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A KOOPMAN-VON NEUMANN TYPE THEOREM

ON THE CONVERGENCE OF CESÀRO MEANS

IN RIESZ SPACES

JONATHAN HOMANN, WEN-CHI KUO, AND BRUCE A. WATSON

(Communicated by Stephen Dilworth)

Abstract. We extend the Koopman-von Neumann convergence condition on
the Cesàro mean to the context of a Dedekind complete Riesz space with weak

order unit. As a consequence, a characterisation of conditional weak mixing is
given in the Riesz space setting. The results are applied to convergence in L1.

1. Introduction

The Koopman-von Neumann Lemma, as referred to by Petersen [14, Section 2.6]
(see also Krengel [7, Section 2.3], as well as Eisner, Farkas, Haase and Nagel [3,
Section 9.2]), characterises the convergence to zero of the Cesàro mean of bounded,
non-negative sequences of real numbers in terms of the existence of a convergent
subsequence of the given sequence. Here, the subsequence is formed from the given
sequence by the omission of a, so called, density zero set from N0, the index set of
the given sequence.

In this paper, we consider the order convergence to zero of the Cesàro mean
of an order bounded, non-negative sequence in a Dedekind complete Riesz space
with weak order unit. This requires a more sophisticated density zero concept. In
particular, we introduce a density zero sequence of band projections which forms
the foundation for the Koopman-von Neumann condition in Riesz spaces. When
the Riesz space is the real numbers the characterisation presented here gives the
classical Koopman-von Neumann convergence condition.

As an application of the Koopman-von Neumann Lemma (Theorem 3.2), we
give, in Section 4, a characterisation of conditional weak mixing in Riesz spaces. In
Section 5, as an example, we apply Theorem 3.2 to characterise the order conver-
gence of the Cesàro mean to zero of order bounded, non-negative sequences in L1.
We also refer the reader to the recent work of Gao, Troitsky and Xanthos on the
UO-convergence and its application to Cesàro means in Banach lattices [5].

This work supplements the development of stochastic processes in Riesz spaces
of Grobler [6], Stoica [15], Azouzi et al [2], Kuo, Labuschagne and Watson [9], and
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mixing processes in Riesz spaces as considered in Kuo, Rogans and Watson [11],
and Kuo, Vardy and Watson [12].

2. Preliminaries

We refer the reader to Aliprantis and Border [1], Fremlin [4], Meyer-Nieberg [13],
and Zaanen [18] and [19], for background in Riesz spaces and f -algebras.

We recall that, in a Riesz space, E, a sequence (fn) in E converges to zero, in
order, if and only if the sequence (|fn|) converges, in order, to zero in E. Further
to this, in a Dedekind complete Riesz space, the absolute order convergence of a
sum implies the order convergence of the sum, see below.

Lemma 2.1. Let (fn)n∈N0
be a sequence in E, a Dedekind complete Riesz space,

then order convergence of
∑∞

k=0 |fk| implies the order convergence of
∑∞

k=0 fk.

Proof. Suppose that
∑n−1

k=0 |fk| → �, in order, as n → ∞. Then � is an upper bound

for the increasing sequences
(∑n−1

k=0 f
±
k

)
, which, from the Dedekind completeness of

E, have order limits, say, f±. Thus,
∑n−1

k=0 fk =
∑n−1

k=0 f
+
k −

∑n−1
k=0 f

−
k → f+ − f−,

in order, as n → ∞. �
From [10, Lemma 2.1], we have the following theorem.

Theorem 2.2. Let E be a Dedekind complete Riesz space and (fn)n∈N0
a sequence

in E with fn → 0, in order, as n → ∞, then 1
n

∑n−1
k=0 |fk| → 0, in order, as n → ∞.

Corollary 2.3. Let E be a Dedekind complete Riesz space and (fn)n∈N0
a sequence

in E with order limit f , then we have 1
n

∑n−1
k=0 fk → f in order, as n → ∞.

Proof. Let gn := fn − f for each n ∈ N0, then (|gn|)n∈N0
is order convergent to 0,

by assumption. Thus, by Theorem 2.2,

0 ≤
∣∣∣∣∣f − 1

n

n−1∑
k=0

fk

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

|gk| → 0,

in order, as n → ∞, and the result follows as E is Archimedean. �

3. The Koopman-von Neumann condition

In [14], a subset N of N0 is said to be of density zero if 1
n

∑n−1
k=0 χN (k) → 0 as

n → ∞, where χN (k) = 0 if k ∈ N0 \N and χN (k) = 1 if k ∈ N . The Koopman-
von Neumann Lemma [14, Lemma 6.2] asserts that if a sequence (an)n∈N0

of non-

negative real numbers is bounded, then 1
n

∑n−1
k=0 ak → 0 as n → ∞ if and only if

there is N , a subset of N0, of density zero, such that an → 0 as n → ∞, n ∈ N0 \N .
We recall that Ee = {f ∈ E | |f | ≤ ke for some k ∈ R+} , the subspace of E

consisting of the e bounded elements of E is an f -algebra, see [2, 16, 18]. For all
band projections P and Q on E, we set Pe · Qe = PQe. Here, · represents the
f -algebra multiplication on Ee. The linear extension of this multiplication and use
of order limits extends this multiplication to the f -algebra multiplication on Ee.
Further, the weak order unit, e, is the multiplicative unit of the f -algebra.

In a Riesz space, E, for u ∈ E+, p ∈ E+ is called a component of u if u∧(u− p) =
0, see [19, pg. 213]. Furthermore, if E has the principal projection property, then
p is a component of u if and only if p = Pfu, for some principal projection Pf ,
[19, Theorem 32.7]. If E has a weak order unit, say e, then p is a component
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of e if and only if there is a band projection P on E with Pe = p. Further,
e − p = (I − P )e and p · f = Pf for each f ∈ E. We note here that E is an
Ee module since the f -algebra multiplication in E is a restriction of that in Eu

and if f ∈ Ee with |f | ≤ ke and g ∈ E then |f · g| ≤ k |g| so f · g ∈ E. Any
s ∈ E for which there exist pairwise disjoint components p1, ..., pn of e and real
numbers α1, ..., αn such that s =

∑n
k=1 αkpk is called an e-step function. Notice

that if E has the principal projection property, then there exist principal band
projections P1, ..., Pn such that s =

∑n
k=0 αkPke, where the band projections are

pairwise disjoint. Consequently, if E is a Dedekind complete Riesz space with weak
order unit, say e, then Be = E ⊇ Ee (where Be is the principal band generated by
e), and any e-step function s ∈ E can be represented by s =

∑n
k=1 αkPke.

In order to extend the Koopman-von Neumann Lemma to sequences in a Riesz
space, we define a density zero sequence of band projections as follows.

Definition 3.1 (Density zero sequence of band projections). A sequence (Pn)n∈N0

of band projections in a Riesz space E with weak order unit e is said to be of density
zero if 1

n

∑n−1
k=0 Pke → 0, in order as n → ∞.

The above definition could be rephrased as saying that a sequence of components
of e is said to be of density zero if its Cesàro mean tends to zero in order.

With the above definition of density zero sequences of band projections, we can
now give an analogue of the Koopman-von Neumann Lemma in Riesz spaces.

Theorem 3.2 (Koopman-von Neumann). Let E be a Dedekind complete Riesz
space with weak order unit, say e, and let (fn)n∈N0

be an order bounded sequence

in the positive cone, E+, of E, then 1
n

∑n−1
k=0 fk → 0, in order, as n → ∞, if and

only if there exists a density zero sequence of band projections (Pn)n∈N0
on E such

that (I − Pn) fn → 0, in order, as n → ∞.

Proof. Suppose that (fn)n∈N0
⊂ E+ and there exists g ∈ E+ with fn ≤ g, for all

n ∈ N0.
If (Pn)n∈N0

is a density zero sequence of band projections with (I − Pn)fn → 0,
in order, as n → ∞, then

0 ≤ 1

n

n−1∑
k=0

fk =
1

n

n−1∑
k=0

Pke · fk +
1

n

n−1∑
k=0

(I − Pk) fk(3.1a)

≤
(
1

n

n−1∑
k=0

Pke

)
· g + 1

n

n−1∑
k=0

(I − Pk) fk.(3.1b)

Since (Pn)n∈N0
is of density zero, 1

n

∑n−1
k=0 Pke → 0, in order, as n → ∞, giving(

1
n

∑n−1
k=0 Pke

)
· g → 0, in order, as n → ∞. Furthermore, by Theorem 2.2, as (I −

Pn)fn → 0, in order, as n → ∞ and (I−Pn)fn ≥ 0, we have 1
n

∑n−1
k=0 (I − Pk) fk →

0, in order, as n → ∞. Thus, by (3.1a)-(3.1b), as E is Archimedean, 1
n

∑n−1
k=0 fk →

0, in order, as n → ∞.
Conversely, suppose that 1

n

∑n−1
k=0 fk → 0, in order, as n → ∞. Let Pm,i be

the band projection onto the band generated by
(
fi − 1

me
)+

and pm,i = Pm,ie.

Let um,j := supk≥j
1
k

∑k−1
i=0 pm,i. Let Rm,j be the band projection onto the band

generated by
(
um,j − 1

me
)+

and rm,j = Rm,je. As 0 ≤ pm,i ≤ e, we have that
0 ≤ um,j ≤ e. Further, since pm,i is increasing in m for fixed i, it follows that um,j
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is increasing in m for fixed j and hence um,j − 1
me is increasing in m for fixed j,

giving that rm,j is increasing in m for fixed j.
Since {k ∈ Z | k ≥ j + 1} ⊂ {k ∈ Z | k ≥ j}, it follows that

um,j+1 = sup
k≥j+1

1

k

k−1∑
i=0

pm,i ≤ sup
k≥j

1

k

k−1∑
i=0

pm,i = um,j ,

giving that um,j is decreasing in j. Hence, rm,j is decreasing in j, for fixed m. We
now show that, for fixedm, rm,j ↓ 0, in order, as j → ∞. Since fi ≥ Pm,ifi ≥ 1

mpm,i

(as Pm,i is the projection onto the band generated by
(
fi − 1

me
)+

), we have

sup
k≥j

1

k

k−1∑
i=0

fi ≥
1

m
sup
k≥j

1

k

k−1∑
i=0

pm,i =
1

m
um,j .(3.2)

However,

(3.3) um,j ≥ Rm,jum,j ≥
1

m
rm,j ,

(since Rm,j is the band projection onto the band generated by
(
um,j − 1

me
)+

), so,
by (3.2) and (3.3), we have

0 ≤ 1

m2
rm,j ≤

1

m
um,j ≤ sup

k≥j

1

k

k−1∑
i=0

fi → 0,(3.4)

in order, as j → ∞. Thus, for fixed m, rm,j ↓ 0, in order, as j → ∞.
Observe that R1,j = 0, since R1,j is the band projection onto the band generated

by (u1,j − e)
+

= 0. Let Hj := supm∈N Rm,j , for j = 0, 1, . . . , then Hj ↓ H, say,
in order, as j → ∞. Here, the band projections Hj and H can be explicitly
determined from their components hj := Hje = supm∈N

rm,j , for j = 0, 1, . . . , and
hj ↓ h := He, in order, as j → ∞. Further rm+1,j · (e− rm,j), m ∈ N, is a partition
of hj for each j = 0, 1, . . . , that is,

(3.5) (rm+1,j · (e− rm,j)) ∧ (rn+1,j · (e− rn,j)) = 0, for m �= n,

and

(3.6)
M−1∑
m=1

rm+1,j · (e− rm,j) = rM,j ↑M hj ,

in order, as M → ∞, giving

(3.7)
∑
m∈N

rm+1,j · (e− rm,j) = hj .

Let

(3.8) Qj :=
∨
m∈N

Pm,jRm+1,j (I −Rm,j) =
∑
m∈N

Pm,jRm+1,j (I −Rm,j) ,

by (3.5), and in terms of components we have

(3.9) qj := Qje =
∨
m∈N

pm,j · rm+1,j · (e− rm,j) =
∑
m∈N

pm,j · rm+1,j · (e− rm,j) .

Further, as 0 ≤ pm,j ≤ e, by (3.8),

(3.10) qj =
∑
m∈N

pm,j · rm+1,j · (e− rm,j) ≤
∑
m∈N

rm+1,j · (e− rm,j) = hj .
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Hence, subtracting the left-hand side of (3.10) from the right-hand side of (3.10),
we obtain

(3.11) (e− qj) = (e−hj)+(hj−qj) = (e−hj)+
∑
m∈N

(e− pm,j)·rm+1,j ·(e− rm,j) .

For m > j + 1, j ∈ N0, we have that 1
j+1 > 1

m . Now, from the definition of um,j ,

we have

um,j = sup
k≥j

1

k

k−1∑
i=0

pm,i ≥
1

j + 1

j∑
i=0

pm,i ≥
1

j + 1
pm,j ,

thus Pm,jum,j ≥ 1
j+1pm,j , giving

Pm,j

(
um,j −

1

m
e

)+

≥ Pm,j

(
um,j −

1

m
e

)
≥

(
1

j + 1
− 1

m

)
pm,j .

Hence,
(
um,j − 1

me
)+ ≥

(
1

j+1 − 1
m

)
pm,j . Further,

1
j+1 −

1
m > 0, so, for m > j +1,

pm,j is in the band generated by
(
um,j − 1

me
)+

, giving Rm,j ≥ Pm,j . Applying the
above to fj , we have

(3.12) rm,j · fj ≥ pm,j · fj .

Taking the supremum overm ∈ N in (3.12) gives hj ·fj ≥ fj , since supm∈N
rm,j =

hj and supm∈N
pm,j ·fj = fj . Further, hj ≤ e, hence, (e−hj)·fj = 0, so multiplying

(3.11) by fj gives

(e− qj) · fj =
∑
m∈N

rm+1,j · (e− rm,j) · (I − Pm,j) fj(3.13a)

≤
∑
m∈N

1

m
rm+1,j · (e− rm,j) ,(3.13b)

where we have used that (I − Pm,j) fj ≤ 1
me. Now, from (3.6), (3.7) and (3.13a)-

(3.13b), for k ≤ j,

(e− qj) · fj ≤
k−1∑
m=1

1

m
rm+1,j · (e− rm,j) +

∞∑
m=k

1

m
rm+1,j · (e− rm,j)

≤
k−1∑
m=1

rm+1,j · (e− rm,j) +
1

k
hj

≤ rk,je+
1

k
e.

So, taking the limit supremum as j → ∞, we obtain

(3.15) 0 ≤ lim sup
j→∞

(e− qj) · fj ≤
1

k
e+ lim sup

j→∞
rk,j =

1

k
e,

for each k ∈ N. Thus, as E is Archimedean, lim supj→∞ (I −Qj) fj = 0 and
(I −Qj) fj → 0, in order, as j → ∞.

It now remains to show that 1
n

∑n−1
j=0 qj → 0, in order, as n → ∞. For j < n

and m ≥ M + 1, we have rM+1,n ≤ rm,j , giving rM+1,n · (e− rm,j) = 0. Thus, for
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M,n ∈ N, we have

rM+1,n · (e− rM,n) ·

⎛
⎝ 1

n

n−1∑
j=0

qj

⎞
⎠

=
1

n

n−1∑
j=0

rM+1,n · (e− rM,n) ·
( ∨

m∈N

pm,j · rm+1,j · (e− rm,j)

)

=
1

n

n−1∑
j=0

∨
m≤M

rM+1,n · (e− rM,n) · pm,j · rm+1,j · (e− rm,j)

≤ 1

n

n−1∑
j=0

rM+1,n · (e− rM,n) · pM,j

= rM+1,n · (e− rM,n) ·

⎛
⎝ 1

n

n−1∑
j=0

pM,j

⎞
⎠

≤ rM+1,n · (I −RM,n)uM,n

≤ 1

M
rM+1,n · (I −RM,n)e.

Summing the above over M ≥ K gives

(hn − rK,n) ·

⎛
⎝ 1

n

n−1∑
j=0

qj

⎞
⎠ ≤

∑
M≥K

1

M
rM+1,n · (e− rM,n)(3.16a)

≤ 1

K
(hn − rK,n) ≤

1

K
e.(3.16b)

We recall, from (3.10), that Qj ≤ Hj , so if j ≥ 
√
n� then Qj ≤ Hj ≤ H√n� and

QjH√n� = Qj , that is, (e− h√n�) · qj = 0. Hence,

(3.17) (e− h√n�) ·

⎛
⎝ 1

n

n−1∑
j=0

qj

⎞
⎠ =

1

n

√n�−1∑
j=0

qj ≤
1√
n
e.

Combining (3.16a)-(3.16b) and (3.17), we have, for each K ∈ N,

1

n

n−1∑
j=0

qj =
((

e− h√n�
)
+
(
h√n� − hn

)
+ (hn − rK,n) + rK,n

)
·

⎛
⎝ 1

n

n−1∑
j=0

qj

⎞
⎠

(3.18a)

≤ 1√
n
e+ (h√n� − hn) +

1

K
e+ rK,n.(3.18b)

Here, hn and h√n� both converge, in order, to h, so h√n� − hn converges to 0,

in order, as n → ∞, as does rK,n. Thus, taking the limit supremum as n → ∞ in
(3.18b) gives

(3.19) 0 ≤ lim sup
n→∞

1

n

n−1∑
j=0

qj ≤
1

K
e
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for each K ∈ N. Hence,

lim
n→∞

1

n

n−1∑
j=0

qj = 0,

in order, as E is Archimedean. �

Note 3.3. If (fn)n∈N0
in Theorem 3.2 is not assumed to be order bounded, but

1
n

∑n−1
k=0 fk → 0, in order, as n → ∞, then it still follows that there is a density

zero sequence of band projections, (Pn)n∈N0
, such that (I − Pn)fn → 0, in order,

as n → ∞, but one cannot conclude boundedness of (Pnfn)n∈N0
. Further, the

converse need not hold. In particular, if (fn)n∈N0
is not bounded and there is a

density zero sequence of band projections (Pn)n∈N0
such that (I − Pn)fn → 0, in

order, as n → ∞, then one cannot conclude that 1
n

∑n−1
k=0 fk is order convergent to

0 as n → ∞.
For example, working in the classical case of E = R, for 1 < p < ∞, we have

gpj =

{
n, j = np� , n ∈ N0,
0, otherwise

is unbounded and N = {np� |n ∈ N0} is a set of density zero. Here gpj = 0 → 0

for j ∈ N0\N as j → ∞ but 1
n

∑n−1
k=0 g

p
k is convergent to 0 for p > 2, convergent to

a non-zero value for p = 2 and divergent to ∞ for 1 < p < 2.

4. Application to weak mixing

Let (Ω,A, μ) be a probability space, that is, Ω is a set, A is a σ-algebra of
subsets of Ω and μ is a measure on A with μ (Ω) = 1. The mapping τ : Ω → Ω is
called a measure preserving transformation if μ

(
τ−1A

)
= μ (A), for each A ∈ A, in

which case (Ω,A, μ, τ ) is called a measure preserving system. Further details may
be found in [3, 7, 14].

The measure preserving system (Ω,A, μ, τ ) is said to be weakly mixing if

(4.1)
1

n

n−1∑
k=0

∣∣μ (
τ−1 (A) ∩B

)
− μ (A)μ (B)

∣∣ → 0

as n → ∞, for each A,B ∈ A. To give a Riesz space analogue of a measure
preserving system and weak mixing, we recall from [8] the definition of a conditional
expectation operator on a Riesz space.

Definition 4.1. Let E be a Riesz space with weak order unit. A positive order
continuous projection T : E → E, with range, R (T ), a Dedekind complete Riesz
subspace of E, is called a conditional expectation operator if Te is a weak order
unit of E for each weak order unit e of E.

If T is a conditional expectation operator on E with Te = e, then T is also
a conditional expectation operator on Ee, since, if f ∈ Ee, then |f | ≤ ke, giving
|Tf | ≤ T |f | ≤ Tke = ke.

The Riesz space analogue of a measure preserving system is introduced in the
following definition.

Definition 4.2. Let E be a Dedekind complete Riesz space with weak order unit,
say, e, and T be a conditional expectation operator on E with Te = e. If S is an
order continuous Riesz homomorphism on E with Se = e and TSPe = TPe for
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each band projection P on E, then (E, T, S, e) is called a conditional expectation
preserving system.

By Freudenthal’s Spectral Theorem, see [19, Theorem 33.2], the condition TSPe
= TPe for each band projection P on E in the above definition is equivalent
to TSf = Tf for all f ∈ E. In [9, Theorems 3.7 and 3.9] various generali-
sations of Birkhoff’s ergodic theorem to conditional expectation preserving sys-

tems (E, T, S, e) were given, resulting in convergence conditions for
(

1
n

∑n−1
k=0 S

kf
)
,

f ∈ E.
We are now in a position to define conditional weak mixing on a Riesz space

with a conditional expectation operator and weak order unit.

Definition 4.3 (Conditional weak mixing). The conditional expectation preserving
system (E, T, S, e) is said to be conditionally weak mixing if, for all band projections
P and Q on E,

(4.2)
1

n

n−1∑
k=0

∣∣T ((
SkPe

)
·Qe

)
− TPe · TQe

∣∣ → 0,

in order, as n → ∞.

We note that for E = L1 (Ω,A, μ), the band projections on E are of the form
PAf = χAf , for f ∈ E and A ∈ A. Definition 4.3 now gives a conditional weak
mixing condition on E, conditioned by T = E [· | B], for B a sub-σ-algebra of A.
If B = {Ω \ C | C ∈ A, μ (C) = 0} ∪ {C ∈ A | μ (C) = 0}, then conditional weak
mixing coincides with the weak mixing on (Ω,A, μ).

We recall, [19, pg. 49], that if E is a Riesz space and (xn)n∈N
⊂ E converges to

x ∈ E, we say that xn converges to x u-uniformly for given 0 < u ∈ E if for each
0 < ε ∈ R, there is some Nε ∈ N such that |xn − x| ≤ εu whenever n ≥ Nε.

Theorem 4.4. Given the conditional expectation preserving system (E, T, S, e),
then the following statements are equivalent.

(1) (E, T, S, e) is conditionally weak mixing.
(2) For all f, g ∈ Ee, we have that

1

n

n−1∑
k=0

∣∣T ((
Skf

)
· g

)
− Tf · Tg

∣∣ → 0,

in order, as n → ∞.
(3) For each pair of band projections P and Q on E, there is a sequence of

density zero band projections, (Rn)n∈N0
, in E such that

(I −Rn) |T ((SnPe) ·Qe)− T (Pe) · T (Qe)| → 0,

in order, as n → ∞.

Proof.
(1)⇒(2): Suppose that (E, T, S, e) is conditionally weak mixing. Let s, t ∈ E

be e-step functions with s =
∑m

i=1 αiPie and t =
∑r

j=1 βjQje, where Pi and Qj are
band projections on E and αi and βj are real numbers, i = 1, . . . ,m, j = 1, . . . , r,



A KOOPMAN-VON NEUMANN TYPE THEOREM IN RIESZ SPACES 83

then

1

n

n−1∑
k=0

∣∣T ((
Sk (s)

)
· t
)
− T (s) · T (t)

∣∣(4.3a)

≤
m∑
i=1

r∑
j=1

|αiβj |
1

n

n−1∑
k=0

∣∣T ((
Sk (Pie)

)
·Qje

)
− T (Pie) · T (Qje)

∣∣ → 0,(4.3b)

in order, as n → ∞.
By Freudenthal’s Spectral Theorem, [19, Theorem 33.2], f, g ∈ Ee can be ex-

pressed as e-uniform order limits of sequences, say (si)i∈N
, (tj)j∈N

, of e-step func-

tions in Ee and there is K > 0 so that |si| , |tj | , |f | , |g| ≤ Ke, for all i, j ∈ N.
This implies that T |si| , T |tj |, T |f |, T |g| ≤ Ke, for each i, j ∈ N. For each ε > 0
there is Nε ∈ N so that |si − f | ≤ εe and |tj − g| ≤ εe for each i, j ≥ Nε ∈
N. Hence, T |si − f | ≤ εe and T |tj − g| ≤ εe for each i, j ≥ Nε. Let bk :=∣∣T (

Sk (f) · g
)
− Tf · Tg

∣∣ and bk,i,j :=
∣∣T (

Sk (si) · tj
)
− Tsi · Ttj

∣∣, then
|bk,i,j − bk|

=
∣∣∣∣T (

Sk (si) · tj
)
− Tsi · Ttj

∣∣− ∣∣T (
Sk (f) · g

)
− Tf · Tg

∣∣∣∣
≤

∣∣T (
Sk (si) · tj

)
− Tsi · Ttj − T

(
Sk (f) · g

)
+ Tf · Tg

∣∣
≤

∣∣T (
Sk (f) · g − Sk (si) · tj

)∣∣+ |Tf · Tg − Tsi · Ttj |
≤ T

∣∣(Sk (f − si)
)
·g
∣∣+T

∣∣Sk (si)·(g − tj)
∣∣+T |f − si|·T |g|+T |si|·T |g − tj |

≤ Ke · (T
∣∣Sk (f − si)

∣∣+ T |g − tj |+ T |f − si|+ T |g − tj |)
≤ 4Kεe.

Hence, bk ≤ bk,i,j + 4Kεe, for all i, j ∈ N with i, j ≥ Nε, so

0 ≤ 1

n

n−1∑
k=0

bk ≤ 1

n

n−1∑
k=0

bk,Nε,Nε
+ 4Kεe,

for all n ∈ N. By (4.3a)-(4.3b), 1
n

∑n−1
k=0 bk,Nε,Nε

→ 0, in order, as n → ∞, so

0 ≤ lim sup
n→∞

1

n

n−1∑
k=0

bk ≤ 4Kεe,

for all ε > 0, implying that 1
n

∑n−1
k=0 bk → 0, in order.

(2) ⇒ (1): Choosing f = Pe and g = Qe, the result follows directly.
(1)⇔(3): Taking fn = |T ((SnPe) ·Qe)− TPe · TQe|, the result follows from

Theorem 3.2. �

5. Application to measurable processes

If we consider the Riesz space E of equivalence classes of almost everywhere
identical functions in L1(Ω,A, μ), where μ is a finite measure (the case of μ σ-
finite is an easy extension of this case), then E is a Dedekind complete Riesz space
under a.e. pointwise ordering and 1, the a.e. equivalence class of the constant
function with value 1, is a weak order for E. Here the band projections, P , on
E are multiplication by the characteristic functions of measurable sets, i.e., P is
of the form Pf = χAf, f ∈ E, for A ∈ A. We recall from [1, Lemma 8.17] and

[13, pg. 9, Example (ii)] that a sequence (gn)n∈N ⊂ L1(Ω,A, μ) is order convergent
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in L1(Ω,A, μ) if and only if gn → g a.e. pointwise and there exists h ∈ L1(Ω,A, μ)
for which |gn| ≤ h a.e. for all n ∈ N.

If (fn)n∈N0
is a non-negative order bounded sequence in E, i.e., fn ≥ 0 a.e. and

there exists g ∈ L1(Ω,A, μ) so that fn ≤ g a.e. for all n, then, by Theorem 3.2,

(5.1) sn :=
1

n

n−1∑
j=0

fj → 0, in order, as n → ∞,

if and only if there is a density zero sequence of band projections (Pn)n∈N0
such

that (I − Pn)fn → 0, in order, as n → ∞, i.e., there is a sequence of measurable
sets (An)n∈N0

with

(5.2) cn :=
1

n

n−1∑
j=0

χAj
→ 0 in order as n → ∞,

with χΩ\An
fn → 0 in order as n → ∞.

In the above, 0 ≤ sn ≤ g and 0 ≤ cn ≤ 1, for each n, so (sn)n∈N and (cn)n∈N

are order bounded and thus order convergent if and only if they are a.e. pointwise
convergent. Further, Lebesgue’s Dominated Convergence Theorem is applicable.
Thus we have the following.

Corollary 5.1. If (fn)n∈N0
is a non-negative sequence in L1(Ω,A, μ), where μ is a

finite measure, and there exists g ∈ L1(Ω,A, μ) so that fn ≤ g a.e. for all n ∈ N0,

then 1
n

∑n−1
j=0 fj → 0 as n → ∞, if and only if there is a sequence of measurable sets

(An)n∈N0
with 1

n

∑n−1
j=0 χAj

→ 0 and χΩ\An
fn → 0 as n → ∞. Here the limits

can be taken as either a.e. pointwise or in norm.

Proceeding as in [11, Section 5], the conditional weak mixing of Section 4 can be
carried over to L1(Ω,A, μ) to give a characterisation of conditional weak mixing in
measure spaces.
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inequality and a strong law of large numbers in Riesz spaces, J. Math. Anal. Appl. 481
(2020), no. 1, 123462, 10, DOI 10.1016/j.jmaa.2019.123462. MR4008549

[11] Wen-Chi Kuo, Michael J. Rogans, and Bruce A. Watson, Mixing inequalities in Riesz
spaces, J. Math. Anal. Appl. 456 (2017), no. 2, 992–1004, DOI 10.1016/j.jmaa.2017.07.035.
MR3688462

[12] Wen-Chi Kuo, Jessica Joy Vardy, and Bruce Alastair Watson, Mixingales on Riesz spaces, J.

Math. Anal. Appl. 402 (2013), no. 2, 731–738, DOI 10.1016/j.jmaa.2013.02.001. MR3029186
[13] Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.

MR1128093
[14] Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cam-

bridge University Press, Cambridge, 1983. MR833286
[15] George Stoica, Limit laws for martingales in vector lattices, J. Math. Anal. Appl. 476 (2019),

no. 2, 715–719, DOI 10.1016/j.jmaa.2019.04.008. MR3958025
[16] L. M. Venter and P. van Eldik, Universally Complete Riesz Spaces and f-algebras, South

African J. Sci., 84, (1987), 343-346.
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