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Abstract. We consider a class of random ergodic averages, containing aver-
ages along random non–integer sequences. For such averages, Cohen & Cuny
obtained uniform universal pointwise convergence for functions in L2 with∫
max(1, log(1+ |t|))dμf < ∞ via a uniform estimation of trigonometric poly-

nomials. We extend this result to L2 functions satisfying the weaker condition∫
max(1, log log(1+ |t|))dμf < ∞. We also prove that uniform universal point-

wise convergence in L2 holds for the corresponding smoothed random averages
or for random averages whose kernels exhibit sufficient decay at infinity.

1. Introduction

In this work, we adopt a general framework for describing random averaging
operators. (Ω,F , P ) denotes a probability space, and {νk}k∈Nr a sequence of inde-
pendent transition measures on Ω × R

d , νk : Ω × R
d �→ C

d. See Section 2 for a
precise definition of independent transition measures. (X,D,m) denotes a proba-
bility space and {Tt}t∈(R+)d a continuous semi–flow of positive isometries acting on

L2(X). Each measure νk(ω, .) on (R+)d defines a bounded operator in L2(X) as a
weighted average over the flow:

νωk f(x) =

∫
Rd

Ttf(x)νk(ω, dt).

We denote their averages by

(1.0.1) Kω
n f(x) =

1

bn

∑
k∈[1,n]r

νωk (f)(x), where bn =
∑

k∈[1,n]r

E(|νk(.,Rd)|).

This approach includes averages of the form

1

nr

∑
k∈[1,n]r

TXk(ω)f(x), or
1

nr

∑
k∈[1,n]r

1

(2εk(ω))d

∫
‖t‖<εk(ω)

TXk(ω)+tf(x)dt,

where Xk : Ω �→ (R+)d and εk : Ω �→ R+ are sequences of random variables; and
averages of the form

1

bn

∑
k∈[1,n]r

Yk(ω)Tnk
f(x),

where Yk : Ω �→ C is a sequence of random variables with bn =
∑

k∈[1,n]r E(|Yk|) .
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Before addressing the case of random averages, we review some key results for
ergodic averages along subsequences. A sequence of bounded operators {Tn}n∈N on
L2(X) has the strong sweeping out property if, for any ε > 0, there exists a set E
with 0 < m(E) < ε, such that lim supn→∞ Tn1E = 1 a.e. and lim infn→∞ Tn1E = 0
a.e..

Let (X,D,m) be a non–atomic probability space and {τt}t∈R an aperiodic, er-
godic, measure preserving flow on it. Ackoglu, Bellow, del Junco and Jones [1]
showed that, for any increasing sequence of integers {nk}k∈N, if {tk}k∈N is a se-
quence such that tk �→ 0, the averages Bnf(x) = 1

n

∑n
k=1 f(τnk+tkx) have the

strong sweeping out property and, therefore, there exist bounded functions for
which pointwise convergence fails on sets of positive measure. Bergelson, Bosher-
nitzan and Bourgain [7] had used Bourgain’s entropy method [11] to show that the
averages Bnf diverge a.e. for some f ∈ L∞ when the sequence {tk} is independent
over the rationals. Ackoglu, del Junco and Lee [2] proved that the related averages,
1
n

∑n
k=1 f({x+tk}), for f in [0, 1), have the δ-sweeping out property. In [3], Ackoglu

et al. showed that these averages have, in fact, the strong sweeping out property.
When the derministic sequence {tk}k∈N is replaced by a random sequence, uniform
positive results are obtained.

Definition 1.1. A sequence of operators {Rn}n∈N of the form

Rnf(x) =

∫
Rd

Ttf(x)μn(dt),

where {μn}n∈N is a sequence of finite measures on (R+)d, is universally good in
S ⊂ L2, if for any probability space (X,D,m) and any {Tt}t∈(R+)d , a continuous

semi–flow of positive isometries acting on L2(X), limn→∞ Rnf(x) exists a.e. for
any f ∈ S(X). When Rnf(x) =

1
nr

∑
k∈[1,n]r Tnk

f(x), we simply say the sequence

{nk}k∈Nr ⊂ (R+)d is universally good in S.

Definition 1.2. With the notation from (1.0.1), we say the averaging operators
{Kn}n∈N are uniformly universally good in S ⊂ L2 if there exists Ω′ ⊂ Ω, with
P (Ω′) = 1 such that, for all ω ∈ Ω′, {Kω

n }k∈N is universally good in S. When
νk(ω, x) = δrk(ω)(x), with rk : Ω �→ (R+)d a sequence of random vectors; we simply
say that the sequence {rk} is uniformly universally good in S.

In what follows, {nk}k∈N is a non–decreasing sequence in R+, {γk}k∈N and
{εk}k∈N are independent sequences of random variables defined on a probability
space (Ω,F , P ) and {Tt}t∈(R+) ⊂ R

+, a semi–flow of positive isometries.

Reinhold [32] showed the averages 1
n

∑n
k=1

1
2|εk(ω)|

∫
|t|<|εk(ω)| Tk+γk(ω)+tf(x) dt,

are uniformly universally good in Lp, p ≥ 1, provided e−1
k ∈ Lq, 1

p + 1
q . Schneider

[38] showed that the averages Gnf(ω, x) = 1
n

∑n
k=1 Tnk+γk(ω)f(x), are uniformly

universally good in L2 for the sequence nk = k2 and γk i.i.d. random variables
taking values 1 and −1 with probability 1/2. Schneider [39] extended this re-
sult for universally good in L2 integer–valued sequences with the growth condition
nk = O(2k

s

), for some s ∈ (0, 1), and where {γk}k∈N are integer–valued indepen-
dent random variables. Duran and Schneider [22] applied the techniques to averages
of the form 1

n

∑n
k=1 TXk(ω)f(x) where the distribution of the integer valued inde-

pendent random variables {Xk}k∈N is generated by the convolution of a given law,

dPXk
= dP

∗(Sk)
Y , for all k ≥ 1, (Y an integrable random variable). They also showed
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that the averages 1
n

∑n
k=1Xk(ω)Tnk

f(x) are uniformly universally good in L2 when

nk = O(2k
s

) is a sequence of integers, without requiring it to be universally good
in L2, and {Xk}k∈N are centered i.i.d. with finite variance.

Cohen and Cuny [15] obtained uniformly universally good results for the averages
Gnf(ω, x) for sequences {γk}k∈N that do not take integer values. In light of [3,
7], pointwise convergence of Gnf(ω, x) fails for some functions in L2 but positive
results are obtained by considering a subclass. Cohen and Cuny [15] proved, under
certain condition on the sequences {nk}k∈N and {γk}k∈N, the averages {Gnf}k∈N

are uniformly universally good for f ∈ L2 such that
∫
log(2+ |t|)dμf (t) < ∞. Their

approach applies to a wider class of random averages as wells as to the study of
convergence of certain random series.

Definition 1.3. Let (Ω,F , P ) be a probability space. We say the operators defined
by the sequence of transition measures {νk}k∈Nr are uniformly norm summable in
S ⊂ L2 if there exists a set Ω′ ⊂ Ω with P (Ω′) = 1, such that, for every ω ∈ Ω′,
for any probability space (X,D,m), any continuous semi–flow of positive isometries
{Tt}t∈(R+)d in L2(X), and any f ∈ S(X),∥∥∥∥∥∑

k∈Nr

νωk f − E(νk)f

|k|r

∥∥∥∥∥
2

≤ C‖f‖S ,

where |k| = max1≤i≤d |ki|. When rk : Ω �→ (R+)d is a sequence of random vari-
ables and νk(ω, x) = δrk(ω)(x), we say that the sequence {rk} is uniformly norm–
summable.

Define (logψ(t))+ = log2 ψ(t) if ψ(t) > 2, and 1 otherwise.

Definition 1.4. (logψ)+L2 = {f ∈ L2 :
∫
(logψ|t|)+dμf < ∞}. For convenience,

we’ll write ‖f‖(logψ)+L2 = (
∫
(logψ|t|)+dμf )

1/2.

Theorem 1.5 (Cohen and Cuny, [15, Theorem 4.12]). Let {Xn}n∈N ⊂ (R+)d be
i.i.d random variables with E(|X1|α) < ∞ for some α > 0. Let {nk}k∈N ⊂ (R+)d,

with |nm|∗ = maxk≤m |nk| = O(2m
β

), for some 0 < β < 1. Then, {nk +Xk}k∈N is
uniformly norm summable in (log)+L2. In particular, centered averages along the
sequence {nk +Xk}

1

n

n∑
k=1

(Tnk+Xk
f − EΩTnk+Xk

f)

are uniformly universally good in (log)+L2.

In section 2, we present Cohen’s [14] extension of Cohen and Cuny’s [15] uniform
estimates for almost periodic polynomials corresponding to the case of Fourier–
Stieltjes transform of transition measures. Such estimates are essential for uniform
universal results in L2. In Section 3, we prove the boundedness for a square function
for the centered averages {Kω

n f − EΩ(Knf)}n∈I(ρ), where I(ρ) = {
ρn�, n ∈ N}
(ρ > 1); an estimate that suffices for a uniform universal result under the weaker
condition

∫
(log log(|t|))+dμf (t) < ∞.

Definition 1.6. Given a set of complex numbers {xn}n∈I , where I is a countable
index set, define its s–variation norm as

‖{xn}n∈I‖v(s) = sup
( ∞∑
j=1

|xnj
− xnj+1

|s
)1/s
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where the supremum is taken over all possible non–decreasing subsequences {nj}
in I. When the index set is N, we simply write ‖{xn}n∈N‖v(s) = ‖xn‖v(s).

Note that when the sequence is given by a sequence of Lebesgue measurable
complex–valued functions {fn}n∈N, then its s–variation norm

‖fn(x)‖v(s) = sup
{all non-decreasing {nj}}

( ∞∑
j=1

|fnj
(x)− fnj+1

(x)|s
)1/s

is a Lebesgue measurable function. Variation norms are thus a useful tool for
convergence, since the boundedness of the variation norm, ‖fn(x)‖v(s) < ∞, implies
convergence of {fn(x)}n.

Definition 1.7. A sequence of operators {Rn}n∈I as in Definition 1.1 is varia-
tionally good in S ⊂ L2, if, for some s > 2, there exits a constant c(s) > 0 such
that, for any probability space (X,D,m) and any {Tt}t∈Rd a continuous semi–flow
of positive isometries acting on L2(X)∥∥∥∥∥{Rnf}n∈I

∥∥
v(s)

∥∥∥
2
≤ c(s)‖f‖S.

We say {Kn}n∈I is uniformly variationally good in S ⊂ L2 if there exists Ω′ ⊂ Ω,
with P (Ω′) = 1 such that, for all ω ∈ Ω′, {Kω

n }n∈I is variationally good in S.
As before, when Rn or Kn are defined by a sequence (deterministic or random)

we say that the sequence has the corresponding property.

Theorem 1.8. Let {γn}n∈N ⊂ (R+)d be independent random vectors such that,

for some 0 < β < 1,
∑

k≥1 P (|γk| > 2k
β

) < ∞. Let {nk}k∈N ⊂ (R+)d, and

|nk| = O(2k
β

). Then the sequence{
1

n

n∑
k=1

(Tnk+γk
f − EΩTnk+γk

f)

}
n∈I(ρ)

is uniformly universally good in (log log)+L2 for any ρ > 1. Moreover, when {γn}
are i.i.d,

(a) if the sequence {nk}k∈N is universally good in L2, then the sequence {nk +
γk}k∈N is uniformly universally good in (log log)+L2; and

(b) if in addition the sequence {nk}k∈I(ρ) is variationally good in L2 for ρ > 1,
then the the sequence {nk + γk}k∈I(ρ) is uniformly variationally good in

(log log)+L2.

In Section 3 we prove a general version of this theorem for averages {Kn} of
transition measures.

There is a large literature on sequences with various growth conditions which are
universally good in L2 and thus, this theorem gives conditions under which such
sequences can be randomly perturbed with real valued sequences and still main-
tain uniform convergence on a subclass of L2. Full variational inequalities along
subsequences have been more difficult to obtain. The technique of handling varia-
tions to prove pointwise convergence was introduced in ergodic theory by Bourgain
[10] for the regular ergodic averages. The methods were applied to sequences of
primes and polynomial sequences [10]. Recently, Krause [27] showed the variational
inequality for polynomial sequences and Zorin–Kranich [43] showed variational in-
equalities for weighted averages of powers of primes and for the polynomial sequence



228 JAEYONG CHOI AND KARIN REINHOLD-LARSSON

(n, n2, . . . , nd) ∈ Zd. Therefore Theorem 1.8 yields uniform universal convergence
results for the corresponding randomly perturbed averages.

Corollary 1.9. Let {γn}n∈N ⊂ R+ be i.i.d. random variables such that, for some

0 < β < 1,
∑

k≥1 P (|γk| > 2k
β

) < ∞. Let p(x) be a polynomial with integer coeffi-

cients. Then the sequences {p(n)+ γn}n∈N and {γn}n∈N, are uniformly universally
good in (log log)+L2.

In particular, if the {γk}k∈N take value in [0, 1], the corresponding random Bel-
low’s problem averages 1

n

∑n
k=1 Tγk(ω)f(x), are uniformly universally and variation-

ally good in (log log)+L2.
From Krause [27] and Zorin–Kranich [43] the next two applications follow.

Corollary 1.10. Let λ(x) be the von Mangoldt function and let {γn}n∈N ⊂ R+

be i.i.d. random variables such that, for some 0 < β < 1,
∑

k≥1 P (|γk| > 2k
β

) <

∞. Then the averages 1
N

∑N
k=1 λ(k)Tk+γk(ω)f(x) are uniformly universally and

variationally good in (log log)+L2.

Corollary 1.11. Let {γn}n∈Nd ⊂ (R+)d be i.i.d. random vectors such that, for

some 0 < β < 1,
∑

k≥1 P (|γk| > 2k
β

) < ∞. Then the sequence {(n, n2, . . . , nd) +

γn(ω)} is uniformly universally and variationally good in (log log)+L2.

In Section 4, full L2 result are obtained when the kernels associated with the
averaging operators have additional smoothing properties.

Let ζ : Rd → R be positive, integrable with
∫
Rd ζ(t)dt = 1, and with support

on |t| ≤ 1. Let Lεf(x) =
∫
Rd ζε(t)Ttf(x)dt where ζε(t) = 1

ε1···εd ζ(
t1
ε1
, . . . , td

εd
). Let

{γk}k∈Nr ⊂ Rd and {εk}k∈Nr ⊂ (0, 1]d be independent sequences of independent
positive random vectors, and {nk}k∈Nr ⊂ (R+)d. From here on, Fnf(x) denotes
the following smoothed average around the observations nk + γk(ω),

(1.11.1) Fnf(ω, x) = Fnf(x) =
1

nr

∑
k∈[1,n]r

Tnk+γk(ω)Lεk(ω)f(x).

The regular averages along the sequence {nk}k∈Nr are denoted as

(1.11.2) Anf(x) =
1

nr

∑
k∈[1,n]r

Tnk
f(x).

Theorem 1.12. Let {γk}k∈Nr ⊂ Rd and {εk}k∈Nr ⊂ (0, 1]d be two independent
sequences of positive, independent random vectors, and {nk}k∈Nr ⊂ (R+)d. Assume
they satisfy the following conditions:

(i) E(min1≤j≤d |εk,j |−α) < ∞ for some α > 0 (and any k ∈ Nr);

(ii) for some 0 < β < 1,
∑

j≥1 j
r−1P (|γj | > 2j

rβ

) < ∞;

(iii) |nk| = O(2|k|
rβ

); and

(iv) supt
∏d

j=1 max(1, |tj |α)|ζ̂(t)| < ∞.

Then the sequence of transition probability measures {δnk+γk
∗ζεk}k∈Nr is uniformly

norm summable in L2. Moreover, when {εk} and {γk} are i.i.d., if the sequence
{nk} is universally good in L2, then the averaging operators {Fn}n∈N are uniformly
universally good in L2; if in addition {Anf} are variationally good in L2, then
{Fn}n∈N is uniformly variationally good in L2.
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This theorem also holds for more general transition measures {νn} and their
averages {Kn}, under equivalent requirements. See Theorem 4.2.

Example 1.13. Let d, r = 1. Let {εk}k∈N ⊂ N be positive i.i.d with E(1/ε1) < ∞,

and let {γk}k∈N ⊂ R be bounded i.i.d. Let ζ = χ[0,1], then supt max(1, |t|)|ζ̂(t)| ≤ 1.
From Krause [27], if p(x) is a polynomial with integer coefficients, then the averages
Fn defined by the sequence of transition probability measures {δp(k)+γk

∗ ζεk}k∈N

or the smoothed–Bellow problem averages defined by {δγk
∗ ζεk}k∈N are uniformly

universally good in L2.
Similarly, with d ≥ 1, {εk}k∈N ⊂ N

d positive i.i.d with E(min1≤j≤d 1/εk,j) < ∞,
{γk}k∈N ⊂ Rd bounded i.i.d., and let ζ = χ[0,1]d . We have

sup
t

∏
1≤j≤d

max(1, |tj |)|ζ̂(t)| ≤ 1.

Thus, from Zorin–Kranich [43], the averages Fn defined by the sequence of transition
probability measures {δ(k,k2,...,kd)+γk(ω) ∗ ζεk(ω)}k∈N are uniformly universally and

variationally good in L2.

2. Uniform estimates

Estimates for random trigonometric polynomials have been essential in proving
convergence of random Fourier series as well as ergodic averages along subsequences
and modulated ergodic averages. Paley and Zygmund(1930–32) [30] and Salem
and Zygmund (1954) [37] provided the first estimates for trigonometric sums in
their study of Fourier series with random signs:

∑∞
k=1 εkcke

ikx where the {εk}
is a Rademacher sequence, and {ck} is a sequence of complex numbers. They
were also used to prove convergence of random Fourier and almost periodic series
[14–16,19, 23, 41].

In ergodic theory, their study yielded applications to the convergence of averages
along subsequences and averages with random weights. Bourgain [9–12] used them
to prove pointwise convergence of ergodic averages along polynomial sequences and
Bourgain and Wierdl [42] applied them to pointwise convergence of ergodic averages
along sequences of primes. Bourgain, Bergelson and Boshenitzan [7] use them to
prove pointwise convergence of ergodic averages with random weights as well as
Assani [4, 5], Rosenblatt and Wierdl [35], and Cohen and Lin [18]. Schneider [39]
used them to prove convergence of ergodic averages along perturbed sequences of
squares, with integer perturbations.

Estimates on the associated trigonometric polynomials was obtained by means
of an estimate on the derivative of those polynomials as in Kahane [26]. Cohen and
Cuny [16] extended the estimates of Salem and Zygmund to obtain uniform esti-
mates of multidimensional random exponential sums of the form

∑n
k=1 Xk e

i〈t,αk〉,
where {Xn} is a sequence of random variables, {αk} ⊂ Rd are sequences of real
numbers, and t ∈ R

d. Cohen [14] then adapted it to weighted sums of finite tran-
sition measures as stated in Theorem 2.3.

Recent works have also used such estimates to study convergence of power series
of isometries with random coefficients, including Assani [6], Boukhari and Weber
[8], Cohen and Lin [18], Cohen and Cuny [15, 16] and Cohen [14].

Notation. Henceforth, we denote the inner product for vectors u, v in Rd as 〈u, s〉 =∑d
i=1 uisi; the coordinate–wise product as u.s = (u1s1, . . . , udsd), and |u| =

max1≤i≤d |ui|.
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Definition 2.1. Let (Ω,F , P ) be a probability space, and B the Borel sigma–
algebra on Rd, d ≥ 1. A function ν : Ω × Rd �→ Cd is a finite complex valued
transition measure on Ω× R

d if

(i) ν(., B) is an F–measurable function for any B ∈ B;
(ii) ν(ω, .) is a finite complex valued measure on B, for any ω ∈ Ω;
(iii) and EΩ(|ν(.)|) < ∞, where |ν(ω)| := |ν|(ω,Rd) denotes the variation norm

of the measure ν(ω, .) and EΩν denotes the measure, on B, defined by
EΩν(B) =

∫
Ω
ν(ω,B)dP , for any B ∈ B.

Notation. We will say that a sequence of transition measures {νk} is bounded if
supk ‖|νk|‖L∞(Ω) < ∞.

Definition 2.2. The sequence {νk}k∈I of transition measures is independent if
for every finite set of Borel measurable simple functions g1, . . . , gm on Rd, and
any finite set k1, k2, . . . , km of pairwise distinct indices in I, the random variables
{
∫
Rd gi(x)νki

(ω, dx)}i=1,...,m are independent.

Given a transition measures ν, its Fourier–Stieljes transform is

ν̂ωk (t) =

∫
Rd

ei〈t,u〉ν(ω, du).

Uniform estimates that control linear sums of transition measures were considered
by Cohen in [14].

Theorem 2.3 (Theorem 2.8 in [14]). Let {Lk}k∈N be a sequence of positive num-
bers, Lk ≥ 1, such that

∑∞
n=1

∑∞
m=n+1(1/L

2
n,m) < ∞, with Ln,m =

∑m
k=n+1 L

2
k.

Let {νk}k∈N be a sequence of independent, finite complex valued transition measure
on Ω× B with ‖ |νk| ‖L∞(Ω) < ∞, for all k ≥ 1. Let

Pn,m(t) =

m∑
k=n+1

[∫
[−Lk,Lk]d

ei〈t,u〉νk(du)−
∫
[−Lk,Lk]d

ei〈t,u〉EΩνk(du)

]

be the sum of the difference of the (truncated) Fourier–Stieljes transform corre-
sponding to the measures {νk(., t)} and their expected values. And let Vn,m =∑m

k=n+1 ‖|νk|‖2L∞(Ω). Then, there exists ε > 0 and C > 0, independent of {νk},
such that ∥∥∥∥∥ supm>n

sup
T≥2

exp(ε
maxt∈[−T,T ]d |Pn,m(ω, t)|2

Vn,m log(L
2+d/2
n,m T d+2)

)

∥∥∥∥∥
L1(Ω)

< C.

An immediate consequence is the following proposition.
The notation ϕ(x) � |x| means there exists a constant c > 0 such that ϕ(x) ≥

c|x|. We use C(.) or c(.) to denote functions that depend on the indicated param-
eter(s), whose values may change in the different instances.

Proposition 2.4. Let ϕ : R → R
+ be non–decreasing with ϕ(x) � |x|. Let

{νk}k∈Nr be independent complex valued transition measures on Ω×B, and {ak}k∈Nr

a sequence in (0, 1]. Assume that∑
k∈Nr

akEΩ|νk|(|t| > ϕ(|k|)) < ∞.
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Let Nn,m = {k ∈ Nr : n < |k| ≤ m}. Then there exists C : Ω → R+ finite P–a.e.
such that, for all m,

(2.4.1) sup
m>n

sup
T>2

maxt∈[−T,T ]d

∣∣∣∑k∈Nn,m
ak(ν̂

ω
k (t)− ÊΩνk(t))

∣∣∣2
1 +

∑
k∈Nn,m

a2k ‖|νk|‖
2
L∞(Ω) log(max(ϕ(m), T ))

≤ C(w).

In particular, if {νk}k∈Nr are bounded then

sup
m>n

sup
T>2

maxt∈[−T,T ]d

∣∣∣∑k∈Nn,m
ak(ν̂

ω
k (t)− ÊΩνk(t))

∣∣∣2[∑
k∈Nn,m

a2k

]
log(max(ϕ(m), T ))

≤ C(w).

Proof. Theorem 2.3 can be applied to the transition measures wk = akνk, now
indexed over k ∈ N

r, by simple re–numbering of the index set, with Lk = ϕ(|k|).
We have

Ln,m =
∑

n<|k|≤m

L2
k ∼

∑
n<j≤m

jr−1ϕ2(j) � mrϕ(m)2 � ϕ(m)r+2

and

Vn,m =
∑

n<|k|≤m

‖|wk|‖2L∞(Ω) =
∑

n<|k|≤m

a2k‖|νk|‖2L∞(Ω).

Let Jn = [−ϕ(n), ϕ(n)]d and D̂νk(ω, t) = ak(ν̂ωk(t)− ÊΩνk(t)).

Decompose
∑

k∈Nn,m
D̂νk(ω, t) = Pn,m +Qn,m, where

Pn,m(ω, t) =
∑

k∈Nn,m

ak

[∫
J|k|

ei〈t,u〉νk(ω, du)−
∫
J|k|

ei〈t,u〉EΩνk(du)

]
,

and

Qn,m(ω, t) =
∑

k∈Nn,m

ak

[∫
Jc
|k|

ei〈t,u〉νk(ω, du)−
∫
Jc
|k|

ei〈t,u〉EΩνk(du)

]
.

From Theorem 2.3 there is C1 : Ω → R+ finite P–a.e. such that

max
t∈[−T,T ]d

|Pn,m(ω, t)|2 �C1(ω)Vn,m log(L2+d/2
n,m T d+2)

∼c(d)C1(ω)

⎡⎣ ∑
k∈Nn,m

a2k ‖|νk|‖
2
L∞(Ω)

⎤⎦ log(max(ϕ(m), T )).

We also have

|Qn,m(ω, t)| �
∑

k∈Nn,m

ak[|νk|(ω, Jc
|k|) + EΩ|νk|(Jc

|k|)].

By assumption on {νk}, there exists C2(ω) ∈ L1(Ω) such that

sup
m>n≥1

sup
t

|Qn,m(ω, t)| � C2(ω).

Combining both estimates, (2.4.1) is obtained. �
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Example 2.5. Let {nk}k∈Nr ⊂ (R+)d; {γk}k∈Nr be independent bounded random
vectors such that supk ‖γk‖L∞ = B < ∞; and let {Xk}k∈Nr be i.i.d complex valued
random variables, independent of {γk}k∈Nr , and let νk(ω,A) = Xk(ω)δnk+γk(ω)(A),
A ∈ D. Now

Pm(ω, t) =
∑

k∈[1,m]r

(ν̂ωk (t)− ÊΩνk(t))

=
∑

k∈[1,m]r

ei〈t,nk〉
(
Xk(ω)e

i〈t,γk(ω)〉 − EΩ(X1)EΩ(e
i〈t,γk〉)

)
.

If supk |nk|/2|k|
rβ

= c < ∞, for some 0 < β < 1, using ϕ(x) = (1 + c) 2|x|
rβ

, the
assumption of Proposition 2.4 is satisfied by a tail distribution condition on the
γk’s ∑

k∈Nr

EΩ|νωk |(|t| > (1 + c) 2|k|
rβ

) ≤EΩ(|X1|)
∑
k∈Nr

P (|γk(ω)| > 2|k|
rβ

) < ∞.

Then, by Proposition 2.4, there exists C(ω) ∈ L1(Ω), such that

sup
m≥1

sup
T≥2

max
t∈[−T,T ]d

|Pm(ω, t)|2
1 +mr log(max(T, 2mrβ ))

= C(ω) < ∞.

In particular, for D̂n(ω, t) =
1
nr Pn(ω, t) and T ≤ 2n

rβ

, we obtain

max
t∈[−T,T ]d

|D̂n(ω, t)|2 � C(w)
log(max(T, 2n

rβ

))

nr
≤ C(w)

1

nr(1−β)
.

3. Applications to ergodic theory

In this section, {νk}k∈Nr denotes a sequence of independent transition measures
on Ω×B, Vm =

∑
k∈[1,m]r ‖|νk|‖2L∞(Ω) and bm =

∑
k∈[1,m]r ‖|νk|(.,Rd)‖L∞(Ω). The

averages

Kω
n f(x) = Knf(x) =

1

bn

∑
k∈[1,n]r

νωk (f)(x)

have associated kernels

K̂ω
n (t) = K̂n(t) =

1

bn

∑
k∈[1,n]r

ν̂k(ω, t) =
1

bn

∑
k∈[1,n]r

∫
ei〈t,u〉νk(ω, du).

Next, consider the averages defined by their expected values

Enf(x) = EΩ(Knf(x)) =
1

bn

∑
k∈[1,n]r

EΩνkf(x)

and its associated kernel

Ên(t) = EΩ(K̂n(t)) =
1

bn

∑
k∈[1,n]r

EΩ(ν̂
ω
k )(t) =

1

bn

∑
k∈[1,n]r

∫
ei〈t,u〉EΩνk(du).

Let Dnf(x) = Knf(x)−Enf(x) and D̂n(t) = K̂n(t)−Ên(t) denote the correspond-
ing centered averages and their kernels.
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Note 3.1. A family {Tt}t∈(R+)d is a continuous parameter semi–flow of isometries

acting on a Hilbert space H or an (R+)d–action, if for all x ∈ H, T0x = x ,
TsTtx = Ts+tx for s, t ∈ (R+)d, the map t → 〈Ttx,x〉 is continuous, and Tt is an
isometry for each t ≥ 0.

A classical generalization of Stone’s Theorem [34] provides a spectral repre-
sentation for unitary actions of Rd. That is, if {Tt}t∈Rd is a R

d–action by uni-
tary operators on a Hilbert space H, then for any x ∈ H, there is a positive
finite measure μx on Rd, called its spectral measure, such that for any s ∈ Rd,
〈Tsx,x〉 =

∫
Rd e

i〈s,t〉dμx(t).

Such result extends to Rd isometry actions via the following unitary dilation
theorem (Principal Theorem in Appendix to Riesz–Nagy Functional Analysis [34]).

Theorem 3.2 (Riesz–Nagy, [34]). Let {Tt}t∈Rd be a representation of Rd by isome-
tries on a Hilbert space H. There exist a Hilbert space H2 ⊃ H and an R

d action
{Ut}t∈Rd by unitary operators on H2, such that, if π : H2 → H is the orthogonal
projection, then πUtx = Ttx, for all t ∈ Rd and x ∈ H.

Remark. Norm estimates can be extended to actions by contractions in the case
d = 1, via Sz. –Nagy unitary dilation theorem (Szökefalvi–Nagy and Foias [40]).
This still may hold for d = 2 but not in higher dimensions. Parrott [31] gave an
example where the dilation theorem is no longer true in the case of N3 actions by
contractions.

Remark. For actions by semigroup of isometries, the spectral representation allows
us to estimate norms for operators defined by a finite measure on the semigroup.
With the notation of Riesz–Nagy theorem and the spectral measure, if ν a finite
measure on (R+)d, by standard arguments we conclude∥∥∥∥∫

Rd

Ttx ν(dt)

∥∥∥∥2
H

≤
∥∥∥∥∫

Rd

Utx ν(dt)

∥∥∥∥2
H′

=

∫
Rd

|ν̂(t)|2dμx(t).

Notation. For any positive real number v, abusing notation we write Kvf = K�vf ,
Dvf = D�vf , bv = b�v, Vv = V�v, etc.. Also, ϕ is a continuous strictly increasing
positive function on R, and ψ its inverse ψ(y) = inf{x ≥ 0 : ϕ(x) > y}.
Theorem 3.3. Let {νk}k∈Nr be a sequence of independent, finite complex valued
transition measures on Ω × B. Let ϕ be a non–decreasing positive function such
that ϕ(|x|) � |x|, and ψ denotes its inverse. Assume that

(a) sup
n

1

bn

∑
k∈[1,n]r

|νk(ω)| ∈ L1(Ω),

(b)
∑
k∈Nr

EΩ|νk|(|t| > ϕ(|k|)) < ∞, and

(c) c(ρ) =
∑
n≥1

1 + Vρn log(ϕ(ρn))

b2ρn

< ∞, for all ρ > 1.

Then, there exists 0 < C ∈ L∞(Ω) such that, for any ρ > 1 and any probability
space (X,D,m) with any continuous semi–flow of isometries {Tt}t∈(R+)d acting on

it, if f ∈ L2(X), ∥∥∥∥∥
√√√√ ∞∑

n=1

|Dρnf |2
∥∥∥∥∥
2

< C(ω) c̃(ρ) ‖f‖(logψ)+L2 ,

where c̃(ρ)2 = c(ρ) ∨ (log2 ρ)
−1.
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Proof.∫
Rd

∞∑
n=1

|Dρnf |2dm ≤
∞∑
n=1

∫
Rd

|D̂ρn(t)|2 dμf

=
∞∑

n=1

∫
|t|≤ϕ(ρn)

|D̂ρn(t)|2 dμf +
∞∑

n=1

∫
|t|>ϕ(ρn)

|D̂ρn(t)|2 dμf = I + II.

By assumption (b) and Proposition 2.4,

C1(ω) = sup
ρ>1,n

max|t|≤ϕ(ρn) |D̂ρn(t)|2b2ρn

1 + Vρn log(ϕ(ρn))

is finite P–a.e. Therefore, by assumption (c),

I � C1(ω)
∞∑
n=1

1 + Vρn log(ϕ(ρn))

b2ρn

‖f‖22 = C1(ω)c(ρ)‖f‖22.

For the second term II, by assumption (a)

sup
n

sup
t

|D̂n(t)| ≤ sup
n

1

bn

∑
k∈[1,n]r

|νk(ω)| = C2(ω) ∈ L1(Ω).

Thus

II =
∞∑

n=1

∑
k≥n

∫
ϕ(ρk)<|t|≤ϕ(ρ(k+1))

|D̂ρn(t)|2dμf ≤ C2
2 (ω)

∞∑
k=1

k

∫
ϕ(ρk)<|t|≤ϕ(ρ(k+1))

dμf

≤ C2
2 (ω)

log2 ρ

∞∑
k=1

∫
ϕ(ρk)<|t|≤ϕ(ρ(k+1))

log2 ψ(|t|)dμf � C2
2 (ω)

log2 ρ

∫
(logψ)+|t|dμf .

Combining the estimates for both terms I and II, the proposition is proven. �

We are interested in the cases where {νk} are transition probability measures,
thus condition (a) in this theorem is immediately satisfied. Condition (c) is fulfilled
by the choice of growth function ϕ. Thus, the restriction on the estimate for the
square function on {Dρnf} comes from the distribution of the transition probability
measures {νk}.

Proposition 3.4. Let {νk}k∈Nr be a sequence of independent, bounded transition
measures on Ω× B such that, for some 0 < β < 1 and some constant c > 0,∑

k∈Nr

EΩ|νk|(|t| > c2|k|
rβ

) < ∞.

Then there exists 0 < C ∈ L∞(Ω) and a constant c(ρ, β), such that, for any probabil-
ity space (X,D,m) with any continuous semi–flow of positive isometries {Tt}t∈(R+)d

acting on it, if f ∈ L2(X),∥∥∥∥∥
√√√√ ∞∑

n=1

|Dρnf |2
∥∥∥∥∥
2

2

< C(ω) c(ρ, β) ‖f‖(log log)+L2 for any ρ > 1.
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Proof. Choosing ϕ(x) = c 2x
rβ

, for x ≥ 0, it suffices to check the assumptions of
Theorem 3.3. Since {νk}k∈Nr are bounded transition measures, supω∈Ω supk |νk(ω)|
= K < ∞. Thus, bn ∼ nr and Vn ∼ nr and

sup
ω∈Ω

sup
n

1

bn

∑
k∈[1,n]r

|νk(ω)| ∼ K

satisfying assumption (a). Assumption (b) becomes the assumption of this propo-
sition, and assumption (c) is satisfied for β ∈ (0, 1)

c(ρ, β) =
∑
n≥1

1 + Vρn log(ϕ(ρn))

b2ρn

∼
∑
n≥1

ρrn log(2ρ
rβn

)

ρ2rn

=
∑
n≥1

1

ρ(1−β)rn
< ∞ for all ρ > 1.

�

After the square function result along exponential subsequences I(ρ) = {ρn} is
obtained for all ρ > 1, Theorem 3.3 or Proposition 3.4, one is tempted to prove a

variational inequality for averages with kernels K̂n. But without additional control
on the decay of the kernels, this approach may fail to be fruitful. However, this
result is enough for universal pointwise convergence of the averages. The steps for
proving convergence were inspired by [35] and related works.

Proposition 3.5 (Properties of variation norms).

(a) For s ≥ 1, ‖.‖v(s) is a semi-norm;

(b) ‖xn‖v(s) ≤ 2
(∑∞

n=1 |xn|s
)1/s

; and
(c) ‖xn‖v(s) ≤ 2

∑
k ‖{xn : nk ≤ n < nk+1}‖v(s) for any sequence nk such that

xnk
= 0 for all k.

A proof of these properties can be found in [17] along with some discussion of
the applications of the variation norm to ergodic theory, see also [24, 25].

A complex valued transition measure ν is dominated by a positive transition
measure, defined by its variation norm, which by abusing notation we denote by
|ν|,

|ν|(ω,B) = |ν(ω,B)| = variation norm of ν(ω, .) restricted to the set B,B ∈ B.

Continuing abusing notation, we denote

|Kω
n |f(x) =

1

bn

∑
k∈[1,n]r

|vk|ωf(x) and |En|f(x) =
1

bn

∑
k∈[1,n]r

EΩ|vk|f(x).

Theorem 3.6. With the assumptions and notation of Theorem 3.3.

(a) {Kn − EΩKn}n∈I(ρ) are uniformly universally good in (logψ)+L2 for any
ρ > 1.

(b) If for some ρ > 1, the averages {En}n∈I(ρ) are universally good in L2, then

the averages {Kn}n∈I(ρ) are uniformly universally good in (logψ)+L2.

(c) If for some ρ > 1, {En}n∈I(ρ) are variationally good in L2, then {Kn}n∈I(ρ)

are uniformly variationally good in (logψ)+L2.
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(d) Assume {En}n∈I(ρ) are universally good in L2 for all ρ > 1, and

lim
ρ �→1

sup
n

bρn+1/bρn = 1.

If {νk}k∈Nr are real–valued positive transition measures or {|En|}n∈I(ρ) are

also universally good in L2, then {Kn}n∈N is uniformly universally good in
(logψ)+L2.

Proof. By Theorem 3.3, there exists 0 < C(ω) ∈ L∞(Ω) and c(ρ) ∈ (0,∞) such
that, for any probability space (X,D,m), any continuous semi–flow of positive
isometries {Tt}t∈(R+)d in L2(X),∥∥∥√∑

n

|Dρnf |2
∥∥∥
2
≤ C(ω)c(ρ)

[∫
(logψ)+|t|dμf

]1/2
.

Thus parts (a) and (b) are an immediate consequence of this result. Moreover,
letting Ω′ ⊂ Ω of probability 1, such that C(ω) < ∞ for ω ∈ Ω′, then for any prob-
ability space (X,D,m), any continuous semi–flow of positive isometries {Tt}t∈(R+)d

in L2(X), limn→∞ Kρnf(x)− Eρnf(x) = 0 a.e. for any ρ > 1.

Part (c): Since {En}n∈I(ρ) are variationally good in L2, there exists s > 2 and
c′(s, ρ) > 0 such that ‖‖Eρnf‖v(s)‖2 ≤ c′(s, ρ)‖f‖2. For ω ∈ Ω′, by Proposition 3.5,

‖‖Kρnf‖v(s)‖2 ≤ ‖‖Eρnf‖v(s)‖2 + ‖‖Dρnf‖v(s)‖2

≤ c′(s, ρ)‖f‖2 + 2
∥∥∥√∑

n

|Dρnf |2
∥∥∥
2

≤ (c′(s, ρ) + 2C(ω)c(ρ))
[ ∫

(logψ)+|t|dμf

]1/2
.

Part (d):

Case 1 ({νk}k∈Nr are real–valued positive transition measures). In this case, since
Tt’s are positive operators, Knf are themselves positive operators. Consider the
sequence of ρi = 21/i decreasing to 1. Since {En}n∈I(ρ) are universally good in

L2 for all ρ > 1, and by (b), for any ω ∈ Ω′ and any i, Kρn
i
f converges almost

everywhere for any f ∈ (logψ)+L2. It suffices to consider 0 ≤ f ∈ (logψ)+L2,
a.e.. Notice that with our choice of ρi, limn→∞ Kω

2nf(x) = limn→∞ Kω
ρn
i
f(x) =

limn→∞ E2nf(x) a.e., for any i ≥ 1, and so we denote this limit as Lf(x). Note

that this limit does not depend on ω. Letting Mi = supn
b
ρ
n+1
i

bρn
i

; for ρni ≤ u < ρn+1
i ,

we have

1

Mi
Kω

ρn
i
f(x) ≤

bρn
i

bρn+1
i

Kω
ρn
i
f(x) ≤ Kω

u f(x) ≤
bρn+1

i

bρn
i

Kω
ρn+1
i

f(x) ≤ MiK
ω
ρn+1
i

f(x).

Then
1

Mi
Lf(x) ≤ lim inf

u→∞
Kω

u f(x) ≤ lim sup
u→∞

Kω
u f(x) ≤ MiLf(x),

and since Mi −−−→
i→∞

1,

lim
u→∞

Kuf(x) = Lf(x) a.e..

A similar relationship can be established for the averages Enf , thus Lf(x) =
limn→∞ Kω

n f(x) = limn→∞ Enf(x) a.e..
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Case 2 (General transition measures). The conditions of this theorem on the tran-
sition measures {νk}k∈Nr are actually conditions on {|νk|}k∈Nr . Therefore, if both
{Eρn} and {|Eρn |} are universally good in L2 for any ρ > 1, the results (a), (b)
and (d) part (i) apply to the averages {|Kω

n |f} and thus both {|Kn|} and {Kρn}
are uniformly universally good in (logψ)+L2 (for any ρ > 1).

As before, consider the sequence of ρi = 21/i, decreasing to 1. Let Ω′′ ⊂ Ω of
probability 1, such that, for any ω ∈ Ω′′, {|Kω

n |} and {Kω
ρn
i
} are universally good

in (logψ)+L2 (for all i). Again, it suffices to consider 0 ≤ f ∈ (logψ)+L2, and we
have limn→∞ E2nf(x) = limn→∞ Kω

2nf(x) = limn→∞ Kω
ρn
i
f(x) = Lf(x) a.e., for

any i ≥ 1. For 
ρni � ≤ u < 
ρn+1
i �,

|Kω
u f(x)−Kω

ρn
i
f(x)| ≤

bu − bρn
i

bu
|Kω

ρn
i
f(x)|+ 1

bu

∑
l:�ρn

i <|l|≤u

|νl|ωf(x)

≤
bρn+1

i
− bρn

i

bρn
i

|Kω
ρn
i
f(x)|+

∣∣∣∣∣bρn+1
i

bρn
i

|Kω
ρn+1
i

|f(x)− |Kω
ρn
i
|f(x)

∣∣∣∣∣
≤
(
bρn+1

i

bρn
i

− 1

)(
|Kω

ρn
i
|f(x) + |Kω

ρn+1
i

|f(x)
)

+
∣∣∣|Kω

ρn+1
i

|f(x)− |Kω
ρn
i
|f(x)

∣∣∣ .
Since limi→∞ supn

b
ρ
n+1
i

bρn
i

= 1 and {|Kω
n |} is universally good in (logψ)+L2,

limi→∞ lim supu→∞ |Kω
u f(x) − Kω

ρn
i
f(x)| = 0 a.e.. thus limu→∞ Kω

u f(x) = Lf(x)

a.e., establishing that {Kn} are uniformly universally good in (logψ)+L2. �

Remark. Note that if the transition measures {νk} are complex valued with EΩνk =
0, then, uniformly, Knf → 0 a.s. as n −−−−→

n∈I(ρ)
∞, for f ∈ (logψ)+L2.

Remark. The result of this theorem can be improved to hold in L2 with an addi-
tional requirement on the Dn kernels. See Section 4.

Proof of Theorem 1.8. It follows as a corollary of Proposition 3.4 and 3.6, noticing
that, when {γk} are i.i.d., then Enf = An(EΩTγe

f) (for any e ∈ N
r). �

Example 3.7 (Essentially the proof of Corollary 1.9). Consider again Example 2.5
with {nk}k∈N an integer valued polynomial sequence (nk = p(k) for some integer–
coefficient polynomial p(x)), or any universally good sequence in L2. Let {γk}k∈N,
{Xk}k∈N be independent sequences of i.i.d. real–valued variables with EΩ(|γ1|) <
∞ and EΩ(|X1|) < ∞. Let νk(ω, .) = Xk(ω)δnk+γk(ω). Then∑

k∈N

EΩ|νk|(|t| > c2|k|
β

) =
∑
k∈N

EΩ(|Xk|)P (|γk| > c2k
β

)

< EΩ(|X1|)EΩ(max(1, log |γ1|/c)1/β)

< EΩ(|X1|)
EΩ(max(1, |γ1|/c)

β1/β
< ∞.

Also

EΩνkf = EΩ(Xk)Tnk
EΩTγk(ω)f = Tnk

g,
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where g = EΩ(Xk)EΩTγ1
f ∈ L2(X) if f ∈ L2(X). Thus Enf = Ang, |En|f = Anh,

h = |EΩ(Xk)|EΩTγ1
f , and therefore, En and |En| are universally good in L2.

Thus, by Theorem 3.6, the averages 1
n

∑n
k=1Xk(ω)Tnk+γk(ω)f(x) are uniformly

universally good in (log log)+L2. Also, from the proof,

lim
n→∞

1

n

n∑
k=1

Xk(ω)Tnk+γk(ω)f(x) = EΩ(X1) lim
n→∞

An(EΩTγ1
f)(x).

4. Smoother averages

We now consider the particular example of averages Fω
n f(x) defined in (1.11.1).

Their corresponding kernels

F̂ω
n (t) =

1

nr

∑
k∈[1,n]r

ζ̂(t.εk(ω))e
i〈t,(nk+γk(ω))〉

decompose as F̂ω
n (t) = Ên(t) + D̂ω

n(t) where Ên(t) = EΩF̂n(t) and

D̂ω
n (t) =

1

nr

∑
k∈[1,n]r

[
ei〈t,γk(ω)〉ζ̂(t.εk(ω))− EΩ(e

i〈t,γk〉)EΩ(ζ̂(t.εk))
]
ei〈t,nk〉.

Theorem 4.1. Let {γk}k∈Nr ⊂ (R+)d and {εk}k∈Nr ⊂ (0, 1]d be two independent

sequences of positive i.i.d. random vectors, and {nk}k∈Nr ⊂ R+d
. Assume that

(a) EΩ ((min1≤j≤d |εe,j |)−α) < ∞, for some α > 0 and some e ∈ N
r;

(b)
∑

k∈Nr P (|γk| > c 2|k|
rβ

) < ∞ for some constants c ≥ 1, and 0 < β < 1;
and

(c) |nk| = O(2|k|
rβ

). Let ζ : Rd → R be positive, integrable with unit integral,
with support on {|t| ≤ 1}, and satisfying

(d) sup
t

d∏
j=1

max(1, |tj |)α|ζ̂(t)| < ∞.

If {An}n∈N is variationally good in L2 then {Fn}n∈N is uniformly variationally good
in L2.

Proof. Fix e ∈ Nr. Since both {εk} and {γk} are i.i.d. and independent of each
other,

Enf = EΩ(F
ω
n f) =

∫
(R+)d

EΩ(ζεe(t))TtAn(EΩ(Tγe
f))dt.

Since {An}n∈N is variationally good in L2, there exists a constant c(s) > 0 such
that ∥∥∥‖Enf‖v(s)

∥∥∥
2
≤
∫
(R+)d

EΩ(ζεe(t))
∥∥∥‖An(Tγe+tf)‖v(s)

∥∥∥
2
dt ≤ c(s)‖f‖2.

Next, we consider the centered averages {Dω
nf = Fω

n f − Enf} along a well chosen
subsequence. For h ≥ 1, let{aj}j∈Ih to be the sequence of equally spaced integers
such that 2h ≤ aj < 2h+1, aj+1 − aj ∼ 2h/h2, and the smallest element in this
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sequence is 2h. Rename this sequence {ml} = ∪k ∪j∈Ih aj .∥∥∥‖Dω
ml

f‖v(s)
∥∥∥2
2
≤
∥∥∥‖Dω

ml
f‖v(2)

∥∥∥2
2
≤ 4

∑
l≥1

‖Dω
ml

f‖22

≤ 4
∑
h≥1

∑
j∈Ih

∫
|t|≤22

rβh
|D̂ω

aj
(t)|2 dμf

+ 4
∑
h≥1

∑
j∈Ih

∫
|t|>22rβh

|D̂ω
aj
(t)|2 dμf = I + II.

To estimate the first term I we need first to check the requirements of Proposition
2.4. For A ⊂ R

d (Borel measurable) let ζεk(ω)(A) =
∫
A
ζεk(ω)(t)dt. Note that

since the support of ζ ⊂ {|t| ≤ 1}, and |εk| ≤ 1, the support of the measures
ζεk(ω) ⊂ {|t| ≤ 1}. Let νk(ω,A) = δnk+γk(ω) ∗ ζεk(ω)(A) = ζεk(ω)(A − nk − γk(ω)).

Setting B = supk nk2
−|k|rβ , if |γk| < c2|k|

rβ

,
[
|t| > (B + 2c)2|k|

rβ
]
− nk − γk ⊂[

|t| > c2|k|
rβ
]
. Thus, for large enough |k|,

EΩνk(|t| > (B + 2c)2|k|
rβ

) ≤ EΩ

(
ζεk

(
|t| > c2|k|

rβ
))

+ P (|γk| > c2|k|
rβ

) = P (|γk| > c2|k|
rβ

).

Now, by Proposition 2.4, assumption (b) and following the same ideas in Theorem
3.3, there exists 0 < C ∈ L∞(Ω), such that, for 2h ≤ aj < 2h+1,

max
|t|≤22

βh
|D̂ω

aj
(t)|2 � C(ω)

log(22
rβh

)

2rh
� C(ω)

1

2rh(1−β)
.

Since |Ih| ∼ h2 and 0 < β < 1,

I � C(ω)
∞∑
h=1

h2 1

2rh(1−β)

∫
|t|≤22rβh

dμf = C(ω)c(β)‖f‖22.

For the second term, the assumptions on ζ imply

|D̂ω
n(t)| �

1

|t|α
[ 1

nr

∑
l∈[1,n]r

1

min1≤j≤d |εl,j(ω)|α
+ E(

1

min1≤j≤d |εl,j |α
)
]
.

By assumption (a), there exist 0 < C2 ∈ L1(Ω) such that supn |D̂ω
n(t)| ≤

C2(ω)
|t|α ,

thus

II =
∑
h

∑
j∈Ih

∫
|t|>22rβh

|D̂ω
aj
(t)|2dμf ≤ C2

2 (ω)
∑
h

h2

2α2rβh

∫
|t|>22rβh

dμf

≤ C2
2 (ω)c(β)‖f‖22.

Now let D̃ω
n = Dω

ml
if ml ≤ n < ml+1. Then ‖Dω

nf‖v(s) = ‖Dω
nf − D̃ω

nf‖v(s) +
‖D̃ω

nf‖v(s). The second term is the variation along the subsequence {ml}. For the
first term, by Proposition 3.5,

‖Dω
nf − D̃ω

nf‖v(s) ≤ 2
(∑

l

‖{Dω
nf : ml ≤ n < ml+1}‖sv(s)

)1/s
≤ 2
(∑

l

‖{Dω
nf : ml ≤ n < ml+1}‖2v(1)

)1/2
;
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and for ml ∈ Ih,

‖{Dω
nf :ml ≤ n < ml+1}‖v(1) ≤

ml+1−1∑
n=ml

|Dω
nf −Dω

n+1f |

≤ (ml+1 −ml)
1/2
(ml+1−1∑

n=ml

|Dω
nf −Dω

n+1f |2
)1/2

≤
(2h
k2
)1/2(ml+1−1∑

n=ml

|Dω
nf −Dω

n+1f |2
)1/2

.

Since D̂ω
n are bounded, |D̂ω

n(t)− D̂ω
n+1(t)| ∼ C

n , thus

‖‖Dω
nf − D̃ω

nf‖v(s)‖22 ≤ 4
∑
h

2h

h2

∑
j∈Ih

aj+1−1∑
n=aj

‖Dω
nf −Dω

n+1f‖22

≤ 4
∑
h

2h

h2

2h+1−1∑
n=2h

‖Dω
nf −Dω

n+1f‖22

≤ 4
∑
h

2h

h2

2h+1−1∑
n=2h

∫
|D̂ω

n (t)− D̂ω
n+1(t)|2dμf ∼

∑
h

2h

h2

2h+1−1∑
n=2h

1

n2

∫
dμf

∼
∑
h

1

h2
‖f‖22 = C‖f‖22.

Combining the variational inequalities for {Enf} and for the centered averages
{Fω

n f − Enf}, the theorem is proven. �

The key element in the above theorem, is the control of the decay of the averaging
kernels in condition (d). Thus, Theorem 4.1 is a particular case of item (c) in the
following more general result.

Proposition 4.2. Let {νk}k∈Nr be a sequence of transition measures satisfying
the assumptions of Theorem 3.3. Let Kn, En and Dn as defined in Section 3. If

there exist α > 0 such that supn sup|t|≥1 |t|α|D̂ω
n(t)| ∈ L1(Ω), then there exists

0 < C ∈ L∞(Ω) such that, for any ρ > 1,∥∥∥∥∥∥
√√√√ ∞∑

n=1

|Dρnf |2
∥∥∥∥∥∥
2

< C(ω)c(ρ)‖f‖2.

Moreover,

(a) If for some ρ > 1, {En}n∈I(ρ) is variationally good in L2 then {Kn}n∈I(ρ)

is uniformly variationally good in L2.
(b) If {En} is universally good in L2, limρ �→1 supn bρn+1/bρn = 1and either {νk}

is a sequence of real–valued positive transition measures or {|En|} is also
universally good in L2, then {Kn} is uniformly universally good in L2.

(c) Assume the total variation |νk(ω)| = 1 for all k ∈ N
r and all ω ∈ Ω, then if

{En} is variationally good in L2 then {Kn} is uniformly variationally good
in L2.
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Proof. Proving the L2 bound for the square function follows the same ideas as in
the proof of the square function in Theorem 3.3 together with the estimate for the
second term in Theorem 4.1. Parts (a) and (b) follow as in Theorem 3.3 and (c)
follows the same estimates as in the proof of Theorem 4.1. �

Bounded transition measures with the conditions in Proposition 4.2 also are
uniform norm summable. Such result requires Moricz’s [29] estimate for moments
of sums of random variables and its extension in Cohen and Cuny [16].

Proposition 4.3 ([16]). Let (Y, C, μ) a probability space and {Gn} ⊂ L2(Y ). Let
{αn} a sequence of non–negative numbers, η > 0, C > 0 constants, and {Hn} a
non-decreasing sequence with growth condition Hn � nη such that, for all m > n ≥
1, ∥∥∥∥∥

m∑
k=n+1

Gk

∥∥∥∥∥
2

2

≤ Hm

m∑
k=n+1

αk.

If
∑

n≥1 αnHn(log n)
2 < ∞, then

∑
n≥1 Gn converges a.e. in L2(Y ), and∥∥∥∥∥supn≥1

∣∣∣∣∣
n∑

k=1

Gk

∣∣∣∣∣
∥∥∥∥∥
2

2

≤ C(η)
∑
n≥1

αnHn(log n)
2.

Theorem 4.4. Given a sequence of bounded transition measures {νk}k∈Nr such
that, for some β ∈ (0, 1),∑

k∈Nr

EΩ|νk|(|t| > c2|k|
rβ

) < ∞ and M(ω) = sup
n

sup
|t|≥1

|t|α|ν̂ωn (t)| ∈ L∞(Ω)

for some α > 0. Then {νk} is uniformly norm summable in L2.

Proof. Let In,m = {k ∈ Nr : n < |k| ≤ m}.∥∥∥∥∥∥
∑

k∈In,m

νkf(x)− EΩνkf(x))

|k|r

∥∥∥∥∥∥
2

2

≤
∫
Rd

∣∣∣∣∣∣
∑

k∈In,m

ν̂k(t)− ÊΩνk(t)

|k|r

∣∣∣∣∣∣
2

dμf .

By Proposition 2.4 and the tail distribution condition on the νk’s, there exists

0 < C1(ω) ∈ L∞(Ω) such that, for all |t| ≤ 2m
rβ

,∣∣∣∣∣∣
∑

k∈In,m

ν̂k(t)− ÊΩνk(t))

|k|r

∣∣∣∣∣∣
2

<C1(ω)

m∑
j=n+1

1

jr+1
log(2m

rβ

)∼C1(ω)m
rβ

⎛⎝ m∑
j=n+1

1

jr+1

⎞⎠ .

On the other hand, for |t| > 2m
rβ

,∣∣∣∣∣∣
∑

k∈In,m

ν̂k(t)− ÊΩνk(t)

|k|r

∣∣∣∣∣∣
2

� M(ω)

|t|2α

⎡⎣ ∑
k∈In,m

1

|k|r

⎤⎦2

≤ M(ω)
(logm)2

22αmrβ .

Combining both estimates, there exists 0 < C(ω) ∈ L∞(Ω) such that∥∥∥∥∥∥
∑

k∈In,m

ν̂k(t)− EΩ(ν̂k(t))

|k|r

∥∥∥∥∥∥
2

2

� C(ω)mrβ

⎛⎝ m∑
j=n+1

1

jr+1

⎞⎠ ‖f‖22.

Since β < 1, the result follows by Proposition 4.3. �



242 JAEYONG CHOI AND KARIN REINHOLD-LARSSON

Proof of Theorem 1.12. It follows from Theorem 4.1 and Theorem 4.4, with esti-
mates for the kernels as in Theorem 4.1. �
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aléatoires régularisants (French, with English and French summaries), C. R. Math. Acad.
Sci. Paris 334 (2002), no. 5, 375–378, DOI 10.1016/S1631-073X(02)02279-3. MR1892937

[23] Aihua Fan and Dominique Schneider, Sur une inégalité de Littlewood-Salem (French, with
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[34] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathemat-
ics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by
Leo F. Boron; Reprint of the 1955 original. MR1068530
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