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PRO-DEFINABILITY OF SPACES OF DEFINABLE TYPES

PABLO CUBIDES KOVACSICS AND JINHE YE

(Communicated by Heike Mildenberger)

Abstract. We show pro-definability of spaces of definable types in various
classical complete first order theories, including complete o-minimal theories,
Presburger arithmetic, p-adically closed fields, real closed and algebraically
closed valued fields and closed ordered differential fields. Furthermore, we
prove pro-definability of other distinguished subspaces, some of which have an
interesting geometric interpretation.

Our general strategy consists of showing that definable types are uniformly
definable, a property which implies pro-definability using an argument due to
E. Hrushovski and F. Loeser. Uniform definability of definable types is finally
achieved by studying classes of stably embedded pairs.

1. Introduction

In [13], building on the model theory of algebraically closed valued fields (ACVF),
E. Hrushovski and F. Loeser developed a theory which provides a model-theoretic
account of the Berkovich analytification of algebraic varieties. Most notably, they
obtained results concerning the homotopy type of quasi-projective varieties which
were only known under strong algebro-geometric hypothesis on X by results in [1].

One of the difficulties to study Berkovich spaces from a model-theoretic point of
view is that such spaces do not seem to generally have (in ACVF) the structure of
a definable set –where usual model-theoretic techniques can be applied– but rather
canonically the structure of a space of types. Part of the novelty of Hrushovski-
Loeser’s work lies on the fact that their spaces can be equipped with the structure
of a (strict) pro-definable set, which granted them back the use of different classical
model-theoretic tools. It is thus tempting to ask if such a structural result holds for
other distinguished subsets of definable types and even for other first-order theories.
It turned out this question is closely related to classical topics in model theory such
as the model theory of pairs and uniform definability of types. In this article we
give a positive answer in various contexts. Formally, we obtain the following result

Main Theorem 1 (Theorem 6.4). Let T be one of the following theories: a com-
plete o-minimal theory; Presburger arithmetic; the theory of a finite extension of
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Qp; the theory of real closed valued fields RCVF; a completion of the theory of al-
gebraically closed valued fields ACVF; the theory of closed ordered differential fields
CODF. Then, definable types over models of T are uniformly definable. In partic-
ular, for every model M of T and every M -definable set X, the space Sdef

X (M) of
M -definable types concentrating on X is pro-definable in Leq.

The fact that pro-definability follows from uniform definability of types goes
back to an argument of E. Hrushovski and F. Loeser in [13] which we present
in Proposition 4.1. In return, uniform definability of types is obtained from the
following criterion which relates it to stably embedded pairs of models of T .

Main Theorem 2 (Corollary 6.2). Let T be an L-theory such that

(i) the class of stably embedded pairs of models of T is elementary in the language
of pairs;

(ii) for every small model M |= T and every definable type p ∈ Sdef
x (M), there is a

stably embedded pair (N,M) such that p is realized in N .

Then T has uniform definability of types.

Ensuring point (i) for the above-listed theories makes use of characterizations of
definable types à la Marker-Steinhorn. In the case of RCVF and pCFe,f , we prove
such a characterization (Theorem 5.9) in the spirit of [6].

As a corollary we also obtain pro-definability of some distinguished subspaces of
the space of definable types which have a geometric interpretation. In particular,
we aim to show that there are spaces of definable types in ACVF that can mimic
Huber’s analytification of an algebraic variety in a similar way the space of generi-
cally stable types mimics its Berkovich analytification. We hope this can serve as a
basis towards a model theory of adic spaces. In the same spirit, working in RCVF,
there are spaces of definable types which can be seen as the model-theoretic coun-
terpart of the analytification of semi-algebraic sets as recently defined by P. Jell,
C. Scheiderer and J. Yu in [14]. This article aims to lay down a foundation for a
model-theoretic study of such spaces. In a sequel, we will further explore structural
properties of some of these spaces.

A natural question to ask is if such spaces are also strict pro-definable (i.e., pro-
definable with surjective transition maps). Obtaining strictness is much more subtle
and is often related to completions of theories of stably embedded pairs. Results
towards a positive answer to this question will also be addressed in subsequent
work.

2. Preliminaries and notation

2.1. Model theoretic background. Let L be a first order language (possibly
multi-sorted) and T be a complete L-theory. The sorts of L are denoted by bold
letters D. Given a variable x, we let Dx denote the sort where x ranges. If M
is a model of T and D be a sort of L, we let D(M) denote the set of elements of
M which are of sort D. Given an ordered tuple of variables x = (xi)i∈I (possibly
infinite), we extend this notation and set

Dx(M) =
∏
i∈I

Dxi
(M).

Let C be a subset ofM (i.e. the union of allD(M), D a L-sort). The language L(C)
is the language L together with constant symbols for every element in C. Given
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an L(C)-definable subset X ⊆ Dx(M), we say that a type p ∈ Sx(C) concentrates
on X if p contains a formula defining X. We denote by SX(C) the subset of
Sx(C) consisting of those types concentrating on X. For a C-definable function
f : X → Y the pushforward of f is the function f∗ : SX(C) → SY (C) sending
tp(a/C) to tp(f(a)/C).

We let U be a monster model of T . As usual, a set is said to be small if it is of
cardinality smaller than |U|. A type p(x) is a global type if p ∈ Sx(U). Following
Shelah’s terminology, a subset X ⊆ Dx(M) is ∗-C-definable if there is a small
collection Θ of L(C)-formulas ϕ(x) (where only finitely many xi occur in each
formula) such that X = {a ∈ Dx(M) | M |= ϕ(a), ϕ ∈ Θ}.

We let dcl and acl denote the usual definable and algebraic closure model-
theoretic operators. Given a tuple of variables x of length n, a C-definable set
X ⊆ Dx(U) and a subset A of U , we let X(A) := X ∩ dcl(A)n.

2.2. Definable types. We will mainly study definable types over models of T .
Recall that given a subset A ⊆ M , a type p ∈ Sx(M) is A-definable (or definable
over A) if for every L-formula ϕ(x, y) there is an L(A)-formula dp(ϕ)(y) such that
for every c ∈ Dy(M)

ϕ(x, c) ∈ p(x) ⇔ M |= dp(ϕ)(c).

The map ϕ(x, y) �→ dp(ϕ)(y) is called a scheme of definition for p, and the formula
dp(ϕ)(y) is called a ϕ-definition for p. We say p ∈ Sx(M) is definable if it is M -
definable. Given any set B containing M , we use p|B to denote the type {ϕ(x, b) |
N |= dp(ϕ)(b)}, where N is any model of T containing B. We refer the reader to
[18, Section 1] for proofs and details of these facts. The following is folklore.

Lemma 2.1. If tp(a1/M) is definable and a2 ∈ acl(Ma1), then tp(a2/M) is defin-
able. �

Let ϕ(x; y) be a partitioned formula. A formula ψ(y, zϕ) is a uniform definition
for ϕ (in T ) if for every model M of T and every definable type p ∈ Sx(M) there
is c = c(p, ϕ) ∈ Dzϕ(M) such that ψ(y, c) is a ϕ-definition for p. We say T has
uniform definability of types if every partitioned L-formula ϕ(x; y) has a uniform
definition, which we write d(ϕ)(y, zϕ). The following is a routine coding exercise.

Lemma 2.2. Let ϕ(x; y) be a partitioned L-formula. Suppose there are finitely
many L-formulas ψ1(y, z1), . . . , ψn(y, zn) such that for every model M of T and
every p ∈ Sdef

x (M), there are i ∈ {1, . . . , n} and c ∈ Dzi(M) such that ψi(y, c) is a
ϕ-definition for p. Then ϕ(x; y) has a uniform definition. �
2.3. Background in valued fields. For a valued field (K, v) we let ΓK denote
the value group, OK its valuation ring, kK the residue field and res : OK → kK
the residue map. Given a valued field extension (K ⊆ L, v) and a subset A :=
{a1, . . . , an} ⊆ L, we say that A is K-valuation independent if for every K-linear
combination

∑n
i=1 ciai with ci ∈ K, v(

∑n
i=1 ciai) = mini(v(ciai)). The extension

L|K is called vs-defectless1 if every finitely generated K-vector subspace V of L
admits a K-valuation basis, that is, a K-valuation independent set which spans V
over K.

Let Lring be the language of rings and Ldiv be its extension by a binary predicate
div. We let ACVF be the Ldiv-theory of algebraically closed (non-trivially) valued

1This is the same as “separated” in W. Baur’s and F. Delon’s terminology.
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fields, where div is interpreted in a valued field (K, v) by div(x, y) ⇔ v(x) � v(y).
Recall this theory has quantifier elimination (see also [12]).

We let pCFe,f be the L-theory of a finite extension K of Qp with p-ramification
index e and residue degree f . Here L is Ldiv together with d = ef new constants
symbols interpreted in any model by elements which modulo pO form an Fp-basis
of OK/pOK (see [20]). Recall this theory admits quantifier elimination by adding
predicates for nth-powers (see [20, Theorem 5.6]).

Finally, the theory RCVF is the theory of real closed (non-trivially) valued fields
in which the valuation ring is convex with respect to the ordering. It has quantifier
elimination by results in [3].

3. Completions by definable types

3.1. The definable completion. Let X ⊆ Dx(U) be a C-definable set and A be
a small set containing C. The definable completion of X over A, denoted Sdef

X,U (A),
is the space of A-definable global types which concentrate on X. For a tuple of
variables x we write Sdef

x,U (A) for Sdef
Dx(U),U (A).

Convention 3.1. In what follows, to simply notation, we will drop the index U in
Sdef
X,U (A) and simply write Sdef

X (A). Keep in mind that with this notation Sdef
X (A)

is not a subset of SX(A) but a subset of SX(U). No conflict in notation will occur,
as we will never consider Sdef

X (A) as a subset of SX(A).

Given a C-definable function f : X → Y , it is easy to see that the image of a
definable type under f∗ is again definable. We will therefore use the more functorial
notation fdef : Sdef

X (A) → Sdef
Y (A) for every small set A containing C.

Remark 3.2.

(1) Note that if f is injective, so is f∗ and hence fdef . However, the transfer of
surjectivity from f to fdef is more subtle. We will say that T has surjectivity
transfer precisely if for every surjective definable function f : X → Y , the
function fdef is surjective. Note that if T has definable Skolem functions, then
it has surjectivity transfer. Indeed, let g : Y → X be a definable section of
f . Then, given any type p ∈ Sdef

Y , we have that fdef(gdef(p)) = p, so fdef is
surjective. We do not know whether CODF has surjectivity transfer.

(2) In [13], the authors considered the following variant: say T has the extension
property if fdef is surjective for every surjective pro-definable map f between
pro-definable subsets (see Section 4.1). One can check that the latter is equiv-
alent to surjectivity transfer. We refrain from using the expression “extension
property” to avoid confusion with various occurrences of this term throughout
model theory.

(3) By [13, Lemma 4.2.6], a stronger result holds for o-minimal theories and ACVF.
Indeed, the function fdef is surjective even when X and Y are definable subsets
of products of imaginary sorts. Adapting the argument given in [13, Lemma
4.2.6(a)], the same result holds for RCVF.

3.2. Other completions by definable types.

3.2.1. The bounded completion. Let T be an o-minimal theory and M be a model
of T . Given an elementary extension M 	 N , we say that N is bounded by M if for
every b ∈ N , there are c1, c2 ∈ M such that c1 � b � c2. Let A be a small subset of
U and X be a definable set. A type p ∈ Sdef

X (A) is bounded if for any small model
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M containing A and every realization a |= p|M , there is an elementary extension
M 	 N with a ∈ X(N) and such that N is bounded by M .

Let T be either RCVF or a completion of ACVF. Let A be a small subset of U .
A type p ∈ Sdef

X (A) is bounded if for any small model M containing A and every
realization a |= p|M , Γ(acl(Ma)) is bounded by Γ(M), where Γ denotes the value
group sort.

Finally, let T be either an o-minimal theory, a completion of ACVF or RCVF.
Let A be a small subset of U and X be a definable set. The bounded completion of

X over A, denoted X̃(A), is the set of bounded global A-definable types.

3.2.2. The orthogonal completion. Let T be either a completion of ACVF or RCVF.
Let A be a small subset of U . A type p ∈ Sdef

x (A) is said to be orthogonal to Γ if for
every model M containing A and every realization a |= p|M , Γ(M) = Γ(acl(Ma)).

Given a definable set X, the orthogonal completion of X, denoted by X̂(A), is the
set of global A-definable types concentrating on X which are orthogonal to Γ.

In [13], the set X̂(A) is called the stable completion of X over A. The name

arises since, in this context, X̂(A) also corresponds to the set of definable types
over A which are stably dominated, and equivalently, which are generically stable
(see [13, Proposition 2.9.1]). However, such an equivalence does not hold in RCVF:
every generically stable type (resp. stably dominated) must be a realized type.

Remark 3.3.

(1) If T is an o-minimal expansion of the theory of real closed fields, then every
bounded definable type is a realized type. However, this is not the case for
general o-minimal theories. For example, the type of an element arbitrarily
close to zero in DOAG is bounded.

(2) Let T be either a completion of ACVF or RCVF, and let M a model of T .
If tp(a/M) is orthogonal to Γ, then tp(b/M) is orthogonal to Γ for every b ∈
acl(M,a).

(3) Given a definable function f : X → Y , then the pushforward f∗ of f restricted

to X̃ (resp. to X̂) has image in Ỹ (resp. Ŷ ). We use f̃ (resp. f̂) to denote the

restriction of f∗ to X̃ (resp. X̂).

3.2.3. Geometric interpretation. For T a completion of ACVF, let V be a variety

over a complete rank 1 valued field F . In [13], V̂ is introduced as a model-theoretic

analogue of the Berkovich analytification V an of V . Similarly, our aim is to view Ṽ
as a model-theoretic analogue of the Huber analytification of V . When T is RCVF,

V̂ is a good candidate to be the model-theoretic counterpart of the analytification

of semi-algebraic sets defined by Jell, Scheiderer and Yu in [14]. The set V̂ is also
tightly related to the set of residue field dominated types as defined by Ealy, Haskell

and Mař́ıková in [9]. The space Ṽ (in RCVF) seems to suggest there is an analogue
of Huber’s analytification of semi-algebraic sets. Finally, Sdef

V can be viewed as a
model-theoretic analogue of the “space of valuations on V ”. As mentioned in the
introduction, we will present more structural results concerning these spaces in a
sequel of this article.
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4. Spaces of definable types as pro-definable sets

4.1. Pro-definable sets and morphisms. Let (I,≤) be a small upwards directed
partially ordered set and C be a small subset of U . A C-definable projective system
is a collection (Xi, fij) such that:

(1) for every i ∈ I, Xi is a C-definable set;
(2) for every i, j ∈ I such that i � j; fij : Xi → Xj is C-definable;
(3) fii is the identity on Xi and fik = fjk ◦ fij for all i � j � k.

A pro-C-definable set X is the projective limit X := lim←−i∈I
Xi of a C-definable

projective system (Xi, fij). We say thatX is pro-definable if it is pro-C-definable for
some small set of parameters C. Pro-definable sets can also be seen as ∗-definable
sets. By a result of Kamensky [15], we may identify X and X(U).

Let X = lim←−i∈I
Xi and Y = lim←−j∈J

Yj be two pro-C-definable sets with asso-

ciated C-definable projective systems (Xi, fii′) and (Yj , gjj′). A pro-C-definable
morphism is the data of a monotone function d : J → I and a family of C-definable
functions {ϕij : Xi → Yj | i � d(j)} such that, for all j � j′ in J and all i � i′ in I
with i � d(j) and i′ � d(j′), it holds that ϕi′j′ ◦ fii′ = gjj′ ◦ ϕij .

4.2. Completions by definable types as pro-definable sets. What does it
mean that a completion by definable types is pro-definable? Let us give the precise
meaning of this in the case of the definable completion. The other completions are
handled analogously.

We say that definable types are pro-definable in T if, for every set of parameters
C and for every L(C)-definable set X, there is a pro-C-definable (possibly in Leq)
set PX and a bijection hM

X : Sdef
X (M) → PX(M) for every model M containing

C. Further, we require some functoriality: if N is an elementary extension of
M , we have natural maps Sdef

X (M) → Sdef
X (N) and PX(M) → PX(N); and if

f : X → Y is an L(C)-definable function, then there are pro-C-definable morphisms
f ′
N : PX(N) → PY (N) and f ′

M : PX(N) → PY (N) making the following diagram
commute

Sdef
Y (N) PY (N)

Sdef
X (N) PX(N)

Sdef
Y (M) PY (M)

Sdef
X (M) PX(M)

hN
Y

hN
X

f ′
N

hM
Y

hM
X

f ′
M

Similarly, we say a subfunctor C(•) of Sdef
• is pro-definable if it satisfies the same

conditions after replacing Sdef
• with C(•) in the above diagram. It is in this sense

that we say that the bounded and orthogonal completions are pro-definable (note
in both cases we have a subfunctor by Remark 3.3).

The following result, essentially due to E. Hrushovski and F. Loeser [13, Lemma
2.5.1], shows the link between uniform definability of types and pro-definability.
We include a proof for the reader’s convenience.

Proposition 4.1. Suppose T has uniform definability of types. Then definable
types are pro-definable in Leq. In particular, if T has elimination of imaginaries,
then definable types are pro-definable in T .
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Proof. Fix some modelM of T . Given a partitioned L-formula ϕ(x; y), let d(ϕ)(y, zϕ)
be a uniform definition for ϕ. By possibly using an Leq-formula, we may suppose
that zϕ is a single variable and

T eq |= (∀zϕ)(∀z′ϕ)(∀y)[(d(ϕ)(y, zϕ) ↔ d(ϕ)(y, z′ϕ)) → zϕ = z′ϕ].

Let Φ denote the set of partitioned L-formulas of the form ϕ(x; y) where y ranges
over all finite tuples of variables. We associate to this data a map τ defined by

τ : Sdef
x (M) →

∏
ϕ∈Φ

Dzϕ(M) p �→ (c(p, ϕ))ϕ∈Φ,

where c(p, ϕ) is such that d(ϕ)(y, c(p, ϕ)) is a ϕ-definition for p. The codomain of τ ,
being a small product of definable sets, is pro-definable. Thus, since τ is injective,
to obtain pro-definability it suffices to show that τ (Sdef

x (M)) is ∗-definable.
Without loss of generality we may suppose that the map d factors through

Boolean combinations, that is, d(ϕ ∧ ψ) = d(ϕ) ∧ d(ψ) and d(¬ϕ) = ¬d(ϕ). Con-
sider the following set of formulas Θ containing, for each L-formula ϕ(x; y) ∈ Φ,
the formula θϕ(zϕ) given by

θϕ(zϕ) := (∀y)(∃x)(ϕ(x, y) ↔ d(ϕ)(y, zϕ)).

Given ϕ1(x; y1), . . . , ϕm(x; ym) in Φ, let y be the tuple (y1, . . . , ym) and ϕ(x; y)
denote the conjunction

∧m
i=1 ϕi(x, yi). Since d factors through conjunctions

(E1) M |= (∀zϕ)(∀zϕ1
) · · · (∀zϕm

)(∀y)(d(ϕ)(y, zϕ) ↔
m∧
i=1

d(ϕi)(y, zϕi
)).

We claim that

τ (Sdef
X (M)) = {(cϕ)ϕ ∈

∏
ϕ∈Φ

Dϕ | (cϕ)ϕ |= Θ}.

From left-to-right, let p ∈ Sdef
x and θϕ(zϕ) be a formula in Θ. We have that

τ (p) |= θϕ(zϕ) ⇔ U |= (∀y)(∃x)(ϕ(x, y) ↔ d(ϕ)(y, c(p, ϕ))),

and the last formula holds since for every y any realization of p satisfies such a
formula. To show the right-to-left inclusion, let (cϕ)ϕ be such that (cϕ)ϕ |= Θ.
Consider the set of formulas

p(x) := {ϕ(x, b) | U |= d(ϕ)(b, cϕ)}.
Let us show that p(x) is an element of Sx(U). Once we show p(x) is consistent,
that p ∈ Sdef

x (M) follows by definition. Let ϕ1(x, b1), . . . , ϕm(x, bm) be formulas in
p(x). Letting b := (b1, . . . , bm), by the definition of p(x) and (E1) we have that the
formula ϕ(x, b) is also in p(x). Moreover, since (cϕ)ϕ |= θϕ we have in particular
that

M |= (∃x)(ϕ(x, b) ↔ d(ϕ)(b, cϕ)).

Finally, since ϕ(x, b) ∈ p(x), we must have that |= d(ϕ)(b, cϕ), which shows there
is an element satisfying ϕ(x, b). By compactness, p(x) is consistent.

Given an M -definable subset X ⊆ Dx(M), we endow Sdef
X (M) with the pro-

definable structure inherited from Sdef
x (M). More precisely, if X is defined by a

formula ψ(x, a) for some tuple a ∈ M , we have that

τ (Sdef
X (M)) = {(cϕ)ϕ ∈

∏
ϕ∈Φ

Dϕ | (cϕ)ϕ |= Θ ∪ {d(ψ)(a, zψ)}}.
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We leave as an exercise to show that the present construction guarantees all the
above functoriality properties. �

Corollary 4.2. Suppose T has uniform definability of types. Let M be a model
and X be a definable subset of M . Then every ∗-definable subset of Sdef

X (M) is
pro-definable. �

Remark 4.3. If T has uniform definability of types and has surjectivity transfer for
definable functions in Leq (see (3) of Remark 3.2), then definable types concentrat-
ing on a product of imaginary sorts are also uniformly definable. In particular, by
Proposition 4.1, if X is a definable subset of some product of imaginary sorts, then
Sdef
X (M) is pro-definable (in Leq).

5. Stably embedded pairs and elementarity

Suppose L is a one-sorted language. Let LP be a language extending L by a
new unary predicate P . We denote an LP -structure as a pair (N,A) where N
is an L-structure and A ⊆ N corresponds to the interpretation of P . Given a
complete L-theory T , the LP -theory of elementary pairs of models of T , is denoted
TP . Given a tuple x = (x1, . . . , xm), we abuse of notation and write P (x) as an
abbreviation for

∧n
i=1 P (xi). When L is multi-sorted we let LP denote the language

which extends L by a new unary predicate PD for every L-sort D. Analogously,
an LP -structure N is a model of TP if the collection of subsets PD(N) forms an
elementary L-substructure of N . We will also denote any such a structure as a pair
(N,M) where M 	 N |= T and for every L-sort D, PD(N) = D(M).

5.1. Stable embedded pairs. Let M 	 N be an elementary extension of models
of T . The extension is called stably embedded if for every L(N)-definable subset
X ⊆ Dx(N), the set X ∩Dx(M) is L(M)-definable in M .

The class of stably embedded models of T will be denoted SE(T ). It is a standard
exercise to show that M 	 N is stably embedded if and only if for every tuple a in
N , the type tp(a/M) is definable.

Our main objective is to show that for various NIP theories T , SE(T ) is an LP -
elementary class. Stable theories constitute a trivial example of this phenomenon,
since the class of stably embedded pairs coincides with the class of elementary
pairs. O-minimal theories constitute a less trivial example. Let us first recall
Marker-Steinhorn’s characterizarion of definable types in o-minimal structures.

Theorem 5.1 ([16, Theorem 2.1]). Let T be an o-minimal theory and M be a
model of T . Then, p ∈ Sx(M) is definable if and only if for every realization a of
p, M is Dedekind complete in M(a) (where M(a) is the prime model of M over a).

Since the Dedekind completeness of the small structure of a pair is expressible
in LP , we readily obtain:

Corollary 5.2. Let T be a complete o-minimal theory. Then the class of stably
embedded pairs is LP -elementary.

The following result of Q. Brouette shows the analogue result for CODF.

Theorem 5.3 ([2, Proposition 3.6]). Let M be a model of CODF. Then, p ∈ Sx(M)
is definable if and only if for every realization a of p, M is Dedekind complete in
the real closure of the ordered differential field generated by M ∪ {a}.
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Corollary 5.4. The class of stably embedded pairs of models of CODF is LP -
elementary.

The following characterization of definable types in Z-groups (i.e. models of
Presburger arithmetic) is due to G. Conant and S. Vojdani (see [5]).

Theorem 5.5. Let M be a Z-group. Then, p ∈ Sn(M) is definable if and only if
for every realization a |= p, M 	 M(a) is an end-extension. �
Corollary 5.6. The class of stably embedded models of Presburger arithmetic LP -
elementary. �
5.2. Stable embedded pairs of valued fields. In what follows we gather the cor-
responding characterization of stably embedded pairs of models for ACVF, RCVF
and pCFe,f . We follow the notations introduced in Section 2.3. We need first the
following terminology for induced structures. Let M be an L-structure and D be an
imaginary sort in M eq. We let LD be the language having a predicate PR for every
L-definable (without parameters) subset R ⊆ Dn(M). The structure (D(M),LD)
in which every PR is interpreted as the set R is called the induced structure on
D(M). The sort D is called stably embedded if every Leq(M)-definable subset of
a cartesian power of D(M) is LD-definable. The following lemma is left to the
reader.

Lemma 5.7. Let T be an complete L-theory and (N,M) be a stably embedded pair
of models of T . Let D be an Leq-sort which is stably embedded (as a sort) in every
model of T . Then the pair D(M) 	 D(N) is stably embedded in LD.

Corollary 5.8. Let T be RCVF, pCFe,f or a completion of ACVF. Let (K 	 L, v)
be a stably embedded pair of models of T . Then, the pairs ΓK 	 ΓL and kK 	 kL
are stably embedded in their induced structure languages.

Proof. By Lemma 5.7, it suffices to show that in each of these theories the value
group and the residue field are stably embedded (as sorts). This follows by [12,
Proposition 2.1.3] for ACVF, [17, Lemma 3.13] for RCVF, and [4, Theorem 6] for
pCFe,f ). �

Let us now explain how to show that the class SE(T ) is LP -elementary for T
either ACVF, RCVF or pCFe,f . In all three cases, the result will follow from the
following theorem:

Theorem 5.9. Let T be either ACVF, RCVF or pCFe,f . Let K 	 L be a pair of
models of T . Then the following are equivalent

(1) the pair K 	 L is stably embedded
(2) the valued field extension L|K is vs-defectless, the pairs ΓK 	 ΓL and

kK 	 kL are stably embedded.

For ACVF the above Theorem is precisely the content of [6, Theorem 1.9]. For
RCVF and pCFe,f the result is new and the corresponding proof is presented in
Sections 5.2.1 and 5.2.2.

Corollary 5.10. Let T be either ACVF, RCVF or pCFe,f . Then the class SE(T )
is elementary in the language of pairs.

Proof. By Theorem 5.9, it suffices to show that the condition stated in part (2)
is elementary in the language of pairs. Note that being a vs-defectless extension
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is an elementary property in the language of pairs, so we only need to show that
having stably embedded value group and residue field extensions is an elementary
property in the language of pairs.

Concerning the value group, both in ACVF and RCVF, the value group extension
is an elementary extension of divisible ordered abelian groups and therefore, being
stably embedded is elementary by Corollary 5.2 and Corollary 5.8. For pCFe,f ,
the value group extension is an extension of models of Presburger arithmetic, and
hence the result follows by Corollary 5.6.

Regarding the residue field extension, note that it only plays a role for RCVF
(indeed, in ACVF the residue field is a pure algebraically closed field, hence stable,
and in pCFe,f the residue field is finite). In RCVF, the residue field extension
corresponds to a stably embedded pair of real closed fields. As before, the result
follows by Corollary 5.2 and Corollary 5.8. �

Some of these results were recently extended by P. Touchard to other classes of
Henselian fields, see [22].

5.2.1. Stably embedded pairs of real closed valued fields.

Proof of Theorem 5.9 for RCVF. Let (K 	 L, v) be a pair of real closed valued
fields.

(1) ⇒ (2): By Corollary 5.8, the pairs ΓK 	 ΓL and kK 	 kL are stably
embedded. That the extension is vs-defectless follows word for word the proof for
ACVF given in [6, Theorem 1.9] (it uses that the pair of value groups is a pair of
pure divisible ordered abelian groups (see [17, Lemma 3.13]). Alternatively, since
every model of RCVF has an elementary extension which is maximal (as a valued
field), one can argue as in [22, Prop. 2.4].

(2) ⇒ (1): Let X ⊆ Lm be an L�
div-definable set over L. We need to show that

X ∩Km is L�
div-definable over K. By quantifier elimination, we may suppose that

X is defined by one of the following formulas

(i) v(P (x))�v(Q(x)) with � either � or <,
(ii) 0 < P (x),

where P,Q ∈ L[X] with X = (X1, . . . , Xm).
Let {a1, . . . , an} be a valuation basis for the K-vector space generated by the

coefficients of P and Q. For I := {1, . . . , n} write P (X) =
∑

i∈I aiPi(X) and
Q(X) =

∑
i∈I aiQi(X), with Pi, Qi ∈ K[X]. It then follows that for any x ∈ K

one has

(5.1) v(P (x)) = min
i∈I

{v(ai) + v(Pi(x))} and v(Q(x)) = min
i∈I

{v(ai) + v(Qi(x))}.

For (i), the result follows from (5.1) and stable embeddedness of the pair (ΓL,ΓK)
(for more details, see [6, pages 40-41]).

For (ii), multiplying the ai by suitable elements in K, we can further suppose
that for every i, j ∈ I, if v(ai) and v(aj) lie in the same coset modulo ΓK , then
v(ai) = v(aj). Moreover, at the expense of multiplying Pi by −1, we can suppose
that ai > 0 for all i ∈ I.

For each ∅ �= J ⊆ I, let AJ be the set

AJ := {x ∈ Km | v(
∑
i∈I

aiPi(x)) = v(ajPj(x)) if and only if j ∈ J}.



PRO-DEFINABILITY OF SPACES OF DEFINABLE TYPES 183

By case (i), we may suppose AJ is definable overK. Further, since A is K-valuation
independent, the sets AJ cover Km when J varies over all non-empty subsets of I.
Therefore, it suffices to show that X ∩AJ is definable over K for every J ⊆ I. Let
us first show how to reduce to the case where J = I. If J �= I, then for all x ∈ AJ

we have, since the valuation is compatible with the ordering,

0 < P (x) ⇔ 0 <
∑
i∈J

aiPi(x) +
∑

i∈I\J
aiPi(x) ⇔ 0 <

∑
i∈J

aiPi(x),

and thus we obtain an equivalent formula where for all i ∈ J , v(aiPi(x)) is the
same. Therefore without loss of generality it suffices to show the case J = I.
Now, since for all x ∈ AI , v(aiPi(x)) = v(ajPj(x)) for all i, j ∈ I, v(ai) and v(aj)
are in the same coset modulo ΓK , and hence v(ai) = v(aj) for all i, j ∈ I. Also
v(Pi(x)) = v(Pj(x)) for all i, j ∈ I. Multiplying by a suitable constant c ∈ L>0,
we may suppose that v(ai) = 0 for all i ∈ I. Similarly, multiplying by a suitable
constant c′ ∈ K>0, we may suppose that v(Pi(x)) = 0 for all x ∈ AI . We conclude
by noting that in this situation, for all x ∈ AI

0 < P (x) ⇔ 0 < res(
n∑

i=1

aiPi(x)) ⇔ 0 <
n∑

i=1

res(ai)res(Pi(x)).

Since kK is stably embedded in kL, the set {y ∈ kmK | 0 <
∑n

i=1 res(ai)yi} is
definable over kK . Lifting the parameters, we obtain that X ∩AI is definable over
K. �

5.2.2. Stably embedded pairs of models of pCFe,f . Let K be a model of pCFe,f . We
need some preliminary lemmas.

Lemma 5.11. Let (K ⊆ L, v) be a valued field extension. Suppose that every y ∈ L
is of the form y = x + a with a ∈ K and x ∈ L such that |v(x)| > ΓK . Then the
extension is vs-defectless.

Proof. Let V ⊆ L be a K-vector space of dimension n. Let us show that V contains
elements {x1, . . . , xn} such that all v(xi) lie in distinct ΓK-cosets. By [10, Lemma
3.2.2], this implies that {x1, . . . , xn} is a K-valuation basis for V . We proceed by
induction on n. Let {y1, . . . , yn} be a basis for V . For n = 1 the result is trivial
(take x1 = y1). Then, by induction, theK-vector space generated by {y1, . . . , yn−1}
contains elements {x1, . . . , xn−1} such that each v(xi) lies in a different ΓK-coset.
Without loss of generality we may assume

v(xn−1) + ΓK > · · · > v(x1) + ΓK .

If either v(yn) > v(xn−1) + ΓK , v(x1) > v(yn) + ΓK , or

v(xm+1) > v(yn) + ΓK > v(xm) + ΓK ,

for some 1 � m < n − 1, then we are done by setting xn := yn. Otherwise, there
are c ∈ K and 1 � m � n − 1 such that v(cyn) = v(xm). By assumption, there is
a ∈ K be such that cyn/xm = x + a with v(x) > ΓK . Therefore, b := cyn − axm

satisfies v(b) > v(xm) + ΓK . If v(b) is in a different ΓK-coset than every v(xi) for
i ∈ {1, . . . , n − 1}, we are done by setting xn := b. Otherwise, there are c′ ∈ K
and m′ > m such that v(c′b) = v(xm′). Following the same procedure, one finds

a K-linear combination xn := anyn +
∑n−1

i=1 aixi such that v(xn) is in a different
ΓK-coset than every v(xi) for i ∈ {1, . . . , n− 1}. �
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Let (K ⊆ L, v) be a valued field extension. Let G be the convex hull of ΓK in ΓL

and w be the valuation on L obtained by composing v with the canonical quotient
map ΓL → ΓL/G. Let us denote kwK and kwL the residue fields of (K,w) and (L,w).
As w is trivial on K, K ∼= kwK .

An element a ∈ L is limit over K if the extension K(a)|K is an immediate
extension. We let the reader check that if K is a model of pCFe,f and a is limit
over K, then the type tp(a/K) is not definable.

Theorem 5.12 ([8, Part (a) of the main Theorem]). Suppose (K 	 L, v) is a
valued field extension of Henselian valued fields of characteristic 0 and let w be as
above. If the canonical embedding kwK → kwL is an isomorphism, then K 	 L is
stably embedded in Ldiv.

Proof of Theorem 5.9 for pCFe,f .
(1) ⇒ (2): That ΓK 	 ΓL is stably embedded follows by Corollary 5.8. It

remains to show that the extension is vs-defectless. By Lemma 5.11, it suffices to
show that every element y ∈ L is of the form x+ a for a ∈ K and x ∈ L such that
|v(x)| > ΓK . Every element y ∈ K is of this form (with x = 0), so we may suppose
y ∈ L \K. If |v(y)| > ΓK take a = 0. Otherwise, since by Theorem 5.5 ΓL is an
end extension of ΓK , we must have v(y) ∈ v(K). Suppose there is no a ∈ K such
that |v(y − a)| > ΓK . Thus, for every a ∈ K, v(y − a) ∈ ΓK . But this implies that
y is limit over K, which contradicts that K is stably embedded in L. This shows
the extension is vs-defectless.

(2) ⇒ (1): Since the pair is vs-defectless, there are no limit points in L over K.
Moreover, since ΓK 	 ΓL is stably embedded, by Theorem 5.5, it is an end extension
of ΓK . The same argument as in the previous implication shows that every element
y ∈ L is of the form x+a for a ∈ K and x ∈ L such that |v(x)| > ΓK . In particular,
the convex hull of ΓK in ΓL is ΓK . Let us show that kwL is isomorphic to K. For
all y ∈ L \K such that w(y) = 0, there is a unique a ∈ K such that v(y− a) > ΓK .
Therefore resw(y) = a, which shows that kwL is in bijection with K. The result now
follows from Theorem 5.12. �

We summarize the above results in the following theorem.

Theorem 5.13. Let T be one of the following theories: a complete o-minimal
theory; CODF; Presburger arithmetic; pCFe,f ; RCVF; a completion of ACVF.
Then, the class SE(T ) is an elementary class in LP . �

Question 5.14. Is there a natural characterization of the class of complete NIP
theories T for which SE(T ) is LP -elementary?

Note that there are NIP L-theories T for which the class SE(T ) is not LP -
elementary. The following example is due to L. Newelski.

Example 5.15. Let (ai)i<ω be an increasing sequence of irrational numbers ai with
the limit limi→∞ ai = c irrational. Consider the structure M = (Q, <, (Pai

)i<ω)
where Pai

is a unary predicate interpreted as the cut {x ∈ Q | x < ai}. The theory
T = Th(M) is NIP as any NIP theory extended by externally definable sets is NIP
(see [21, Section 3.3]). Now let N = M ∪{bi | i < ω} where bi realizes the definable
type over M determined by the set of formulas

{c < x | M |= Pai
(c)} ∪ {x < c | M |= ¬Pai

(c)}.
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Then, (N,M) is a stably embedded pair. Let (N∗,M∗) be an ultrapower of (N,M)
over a non-principal ultrafilter F over ω. Let b be the class of the sequence (bi)i<ω

modulo F . We let the reader check that the set X = {x ∈ M∗ | x < b} is not
definable in M∗, hence the pair (N∗,M∗) is not stably embedded.

6. Uniform definability via classes of pairs

The following theorem provides an abstract criterion for a theory T to have
uniform definability of types.

Theorem 6.1. Suppose there is an LP -elementary class C such that

(i) if (N,M) ∈ C, then M |= T ;
(ii) if (N,M) ∈ C, then N is an L-substructure of an L-elementary extension N ′

of M ;
(iii) if (N,M) ∈ C, and a is a finite tuple in N , then tp(a/M) is definable (where

tp(a/M) is defined with respect to ThL(N
′));

(iv) for every small model M |= T and every definable type p ∈ Sdef
x (M), there is a

pair (N,M) ∈ C and a ∈ Dx(N) such that p = tp(a/M).

Then T has uniform definability of types. In particular, definable types are pro-
definable in T in any reduct of Leq in which T has elimination of imaginaries.

Proof. Fix a partitioned L-formula ϕ(x; y). Let (ψi(y, zi))i∈I be an enumeration
of all L-formulas having y among their free variables. Suppose for a contradiction
that no formula ψi(y, zi) provides a uniform definition for ϕ. This implies, by
Lemma 2.2, that for every finite subset J ⊆ I there are a model MJ of T and a
type qJ (x) ∈ Sdef

x (MJ) such that no formula ψi with i ∈ J is a ϕ-definition for qJ .
Consider for every i ∈ I the LP -formula θi(x)

(∀zi ∈ P )(∃y ∈ P )(¬(ϕ(x, y) ↔ ψi(y, zi))).

Let Σ(x) := {θi(x) | i ∈ I} ∪ TC , where TC is an LP -axiomatization of C. Let us
show that Σ(x) is consistent. Let Σ0 be a finite subset of Σ and let J := {i ∈ I |
θi(x) ∈ Σ0}. By assumption, there is some q = qJ (x) ∈ Sdef

x (MJ ) such that no ψi

with i ∈ J is a ϕ-definition for q. By condition (iv), let (N,MJ ) be an element of C
and a ∈ Dx(N) be such that q = tp(a/M). By the choice of a, we have that θi(a)
holds for all i ∈ J . This shows that Σ0 is consistent. Thus, by compactness, Σ is
consistent.

Let (N ′,M ′) be an element in C and a ∈ N ′ be a realization of Σ. By the
definition of Σ, the type tp(a/M ′) is not definable, which contradicts (iii). �

Corollary 6.2. Let T be an L-theory such that

(i) SE(T ) is LP -elementary;
(ii) for every small model M |= T and every definable type p ∈ Sdef

x (M), there is a
stably embedded (N,M) such that p is realized in N .

Then T has uniform definability of types. In particular, definable types are pro-
definable in T in any reduct of Leq in which T has elimination of imaginaries.

Proof. This follows directly by Theorem 6.1 by taking C = SE(T ). Indeed, note
that conditions (i)− (iii) of Theorem 6.1 are trivially satisfied, and condition (iv)
corresponds to the present assumption (ii). �
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Theorem 6.3. The following theories have uniform definability of types (in one of
their natural languages):

(1) any complete stable theory;
(2) any complete o-minimal theory;
(3) Presburger arithmetic;
(4) The theory of a finite extension of Qp;
(5) RCVF;
(6) any completion of ACVF;
(7) CODF.

Proof.
(1) This is a well-known result (see B. Poizat’s paper [19]). Alternatively, one

could also use Corollary 6.2: condition (i) is trivially satisfied and for condition (ii)
take N = U .

Let T be one of the theories from (2)-(6). We apply Corollary 6.2. Condition (i)
is granted by Theorem 5.13. For condition (ii), let M be a model of T , p ∈ Sdef

x (M)
and a ∈ Dx(U) be a realization of p. If T is o-minimal, by Marker-Steinhorn’s
theorem (Theorem 5.1), we can take N := M(a) since (M(a),M) is already stably
embedded. For T a theory from (3)-(6) we take N := acl(Ma). Note that in these
cases N is indeed a model of T and the extension (N,M) is stably embedded by
Lemma 2.1. This completes the result for (2)− (6).

For CODF, the structure N := acl(Ma) is a real closed field extension of M
but it is not necessarily a model of CODF. To ensure condition (ii) we can apply
the following idea of E. Kaplan. Let N ′ be a sufficiently large real closed field
containing a and such that the extension (N ′,M) is a stably embedded extension of
real closed fields. By [11, Proposition 4.11], there is a derivation δ on N ′ extending
the derivation on M such that (N ′, δ) is a model of CODF. By [2, Proposition 3.6],
the extension of models of CODF (N ′,M) is stably embedded (in the language of
CODF). �

Theorem 6.4. Let T be an L-theory listed in Theorem 6.2 and L′ be any reduct
of Leq in which T has elimination of imaginaries. Then, definable types in T are
pro-definable in L′.

Proof. This follows directly by Theorem 6.2 and Proposition 4.1. �

We expect similar results hold for theories of (tame) valued fields with generic
derivations as defined in [7] and for theories of o-minimal fields with a generic
derivation as defined in [11].

Corollary 6.5. Let T be either an o-minimal theory, a completion of ACVF or
RCVF. The bounded completion of a definable set is pro-definable in Leq. In the
two latter cases, the orthogonal completion of a definable set is pro-definable in Leq

Proof. Both cases are similar, we will just work with the bounded case and leave the

other to the reader. By Corollary 4.2 it suffices to show that X̃(M) is ∗-definable
inside Sdef

X (M), for a given M -definable set X. Suppose X ⊆ Dx(M). For every
formula ϕ(x, y, z) where y is a Γ-variable, for every a ∈ Dz(M) such that ϕ(x, y, a)

defines a function fa : X → Γ(M), and for every p(x) ∈ X̃(M), there is γ ∈ Γ(M)
such that p(x) contains the formula −γ < fa(x) < γ. Let ψ(x, y′, z) be the formula

(∀y)(ϕ(x, y, z) → (−y′ < y < y′)),
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and d(ψ)(y′, z, zψ) be its uniform definition. Let c(p, ψ) be the canonical parameter
such that d(ψ)(y′, z, c(p, ψ)) is the ψ-definition of p(x). Let θ(zψ) denote the formula

(∀z)(∃y′)d(ψ)(y′, z, zψ). Then p ∈ X̃(M) if and only if for each formula ϕ and
associated formulas ψ and θ as above

M |= θ(c(p, ψ)),

which shows X̃(M) is an ∗-definable subset of Sdef
X (M). �

Question. Can one characterize NIP theories (or dp-minimal theories) having uni-
form definability of types (resp. definable types are pro-definable)?
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valued fields, Notre Dame J. Form. Log. 60 (2019), no. 3, 333–351, DOI 10.1215/00294527-
2019-0015. MR3985616

[10] Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics,

Springer-Verlag, Berlin, 2005. MR2183496
[11] Antongiulio Fornasiero and Elliot Kaplan, Generic derivations on o-minimal structures,

arXiv:1905.07298 [math.LO], 2019.
[12] Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson, Definable sets in algebraically

closed valued fields: elimination of imaginaries, J. Reine Angew. Math. 597 (2006), 175–236,
DOI 10.1515/CRELLE.2006.066. MR2264318

[13] Ehud Hrushovski and François Loeser, Non-archimedean tame topology and stably dominated
types, Annals of Mathematics Studies, vol. 192, Princeton University Press, Princeton, NJ,
2016. MR3445772

[14] Philipp Jell, Claus Scheiderer, and Josephine Yu, Real Tropicalization and Analytification of
Semialgebraic Sets, International Mathematics Research Notices (2020), rnaa112.

[15] Moshe Kamensky, Ind- and pro- definable sets, Ann. Pure Appl. Logic 147 (2007), no. 3,
180–186, DOI 10.1016/j.apal.2007.04.003. MR2335085

[16] David Marker and Charles I. Steinhorn, Definable types in O-minimal theories, J. Symbolic
Logic 59 (1994), no. 1, 185–198, DOI 10.2307/2275260. MR1264974

https://www.ams.org/mathscinet-getitem?mr=1702143
https://www.ams.org/mathscinet-getitem?mr=3598799
https://www.ams.org/mathscinet-getitem?mr=730855
https://www.ams.org/mathscinet-getitem?mr=1959315
https://www.dpmms.cam.ac.uk/~gc610/Math/presburger_note.pdf
https://www.ams.org/mathscinet-getitem?mr=3472177
https://arxiv.org/abs/1912.07912
https://www.ams.org/mathscinet-getitem?mr=953003
https://www.ams.org/mathscinet-getitem?mr=3985616
https://www.ams.org/mathscinet-getitem?mr=2183496
https://arxiv.org/abs/1905.07298
https://www.ams.org/mathscinet-getitem?mr=2264318
https://www.ams.org/mathscinet-getitem?mr=3445772
https://www.ams.org/mathscinet-getitem?mr=2335085
https://www.ams.org/mathscinet-getitem?mr=1264974


188 PABLO CUBIDES KOVACSICS AND JINHE YE

[17] T. Mellor, Imaginaries in real closed valued fields, Ann. Pure Appl. Logic 139 (2006), no. 1-3,
230–279, DOI 10.1016/j.apal.2005.05.014. MR2206257

[18] Anand Pillay, An introduction to stability theory, Oxford Logic Guides, vol. 8, The Clarendon
Press, Oxford University Press, New York, 1983. MR719195

[19] Bruno Poizat, Paires de structures stables (French), J. Symbolic Logic 48 (1983), no. 2,
239–249, DOI 10.2307/2273543. MR704080

[20] Alexander Prestel and Peter Roquette, Formally p-adic fields, Lecture Notes in Mathematics,

vol. 1050, Springer-Verlag, Berlin, 1984. MR738076
[21] Pierre Simon, A guide to NIP theories, Lecture Notes in Logic, vol. 44, Association for

Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015. MR3560428
[22] Pierre Touchard, Stably embedded submodels of henselian valued fields, arXiv preprint

arXiv:2005.02363 (2020).

Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf, Universitätsstr.
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