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Abstract. We consider, for q > 1, the one-dimensional Kirchhoff-type prob-
lem

−A

(∫ 1

0

(
u′(s)

)q
ds

)
u′′(t) = λf

(
u(t)

)
, t ∈ (0, 1)

u(0) = 0

u′(1) = 0

and demonstrate the existence of at least one positive solution to this problem.
The main contribution is to show that by using a nonstandard order cone
together with topological fixed point theory much weaker conditions than usual
can be imposed on the coefficient function A.

1. Introduction

In this paper we consider a one-dimensional Kirchhoff-type problem with right-
focal boundary conditions – namely, the problem

−A

(∫ 1

0

(
u′(s)
)q

ds

)
u′′(t) = λf

(
u(t)
)
, t ∈ (0, 1)

u(0) = 0

u′(1) = 0,

(1.1)

where λ > 0, q > 1, A : [0,+∞) → R is continuous, and f : R → [0,+∞)
is continuous. The main contribution of this article is to use a novel order cone
together with an associated nonstandard open set to study the existence of at least
one positive solution to problem (1.1). As explained in a moment this is different
than most other studies, which tend to use either variational methods or more
standard order cones. Due to our methodology we are able to weaken notably
the conditions imposed on the coefficient function A. Note that the coefficient A
acts as a sort-of nonlocal coefficient since u′ is not localized at a specific point.
Nonlocal differential equations have been studied extensively in recent years – see,
for example, Goodrich [22,23], Goodrich and Lizama [30,31], Graef and Webb [32],
Infante [36], Infante and Pietramala [38], Jankowski [40], Karakostas [41], Webb
and Infante [45], and Yang [48].
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Kirchhoff-type problems similar to (1.1) (or the elliptic PDE analogue) have been
extensively studied in the existing literature – some recent and relevant examples
are papers by Afrouzi, Chung, and Shakeri [1], Alves and Corrêa [2], Azzouz and
Bensedik [5], Boulaaras [11], Boulaaras and R. Guefaifia [13], Cao and Dai [16],
Chung [17], Infante [35, 37], and Liu, Luo, and Dai [42]. In addition, a problem
similar to (1.1) in which ‖u′‖qLq is replaced by ‖u‖qLq , e.g.,

(1.2) −A

(∫ 1

0

(
u(s)
)q

ds

)
u′′(t) = λf

(
u(t)
)
, t ∈ (0, 1),

has also been studied extensively – see, for example, papers by Aly [4], Alves and
Covei [3], Bavaud [6], Biler, Krzywicki, and Nadzieja [7], Biler and Nadzieja [8, 9],
Caglioti, Lions, Marchioro, and Pulvirenti [15], Corrêa [19], Corrêa, Menezes, and

Ferreira [20], do Ó, Lorca, and Ubilla [21], Goodrich [29], Stańczy [43], Wang,
Wang, and An [44], Yan and Ma [46], and Yan and Wang [47]. Such problems
occur frequently in applications such as the mean field equation – see [35, (1.2)].

In these sorts of studies it is very common to assume some combination of the
following conditions regarding the coefficient function A:

(1) A(t) > 0 for all t ≥ 0.
(2) A either satisfies some sort of global growth condition and/or some sort of

global monotonicity condition.
(3) A is either sub- or super-linear at either 0 or +∞.

Evidently, in general, condition (1) is especially important so that the differential
equation does not degenerate. For example, in Afrouzi, Chung, and Shakeri [1] the
equivalent of A is assumed to be bounded between two positive numbers. Similarly,
in both Alves and Corrêa [2] and Azzouz and Bensedik [5] the equivalent of A is
assumed to be bounded away from zero and, in some results, a monotone increasing
function. Likewise in Boulaaras and Guefaifia [13] the nonlocal coefficients (i.e.,
the equivalent of A in our problem) are assumed to be globally bounded, globally
increasing, and bounded away from zero. Similarly, the very recent papers by
Bouizem, Boulaaras, and Djebbar [10], Boulaaras, Bouizem, and Guefaifia [12], and
Boulaaras, Guefaifia, Cherif, and Radwan [14] also impose these types of conditions
in the PDEs analogue of (1.1). More specifically, in [10, 12] the equivalent of the
function A is bounded away from zero and, in addition, a largeness condition is
imposed on the quantity infs≥0 A(s) – see [10, pp. 2466 and (M2)] and [12, p.
9196 and (M2)]. Likewise in [14] two nonlocal coefficients are considered as part of
a system of nonlocal PDEs, and the nonlocal coefficients are bounded away from
zero and increasing [14, (H1)]. Furthermore, with the exception of [29], which
we further mention below, it is a similar matter with the other papers mentioned
in the preceding paragraph – e.g., [3, Condition (2) on p. 1], [17, Conditions
(M0), (3), (4)], [21, Condition (H1), p. 299], [35, Theorem 2.3], [43, Theorem 2.2],
[44, Condition (H3), p. 2], [46, p. 1], and [47, Theorem 4.1, p. 84].

One can see, then, that these types of conditions are pervasive in the existing lit-

erature, and this is due to having no direct control over the quantity
∫ 1
0

(
u′(s)
)q

ds,
which thus requires one to make global assumptions about the behavior of the co-
efficient function A. Thus, by way of contrast we propose to study problem (1.1)
by a topological approach using a nonstandard order cone. Recently the author
[29] proposed a new way to treat problem (1.2) by restricting attention to those
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functions for which u �→ ‖u‖L1 is coercive. This methodology completely avoided
the use of conditions (1)–(3).

Inspired to take a similar approach we restrict attention to those functions u ∈
C 1
(
[0, 1]
)
such that, for a constant C0 ∈ (0, 1) defined in Section 2,

u(1) =

∫ 1

0

u′(s) ds ≥ C0‖u′‖∞,

so that the functional u �→
∫ 1
0
u′(s) ds is coercive; equivalently, this condition can

be seen as a Harnack-like inequality. Together with the set

Ŵρ :=

{
u ∈ K :

∫ 1

0

(
u′(s)
)q

ds < ρ

}
,

where K is a suitable positive cone defined in Section 2, this simple restriction
turns out to be very useful because it allows us to characterize pointwise information
regarding the argument of A. Indeed, we are able to deduce information about the

exact value of
∫ 1
0

(
u′(s)
)q

ds – the key topological fact being that when u ∈ ∂Ŵρ

it follows that ∫ 1

0

(
u′(s)
)q

ds = ρ.

Consequently, instead of having to assume some combination of (1)–(3) above, we
assume none of this. Rather, we need only impose on condition on A at two points
– see condition (H2) in Section 2. Moreover, A can be nonpositive on (possibly
infinitely many) intervals of positive measure. It should be mentioned that although
the methodology in the Kirchhoff case is inspired by [29], there are significant
differences and a straightforward adaptation of the methodology in [29] fails. For
example, here we must make careful use of reverse Hölder inequalities in order to
suitably control certain quantities; this sort of complication does not arise at all in
[29].

All in all, we are able to eliminate (1)–(3) with no substantial increase in the
restrictions imposed on the forcing term f . This is the advantage of using the

set Ŵρ. Essentially it affords us very precise control over the argument of the
coefficient function A in problem (1.1) in a way that both the variational methods

and the standard order cones fail to do. Sets similar to Ŵρ have been previously
used by the author in studying other types of nonlocal equation – see, for example,
[24–27]. But to the best of our knowledge they have never been used in the case of
Kirchhoff-type equations, in which, as we have already mentioned, there are some
extra difficulties due to the presence of u′ in the nonlocal element.

Finally, while we have elected to study problem (1.1) in the case of right focal
boundary conditions, we believe that the methods introduced in this paper can be
adapted to other types of boundary data. In addition, other forcing terms can be
accommodated, we believe, with minimal alteration in the essential methodology.
Rather, we focus on the specific problem (1.1) in order to illustrate more clearly
the methodology.
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2. Existence result

Let G : [0, 1]× [0, 1] → [0,+∞) be defined by

G(t, s) :=

{
t, 0 ≤ t ≤ s ≤ 1

s, 0 ≤ s ≤ t ≤ 1
,

which is the Green’s function for the right-focal problem −u′′(t) = 0, t ∈ (0, 1),
subject to u(0) = 0 and u′(1) = 0. Equip the space C 1

(
[0, 1]
)
with the norm

‖u‖ := max
{
‖u‖∞, ‖u′‖∞

}
.

In what follows the function Gt :
(
[0, 1]×[0, 1]

)
\
{
(t, s) ∈ [0, 1]×[0, 1] : t = s

}
→ R

denotes the function

Gt(t, s) :=
∂

∂t
G(t, s) ≡

{
1, 0 ≤ t < s ≤ 1

0, 0 ≤ s < t ≤ 1
.

We note that although Gt does not exist along the diagonal D :=
{
(t, s) ∈ [0, 1]×

[0, 1] : t = s
}
, this is of no consequence in what follows. Then denoting by

Gt the function Gt(s) := supt∈[0,1]\D

∣∣Gt(t, s)
∣∣, it follows for a.e. s ∈ [0, 1] that

Gt(s) := supt∈[0,1]\D

∣∣Gt(t, s)
∣∣ = 1.

Henceforth we will assume the following conditions on the functions A and f
appearing in problem (1.1). Note that in condition (H2) we use for a continuous
function f : [a, b] → R, where 0 ≤ a < b < +∞, the notation

• fm
[a,b]

:= miny∈[a,b] f(y); and

• fM
[a,b]

:= maxy∈[a,b] f(y).

We also use this notation in the proof of Theorem 2.9.

(H1): The function f : R → [0,∞) is continuous and satisfies the following
conditions.
(1) f(0) 
= 0
(2) There exist numbers C0 ∈ (0, 1] and ρ2 > 0 such that

(a) f is increasing on the interval

[
0,

ρ
1
q
2

C0

]
;

(b) C0 < f(0)

f

⎛
⎝ ρ

1
q
2

C0

⎞
⎠
e−1.

(H2): Letting ρ2 be as in condition (H1), the function A : [0,∞) → R is
continuous, and, in addition, there exists a number ρ1 > 0, with 0 < ρ1 <
ρ2, such that
(1) A(t) > 0 for each t ∈

[
ρ1, ρ2
]
;

(2) fm⎡
⎣0,

ρ

1
q
1

C0

⎤
⎦
> λ−1

(
(q + 1)ρ1

) 1
q A
(
ρ1
)
; and

(3) fM⎡
⎣0,

ρ

1
q
2

C0

⎤
⎦
< λ−1ρ

1
q

2 A
(
ρ2
)
.

Remark 2.1. As mentioned in Section 1 the conditions imposed on f via condition
(H1) are not substantively worse (or better) than those in the existing literature.
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In particular, condition (H1)(1) implies that limx→0+
f(x)
x = +∞. It is worth

noting that if f satisfies standard growth, i.e., c1
(
1 + |u|p

)
≤ f(u) ≤ c2

(
1 + |u|p

)
for 0 < c1 < c2 and p > 1, then condition (H1) can be satisfied, and standard
growth is a physically relevant model. On the other hand and as explained more
thoroughly in Section 1, the conditions imposed on A via (H2) are much weaker
than the standard ones in the literature. So, the upshot of the methodology here
is not so much the conditions on the forcing term f but rather the conditions on
the nonlocal coefficient A.

Remark 2.2. Note that since f(0) 
= 0 and f is increasing on

[
0,

ρ
1
q
2

C0

]
it thus follows

that f

(
ρ

1
q
2

C0

)

= 0.

In the use of the topological fixed point theory we will work within the cone
K ⊆ C 1

(
[0, 1]
)
defined by

K :=

{
u ∈ C 1

(
[0, 1]
)

: u ≥ 0, u′ ≥ 0,

∫ 1

0

u′(s) ds ≥ C0‖u′‖∞, u(0) = 0

}
,

where C0 ∈ (0, 1) satisfies the implicit functional inequality in condition (H1)(2)(c)
– namely,

C0 <
f(0)

f

(
ρ

1
2
2

C0

) .
Importantly, we note that C0 depends only on initial data – i.e., C0 := C0 (f ; ρ2).
Therefore, it can be calculated in a given problem – see Example 2.11.

Remark 2.3. Since
∫ 1
0
u′(s) ds = u(1)− u(0) = u(1), one may rightly inquire as to

why we use the integral formulation in the definition of K . The reason is twofold.
First, we wish to emphasize the connection to the integral of u′ since this will be of
central important in what follows. Second, it also possibly points the way toward
treating the problem in the case of more general nonlocal coefficients or equipped
with more general boundary conditions.

Attendant to the cone K define the open set Ŵρ ⊆ K by

Ŵρ :=

{
u ∈ K :

∫ 1

0

(
u′(s)
)q

ds < ρ

}
.

Then

∂Ŵρ :=

{
u ∈ K :

∫ 1

0

(
u′(s)
)
ds = ρ

}
.

Finally, in what follows we will be concerned with the operator T : K → C 1
(
[0, 1]
)

defined by

(Tu)(t) := λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

G(t, s)f
(
u(s)
)
ds.

A fixed point of T is a solution of problem (1.1).
Prior to stating and proving our existence theorem we need to establish some

preliminary lemmata. Our first lemma establishes a relationship between elements

of the boundary set ∂Ŵρ and their norm in the ambient C 1 norm ‖ · ‖.
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Lemma 2.4. Suppose that u ∈ ∂Ŵρ. Define the set Ωρ :=
{
u ∈ K : ‖u‖ < ρ

}
.

Then

u ∈ Ω
ρ
1
q

C0

\ Ω
ρ

1
q
.

Proof. Note that if u ∈ ∂Ŵρ, then since ‖u‖ := max
{
‖u‖∞, ‖u′‖∞

}
it follows that

ρ =

∫ 1

0

(
u′(s)
)q

ds ≤ ‖u′‖q∞ ≤ ‖u‖q.

Therefore, u ∈ K \ Ω
ρ

1
q
. At the same time, if u ∈ ∂Ŵρ, then an application of

Jensen’s inequality (recall that q > 1) yields the inequality

ρ =

∫ 1

0

(
u′(s)
)q

ds ≥
(∫ 1

0

u′(s) ds

)q
≥ Cq

0‖u′‖q∞,

where, since u ∈ K , we have used the coercivity of the functional u �→
∫ 1
0
u′(s) ds.

Therefore, we conclude that

(2.1) ‖u′‖∞ ≤ ρ
1
q

C0
.

But then since u ∈ K , it follows that u(0) = 0 and u ∈ C 1
(
[0, 1]
)
. Thus, from

inequality (2.1) we deduce that

(2.2) ‖u‖∞ := max
t∈[0,1]

∣∣u(t)∣∣ ≤ ρ
1
q

C0
.

Putting inequalities (2.1)–(2.2) together yields ‖u‖ ≤ ρ
1
q

C0
so that u ∈ Ω

ρ
1
q

C0

. There-

fore, it follows that u ∈ Ω
ρ
1
q

C0

\ Ω
ρ

1
q
, as claimed. �

Remark 2.5. Note that one consequence of Lemma 2.4 is that the set ∂Ŵρ can be
identified as a subset of a solid annular region with respect to the ambient norm
‖ · ‖.

The next lemma establishes the openness and boundedness of the set Ŵρ for
each ρ > 0. This is an essential property in order to use the topological fixed point
theory.

Lemma 2.6. For each ρ > 0 the set Ŵρ is both bounded and (relatively) open in
K .

Proof. The boundedness essentially follows from the proof of Lemma 2.4. Indeed,

if u ∈ Ŵρ, then

ρ >

∫ 1

0

(
u′(s)
)q

ds ≥
(∫ 1

0

u′(s) ds

)q
≥ Cq

0‖u′‖q∞,

where we have used Jensen’s inequality. So, ‖u′‖∞ ≤ ρ
1
q

C0
< +∞. Thus,

max
t∈[0,1]

∣∣u(t)∣∣ = ‖u‖∞ ≤ ρ
1
q

C0
< +∞.
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Therefore, ‖u‖ = max
{
‖u‖∞, ‖u′‖∞

}
< +∞. By the arbitrariness of both u ∈ Ŵρ

and ρ > 0, we deduce that Ŵρ is bounded, as claimed. Finally, the openness

of Ŵρ, for each ρ > 0, is a consequence of the definition of Ŵρ – i.e., the non-
strict inequality together with the fact that K ⊆ C 1(R). And this completes the
proof. �

Our next lemma establishes that T
(
Ŵρ2

\ Ŵρ1

)
⊆ K . This is crucial in order

to obtain the fixed point result later. Note that we only require the reflexivity of

T on the solid annular subset Ŵρ2
\ Ŵρ1

of K .

Lemma 2.7. Assume that each of conditions (H1) and (H2) is satisfied. Then

T
(
Ŵρ2

\ Ŵρ1

)
⊆ K .

Proof. Our strategy to complete the proof is to use an argument similar to that used

in [28, Lemma 2.8]. We will prove that for each sector ∂Ŵρ, where ρ1 ≤ ρ ≤ ρ2, it

holds that T
(
∂Ŵρ

)
⊆ K . Then since

⋃
ρ1≤ρ≤ρ2

∂Ŵρ = Ŵρ2
\ Ŵρ1

, we will obtain

that

T

⎛⎝ ⋃
ρ1≤ρ≤ρ2

∂Ŵρ

⎞⎠ = T
(
Ŵρ2

\ Ŵρ1

)
⊆ K .

Let us first note that

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

> 0

whenever u ∈ Ŵρ2
\Ŵρ1

. Since u ∈ Ŵρ2
\Ŵρ1

it follows that ρ2 ≤
∫ 1
0

(
u′(r)
)q

dr ≤
ρ2. But from condition (H2) we know that A(t) > 0 whenever t ∈

[
ρ1, ρ2
]
. Thus,

we see at once that the desired claim holds.
We next show that

(2.3)

∫ 1

0

(Tu)′(t) dt ≥ C0‖(Tu)′‖∞.

So, fix a ρ ∈
[
ρ1, ρ2
]
and let u ∈ ∂Ŵρ be fixed but otherwise arbitrary. Now,

recalling the formula for (t, s) �→ Gt(t, s), we see that

(2.4) (Tu)′(t) = λ

∫ 1

t

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
ds
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because Gt(t, s) ≡ 1 when s ∈ (t, 1) and Gt(t, s) ≡ 0 when s ∈ (0, t) for each
t ∈ [0, 1]. So, in light of (2.4) we see that

∫ 1

0

(Tu)′(t) dt = λ

∫ 1

0

[∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

Gt(t, s)f
(
u(s)
)
ds

]
dt

= λ

∫ 1

0

[∫ 1

t

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
ds

]
dt

= λ

∫ 1

0

∫ s

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
dt ds

= λ

∫ 1

0

[∫ s

0

dt

](
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
ds

= λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

sf
(
u(s)
)
ds,

(2.5)

where we have used Fubini’s theorem in order to interchange the order of integration
in (2.5). On the other hand, keeping in mind that Gt(s) = 1 a.e., we also calculate∥∥(Tu)′∥∥∞ ≤ λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

Gt(s)f
(
u(s)
)
ds

= λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
ds.

(2.6)

Comparing inequalities (2.5) and (2.6) we see that the desired coercivity inequality
(2.3) will hold provided that

0 < C0

≤
∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

sf
(
u(s)
)
ds/∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

f
(
u(s)
)
ds

=

∫ 1

0

sf
(
u(s)
)
ds

/∫ 1

0

f
(
u(s)
)
ds.

(2.7)

We claim that the choice of C0 defined implicitly by the relation

(2.8) C0 <
f(0)

f

(
ρ

1
2
2

C0

)e−1,

as assumed in condition (H1)(b), satisfies requirement (2.7) and, thus, completes
the proof.

To see that this claim is true note that inequality (2.8) implies the existence of
an integer n > 2 sufficiently large such that

(2.9) C0 ≤
(
n− 1

n− 2

)1−n
f(0)

f

(
ρ

1
2
2

C0

) ,
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since
(

n−1
n−2

)1−n

> 0 for each n > 2, n �→
(

n−1
n−2

)1−n

is increasing for n > 2, and

lim
n→∞

(
n− 1

n− 2

)1−n

=
1

e
.

Then for such n chosen sufficiently large we note that the reverse Hölder inequality
implies that ∫ 1

0

sf
(
u(s)
)
ds ≥
(∫ 1

0

s−
1

n−1 ds

)−n+1(∫ 1

0

(
f
(
u(s)
)) 1

n

ds

)n
=

(
n− 1

n− 2

)1−n(∫ 1

0

(
f
(
u(s)
)) 1

n

ds

)n
≥
(
n− 1

n− 2

)1−n(∫ 1

0

(
f(0)
) 1

n ds

)n
=

(
n− 1

n− 2

)1−n

f(0),

(2.10)

where we have used the monotonicity of f via condition (H1)(1) to write f
(
u(s)
)
≥

f(0) since u is nonnegative by virtue of the fact that u ∈ K . At the same time,
using the monotonicity of f again, together with the fact that u(s) ≤ u(1) since u′

is nonnegative by virtue of the fact that u ∈ K , we also deduce that

(2.11)

∫ 1

0

f
(
u(s)
)
ds ≤ f

(
u(1)
)
.

Now recalling that u ∈ ∂Ŵρ we notice from Jensen’s inequality that

ρ =

∫ 1

0

(
u′(s)
)q

ds ≥
(∫ 1

0

u′(s) ds

)q
≥ (C0‖u′‖∞)

q

so that

‖u′‖∞ ≤ ρ
1
q

C0
≤ ρ

1
q

2

C0
.

And since u(0) = 0 this means that

(2.12) u(1) ≤ ρ
1
q

2

C0
.

Therefore,

(2.13)

∫ 1

0

f
(
u(s)
)
ds ≤ f

(
u(1)
)
≤ f

⎛⎝ρ
1
q

2

C0

⎞⎠ ,

using the monotonicity of f once more.
Let us note that the monotonicity calculations in each of (2.10), (2.11), and (2.13)

are valid since by assumption (H1)(1), the function f is increasing on

[
0,

ρ
1
q
2

C0

]
, and

as inequality (2.12) demonstrates we have that

0 ≤ u(s) ≤ u(1) ≤ ρ
1
q

2

C0
.
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Consequently, the monotonicity calculations are justifiable.
Therefore, putting inequalities (2.10) and (2.13) together we deduce that

(2.14)

∫ 1

0

sf
(
u(s)
)
ds

/∫ 1

0

f
(
u(s)
)
ds ≥
(
n− 1

n− 2

)1−n
f(0)

f

(
ρ

1
q
2

C0

) ≥ C0,

where the final inequality follows from inequality (2.9) and the choice of n. Finally,
putting inequalities (2.5)–(2.7) and (2.14) together we conclude that∫ 1

0

(Tu)′(t) dt = λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

sf
(
u(s)
)
ds

= λ

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1 ∫ 1

0

sf
(
u(s)
)
ds

≥ λ

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

C0

∫ 1

0

f
(
u(s)
)
ds

= C0λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

Gt(s)f
(
u(s)
)
ds

≥ C0

∥∥(Tu)′∥∥∞,

(2.15)

which establishes the desired coercivity inequality for (Tu)′ on ∂Ŵρ. Moreover, due
the arbitrariness of ρ ∈

[
ρ1, ρ2
]
the argument outlined in the first paragraph of the

proof then proves that the coercivity condition is satisfied on the set Ŵρ2
\ Ŵρ1

, as
desired.

Finally, that both (Tu)(t) ≥ 0 and (Tu)′(t) ≥ 0, for each t ∈ [0, 1], is a conse-
quence of the definition of each of these operators. Indeed, since both G and Gt

are nonnegative along with f and A, the subsequent nonnegativity of Tu and (Tu)′

follow at once. Furthermore, each of Tu and (Tu)′ is continuous. So, we conclude

that T
(
Ŵρ2

\ Ŵρ1

)
⊆ K , as claimed. �

Our final lemma recalls a classical fixed point result. One may consult, for
example, Cianciaruso, Infante, and Pietramala [18, Lemma 2.3], Guo and Laksh-
mikantham [34], Infante, Pietramala, and Tenuta [39], or Zeidler [49] for further
details on this and similar results.

Lemma 2.8. Let U be a bounded open set and, with K a cone in a real Banach
space X , suppose both that UK := U ∩ K ⊇ {0} and that UK 
= K . Assume that
T : UK → K is a compact map such that x 
= Tx for each x ∈ ∂UK . Then the
fixed point index iK (T, UK ) has the following properties.

(1) If there exists e ∈ K \ {0} such that x 
= Tx + λe for each x ∈ ∂UK and
each λ > 0, then iK (T, UK ) = 0.

(2) If μx 
= Tx for each x ∈ ∂UK and for each μ ≥ 1, then iK (T, UK ) = 1.
(3) If iK (T, UK ) 
= 0, then T has a fixed point in UK .

(4) Let U1 be open in X with U1
K ⊆ UK . If iK (T, UK ) = 1 and iK

(
T, U1

K

)
=

0, then T has a fixed point in UK \U1
K . The same result holds if iK (T, UK )

= 0 and iK
(
T, U1

K

)
= 1.
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With the preliminary lemmata dispatched we are now able to state and prove
the existence result for problem (1.1).

Theorem 2.9. Assume that conditions (H1)–(H2) are satisfied. Then problem
(1.1) has at least one positive solution, u0, satisfying the localization

u0 ∈ Ω
ρ

1
q
2

C0

\ Ω
ρ

1
q
1

.

Proof. We first demonstrate that for each μ > 0 and u ∈ ∂Ŵρ1
it holds that

u 
= Tu + μe, where e(t) := t. Note that e ∈ K since e(t) ≥ 0, e′(t) ≡ 1 ≥ 0,

e(0) = 0, and
∫ 1
0
e′(t) dt = 1 ≥ C0 = C0‖e′‖∞.

So, suppose for contradiction that u = Tu + μe for some u ∈ ∂Ŵρ1
and μ > 0.

Then u′(t) = (Tu)′(t)+μe′(t) = (Tu)′(t)+μ > (Tu)′(t) for each t ∈ [0, 1]. Recalling
that

(2.16)

∫ 1

0

(
u′(t)
)q

dt = ρ1

since u ∈ ∂Ŵρ1
, it follows upon integrating both sides of (u′)q(t) >

(
(Tu)′
)q
(t)

from t = 0 to t = 1 that

ρ1 =

∫ 1

0

(
u′(t)
)q

dt

>

∫ 1

0

(
(Tu)′(t)

)q
dt

=

∫ 1

0

[
λ

∫ 1

0

(
A

(∫ 1

0

(
u′(r)
)q

dr

))−1

Gt(t, s)f
(
u(s)
)
ds

]q
︸ ︷︷ ︸

=((Tu)′(t))q

dt

=

∫ 1

0

[
λ

∫ 1

0

(
A (ρ1)

)−1
Gt(t, s)f

(
u(s)
)
ds

]q
dt

≥ λq

(A (ρ1))
q

∫ 1

0

(∫ 1

t

f
(
u(s)
)
ds

)q
dt

≥ λq

(A (ρ1))
q

⎛⎜⎜⎝fm⎡
⎣0,

ρ

1
q
1

C0

⎤
⎦

⎞⎟⎟⎠
q ∫ 1

0

(1− t)q dt

=
λq

(q + 1) (A (ρ1))
q

⎛⎜⎜⎝fm⎡
⎣0,

ρ

1
q
1

C0

⎤
⎦

⎞⎟⎟⎠
q

,

(2.17)

which by condition (H2)(2) is a contradiction. Note that in (2.17) we have used
Lemma 2.4 to assert that f

(
u(s)
)
≤ fm⎡

⎣0,
ρ

1
q
1

C0

⎤
⎦

for each s ∈ [0, 1]. Therefore, we

conclude by Lemma 2.8 that

(2.18) iK

(
T, Ŵρ1

)
= 0.



A TOPOLOGICAL APPROACH TO A CLASS OF KIRCHHOFF EQUATIONS 169

On the other hand, we claim that μu 
= Tu for each u ∈ ∂Ŵρ2
and for each

μ ≥ 1. Instead suppose for contradiction that μu(t) = (Tu)(t) for each t ∈ [0, 1]

and some u ∈ ∂Ŵρ2
and μ ≥ 1. Then μu′(t) = (Tu)′(t), whereupon taking both

sides of this equality to the q-th power and integrating from t = 0 to t = 1 we
obtain in a manner similar to (2.17) that

ρ2 ≤ μq

∫ 1

0

(
u′(t)
)q

dt =

∫ 1

0

(
(Tu)′(t)

)q
dt

=

∫ 1

0

[
λ

∫ 1

0

(
A (ρ2)

)−1
Gt(t, s)f

(
u(s)
)
ds

]q
dt

≤ λq

(A (ρ2))
q

⎛⎜⎜⎝fM⎡
⎣0,

ρ

1
q
2

C0

⎤
⎦

⎞⎟⎟⎠
q

,

(2.19)

where we used equality (2.16) with ρ2 replacing ρ1. Since (2.19) is by (H2)(3) a
contradiction, we conclude from Lemma 2.8 that

(2.20) iK

(
T, Ŵρ2

)
= 1.

Finally, upon combining (2.18) and (2.20) we deduce from Lemma 2.8 the exis-

tence of u0 ∈ Ŵρ2
\ Ŵρ1

such that Tu0 = u0. Therefore, from the proof of Lemma
2.4 we deduce that

ρ
1
q

1 < ‖u‖ <
ρ

1
q

2

C0

so that u0 satisfies the localization in the statement of the theorem. Finally, since
u0 is also a positive solution of (1.1), the proof of the theorem is complete. �

Remark 2.10. We point out that although the statement of Lemma 2.8 appears
to require that T map the entirety of the set UK into K , it is sufficient for T
to map the solid annular region UK \ U1

K into K – just as we have used in the
proof of Theorem 2.9. One can argue this by using Dugundji’s extension theorem
[33, Theorem 2.5].

We conclude with a simple example in order to illustrate the application of
Theorem 2.9.

Example 2.11. For 1.22473 < λ < 1.49565 consider the problem

(2.21) −10 cos

(∫ 1

0

(
u′(s)
)2

ds

)
u′′(t) = λ

((
u(t)
) 1

2 + 1
)
, t ∈ (0, 1)

subject to the boundary data u(0) = 0 = u′(1). From (2.21) we identify that q = 2,
A(t) := 10 cos t, and f(u) :=

√
u+ 1. Clearly, (H1)(1) and (H1)(2)(a) are satisfied

for any ρ2 and C0. If we choose C0 := 3
25 , then condition (H1)(2)(b) leads to the

inequality ρ2 � 0.26218. Choose ρ1 := 0.005 and ρ2 := 0.2. Then condition (H2)(1)
is satisfied since 10 cos t > 0 for t ∈ [0.005, 0.2], condition (H2)(2) is satisfied since
it reduces to 1 > 10

λ

√
3ρ1 cos ρ1, and condition (H2)(3) is satisfied since it reduces

to √√
ρ2

C0
+ 1 <

10

λ

√
ρ2 cos ρ2.



170 C. S. GOODRICH

Furthermore, it can be shown that (to five decimal places of accuracy) for each
1.22473 < λ < 1.49565 these inequalities are satisfied. Therefore, Theorem 2.9 im-
plies the existence of at least one positive solution, u0, to problem (2.21) satisfying
the localization

0.071 ≈
√

1

200
< max

{
‖u0‖∞, ‖u′

0‖∞
}
<

25

3

√
1

5
≈ 3.727.

Remark 2.12. Notice that the coefficient function, A(t) = 10 cos t, in Example 2.11
is negative on infinitely many intervals of positive measure. Moreover, it is zero
infinitely often. Consequently, as described in Section 1 we do not believe that
nonlocal equation (2.21) could be treated by the existing methods in the literature.
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