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Abstract. In this paper we study the existence of periodic solutions to the
partial functional differential equation{

dy(t)
dt

= By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,

y0 = ϕ ∈ CB .

where B : Y → Y is a Hille-Yosida operator on a Banach space Y . For CB :=

{ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈ D(B)}, yt ∈ CB is defined by yt(θ) = y(t + θ),

θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and f : R×CB → Y is a
continuous map and is T -periodic in the time variable t. Sufficient conditions

on B, L̂ and f(t, yt) are given to ensure the existence of T -periodic solutions.
The results then are applied to establish the existence of periodic solutions
in a reaction-diffusion equation with time delay and the diffusive Nicholson’s
blowflies equation.

1. Introduction

The aim of this paper is to study the existence of periodic solutions for the
following partial functional differential equation (PFDE):

(1.1)

{
dy(t)
dt = By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,

y0 = ϕ ∈ CB.

where B : Y → Y is a Hille-Yosida operator on a Banach space Y. Denote CB :=
{ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈ D(B)}. yt ∈ CB is defined by yt(θ) = y(t + θ),

θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and f : R × CB → Y is a
continuous map and is T -periodic in the time variable t.

The existence of periodic solutions in abstract evolution equations has been
widely studied in the literature. By applying Horn’s fixed point theorem to the
Poincaré map, Liu [12] and Ezzinbi and Liu [7] established the existence of bounded
and ultimate bounded solutions of evolution equations with or without delay, which
contains partial functional differential equation, implying the existence of periodic
solutions. Benkhalti and Ezzinbi [2] and Kpoumiè et al. [9] proved that under
some conditions, the existence of a bounded solution for some non-densely defined
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nonautonomous partial functional differential equations implies the existence of pe-
riodic solutions. The approach was to construct a map on the space of T -periodic
functions from the corresponding nonhomogeneous linear equation and use a fixed-
point theorem concerning set-valued maps. Li [10] used analytic semigroup theory
to discuss the existence and stability of periodic solutions in evolution equations
with multiple delays. Li et al. [11] proved several Massera-type criteria for linear
periodic evolution equations with delay and applied the results to nonlinear evo-
lution equations, functional, and partial differential equations. For fundamental
theories on partial functional differential equations, we refer to the monograph of
Wu [17].

In this paper, we study the existence of periodic solutions of the partial functional
differential equation (1.1). In section 2, we recall some preliminary results on
existence of mild periodic solutions of abstract semilinear equations. In section
3, using the existence theorem of mild periodic solutions presented in section 2,
we show the existence of periodic mild solutions of partial functional differential
equations. In section 4, we apply the main results of this paper to a reaction-
diffusion equation with time delay and the diffusive Nicholson’s blowflies equation.

2. Preliminary results

In this section, we first recall an existence theorem of classical solutions of partial
functional differential equations. Then we review a theorem obtained in Su and
Ruan [16], which will be applied to prove our main theorem in the next section.

Consider an abstract semilinear functional differential equation on a Banach
space X given by

(2.1)

{
du(t)
dt = A0u(t) + F (t, ut), ∀t ≥ 0,

u0 = ϕ ∈ CX ,

where A0 : D(A0) ⊆ X → X is a linear Hille-Yosida operator, CX = C([−r, 0], X)
denotes the space of continuous functions from [−r, 0] to X with the uniform con-
vergence topology. ut(θ) = u(t+θ) for θ ∈ [−r, 0], F is a function from [0,∞)×CX

into X, and ϕ ∈ CX is the given initial value.
The following theorem gives the existence of classical solutions of problem (2.1).

Theorem 2.1 (Ezzinbi and Adimy [6, Theorem 13]). Assume that F (t, ϕ) is con-
tinuous differentiable and satisfies the following locally Lipschitz conditions: for
each α > 0 there exists a constant C1(α) > 0 such that

|F (t, ϕ1)− F (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,

|DtF (t, ϕ1)−DtF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,

|DϕF (t, ϕ1)−DϕF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖
for all t ∈ [0, Tϕ] and ϕ1, ϕ2 ∈ CX with ‖ϕ1‖ , ‖ϕ2‖ ≤ α, where DtF and DϕF
denote the derivatives of F (t, ϕ) with respect to t and ϕ, respectively. For given
ϕ ∈ C1

X := C1([−r, 0], X) such that

ϕ(0) ∈ D(A0), ϕ
′(0) ∈ D(A0) and ϕ′(0) = A0ϕ(0) + F (0, ϕ),

let u(., ϕ) : [−r, Tϕ) → X be the unique integral solution of equation (2.1). Then,
u(., ϕ) is continuously differentiable on [−r, Tϕ) and satisfies equation (2.1).
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Now consider the abstract semilinear equation

(2.2)
du

dt
= Au(t) + F (t, u(t)), t ≥ 0

in a Banach space X, where A is a linear operator on X (not necessarily densely
defined) satisfying the Hille-Yoshida condition (see the following) and F : [0,∞)×
D(A) → X is continuous and T -periodic in t.

Assumption 2.2.

(H1) There exist M≥1 and ω∈R such that (ω,∞)⊂ρ(A) and ‖(λI −A)−n‖L(X)

≤ M
(λ−ω)n for λ > ω, n ≥ 1;

(H2) F : [0,∞) ×D(A) → X is continuous and Lipschitz on bounded sets; i.e.,
for each C > 0 there exists KF (C) ≥ 0 such that ‖F (t, u)− F (t, v)‖ ≤
KF (C) ‖u− v‖ for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(H3) F : [0,∞) ×D(A) → X is continuous and bounded on bounded sets; i.e.,
there exists LF (T, ρ) ≥ 0 such that ‖F (t, u)‖ ≤ LF (T, ρ) for t ≤ T and
‖u‖ ≤ ρ.

Definition 2.3. A linear operator A : D(A) ⊂ X → X satisfying Assumption 2.2
(H1) is called a Hille-Yosida operator.

With these assumptions, we have the following result for equation (2.2).

Theorem 2.4 (Su and Ruan [16, Theorem 3.3]). Let Assumption 2.2 hold with
ω < 0, M = 1 and F being T -periodic in t. Suppose that there exists ρ > 0 such
that (N + T )KF (ρ) < 1 and (N + T )LF (T, ρ) ≤ ρ, where N = T

1−eωT . Then the

abstract semilinear equation (2.2) has a mild T -periodic solution.

3. Existence of periodic solutions

In this section, we rewrite the partial functional differential equation as an ab-
stract semilinear equation and present an existence theorem of periodic solutions.

Let B : D(B) ⊂ Y → Y be a linear operator on a Banach space (Y, ‖·‖Y ).
Assume that B is a Hille-Yosida operator; that is, there exist ωB ∈ R and MB > 0
such that (ωB,+∞) ⊂ ρ(B) and∥∥(λI −B)−n

∥∥ ≤ MB

(λ− ωB)n
, ∀λ > ωB, n ≥ 1.

Set Y0 := D(B). Consider the part of B in Y0, denoted B0, which is defined by

B0y = By, ∀y ∈ D(B0)

with

D(B0) := {y ∈ D(B) : By ∈ Y0}.
For r ≥ 0, set C := C([−r, 0];Y ) endowed with the supremum norm

‖ϕ‖∞ = sup
θ∈[−r,0]

‖ϕ(θ)‖Y .

Consider the PFDE

(3.1)

{
dy(t)
dt = By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,

y0 = ϕ ∈ CB,
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where CB := {ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈ D(B)}, yt ∈ CB is defined by yt(θ) =

y(t+θ), θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and f : R×CB → Y
is a continuous map.

Now we rewrite the PFDE (3.1) as an abstract non-densely defined Cauchy
problem such that our theorems can be applied. Firstly, following Ducrot et al. [5]
we regard the PFDE (3.1) as a PDE. Define u ∈ C([0,+∞)× [−r, 0], Y ) by

u(t, θ) = y(t+ θ), ∀t ≥ 0, ∀θ ∈ [−r, 0].

If y ∈ C1([−r,+∞), Y ), then

∂u(t, θ)

∂t
= y′(t+ θ) =

∂u(t, θ)

∂θ
.

Moreover, for θ = 0, we obtain

∂u(t, 0)

∂θ
= y′(t) = By(t)+L̂(yt)+f(t, yt) = Bu(t, 0)+L̂(u(t, .))+f(t, u(t, .)), ∀t ≥ 0.

Therefore, we deduce that u satisfy a PDE

(3.2)

⎧⎨
⎩

∂u(t,θ)
∂t − ∂u(t,θ)

∂θ = 0,
∂u(t,0)

∂θ = Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)), ∀t ≥ 0,
u(0, .) = ϕ ∈ CB.

In order to write the PDE (3.2) as an abstract non-densely defined Cauchy problem,
we extend the state space to take into account the boundary conditions. Let X =
Y × C with the usual product norm∥∥∥∥

(
y
ϕ

)∥∥∥∥ = ‖y‖Y + ‖ϕ‖∞ .

Define the linear operator A : D(A) ⊂ X → X by

(3.3) A

(
0Y
ϕ

)
=

(
−ϕ′(0) +Bϕ(0)

ϕ′

)
, ∀

(
0Y
ϕ

)
∈ D(A)

with
D(A) = {0Y } × {ϕ ∈ C1([−r, 0], Y ), ϕ(0) ∈ D(B)}.

Note that A is non-densely defined because

X0 := D(A) = 0Y × CB �= X.

Now define L : X0 → X by

L

(
0Y
ϕ

)
:=

(
L̂(ϕ)
0C

)
and F : R×X0 → X by

F (t,

(
0Y
ϕ

)
) :=

(
f(t, ϕ)
0C

)
.

Let

v(t) :=

(
0Y
u(t)

)
.

Then we can rewrite the PDE (3.2) as the following non-densely defined Cauchy
problem

(3.4)
dv(t)

dt
= Av(t) + L(v(t)) + F (t, v(t)), t ≥ 0; v(0) =

(
0Y
ϕ

)
∈ X0.
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To state an existence theorem of periodic solutions for equation (3.1), we make
the following assumptions.

Assumption 3.1.

(C1) f : R×CB → Y is Lipschitz on bounded sets; i.e., for each C > 0 there exists
Kf (C) ≥ 0 such that ‖f(t, u)− f(t, v)‖ ≤ Kf (C) ‖u− v‖ for t ∈ [0,∞) and
‖u‖ ≤ C and ‖v‖ ≤ C;

(C2) f : R×CB → Y is bounded on bounded sets; i.e., there exists Lf (T, ρ) ≥ 0
such that ‖f(t, u)‖ ≤ Lf (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions, we have the following result for equation (3.1).

Theorem 3.2. Let Assumption 3.1 hold with ωB < 0, MB = 1 and f being T-

periodic in t. Suppose that there exists ρ > 0 such that (N +T )(Kf (ρ)+
∥∥∥L̂∥∥∥

ρ
) < 1

and (N + T )(Lf (T, ρ) +
∥∥∥L̂∥∥∥

ρ
ρ) ≤ ρ, where N = T

1−eωBT , then equation (3.1) has

a T-periodic mild solution.

Proof. Since (3.1) can be written as (3.4), denote G(t, v(t)) = L(v(t)) + F (t, v(t)),
it suffices to prove that

(a) A satisfies Assumption 2.2 (H1) with ω = ωB < 0 and M = 1;
(b) G : [0,∞)× {0Y } × CB → Y × C satisfies Assumption 2.2 (H1) (H2);
(c) There exists ρ > 0 such that (N + T )KG(ρ) < 1 and (N + T )LG(T, ρ) ≤ ρ,

where N = T
1−eωT = T

1−eωBT .

It follows from Theorem 2.4 that equation (3.4) has a T -periodic mild solution,
which implies that equation (3.1) has a T -periodic mild solution with initial value
u(0, .) = ϕ ∈ CB.

From Lemma 3.6 and its proof in Ducrot et al. [5], we know that A as defined in
(3.3) is a Hille-Yoshida operator with ω = ωB < 0 and M = MB = 1, which proves
(a).

For ϕ1, ϕ2 ∈ CB such that ‖ϕ1‖ ≤ C and ‖ϕ2‖ ≤ C, we have(
0Y
ϕ1

)
,

(
0Y
ϕ2

)
∈ 0Y × CB = D(A)

and ∥∥∥∥
(

0Y
ϕ1

)∥∥∥∥ = ‖ϕ1‖ ≤ C,

∥∥∥∥
(

0Y
ϕ2

)∥∥∥∥ = ‖ϕ2‖ ≤ C.

Then ∥∥∥∥G(t,

(
0Y
ϕ1

)
)−G(t,

(
0Y
ϕ2

)
)

∥∥∥∥
=

∥∥∥∥L(
(

0Y
ϕ1

)
)− L(

(
0Y
ϕ2

)
) + F (t,

(
0Y
ϕ1

)
)− F (t,

(
0Y
ϕ2

)
)

∥∥∥∥
≤

∥∥∥∥L(
(

0Y
ϕ1

)
)− L(

(
0Y
ϕ2

)
)

∥∥∥∥+

∥∥∥∥F (t,

(
0Y
ϕ1

)
)− F (t,

(
0Y
ϕ2

)
)

∥∥∥∥
=

∥∥∥∥
(

L̂(ϕ1 − ϕ2)
0C

)∥∥∥∥+

∥∥∥∥
(

f(t, ϕ1)− f(t, ϕ2)
0C

)∥∥∥∥
=

∥∥∥L̂(ϕ1 − ϕ2)
∥∥∥
Y
+ ‖f(t, ϕ1)− f(t, ϕ2)‖Y



150 QIUYI SU AND SHIGUI RUAN

≤ Kf (C) ‖ϕ1 − ϕ2‖+
∥∥∥L̂∥∥∥

C
‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥

C
) ‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥

C
)

∥∥∥∥
(

0Y
ϕ1

)
−
(

0Y
ϕ2

)∥∥∥∥ .
So there exists KG(C) = Kf (C) +

∥∥∥L̂∥∥∥
C

such that∥∥∥∥G(t,

(
0Y
ϕ1

)
)−G(t,

(
0Y
ϕ2

)
)

∥∥∥∥ ≤ KG(C)

∥∥∥∥
(

0Y
ϕ1

)
−
(

0Y
ϕ2

)∥∥∥∥ .
Furthermore, for t ≤ T and

∥∥∥∥
(

0Y
ϕ

)∥∥∥∥ ≤ ρ, we have

∥∥∥∥G(t,

(
0Y
ϕ

)
)

∥∥∥∥ =

∥∥∥∥L
(

0Y
ϕ

)
+ F (t,

(
0Y
ϕ

)
)

∥∥∥∥
≤

∥∥∥∥L
(

0Y
ϕ

)∥∥∥∥+

∥∥∥∥F (t,

(
0Y
ϕ

)
)

∥∥∥∥
=

∥∥∥∥
(

L̂(ϕ)
0C

)∥∥∥∥+

∥∥∥∥
(

f(t, ϕ)
0C

)∥∥∥∥
=

∥∥∥L̂(ϕ)∥∥∥
Y
+ ‖f(t, ϕ)‖Y

≤
∥∥∥L̂∥∥∥

ρ
ρ+ Lf (T, ρ).

So there exists LG(T, ρ) =
∥∥∥L̂∥∥∥

ρ
ρ+Lf (T, ρ) such that

∥∥∥∥G(t,

(
0Y
ϕ

)
)

∥∥∥∥ ≤ LG(T, ρ),

which completes the proof of (b).
With KG(C) and LG(T, ρ) given as above, (c) follows directly from the assump-

tions. �

4. Applications

In this section, we apply the results in last section to a reaction-diffusion equation
with time delay and the diffusive Nicholson’s blowflies equation.

4.1. A reaction-diffusion equation with time delay. Let us consider the fol-
lowing periodic reaction-diffusion equation with time delay:

(4.1)

⎧⎨
⎩

∂u(t,x)
∂t = ∂2u(t,x)

∂x2 − au(x, t)− b(t)u(x, t− r), 0 ≤ x ≤ 1, t ≥ 0
u(0, t) = u(1, t) = k, t ≥ 0
u(x, t) = φ(t)(x), 0 ≤ x ≤ 1, −r ≤ t ≤ 0,

where k is a constant and a ≥ 0, b ∈ C([0,∞),R+) is T -periodic. We will study
the existence of T -periodic solution of problem (4.1).

Let v(x, t) = u(x, t)− k, then we have the following equation:
(4.2)⎧⎨
⎩

∂v(t,x)
∂t = ∂2v(t,x)

∂x2 − av(x, t)− b(t)v(x, t− r)− ka− kb(t), 0 ≤ x ≤ 1, t ≥ 0
v(0, t) = v(1, t) = 0, t ≥ 0
v(x, t) = φ(t)(x)− k, 0 ≤ x ≤ 1, −r ≤ t ≤ 0.
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We know that the existence of T -periodic solutions of equation (4.2) is equivalent
to the existence of T -periodic solutions of equation (4.1).

Let X = C(0, 1) and B : X → X be defined by

Bφ = φ′′ − aφ

with
D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}.

Let CB := {φ ∈ C([−r, 0], X) : φ(0) ∈ D(B)} and define f : [0,∞)× CB → X by

f(t, φ) = −b(t)φ(−r)− ka− kb(t).

Then equation (4.2) can be written as

(4.3)

{
dy(t)
dt = By(t) + f(t, yt), t ≥ 0

y0 = ϕ ∈ CB

Proposition 4.1. Assume that

(i) a > 0, 0 ≤ b(t) ≤ b+ and b(t+ T ) = b(t) for t ≥ 0;
(ii) ( T

1−e−aT + T )b+ < 1;

(iii) There exists ρ > 0 such that ( T
1−e−aT + T )(ka+ kb+ + b+ρ) ≤ ρ.

Then equation (4.2) thus (4.1) has a T -periodic solution.

Proof. Since equation (4.2) can be written as (4.3), it suffices to check the assump-
tions of Theorem 3.2. Let ψ ∈ X and let λ > −a. Then

(λI −B)ϕ = ψ ⇔ (λ+ a)ϕ− ϕ′′ = ψ.

Set ϕ̂ = ϕ′. Then

(λI −B)ϕ = ψ ⇔
{

ϕ′ = ϕ̂
ϕ̂′ = (λ+ a)ϕ− ψ

⇔
{ √

λ+ aϕ′ + ϕ̂′ =
√
λ+ a(

√
λ+ aϕ+ ϕ̂)− ψ√

λ+ aϕ′ − ϕ̂′ = −
√
λ+ a(

√
λ+ aϕ− ϕ̂) + ψ.

Define
w = (

√
λ+ aϕ+ ϕ̂),

ŵ = (
√
λ+ aϕ− ϕ̂).

Then we have

(4.4) (λI −B)ϕ = ψ ⇔
{

w′ =
√
λ+ aw − ψ,

ŵ′ = −
√
λ+ aŵ + ψ.

The first equation of (4.4) is equivalent to

(4.5) e−
√
λ+axw(x) = e−

√
λ+ayw(y)−

∫ x

y

e−
√
λ+alψ(l)dl, ∀x ≥ y.

In (4.5) let y = 0, then we obtain

(4.6) w(x) = e
√
λ+axw(0)− e

√
λ+ax

∫ x

0

e−
√
λ+alψ(l)dl,

where w(0) =
√
λ+ aϕ(0) + ϕ̂(0) = ϕ̂(0). In (4.5) let x = 1, we have

(4.7) w(y) = e
√
λ+ay−

√
λ+aw(1) + e

√
λ+ay

∫ 1

y

e−
√
λ+alψ(l)dl,

where w(1) =
√
λ+ aϕ(1) + ϕ̂(1) = ϕ̂(1).
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The second equation of (4.4) is equivalent to

(4.8) e
√
λ+axŵ(x) = e

√
λ+ayŵ(y) +

∫ x

y

e
√
λ+alψ(l)dl, ∀x ≥ y.

In (4.8) let y = 0, then we have

(4.9) ŵ(x) = e−
√
λ+axŵ(0) + e−

√
λ+ax

∫ x

0

e
√
λ+alψ(l)dl,

where ŵ(0) =
√
λ+ aϕ(0)− ϕ̂(0) = −ϕ̂(0). In (4.8) let x = 1, we have

(4.10) ŵ(y) = e
√
λ+a−

√
λ+ayŵ(1)− e−

√
λ+ay

∫ 1

y

e
√
λ+alψ(l)dl,

where ŵ(1) =
√
λ+ aϕ(1)− ϕ̂(1) = −ϕ̂(1).

From (4.6) and (4.9), we have

(4.11) e2
√
λ+axŵ(x) + w(x) =

∫ x

0

e
√
λ+ax(e

√
λ+al − e−

√
λ+al)ψ(l)dl,

where x ∈ [0, 1]. Combining (4.7) and (4.10), we obtain

(4.12) e2
√
λ+a(1−x)w(x) + ŵ(x) =

∫ 1

x

e−
√
λ+ax(e2

√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl.

Since ŵ =
√
λ+ aϕ− ϕ̂ and w =

√
λ+ aϕ+ ϕ̂, (4.11) and (4.12) can be written as

(4.13)
√
λ+ a(e2

√
λ+ax + 1)ϕ+ (1− e2

√
λ+ax)ϕ̂ =

∫ x

0

e
√
λ+ax(e

√
λ+al − e−

√
λ+al)ψ(l)dl

and

(e2
√
λ+a(1−x) + 1)

√
λ+ aϕ+ (e2

√
λ+a(1−x) − 1)ϕ̂(4.14)

=

∫ 1

x

e−
√
λ+ax(e2

√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl.

Combining (4.13) and (4.14), we have the following

ϕ(x) =
(e2

√
λ+a−

√
λ+ax − e

√
λ+ax)

∫ x

0
(e

√
λ+al − e−

√
λ+al)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

−
(e−

√
λ+ax − e

√
λ+ax)

∫ 1

x
(e2

√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

=

∫ x

0
(e2

√
λ+a−

√
λ+a(x−l)−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a(x−l))ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

−
∫ 1

x
(e2

√
λ+a− !

√
λ+a(x+l)−e

√
λ+a(l−x)−e2

√
λ+a−

√
λ+a(l−x)+e

√
λ+a(x+l))ψ(l)dl

2
√
λ+a(e2

√
λ+a−1)

=

∫ x

0
(e2

√
λ+a−

√
λ+a|x−l|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

+

∫ 1

x
(e2

√
λ+a−

√
λ+a|l−x|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|l−x|)ψ(l)dl

2
√
λ+a(e2

√
λ+a−1)
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=

∫ 1

0
(e2

√
λ+a−

√
λ+a|x−l|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

.

Since ϕ ∈ D(A), it follows that

‖ϕ‖
= sup

x∈[0,1]

|ϕ(x)|

= sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0
(e2

√
λ+a−

√
λ+a|x−l|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+a(e2

√
λ+a−1)

∣∣∣∣∣ .
Since e2

√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l| ≥ 0 for x ∈

[0, 1] and l ∈ [0, 1], we have

‖ϕ‖

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1
0

∣∣∣e2√λ+a−
√
λ+a|x−l|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|x−l|

∣∣∣ dl
2
√
λ+a(e2

√
λ+a−1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1
0 (e2

√
λ+a−

√
λ+a|x−l|−e2

√
λ+a−

√
λ+a(x+l)−e

√
λ+a(x+l)+e

√
λ+a|x−l|)dl

2
√
λ+ a(e2

√
λ+a−1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

1

2
√
λ+ a(e2

√
λ+a − 1)

[
e2

√
λ+a

(
2√

λ+ a
− 1√

λ+ a
e
√

λ+a(x−1)

− 1√
λ+ a

e−
√

λ+ax +
1√

λ+ a
e−

√
λ+a(x+1) − 1√

λ+ a
e−

√
λ+ax

)

− 2√
λ+a

+
1√
λ+a

e−
√
λ+a(x−1)+

1√
λ+a

e
√

λ+ax− 1√
λ+a

e
√

λ+a(x+1)+
1√
λ+a

e
√

λ+ax

]

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

e2
√

λ+a−1

2
√
λ+a(e2

√
λ+a−1)

(
2√
λ+a

− 1√
λ+a

e
√

λ+a(x−1)− 1√
λ+a

e−
√

λ+ax

+
1√

λ+ a
e−

√
λ+a(x+1) − 1√

λ+ a
e−

√
λ+ax

)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√

λ+a − 1) 2√
λ+a

2
√
λ+ a(e2

√
λ+a − 1)

=
1

λ+ a
sup

x∈[0,1]
|ψ(x)|

=
1

λ+ a
‖ψ‖ .

Now we have
∥∥(λI −B)−1ψ

∥∥ ≤ 1
λ+a ‖ψ‖, which implies that

∥∥(λI −B)−1
∥∥ ≤ 1

λ+a .
So B is a Hille-Yoshida operator with M = 1 and ωB = −a < 0. We conclude that∥∥(λI −B)−1

∥∥ ≤ 1

λ+ a
, ∀λ > −a,

For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ C, ‖ϕ2‖ ≤ C, we have

‖f(t, ϕ1)− f(t, ϕ2)‖ = ‖−b(t)ϕ1(−r)− ka− kb(t) + b(t)ϕ2(−r) + ka+ kb(t)‖
= ‖b(t)(ϕ1(−r)− ϕ2(−r))‖
≤ ‖b(t)‖ ‖ϕ1(−r)− ϕ2(−r))‖
≤ b+ ‖ϕ1 − ϕ2‖ .

So Kf (ρ) = b+ for ∀ρ > 0. Moreover, for ϕ ∈ CB with ‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ = ‖−b(t)ϕ(−r)− ka− kb(t)‖
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Figure 1. A T -periodic solution of the delayed reaction-diffusion
equation (4.2) with initial condition ϕ(x, t) = 0.5 for t ∈ [−1, 0],
x ∈ [0, 1], where b(t) = 0.15 + 0.15 sin(2πt), T = 1, r = 1, k = 0.5
and a = 1.

≤ b+ ‖ϕ‖+ ka+ kb+

≤ b+ρ+ ka+ kb+.

So we have Lf (T, ρ) = b+ρ + ka + kb+. Therefore, assumptions (ii) and (iii)

imply (N + T )(Kf (ρ) +
∥∥∥L̂∥∥∥) < 1 and (N + T )(Lf (T, ρ) +

∥∥∥L̂∥∥∥ ρ) ≤ ρ in Theorem

3.2, respectively. The conclusion follows from Theorem 3.2. �

Now we choose parameters for equation (4.2) such that assumptions in Proposi-
tion 4.1 are satisfied. We will perform some numerical simulations to demonstrate
the existence of T -periodic solutions.

Let T = 1, k = 0.5, r = 1, a = 1 and b(t) = 0.15 + 0.15 sin(2πt). We can
verify that conditions in Proposition 4.1 are satisfied, so there exists a T -periodic
solution, which can be seen from Figure 1.

Now we change the parameters so that the conditions in Proposition 4.1 do not
hold. Let T = 1, a = 1, k = 0.5, r = 1 and b(t) = 1.5 + 10 sin(2πt). Figure 2 gives
a solution in this scenario.

4.2. The diffusive Nicholson’s blowflies equation. We consider the diffusive
Nicholson’s blowflies equation (So and Yang [15], Yang and So [18], So et al. [14])
(4.15){

∂u(t,x)
∂t = ∂2u(t,x)

∂x2 − τu(t, x) + β(t)τu(t− 1, x)eu(t−1,x), t ≥ 0, x ∈ [0, 1]
u(t, 0) = u(t, 1) = k, t ≥ 0,

where k is a constant and β(t) is T -periodic. To study existence of T -periodic
solutions of equation (4.15), let v(t, x) = u(t, x)− k. Then we have

(4.16)

⎧⎨
⎩

∂v(t,x)
∂t = ∂2v(t,x)

∂x2 − τv(t, x) + β(t)τv(t− 1, x)e−[v(t−1,x)+k]

+kβ(t)τe−[v(t−1,x)+k] − kτ
v(t, 0) = v(t, 1) = 0.

We know that existence of T -periodic solutions of equation (4.16) is equivalent to
the existence of T -periodic solutions of equation (4.15).

Let X = C[0, 1] and let B : X → X be defined by

Bφ = φ′′ − τφ
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Figure 2. A solution of the delayed reaction-diffusion equation
(4.2) with initial condition ϕ(x, t) = 0.5 for t ∈ [−1, 0], x ∈ [0, 1],
where b(t) = 1.5 + 10 sin(2πt), T = 1, k = 0.5, r = 1 and a = 1.

with D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}. Let CB := {φ ∈ C([−1, 0], X) :

φ(0) ∈ D(B)} and define f : [0,∞)× CB → X by

f(t, φ) = β(t)τφ(−1)e−[φ(−1)+k] + kβ(t)τe−[φ(−1)+k] − kτ.

Then equation (4.16) can be written as

(4.17)
dy(t)

dt
= By(t) + f(t, yt), t ≥ 0

Proposition 4.2. Assume that

(i) τ > 0, 0 ≤ β(t) ≤ β+ and β(t) = β(t+ T ) for ∀t ≥ 0;
(ii) There exists ρ > 0 such that ( T

1−e−τT + T )β+τe
−k(ρ + k + 1)eρ < 1 and

( T
1−e−τT + T )τ (k + β+ρe

ρ−k + kβ+e
ρ−k) ≤ ρ.

Then equation (4.16) thus (4.15) has a T -periodic solution.

Proof. Since equation (4.16) can be written as (4.17), it suffices to check assump-
tions of Theorem 3.2. Let ψ ∈ X and let λ > −τ . Then

(λI −B)ϕ = ψ ⇔ (λ+ τ )ϕ− ϕ′′ = ψ.

By following exactly the same way as in the proof of Proposition 4.1, we obtain
that ∥∥(λI −B)−1

∥∥ ≤ 1

λ+ τ
, ∀λ > −τ,

which implies that ωB = −τ < 0. For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ ρ, ‖ϕ2‖ ≤ ρ, we
have

f(t, ϕ1)− f(t, ϕ2) = β(t)τϕ1(−1)e−[ϕ1(−1)+k] + kβ(t)τe−[ϕ1(−1)+k] − kτ

− β(t)τϕ2(−1)e−[ϕ2(−1)+k] − kβ(t)τe−[ϕ2(−1)+k] + kτ

and

‖f(t, ϕ1)− f(t, ϕ2)‖ ≤
∥∥∥β(t)τϕ1(−1)e−[ϕ1(−1)+k] − β(t)τϕ2(−1)e−[ϕ2(−1)+k]

∥∥∥
+
∥∥∥kβ(t)τe−[ϕ1(−1)+k] − kβ(t)τe−[ϕ2(−1)+k]

∥∥∥
≤

∥∥∥β(t)τe−k(ϕ1(−1)e−ϕ1(−1) − ϕ1(−1)e−ϕ2(−1))
∥∥∥
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+
∥∥∥β(t)τe−k(ϕ1(−1)e−ϕ2(−1) − ϕ2(−1)e−ϕ2(−1))

∥∥∥
+
∥∥∥kβ(t)τe−k(e−ϕ1(−1) − e−ϕ2(−1))

∥∥∥
≤ β+τe

−k(ρ+ 1)eρ ‖ϕ1 − ϕ2‖+ kβ+τe
−keρ ‖ϕ1 − ϕ2‖

= β+τe
−k(ρ+ k + 1)eρ ‖ϕ1 − ϕ2‖ .

So we have Kf (ρ) = β+τe
−k(ρ + k + 1)eρ for ρ > 0. Moreover, for ϕ ∈ CB with

‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ =
∥∥∥β(t)τϕ(−1)e−[ϕ(−1)+k] + kβ(t)τe−[ϕ(−1)+k] − kτ

∥∥∥
≤ β+τe

−k
∥∥∥ϕ(−1)e−ϕ(−1)

∥∥∥+ kβ+τe
−k

∥∥∥e−ϕ(−1)
∥∥∥+ kτ

≤ τ (k + β+ρe
ρ−k + kβ+e

ρ−k).

Hence, we have Lf (T, ρ) = τ (k + β+ρe
ρ−k + kβ+e

ρ−k). Therefore, assumption (ii)

implies (N +T )(Kf (ρ)+
∥∥∥L̂∥∥∥) < 1 and (N +T )(Lf (T, ρ)+

∥∥∥L̂∥∥∥ ρ) ≤ ρ in Theorem

3.2. The conclusion follows from Theorem 3.2. �

Now we choose parameters for equation (4.15) such that assumptions in Propo-
sition 4.2 are satisfied. Let T = 1, τ = 1, k = 0.1 and β(t) = 0.025 + 0.015 cos 2πt
in equation (4.15), then it is easy to check that assumptions of Proposition 4.2 are
satisfied. So there exists a T -periodic solution, which can be seen from Figure 3.

Figure 3. A T -periodic solution of the diffusive Nicholson’s
blowflies equation (4.15) with initial condition ϕ(x, t) = 0.1 for
t ∈ [−1, 0], x ∈ [0, 1], where β(t) = 0.025 + 0.015 cos(2πt), T = 1,
k = 0.1 and τ = 1.

Remark 4.3. When u(t) does not depend on the spatial variable x in equations
(4.1) and (4.15), the conclusions in Propositions 4.1 and 4.2 still hold. We then
obtain conditions for the existence of periodic solutions in delayed periodic logistic
equation (Chen [3]) and delayed periodic Nicholson’s blowflies equation (Chen [4]),
respectively.

Remark 4.4. The techniques and arguments used in this paper can be modified to
study the existence of periodic solutions in partial functional differential equations
with infinite delay (Benkhalti et al. [1]).
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