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Abstract. In [J. London Math. Soc. 69 (2004), pp. 258–272] Keisler and
Sun leave open several questions regarding Loeb equivalence between inter-
nal probability spaces; specifically, whether under certain conditions, the Loeb
measure construction applied to two such spaces gives rise to the same mea-
sure. We present answers to two of these questions, by giving two examples of
probability spaces. Moreover, we reduce their third question to the following:
Is the internal algebra generated by the union of two Loeb equivalent internal
algebras a subset of their common Loeb extension? We also present a sufficient

condition for a positive answer to this question.

1. Introduction

The Loeb measure construction ([Loe75]) has many fruitful applications in vari-
ous areas in mathematics such as probability theory (see [And76], [AR78], [Per81],
[Kei84], [Sto86], [Lin90], [Lin04], [DRW18], [ADS18] etc), statistical decision theory
(see [DR18]), potential theory ([Loe76]), mathematical physics (see [AHKFL86])
and mathematical economics (see [BR74], [Kha74], [BR75], [KR75], [Kha76], [Ras78],
[Emm84], [And85], [And88], [And91], [Sun96], [AKRS97], [Sun99], [KS99], [AKS03],
[Rau07], [DS07], [AR08], [Sun16], [DQS18], [CHLS19], among others).1 These ap-
plications are made possible by a well-developed theory of integration (see [Loe75]
and [And76]), representation of measures (see [And82] and [Sti97]) and a Fubini
theorem for Loeb measures (see [Kei84]). [KS04] made an important contribution
to these elements of the theory of Loeb measure, and also left four open questions.
In this paper we address the first three of these.

Given an internal probability space (Ω,F , μ), its Loeb extension is defined to
be the countably additive probability space (Ω,F , μ), where F consists of all sets
B ⊂ Ω such that

sup{st(μ(A)) : B ⊃ A ∈ F} = inf{st(μ(C)) : B ⊂ C ∈ F}(1.1)

and μ(B) is defined to be the above supremum. [KS04] introduced the following
definition to compare two internal probability spaces.
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1[BR74], [Kha74], [BR75], [KR75] and [Kha76] predated the Loeb measure construction. They

relied on a careful analysis of the close relationship between the discrete and measure-theoretic
properties of hyperfinite sets that the Loeb measure construction so perfectly captures. The
arguments in these papers led, via a Loeb space argument, to a very general and completely
elementary argument given in [And78].
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Definition 1.1. Let M = (Ω,F , μ) and N = (Ω,G, ν) be two internal probability
spaces. We say N Loeb extends M if G ⊃ F and ν extends μ as a function. We
say N is Loeb equivalent to M if F = G and ν = μ.

If F ⊂ G and ν extends μ as a function, then it is clear that N Loeb extends M.
However, as pointed out by [KS04], without the assumption F ⊂ G, it is difficult to
make any assertions about the relationship between their Loeb extensions. These
difficulties are addresses by the following three questions posed in [KS04].

To state these question, let N and M be internal probability spaces. Moreover
let us fix the following terminology: We say an internal probability space (Ω,F , μ)
is hyperfinite if F is hyperfinite. We emphasize that as in [KS04], we do not
require Ω to be hyperfinite.

Question 1. Suppose N Loeb extends M. Must N have an internal subspace that
is Loeb equivalent to M? What if M is assumed to be hyperfinite?

Question 2. Suppose N Loeb extends M and N is hyperfinite. Must M be Loeb
equivalent to a hyperfinite probability space?

Question 3. Suppose M = (Ω,F , μ) is Loeb equivalent to N = (Ω,G, ν) and let
H be the internal algebra generated by F∪G. Must there be an internal probability
measure P on H such that M is Loeb equivalent to (Ω,H, P )? What if M and N
are assumed to be hyperfinite?

In this paper give complete solutions to the first two of these questions, as well
as a partial solution to the third.

2. Counter-examples for the first two questions

We start this section by introducing the following theorem which provides a
useful characterization of Loeb extension. The first part of the theorem is cited
from [KS04, Lemma. 4.3].

Theorem 2.1. Let M = (Ω,F , μ) and N = (Ω,G, ν) be two internal probability
spaces.

• N Loeb extends M if and only if for every B ∈ F there exists C ∈ G such
that B ⊂ C and ν(C) ≈ μ(B).

• N Loeb extends M if and only if for every B ∈ F there exists C ∈ G such
that C ⊂ B and ν(C) ≈ μ(B).

Proof. The first statement is cited directly from [KS04, Lemma. 4.3]. We give a
proof of the second statement for completeness. Suppose N Loeb extends M and
pick B ∈ F . Then there exists C ∈ G such that Ω \ B ⊂ C and ν(C) ≈ μ(Ω \ B).
Thus, we have Ω \ C ⊂ B and ν(Ω \ C) ≈ μ(B). Conversely, for every B ∈ F ,
there exists C ∈ G such that C ⊂ Ω \ B and ν(C) ≈ μ(Ω \ B). Hence, we have
B ⊂ Ω \ C and ν(Ω \ C) ≈ μ(B). By the first statement, we know that N Loeb
extends M. �

The following theorem gives a condition which is necessary in order that N
contain an internal subspace which is Loeb equivalent to M.

Theorem 2.2. Suppose N Loeb extends M and N = (Ω,G, ν) has an internal
subspace that is Loeb equivalent to M = (Ω,F , μ). Then, for every A ∈ F there
exists A′ ∈ F such that A′ ⊂ B ⊂ A for some B ∈ G and μ(A′) ≈ μ(A). If N is
hyperfinite, then B can be taken to be

⋃
{C ∈ G : C ⊂ A}.
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Proof. Let N ′ = (Ω,G′, ν′), where ν′ is the restriction of ν to G′, be an internal
subspace of N that is Loeb equivalent to M. Pick A ∈ F . By Theorem 2.1, there
exists B ∈ G such that B ⊂ A and ν(B) ≈ μ(A). By Theorem 2.1 again, we know
that there exists A′ ∈ F such that A′ ⊂ B and μ(A′) ≈ ν(B). �

Question 1 asks whether the converse of Theorem 2.2 is true. We provide a
counter-example below.

Example 2.3. Let N = 1
K! for some K ∈ ∗

N \ N and let Ω = { 1
N , 2

N , . . . , 1}.
Then Ω includes the set of all rational numbers in [0, 1] as a subset. Let P denote
the uniform hyperfinite probability measure on Ω, that is, P ({ω}) = 1

N for every
ω ∈ Ω. Let

F = {∅,Ω, { 1

N
,
2

N
, . . . ,

1

2
}, {1

2
+

1

N
, . . . , 1}}

and let G be the internal algebra generated by

{{ 1

N
,
2

N
, . . . ,

1

2
− 2

N
}, {1

2
− 1

N
,
1

2
,
1

2
+

1

N
}, {1

2
+

2

N
, . . . , 1}}.

Let μ and ν be restrictions of P on F and G, respectively. Finally, letM = (Ω,F , μ)
and N = (Ω,G, ν). By Theorem 2.1, it is clear that N Loeb extends M. On the
other hand, the Loeb σ-algebra F generated from F is the same as F . Thus, F does
not contain any element in {{ 1

N , 2
N , . . . , 1

2 −
2
N }, { 1

2 −
1
N , 1

2 ,
1
2 +

1
N }, { 1

2 +
2
N , . . . , 1}},

hence M is not Loeb equivalent to any internal subset of N .

Since the answer to Question 1 is negative, we now turn our attention to Ques-
tion 2. The following example shows that the answer to Question 2 is also negative.

Example 2.4. Let N be an element of ∗
N\N and let Ω = ∗[0, 1]. Let λ denote the

Lebesgue measure on [0, 1]. Let F be the internal algebra generated by ∗[0, 1
2 ),

∗[ 12 , 1]

and all {a} for a ∈ ∗[ 12 − 1
N , 12 + 1

N ]. Clearly, F is not hyperfinite. Moreover, a

subset of ∗[ 12 − 1
N , 1

2 + 1
N ] is an element of F if and only if it is hyperfinite. Let G be

the internal algebra generated by {∗[0, 1
2 − 1

N ), ∗[ 12 − 1
N , 12 + 1

N ], ∗( 12 + 1
N , 1]}. Let

μ and ν be the restrictions of ∗λ on F and G, respectively. Finally, letM = (Ω,F , μ)
and N = (Ω,G, ν). It is clear that N is hyperfinite and, by Theorem 2.1, N Loeb
extends M. Moreover, we have the following lemma:

Lemma 2.5. For every internal set F ∈ F , μ(F ) = 0 if and only if F is hyperfinite.

Proof. Pick F ∈ F . Clearly, if F is hyperfinite, then μ(F ) = 0. If μ(F ) = 0, then
there must exist F ′ ∈ F such that F ⊂ F ′ and μ(F ′) ≈ 0. By the construction of
F , F ′ must be hyperfinite. As F is internal, F must be hyperfinite. �

We now show that M is not Loeb equivalent to any hyperfinite probability space.
Suppose not. Let N ′ = (Ω,G′, P ) be a hyperfinite probability space that is Loeb
equivalent to M. For every a ∈ ∗[ 12 − 1

N , 1
2 + 1

N ], by Theorem 2.1, there exists
Aa ∈ G′ such that a ∈ Aa and P (Aa) ≈ 0. Pick n ∈ N and let

An = {A ∈ G′ : (P (A) <
1

n
) ∧ (a ∈ A for *infinitely many a ∈ ∗[

1

2
− 1

N
,
1

2
+

1

N
])}

Note that there are *infinitely many a ∈ ∗[ 12 − 1
N , 1

2 + 1
N ] and hyperfinitely many

A ∈ G′ with P (A) < 1
n . As each a ∈ ∗[ 12 − 1

N , 1
2 + 1

N ] must be contained in some

A ∈ G′ such that P (A) < 1
n , by the transfer of the pigeonhole principle, An is

non-empty for every n ∈ N. By the saturation principle, there exists an internal
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A0 such that P (A0) ≈ 0 and A0 contains *infinitely many a ∈ ∗[ 12 − 1
N , 1

2 + 1
N ]. As

N ′ is Loeb equivalent to M, we know that μ(A0) = 0. This, however, contradicts
Lemma 2.5, hence we conclude that M is not Loeb equivalent to any hyperfinite
probability space.

In summary, both Question 1 and Question 2 have negative answers. In general,
if N Loeb extends M, it needn’t be the case that M is equivalent to a subspace of
N .

3. A reformulation of the third question

In this and the following sections, we give a partial answers to Question 3. In
this section, we reduce Question 3 to the following question in the hyperfinite
case: for hyperfinite spaces, is the internal algebra generated by the union of two
Loeb equivalent internal algebras a subset of the Loeb extension of one of the two
generating algebras?

Let (Ω,F , μ) be an internal probability space and let G be an internal algebra
on Ω. The following theorem shows that G ⊂ F if and only if it is possible to define
an internal measure ν on (Ω,G) such that (Ω,F , μ) Loeb extends (Ω,G, ν).
Theorem 3.1. Suppose M = (Ω,F , μ) is a hyperfinite probability space and G is
a hyperfinite algebra on Ω. Then (Ω,F , μ) Loeb extends (Ω,G, P ) for some internal
probability measure P if and only if G ⊂ F .

Proof. Suppose, for some internal probability measure P , (Ω,F , μ) Loeb extends
(Ω,G, P ). Then we have G ⊂ F which implies that G ⊂ F .

Now suppose G ⊂ F . As F is hyperfinite, by the transfer principle, there exists
an internal subset F0 of F such that

(1) F0 is a ∗partition of Ω
(2) Each A ∈ F0 is an atom of F , i.e., for any non-empty E ∈ F , E ⊂ A ⇒

E = A.

Any F ∈ F is a hyperfinite union of elements from F0, i.e., F0 internally generates
the algebra F . Similarly, there exists an internal subset G0 of G such that

(1) G0 is a ∗partition of Ω
(2) Each A ∈ G0 is an atom in G.

Let U = {A ∩ B : A ∈ F0, B ∈ G0, A ∩ B �= ∅}. It is easy to see that U forms a
∗partition of Ω and every element in the algebra generated by F ∪G can be written
as a hyperfinite union of elements in U . For F ∈ F0, let UF = {F ∩ B : B ∈
G0, B ∩ F �= ∅}. Then U =

⋃
F∈F0

UF and UF is hyperfinite for every F ∈ F0. We

now define a function P ′ : U → ∗[0, 1]. For every U ∈ U , U ∈ UF0
for exactly one

F0 ∈ F0, let P
′(U) = μ(F0)

|UF0
| where |UF0

| denotes the internal cardinality of UF0
.

Claim 3.2. For every A ∈ F , μ(A) =
∑

U∈U,U⊂A P ′(U).

Proof. Pick A ∈ F . Let FA = {F ∈ F0 : F ⊂ A}. Every U ∈ U such that U ⊂ A
is an element of exactly one element in FA. Moreover, as U forms a ∗partition of
Ω, an element in U is either a subset of A or disjoint from A. Thus, we have

μ(A) =
∑

F∈FA

μ(F ) =
∑

F∈FA

∑

U∈U,U⊂F

μ(F )

|UF |
=

∑

U∈U,U⊂A

P ′(U).

�
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Define P : G → ∗[0, 1] by letting P (G) =
∑

U∈U,U⊂G P ′(U).

Claim 3.3. P is an internal probability measure on (Ω,G).
Proof. Clearly we have P (∅) = 0 and P (Ω) = 1. Let G1, G2 ∈ G be two disjoint
sets. Let U0 ⊂ G1 ∪G2 be an element of U . As U forms a ∗partition of Ω and both
G1 and G2 can be written as a hyperfinite union of elements in U , we can conclude
that U0 is either a subset of G1 or a subset of G2. Thus, we have

P (G1 ∪G2) =
∑

U∈U,U⊂G1∪G2

P ′(U)(3.1)

=
∑

V ∈U,V ⊂G1

P ′(V ) +
∑

E∈U,E⊂G2

P ′(E)(3.2)

= P (G1) + P (G2).(3.3)

�
We now show that (Ω,F , μ) Loeb extends (Ω,G, P ). Pick G ∈ G. Let Gi =⋃
{F ∈ F : F ⊂ G} and let Go =

⋂
{F ∈ F : G ⊂ F}. As F is hyperfinite, both

Gi and Go are elements of F . Moreover, as G ⊂ F , we have μ(Gi) ≈ μ(Go), which
implies that μ(G) = st(μ(Gi)). As Gi ⊂ G ⊂ Go, we have

∑
U∈U,U⊂Gi

P ′(U) ≤
P (G) ≤

∑
U∈U,U⊂Go

P ′(U). By Claim 3.2, we have
∑

U∈U,U⊂Gi
P ′(U) = μ(Gi)

and
∑

U∈U,U⊂Go
P ′(U) = μ(Go). Thus, we can conclude that P (G) = st(P (G)) =

st(μ(Gi)) = μ(G), completing the proof. �
The following theorem gives a partial answer to Question 3.

Theorem 3.4. Let (Ω,F , μ) be a hyperfinite probability space and let G be a hy-
perfinite algebra on Ω. Let H be the internal algebra generated by F ∪ G. Then
(Ω,H, P ) is Loeb equivalent to (Ω,F , μ) for some internal probability measure P if
and only if H ⊂ F .

Proof. Suppose there exists an internal probability measure P such that (Ω,H, P )
is Loeb equivalent to (Ω,F , μ). Then we have H = F which implies that H ⊂ F .

Now suppose H ⊂ F . By Theorem 3.1, there exists an internal probability
measure P on (Ω,H) such that (Ω,F , μ) Loeb extends (Ω,H, P ). Thus, we have
P (F ) ≈ μ(F ) for every F ∈ F . By Theorem 2.1, (Ω,H, P ) Loeb extends (Ω,F , μ)
and we have the desired result. �

It is natural to ask if Theorem 3.4 remains valid without the hyperfinite assump-
tion.

Open Problem 1. Let M = (Ω,F , μ) and N = (Ω,G, ν) be two internal proba-
bility spaces that are not hyperfinite. Let H be the internal algebra generated by
F ∪G. Suppose M is Loeb equivalent to N , and H ⊂ F . Must there be an internal
probability measure P on H such that M is Loeb equivalent to (Ω,H, P )?

4. Addtional results on the third question

By Theorem 3.4, a positive answer to the following question leads to a positive
answer to Question 3 in the hyperfinite case.

Open Problem 2. Let (Ω,F , μ) be a hyperfinite probability space and let G be
a hyperfinite algebra on Ω such that G ⊂ F . Let H be the hyperfinite algebra
generated by F ∪ G. Is H ⊂ F?
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We suspect the answer to the question posed in Open Problem 2 is negative.
However, we shall momentarily give a sufficient condition for a positive answer.

Throughout this section, let M = (Ω,F , μ) and N = (Ω,G, ν) be two hyperfinite
probability spaces and let H be the internal algebra generated by F ∪ G. We use
the same notation as in the proof of Theorem 3.1. Throughout this section, let F0

be a set of atoms for F , i.e., an internal subset of F such that

(1) F0 is a ∗partition of Ω
(2) For every A ∈ F0, if there exists non-empty E ∈ F such that E ⊂ A, then

E = A.

Similarly, let G0 be a set of atoms for G, i.e., an internal subset of G such that

(1) G0 is a ∗partition of Ω
(2) For every A ∈ G0, if there exists non-empty E ∈ G such that E ⊂ A, then

E = A.

Let U = {A ∩ B : A ∈ F0, B ∈ G0, A ∩ B �= ∅}. Then U forms a ∗partition of
Ω and every element in H can be written as a hyperfinite union of elements in
U . Assuming G ⊂ F , it follows that U ⊂ F . However, it is not clear whether all
hyperfinite (not finite) unions of elements in U are elements of F .

The following lemma provides a simple sufficient condition under which H ⊂ F .
Define F ′

0 = {F ∈ F0 : F intersects at least two elements in G0}.

Theorem 4.1. Suppose G ⊂ F and μ(
⋃
F ′

0) ≈ 0. Then H ⊂ F .

Proof. Let F1 = F0 \ F ′
0. Pick H ∈ H and, without loss of generality, assume that

H =
⋃K

i=1(Ai ∩ Bi) where Ai ∈ F , Bi ∈ G and K ∈ ∗
N. Let V = {Ai ∩ Bi :

i ≤ K}. Then H = H1 ∪ H2 where H1 =
⋃
{(Ai ∩ Bi) ∈ V : Ai ∈ F ′

0} and
H2 =

⋃
{(Ai∩Bi) ∈ V : Ai ∈ F1}. Clearly, H1 is a subset of

⋃
F ′

0. As μ(
⋃
F ′

0) ≈ 0,
by the completeness of Loeb measure, H1 is Loeb measurable and μ(H1) = 0. Note
that, for every element F ∈ F1, there exists an unique G ∈ G0 such that F ∩G �= ∅
and hence F ⊂ G. Thus, for every Ai ∈ F1, Ai ∩ Bi is either Ai or ∅. Thus, we
know that H2 ∈ F . Hence we conclude that H ∈ F , completing the proof. �

In the remainder of this section, we show that F ′
0 contains an internal subset B

such that

(1) μ(
⋃

B) ≈ 0;
(2)

⋃
B ∩G �= ∅ for every G ∈ G′

0.

Let us start with the following lemma.

Lemma 4.2. Let (Ω,F , μ) be a hyperfinite probability space and let G be a hyper-
finite algebra on Ω such that G ⊂ F . Let B be an internal subset of F ′

0. Suppose
there exists G1 ∈ G such that both G1 and Ω \ G1 intersect every element in B.
Then μ(

⋃
B) ≈ 0.

Proof. Let FG1
=

⋂
{F ∈ F : G1 ⊂ F}. Since G1 intersects every element in B,

we know that
⋃

B ⊂ FG1
. Thus, by the Loeb measurability of G1, we know that⋃

B \G1 has Loeb measure 0. Similarly, we can conclude that
⋃

B \ (Ω \G1) has
Loeb measure 0. Thus, we can conclude that μ(

⋃
B) ≈ 0. �

In what follows, let us write G′
0 = {G ∈ G0 : (∃F ∈ F ′

0)(G ∩ F �= ∅)}.
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Theorem 4.3. Let (Ω,F , μ) be a hyperfinite probability space and let G be an
internal algebra on Ω such that G ⊂ F . Suppose F ′

0 is non-empty. Then there
exists an internal B ⊂ F ′

0 such that

(A) μ(
⋃

B) ≈ 0;
(B)

⋃
B ∩G �= ∅ for every G ∈ G′

0.

Proof. We now find a hyperfinite sequence G1, . . . , GK using the following algo-
rithm, which takes hyperfinitely many steps to complete.

(1) Pick any element G1 ∈ G′
0 and let BG1

= {C ∈ F ′
0 : C ∩G1 �= ∅}.

(2) For k ≥ 2, assuming G1, . . . , Gk−1 have already been chosen, pick Gk ∈ B′
0

such that Gk ∩
⋃k−1

i=1

⋃
BGi

= ∅.
We continue this process until no Gk as in Item (2) can be found, which must
happen after a hyperfinite number of steps. Suppose that K ∈ ∗

N is such that GK

is the last element of G′
0 found by our algorithm, and consider the set

⋃K
i=1 BGi

.

Note that
⋃K

i=1 BGi
is an internal subset of F ′

0, since by construction, the sequence
G1, . . . , GK is internal.

Claim 4.4. μ(
⋃⋃K

i=1 BGi
) ≈ 0.

Proof. It is clear that
⋃K

i=1 Gi intersects with every element in
⋃K

i=1 BGi
. Pick

A ∈
⋃K

i=1 BGi
. By construction, there exists an unique 1 ≤ j ≤ K such that

A ∈ BGj
. As A ∈ F ′

0, we conclude that A ∩ (Ω \ Gj) �= ∅. For every i �= j,

we also have A ∩ (Ω \ Gi) �= ∅, hence we conclude that both
⋃K

i=1 Gi and its

complement intersect with every element of
⋃K

i=1 BGi
. Thus, by Lemma 4.2, we

have μ(
⋃⋃K

i=1 BGi
) ≈ 0. �

Claim 4.5.
⋃⋃K

i=1 BGi
∩G �= ∅ for every G ∈ G′

0.

Proof. Suppose not. Then there exists some G0 such that

K⋃

i=1

⋃
BGi

∩G0 =
⋃ K⋃

i=1

BGi
∩G0 = ∅.(4.1)

Thus, G0 shall be added into the algorithm and the length of the algorithm would
be K + 1. This contradicts with the fact that our algorithm ends in K steps. �

Combining Claim 4.4 and Claim 4.5, we have the desired result. �
We conclude the paper with the following open problem.

Open Problem 3. Let M = (Ω,F , μ) and N = (Ω,G, ν) be two hyperfinite
probability spaces. If μ(

⋃
F ′

0) > 0, is it possible that H ⊂ F?
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[Lin04] Tom Lindstrøm, Hyperfinite Lévy processes, Stoch. Stoch. Rep. 76 (2004), no. 6,
517–548, DOI 10.1080/10451120412331315797. MR2100020

[Loe75] Peter A. Loeb, Conversion from nonstandard to standard measure spaces and ap-
plications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122, DOI
10.2307/1997222. MR390154

[Loe76] Peter A. Loeb, Applications of nonstandard analysis to ideal boundaries in poten-
tial theory, Israel J. Math. 25 (1976), no. 1-2, 154–187, DOI 10.1007/BF02756567.
MR457757

[Per81] Edwin Perkins, A global intrinsic characterization of Brownian local time, Ann.
Probab. 9 (1981), no. 5, 800–817. MR628874

[Ras78] Salim Rashid, Existence of equilibrium in infinite economies with production, Econo-
metrica 46 (1978), no. 5, 1155–1164, DOI 10.2307/1911440. MR508689

[Rau07] Michael T. Rauh, Nonstandard foundations of equilibrium search models, J. Econom.
Theory 132 (2007), no. 1, 518–529, DOI 10.1016/j.jet.2004.07.011. MR2285619

[Sti97] Maxwell B. Stinchcombe, Countably additive subjective probabilities, Rev. Econom.
Stud. 64 (1997), no. 1, 125–146, DOI 10.2307/2971743. MR1433545

[Sto86] Andreas Stoll, A nonstandard construction of Lévy Brownian motion, Probab. The-
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