B there is no expected occurrence of vn. This violates
(2).

Without loss of generality, we may assume k < k′. Moreover, the expected
occurrence of vn in x at coordinate k is followed by a spacer 1a and then followed
by another expected occurrence of vn. Similarly, the expected occurrence of vn
in x′ at coordinate k′ is followed by a spacer 1a

′
and then followed by another

expected occurrence of vn. Without loss of generality, we may assume a 	= a′. This
is because, if a = a′, then instead of considering the expected occurrence of vn
at k in x and that at k′ in x′, which we call the first expected occurrences of vn,
we may consider the second expected occurrences of vn which follow the spacers
specified above, and note that the difference of their beginning coordinates will
still be k′ − k. If the spacers following them are of different lengths, then we are
done. Otherwise, we can repeat and consider the next expected occurrences of
vn in x and x′. By repeating, we may thus find expected occurrences of vn in x
and x′ respectively which satisfy the assumption that the spacers following them
are of different lengths. If we fail to find such expected occurrences of vn to the
right of the first expected occurrences of vn, we may in a similar fashion search for
expected occurrences that satisfy the assumption to the left of the first expected
occurrences. If finally we fail to find such occurrences on both sides of the first
expected occurrences, then we have that

T k−k′
x = x′

and so

ϕ(x) = ϕ(x′) = ϕ(T k−k′
x) = Sk−k′

(ϕ(x)).

This means that ϕ(x) is periodic, and so Y is finite, a contradiction.
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For the rest of the proof, we fix k < k′ and a 	= a′ such that

(i) x has an expected occurrence of vn at k, followed by a spacer 1a, followed
by another expected occurrence of vn at k + lh(vn) + a;

(ii) x′ has an expected occurrence of vn at k′, followed by a spacer 1a
′
, followed

by another expected occurrence of vn at k′ + lh(vn) + a′;
(iii) k′ − k ≤ 1

2 (lh(vn) +B) = 1
2 (lh(αn) +R+B).

Let y = ϕ(x) = ϕ(x′). Then we have

(i’) y has an occurrence of αn at k, followed by an occurrence of βa, followed
by another occurrence of αn at k + lh(αn) +R+ a;

(ii’) y has an occurrence of αn at k′, followed by an occurrence of βa′ , followed
by another occurrence of αn at k′ + lh(αn) +R+ a′.

Since k′ − k ≤ 1
2 (lh(αn) + R + B), the two occurrences of αn in y which occur

at k and k′ overlap for at least 1
2 (lh(αn)−R−B) coordinates.

We use the following concept and general lemma.

Definition 3.1. Let η be a finite string and 0 < p < lh(η). Suppose lh(η) = lp+ q
where 0 ≤ q < p. We say that η has period p (or p is a period for η) if (η[0, p− 1])l

is an initial segment of η and η is an initial segment of (η[0, p− 1])l+1.

Lemma 3.2. Let η be a finite word and 0 < p < lh(η). Suppose η occurs at both
coordinates 0 and p in some sufficiently long string ξ. Then p is a period for η.

Proof. Since η occurs at p in ξ, we have ξ[p, 2p − 1] = η[0, p − 1] = ξ[0, p − 1]. If
lh(η) < 2p, we have that η is an initial segment of ξ[0, 2p− 1] = (η[0, p− 1])2, and
so p is a period of η. Otherwise, lh(η) > 2p, we have that ξ[0, 2p−1] = (η[0, p−1])2

is an initial segment of the occurrence of η at 0. Considering the occurrence of
η at p, we have that ξ[2p, 3p − 1] = η[p, 2p − 1] = η[0, p − 1]. It follows that
ξ[0, 3p− 1] = (η[0, p− 1])3. Now, if lh(η) < 3p, we have that η is an initial segment
of ξ[0, 3p − 1] = (η[0, p − 1])3, and so p is a period of η. Otherwise, the lemma is
proved by repeating this argument. �

Applying Lemma 3.2 to the occurrences of αn at k and k′, we obtain that k′ − k
is a period of αn. Again, applying Lemma 3.2 to the occurrences of αn at k +
lh(αn) + R + a and k′ + lh(αn) + R + a′, we obtain that k′ − k + a′ − a is also a
period of αn.

If either 0 < k′ − k ≤ B or 0 < k′ − k + a′ − a ≤ B, then we conclude that
αn has a period p ≤ B. Otherwise, let q = min(k′ − k, k′ − k + a′ − a) and
r = max(k′−k, k′−k+a′−a). Then 0 < r− q ≤ B. Also r ≤ 1

2 (lh(αn)+R+3B).

Let γn = αn[r, lh(αn)− 1]. Then lh(γn) ≥ 1
2 (lh(αn)−R− 3B). Since r is a period

of αn, γn is an initial segment of αn. Since q is also a period of αn, we also have
that γn occurs at coordinate q in αn. Applying Lemma 3.2 to the occurrences of
γn at coordinates q and r in αn, we obtain that r − q is a period of γn. In other
words, r − q is a period of αn[0, lh(γn) − 1]. In all cases we have that for some
ln ≥ 1

2 (lh(αn)−R− 3B), αn[0, ln − 1] has a period p ≤ B.
By telescoping, we may assume that ln ≥ lh(αn−1), and it follows that αn−1 has

a period p ≤ B. Again by telescoping, we may assume that there is p ≤ B such
that for all sufficiently large n, αn has a period p. It then follows that y has period
p, and that Y is finite, a contradiction.
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We have thus proved

Theorem 3.3. Let (X,T ) be a rank-one subshift with bounded spacer parameter
and let (Y, S) be a subshift. Suppose (Y, S) is a topological factor of (X,T ). Then
either Y is finite or else (X,T ) is isomorphic to (Y, S).

4. Unbounded spacer parameters

In this section we prove

Theorem 4.1. Let (X,T ) be a rank-one subshift with unbounded spacer parameter
and let (Y, S) be a subshift. Suppose (Y, S) is a topological factor of (X,T ). Then
either Y is trivial (that is, a singleton) or else (X,T ) is isomorphic to (Y, S).

The rest of this section is devoted to a proof of Theorem 4.1. Throughout
this section we assume (X,T ) is a rank-one subshift of 2Z with unbounded spacer
parameter. We continue to use (qn), (an,i), and (vn), respectively, to denote the
cutting parameter, the space parameter, and the induced rank-one sequence.

We first analyze the forms of elements of X as bi-infinite words. In particular,
we identify all elements of X with an infinite string of 1s. First, 1Z ∈ X and is a
unique fixed point. Next, we recall Lemma 3.12 of [11], which states that, given any
K ∈ Z, there is a unique z ∈ X so that z has a first occurrence of 0 at coordinate K
(i.e., z(K) = 0 and z(k) = 1 for all k < K); similarly, there is also a unique z ∈ X
so that z has a last occurrence of 0 at coordinate K (i.e., z(K) = 0 and z(k) = 1
for all k > K). Recall that V = limn→∞ vn is the infinite rank-one word which has
each vn as its initial segment. For each K ∈ Z, define

zK(k) =

{
1, if k < K,
V (k −K), if k ≥ K.

Then zK is of the form 1−NV with the occurrence of V starting at coordinate K.
It is easy to verify that zK ∈ X, and therefore it is the unique z ∈ X with a first
occurrence of 0 at coordinate K.

To describe the unique z ∈ X so that z has a last occurrence of 0 at coordinate
K, we consider a dual infinite rank-one word V ∗. To define V ∗, note that each vn
is also an end segment of vn+1. This allows us to take a dual limit and obtain V ∗,
where V ∗ has all vn as its end segment. More formally, we can define V ∗ as an
infinite word with domain −N, where for each k ∈ N,

V ∗(−k) = vn(lh(vn)− k − 1)

for any n such that lh(vn) > k. Then for any K ∈ Z, define

z∗K(k) =

{
1, if k > K,
V ∗(k −K), if k ≤ K.

Then z∗K is the unique z ∈ X with the last occurrence of 0 at coordinate K. Each
z∗K is of the form V ∗1N.

In summary, the set

Z = {1Z, zK , z∗K : K ∈ Z}
consists precisely of all elements of X which contain an infinite string of 1s. If
x ∈ X − Z, then again by Proposition 2.29 of [11], for any n ≥ 1, x can be written
uniquely as

· · · · · · vn1c−1vn1
c0vn1

c1vn · · · · · ·
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where ci ≥ 0 for i ∈ Z. Once again these occurrences of vn are called expected
occurrences of vn.

Let (Y, S) be a subshift of bZ for some integer b ≥ 2. Assume that Y is not a
singleton. Assume ϕ is a factor map from (X,T ) onto (Y, S). We will show that ϕ
is a topological isomorphism. Again, it suffices to show that ϕ is one-to-one.

Let {C0, . . . , Cb−1} be the sliding block code corresponding to ϕ. Assume that
the sliding block code has window size R + 1, that is, for any x ∈ X, k ∈ Z, and
j ∈ [0, b− 1],

ϕ(x) = j ⇐⇒ x[k, k +R] ∈ Cj .

Applying the sliding block code to 1Z, we obtain a constant element of Y as ϕ(1Z).
Without loss of generality, we assume ϕ(1Z) = 1Z. Thus, for any l > R, an
application of the sliding block code to the string 1l results in the string 1l−R.

By telescoping, we may assume lh(v1) � R. For each n ≥ 1, let αn be the block
of length lh(vn)−R obtained from the application of the sliding block code to vn,
that is, for k ∈ [0, lh(vn)−R − 1],

αn(k) = j ⇐⇒ vn[k, k +R] ∈ Cj .

It is clear that each αn is an initial segment as well as an end segment of αn+1.
We let W be the infinite word taken as a limit of αn, that is, so that every αn is
an initial segment of W . Similarly, let W ∗ be the dual limit of αn, that is, W

∗ is
an infinite word with domain −N so that every αn is an end segment of W ∗. Then
each ϕ(zK) is of the form 1−NW and each ϕ(z∗K) is of the form W ∗1N.

Note that for every x ∈ X, every finite subword of x is a subword of vn for some
n ≥ 1. It follows that, for every y ∈ Y , every finite subword of y is a subword of αn

for some n ≥ 1. This implies that αn cannot be constant for all n ≥ 1, or else Y
would be a singleton. By telescoping, we may assume α1 is not constant. Without
loss of generality, we may assume α1 contains an occurrence of 0.

Let i0 be the first occurrence of 0 in α1 and i1 be the last occurrence of 0 in α1.
Then ϕ(zK) has its first occurrence of 0 at K+ i0 and ϕ(z∗K) has its last occurrence
of 0 at K−lh(α1)−i1−1. This implies that ϕ � Z is one-to-one. For any x ∈ X−Z,
ϕ(x) contains infinitely many 0s in both directions. Thus ϕ(Z) ∩ ϕ(X − Z) = ∅.
To finish our proof, it remains to show that ϕ � (X − Z) is one-to-one.

For this we use the following lemma.

Lemma 4.2. Let L ≥ lh(v1). Let x, x′ ∈ X − Z be such that for any l ≥ L, any
spacer of length l in between expected occurrences of v1 in x occurs at the same
position as a spacer of the same length in between expected occurrences of v1 in x′.
Then x = x′.

Proof. First note that, since X has unbounded spacer parameter, there are spacers
of length ≥ L in between expected occurrences of v1 in x. By telescoping, we can
assume such spacers occur in v2, that is, for some 1 ≤ j < q1, a1,j ≥ L. Let
j1 < · · · < jM enumerate all j ∈ [1, q1 − 1] such that a1,j ≥ L. Note that x can be
uniquely written as a concatenation of expected occurrences of v2 with spacers in
between:

(3) · · · · · · v21t−1v21
t0v21

t1v2 · · · · · ·
where ti ≥ 0 for i ∈ Z. Expanding the expression using

v2 = v11
a1,1v1 . . . v11

a1,q1−1v1,
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we obtain the unique expression of x as a concatenation of expected occurrences of
v1 with spacers in between, as follows:

(4) · · · · · · v11c−1v11
c0v11

c1v1 · · · · · ·
where cj ≥ 0 for all j ∈ Z. Without loss of generality, assume that 1c0 in the above
expression (4) is a spacer in between expected occurrences of v2 in x. Then we
have, for all 1 ≤ j < q1, cj = a1,j . Furthermore, we have that for any k ∈ Z and
1 ≤ j < q1,

cj+kq1 = a1,j .

Thus, all spacers 1cj in the above expression (4), except for those corresponding
to j ≡ 0 (mod q1), exhibit a periodic structure with period q1. In contrast, the
spacers 1cj for j ≡ 0 (mod q1) do not exhibit a periodic structure with period q1,
since their lenghs are unbounded. Among all the spacers demonstrated in (4), the
ones with lengths ≥ L correspond to 1cj for all j ≡ j1, . . . , jM (mod q1) and some
j ≡ 0 (mod q1).

Now all these observations about x hold similarly for x′. In particular, if we
similarly express x′ as

(5) · · · · · · v11c
′
−1v11

c′0v11
c′1v1 · · · · · ·

with c′j ≥ 0 for j ∈ Z, there are also exactly M many periodic classes of spacers 1c
′
j

with c′j ≥ L and one aperiodic class of spacers.
By our assumption, any spacer of length ≥ L in (4) occurs at the same position

as a spacer of the same length in (5). Thus the spacers in (4) corresponding to
j ≡ j1, . . . , jM (mod q1) must align with the corresponding spacers in (5). It
follows that any expected occurrence of v2 in x occurs at the same position as an
expected occurrence of v2 in x′. By Proposition 2.29 of [11], we conclude that
x = x′. �

We are now ready to show that ϕ � (X − Z) is one-to-one. Let x, x′ ∈ X − Z
and assume that ϕ(x) = ϕ(x′). Consider a subword of x of the form v11

cv1 where
c ≥ R. An application of the sliding block code to v11

cv1 results in a word of the
form

α1η1
c−Rεα1

for some words η and ε with lh(η) = lh(ε) = R. Therefore, whenever v11
cv1 occurs

in x, there is an occurrence of α1η1
c−Rεα1 in ϕ(x) at the same position.

Let L = lh(v1) + 2R. We now verify that the condition for Lemma 4.2 holds
for x and x′. For this, suppose l ≥ L and v11

lv1 occurs in x at position k, with
both ocurrences of v1 expected. As discussed above, there is an occurrence of
β = α1η1

l−Rεα1 in ϕ(x) at position k. Since ϕ(x) = ϕ(x′), we get an occurrence
of β in ϕ(x′) at the same position. Note that there are at least lh(v1) + R many
consecutive 1s in β. It follows that the occurrence of β in ϕ(x′) must be induced by
an occurrence of v11

cv1 in x′ where c ≥ R. To see this, assume c < R and that an
occurrence of v11

cv1 induces β. Then an application of the sliding block code gives
an occurrence of α1 at each of the occurrences of v1. Since α1 contains at least one
occurrence of 0, the number of consecutive 1s is bounded by lh(v1)+c < lh(v1)+R,
a contradiction.

Since c ≥ R, an application of the sliding block code yields α1η1
c−Rεα1. We

claim c = l. To see this, we consider four cases depending on whether η = 1R and
whether ε = 1R. We only argue for the case in which both η 	= 1R and ε 	= 1R,
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and the other cases are similar. In this case both η and ε contain occurrences of
symbols other than 1. It is clear that the number of consecutive 1s in η1l−Rε and
in η1c−Rε would be different if l 	= c.

We have seen that the occurrence of β in ϕ(x′) is uniquely determined by an
occurrence of v11

lv1 in x′. Thus, for every occurrence of a spacer of length l ≥ L
in x, there is an occurrence of a spacer of the same length at the same position in
x′. By Lemma 4.2, x = x′.
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