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(Communicated by David Futer)

Abstract. We show that if G is of type Fn, and G splits as a finite graph of
groups, then the vertex groups are of type Fn if the edge groups are of type
Fn.

1. Introduction

Definition 1.1. A group G is Fn if G is π1 of an aspherical complex X whose
n-skeleton is compact. Equivalently, G is Fn if it acts freely and cocompactly on
an (n− 1)-connected n-complex. See [Geo08, Sec 7.2].

Every group is F0 since (−1)-connected just means nonempty. F1 means finitely
generated, and F2 means finitely presented.

The purpose of this note is to explain the following which is proven in Theo-
rem 5.1:

Theorem 1.2. Let G split as a finite graph of groups with Fn edge groups. If G
is Fn then each vertex group is Fn.

For n = 1, Theorem 1.2 is the following. It is obtained in [DD89] but the idea
goes back to Stallings’ binding ties [Sta65], and the theorem is surely older.

Theorem 1.3. Let G be a finitely generated group that splits as a graph Γ of groups.
If each edge group is finitely generated then each vertex group is finitely generated.

For n = 2, Theorem 1.2 is the following:

Theorem 1.4. Let G be a finitely presented group that splits as a graph of groups.
If each edge group is finitely presented then each vertex group is finitely presented.

Theorem 1.4 appears to be a “folk theorem”. Dunwoody suggested to us that it
could be obtained by applying [DD89, Thm VI.4.4] followed by a folding sequence
[BF91]. There is a proof of it by Guirardel-Levitt who obtained a more powerful
version relating to relative properties [GL17, Prop 4.9].

Theorem 1.2 is the converse to the following classical statement, which holds
since a graph of K(π, 1) spaces with π1-injective attaching maps is a K(π, 1). See
Theorem 2.3.
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Theorem 1.5. Let G split as a finite graph of groups with Fn edge groups. If each
Gv is Fn then G is Fn.

Remark 1.6. Theorem 1.2 holds with the word “finite” removed. Indeed, if a finitely
generated group G splits as a graph Γ of groups then for each vertex v of Γ there
is a finite subgraph Γ′ containing v such that map Γ′ → Γ induces an isomorphism
between the fundamental groups of graphs of groups.

In contrast, Theorem 1.5 fails to hold with “finite” removed. For instance, a free
group of infinite rank splits as an infinite graph of trivial groups.

2. Examples and a problem

There are many examples illustrating the failure of Fn for the vertex or edge
groups of an Fn group that splits as a graph of groups. The most highly studied
examples arise in the course of studying finiteness properties of the subgroup N
arising from a short exact sequence:

1 → N → G → Z → 1

In this case, G ∼= N � Z can be thought of as an HNN extension where the edge
and vertex groups are copies of N .

There are many examples where G is Fn but N fails to be Fn. Stallings and
then Bieri [Sta63, Bie81] understood the motivating case where G = (F2)

n and
the homomorphism sends the generators of each F2 factor to the generators of Z.
Remarkably, while G is Fn, the subgroup N is Fn−1 but not Fn. This led to the
Morse theory of Bestina-Brady providing a plethora of similar examples [BB97].

In fact, in this context, it is difficult for N to be Fn without cd(N) < cd(G), as
explained by Bieri [Bie81].

Example 2.1. The groups G = N �Z above provide examples of Fn groups that
split as an HNN extension with an Fn−1 edge group but where the vertex group is
not Fn. There are likewise Fn amalgamated free products K = V ∗E V ′ such that
E is Fn−1 but V and V ′ are not Fn. Indeed K = G ∗ Z has this property. For,
we may express G ∗ Z as (N ∗ Z) ∗N∗N (N ∗ Z). Note that N ∗ Z is Fn−1 (a trivial
instance of Theorem 1.5) but not Fn by Theorem 1.2 since N isn’t. To verify the
amalgamated product, consider the splitting of K = G ∗ Z as a graph of groups
whose underlying graph has edges a, b, c that are each joined to vertices u, v. Let
Gu = N and Gv = N , and let Ga = N and Gb = N but Gc = 1. We can choose
the inclusions of Ga and Gb into Gu, Gv so that the subgraph of groups over Θ− c
yields G. The subgraphs over Θ − a and Θ − b yield the groups N ∗ Z, and the
subgraph over c yields N ∗N . Thus the splitting of Θ as (Θ− a) ∪c (Θ− b) yields
G ∗ Z = (N ∗ Z) ∗N∗N (N ∗ Z) as claimed.

Example 2.2. Let E ⊂ V be a subgroup (of a free group) that is not finitely
generated. Let G = V ∗EV be the double of V along E. Then G is finitely generated
and splits as an amalgamated product where each vertex group is finitely generated
but the edge group is not finitely generated. Note that G is not f.p. since H2(G) is
not finitely generated (see Theorem 1.5). One can likewise produce doubles of the
same type where G and V are Fn but E is not Fn.
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The following is a weak form of [Geo08, Thm 7.3.1]:

Theorem 2.3. Let G act cocompactly on an (n − 1)-connected complex. Suppose
that for each g ∈ G, if g stabilizes a cell then g fixes it pointwise. If the stabilizer
of each cell is Fn then G is Fn.

In parallel with Theorem 1.2 but generalizing from trees to CAT(0) cube com-
plexes, we propose two formulations of a converse which we believe are equivalent:

Conjecture 2.4. Let G be Fn and suppose G acts cocompactly on a CAT(0) cube
complex. Then each vertex stabilizer is Fn provided the stabilizer of each k-cube is
Fn for k > 0.

Conjecture 2.5. Let G be Fn and suppose G acts cocompactly on a CAT(0) cube
complex. Then each vertex stabilizer is Fn provided the stabilizers of hyperplanes
of each codimension are Fn.

Conjecture 2.5 relates to results about quasiconvexity of the vertex groups ob-
taining stronger conclusions with geometric hypotheses [BW13,HR17,GM18].

The following shows that assuming all codimension-1 hyperplane stabilizers are
Fn does not ensure that vertex stabilizers are Fn.

Example 2.6. Let G = F2×Z = 〈a, b〉×〈t〉. Let φ1 : G → Z be the homomorphism
induced by φ1(a) = φ1(b) = 0 and φ1(t) = 1. Let φ2 : G → Z be the homomorphism
induced by φ2(a) = φ2(b) = −1 and φ2(t) = 1. Let φ : G → Z× Z be the product
homomorphism φ(g) = (φ1(g), φ2(g)). Composing with the standard action of Z2

on R
2 we obtain an action of G on R

2 which we view as a CAT(0) square complex.
The stabilizer of any point (and hence of 0-cubes and squares) equals ker(φ).

The stabilizers of the hyperplanes in the two directions are equal to ker(φ1) and
ker(φ2).

We claim that ker(φ1) and ker(φ2) are finitely generated but ker(φ) = ker(φ1)∩
ker(φ2) is not finitely generated. Indeed, ker(φ1) = 〈a, b〉 and ker(φ2) = 〈at, bt〉.
However, ker(φ) is the kernel of the homomorphism 〈a, b〉 → Z sending a and b to
the generator 1, and thus not finitely generated [Mol68].

3. Background

Choose a generator α of Hn(S
n). The Hurewicz homomorphism h : πn(X, x) →

Hn(X) is defined by viewing any based n-sphere f : (Sn, s) → (X, x) as an n-cycle
via h(f) = [f∗(α)].

We use the following form of the Hurewicz Theorem [Hat02, Thm 4.32]:

Theorem 3.1. If X is (n−1)-connected and n ≥ 2 then H̃k(X) = 0 for k < n and
h : πnX → Hn(X) is an isomorphism.

Let Dn ⊂ Sn be a hemisphere containing the basepoint s, and let [α] represent a
generator of Hn(S

n, Dn). The relative Hurewicz homomorphism h : πn(X,A, a) →
Hn(X,A) is defined by viewing any relative based n-sphere f : (Sn, Dn, s) →
(X,A, a) as an n-cycle via h(f) = [f∗(α)]. We use the following relative form
of the Hurewicz Theorem [Hat02, Thm 4.37] adapted to the simpler case where A
is simply-connected (to ensure injectivity of h).

Theorem 3.2. For n ≥ 2, if (X,A) is (n−1)-connected and A is simply-connected
and nonempty, then Hi(X,A) = 0 for i < n and h : πn(X,A, a) → Hn(X,A) is an
isomorphism.
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Remark 3.3. The (n − 1)-connectivity of X holds precisely when Hm(X) = 0 for
m < n and π1X = 1 if n ≥ 2. Note that (X,A) is (n− 1)-connected when both X
and A are (n− 1)-connected. For details on k-connectivity, see [Hat02, pp.346].

For low dimensions we use that path connectivity is detected by H̃0 = 0, as well
as the following well-known statement [Hat02, Thm 2A.1]:

Theorem 3.4. If X is path connected then π1X → H1(X) is a surjection.

The following statement will also be crucial [Geo08, Thm 8.2.1]:

Theorem 3.5. Let H be Fm with m ≥ 1. If H acts freely and cocompactly on an
(m−1)-complex Z that is (m−2)-connected then we can add finitely many H-orbits
of m-cells to obtain an H-cocompact free action on an (m− 1)-connected complex.

4. Useless tree definitions and useful subtree lemmas

Definition 4.1 (Trees). Let T be a tree. We let T ′ denote its barycentric subdivi-
sion. The original vertices of T are called T -vertices of T ′, and we sometimes refer
to edges of T ′ as half-edges of T . The barycenter of an edge e of T is denoted by
ė. For each T -vertex v of T ′, let S(v) be the union of v and the closed half-edges
adjacent to v. When v �= v′ the intersection S(v)∩S(v′) is either empty or consists
of the barycenter of an edge e joining v, v′. Thus T is isomorphic to the nerve of
the covering {S(v)}v∈T 0 of T ′.

Definition 4.2 (Trees of complexes). As we will be working with G-equivariant
maps X → T from complexes to trees, we delineate the framework that we work in.
A tree of complexes is a complex X and a map φ : X → T such that the resulting
map φ : X → T ′ is cellular and surjects onto the vertices of T ′.

For each T -vertex v, let Xv = φ−1(S(v)). For each T -edge e, let Xe = φ−1({ė}).
The subcomplexes {Xv} and {Xe} are the vertex spaces and edge spaces of X.

With this viewpoint, letting X = T , the vertex spaces of T are the stars (S(v))
and the edge spaces of T are the barycenters ė. Hence the map X → T maps vertex
spaces to vertex spaces and edge spaces to edge spaces (possibly not surjectively
when X is not connected).

Our seemingly artificial requirement that X → T ′ is surjective on vertices allows
us to naturally recover T from X as the nerve of the covering by vertex spaces.

Finally, as φ : X → T ′ is G-equivariant and surjective on vertices we have
Stabilizer(Xv) = Gv and Stabilizer(Xe) = Ge for each vertex v and edge e of T .

Definition 4.3 (Footprint). Let X → T ′ be a cellular map. Let c be a nontrivial
n-chain in X. The footprint of c is the smallest subtree of T ′ containing all images
of n-cells of c. (We use the n-cells of c with a nonzero coefficient and ignore
orientations.)

We likewise define the footprint of a combinatorial path in X.
A footprint F is finite. Its complexity is the number of T -vertices in F . A T -leaf

is a T -vertex of F that is incident with exactly one T -edge in F .

Lemma 4.4 (H-arboricide). Let X split as a tree of complexes. Suppose each edge
space Xe is (m− 1)-connected and each vertex space Xv is (m− 1)-connected.

Let c ∈ H̃m(X). Then we can add finitely many (m+ 1)-balls to the vertex and

edge spaces to obtain X ′ such that c maps to 0 under H̃m(X) → H̃m(X ′).
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Proof. We will prove the result by induction on the complexity of the footprint of
the cycle c. We focus on the cases m = 1 and m ≥ 2 together. We turn to the
case m = 0 at the end. That proof is essentially the same but is stripped of the
interesting algebraic topology, and the reader may wish to consider that case first.

When the complexity is 0, the footprint is the midpoint of an edge e. By The-
orem 3.1, as Xe is (m− 1)-connected [c] ∈ Hm(Xe) is represented by an m-sphere,
and we attach an (m+ 1)-ball to fill it. The analogous statement holds for m = 1
using Theorem 3.4.

When the complexity is 1 the footprint consists of a vertex v and possibly some
half edges, the argument is similar: By Theorem 3.1 or Theorem 3.4, as Xv is
(m− 1)-connected [c] ∈ Hm(Xv) is represented by an m-sphere, and we attach an
(m+ 1)-ball to fill it.

Otherwise, F has a vertex v that is incident with a single edge e. Then c = cv+c′

where cv is the part of the m-chain in Xv and c′ is an m-chain consisting of a sum
of oriented m-cells outside of Xv.

Note that (Xv, Xe) is (m − 1)-connected (for m ≥ 1) since Xv and Xe are. By
Theorem 3.2, the element cv is the image of a relative ball bv ∈ πm(Xv, Xe). By
(m − 1)-connectedness of Xe, the (m − 1)-sphere ∂bv in Xe bounds an m-ball ce
in Xe. We attach an (m + 1)-ball av whose boundary is bv ∪∂bv ce. Now c is
homologous to c′ in the space with the added balls. Finally, the footprint of c′ has
fewer T -vertices than the footprint of c does, and so either c′ = 0 or its complexity
is smaller.

We now consider the case where m = 0. When the footprint of c is the midpoint
of an edge e, we can add 1-balls to Xe whose endpoints agree with the cancelling
oriented points of c (here is where we use reduced homology). And we can likewise
do the same when the footprint of c contains a single vertex v. Otherwise, the
footprint contains a vertex v with a single edge e, we let c = cv+c′ where cv =

∑
±pi

consists of the oriented 0-cells of c that lie in Xv. As Xe is (−1)-connected (i.e.
nonempty), we let ce ∈ Xe be a 0-cell. We then attach 1-balls joining pi and ce.

Then [c′] = [c] in H̃0 of the space obtained by adding these 1-balls as before. But
either c′ = 0 or the complexity of the footprint of c′ is strictly smaller. �

Lemma 4.5 (π1-arboricide). Let X split as a tree of complexes. Suppose each edge
space Xe is connected and each vertex space Xv is connected.

Let c → X be a map from a circle to X. Then we can add finitely many 2-balls
to the vertex and edge spaces to obtain X ′ such that c is null-homotopic in X ′.

Proof. By homotoping, we may assume that c → X is a combinatorial path to X1.
We will prove the result by induction on the complexity of the footprint F of c.

Suppose the complexity is at most 1. If F consists of the the midpoint of an edge
e then we attach a 2-cell d to Xe along ∂d = c. Likewise, if F contains a single
T -vertex v then we attach a 2-cell d to Xv along ∂d = c.

When the complexity is ≥ 2, the path c → T has one or more “backtracks”
which shall organize a decrease of complexity. A backtrack of c → T consists of a
subpath k′PQk′′ ⊂ c where PQ → T maps to a single vertex space Xv but k′, k′′

do not map to Xv, and the initial and terminal points p, q of PQ map to vertices
in an edge space Xe. By connectivity of Xe, there is a combinatorial path S → Xe

from q to p. This enables us to push as follows: We attach a disk D to Xv with ∂D
attached along the cycle PQS. Letting c = c′PQ, in the presence of D, the cycle c
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is homotopic to c′S−1 and c′ has fewer backtracks. Repeating this process finitely
many times, we arrive at a cycle c′′ with a smaller footprint in T . �

5. Main result

In this section we prove our main result expressed in terms of actions on trees
instead of graphs of groups.

Theorem 5.1. Let G act cocompactly and without inversions on a tree T . Suppose
G is Fn and each edge group is Fn. Then there is a free action of G on an n-
dimensional complex X and a G-equivariant cellular map X → T ′ such that:

(1) X is G-cocompact.
(2) X is (n− 1)-connected.
(3) each Xe is (n− 1)-connected.
(4) Consequently: each Xv is (n− 1)-connected.

Corollary 5.2. Gv is Fn for each vertex v.

Proof. The free action of Gv on Xv is cocompact by Conclusion (1). Hence the
result follows by Conclusion (4) as Xv �= ∅. �

Before proceeding to the main part of the proof, we explain the final consequence:

Proof that (2)+(3) ⇒ (4). The m-acyclicity of Xv holds for 0 ≤ m < n as follows:
Let X = Xv ∪ X̄v where X̄v = X − Int(Xv). Note that Xv ∩ X̄v = ∪eXe where e
varies over the edges at v. Exactness of

Hm(Xv ∩ X̄v) → Hm(Xv)⊕ Hm(X̄v) → Hm(X)

shows that since Hm(Xv∩X̄v) = 0 for 0 < m ≤ n−1 we have an injection Hm(Xv) →
Hm(Xv ∪ X̄v) = 0. When m = 0, the image of H0(Xv ∩ X̄v) in H0(Xv) ⊕ H0(X̄v)
intersects H0(Xv) trivially so H0(Xv) → H0(X) is injective. Indeed, H0(Xv∩X̄v) =
H0(�eXe) → H0(X̄v) where the final homomorphism is an isomorphism since each
Xe maps to a distinct component of X̄v as X is a tree of spaces.

π1-injectivity of Gv\Xv → G\X is a standard consequence of π1-injectivity of
each Ge\Xe → Gv\Xv, that is, the vertex groups in a graph of groups embed since
the edge groups embed. Indeed, consider a closed combinatorial path P → Xv.
Since X is 1-connected, there is a disk diagram D → X2, which we can assume
to be combinatorial. The preimage of each Xe provides a subdiagram that can
be replaced by a diagram in Xe since Xe is 1-connected. We thus obtain a disk
diagram for P lying entirely in Xv.

Finally, (n − 1)-connectivity of Xv holds since Hm(Xv) = 0 for m < n and
π1Xv = 1 if n ≥ 2 as in Remark 3.3. �

Main proof of Theorem 5.1. We prove the asserted statement Sn by induction on
n.

The base case where n = 0 holds as follows: Let V and Ė be representatives
of G-orbits of the vertices and barycenters of edges of T . Let X = G × (V � Ė)
where G acts by g(a, b) = (ga, b). The map X → T ′ is given by (g, k) �→ gk which
is G-equivariant. Observe that X → T ′ is surjective on the vertices of T ′. The
G-cocompactness and nonemptyness properties are immediate.

Suppose Sn−1 holds. Note that if G and each Ge is Fn then G and each Ge is
Fn−1. Thus there exists a free cocompact action of G on an (n − 1)-complex X
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and a G-equivariant map X → T ′ such that X is (n − 2)-connected and each Xe

and Xv is (n− 2)-connected and in particular, nonempty.
By Theorem 3.5 we can add finitely many G-orbits of n-cells to the edge spaces

so that each edge space is now (n − 1)-connected. Let Y denote the resulting n-
complex with G-equivariant map Y → T ′. Note that Y remains (n− 2)-connected
since we have only added n-balls. Note that X = Y n−1.

By Theorem 3.5, there are finitely many G-orbits of n-balls {bni }i∈I to add to Y
to obtain an (n− 1)-connected complex.

A key point here is that if we attach them we might not obtain a G-equivariant
map to T ′. We shall therefore kill each ∂bni using a collection of balls that are added
within vertex spaces as follows:

For n = 2, Lemma 4.5 provides a finite collection {b̄2ij}j∈Ji
of 2-balls such that

∂bni is nullhomotopic in (Y ∪
⋃
b̄2ij). For n �= 2, regard ∂bni as a (n−1)-cycle (which

is reduced if n = 1). Lemma 4.4 now provides a finite collection {b̄nij}j∈Ji
of n-balls

such that ∂bni maps to 0 in H̃n−1(Y ∪
⋃
b̄nij).

Let X ′ = Y ∪
⋃

i∈I

⋃
j∈Ji

⋃
g∈G gb̄nij . Then g∂bni = 0 in H̃n−1(X

′). Thus

H̃n−1(X
′) = 0. For n = 1 it follows that X ′ is connected. For n > 2, Theo-

rem 3.2 implies that X ′ is (n − 1)-connected. For n = 2 it follows that X ′ is
1-connected as above.

A map X ′ → T ′ exists since the n-balls are attached along boundaries that lie
within vertex spaces. The G-cocompactness of X ′ holds since only finitely many
G-orbits of balls where added. Each edge space X ′

e = Ye is unchanged and hence
(n− 1)-connected. �
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