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GENERATOR FUNCTIONS AND THEIR APPLICATIONS

EMMANUEL GRENIER AND TOAN T. NGUYEN

(Communicated by Catherine Sulem)

Abstract. We had introduced so called generators functions to precisely fol-
low the regularity of analytic solutions of Navier-Stokes equations earlier (see

Grenier and Nguyen [Ann. PDE 5 (2019)]. In this short note, we give a short
presentation of these generator functions and use them to construct analytic
solutions to classical evolution equations, which provides an alternative way
to the use of the classical abstract Cauchy-Kovalevskaya theorem (see Asano
[Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), pp. 102–105], Baouendi and
Goulaouic [Comm. Partial Differential Equations 2 (1977), pp. 1151–1162],
Caflisch [Bull. Amer. Math. Soc. (N.S.) 23 (1990), pp. 495–500], Nirenberg
[J. Differential Geom. 6 (1972), pp. 561–576], Safonov [Comm. Pure Appl.
Math. 48 (1995), pp. 629–637]).

1. Introduction

The general abstract Cauchy-Kovalevskaya theorem has been intensively used
to construct analytic solutions to various evolution partial differential equations,
including first order hyperbolic and parabolic equations, or Euler and Navier-Stokes
equations. We refer for instance to Asano [1], Baouendi and Goulaouic [2], Caflisch
[6], Nirenberg [16], Safonov [17], among others. In this short note, we use generators
functions as introduced in [8] to obtain existence results for these equations. The
results in this paper are not new, but show the versatility and simplicity of use of
these generator functions. We believe that the approach could be used on many
other equations and provide easy ways to obtain analytic solutions, including those
at the large time, and to investigate instabilities.

Let us first introduce generator functions in the particular case of a periodic
function f(t, x) on t ≥ 0 and x ∈ T

d, d ≥ 1. For z ∈ R, we introduce the generator
function Gen[f ] defined by

(1.1) Gen[f ](t, z) =
∑
α∈Zd

ez|α||fα(t)|

in which fα denotes the Fourier transform of f(t, x) with respect to x ∈ T
d. If f is

analytic in x, Gen[f ] is only defined for small enough |z|, up to the analyticity radius
of f(t, .). The results in this note also apply to the case when x ∈ R

d, with which
the above summation is replaced by the integral over Rd. In applications, we may
also introduce generator functions depending on multi-variables z = (z1, · · · , zd)
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that correspond to the analyticity radius of f(x) in (x1, · · · , xd), respectively; see,
for instance, [8] for the case of boundary layers on the half space T× R+.

First note that generator functions are non negative, and that all their derivatives
are non negative and non decreasing in z. Moreover generator functions have very
nice properties with respect to algebraic operations and differentiation. Namely
they “commute” with the product, the sum and the differentiation, making their
use very versatile.

Lemma 1.1. For any f, g, there hold the following properties

(1.2) Gen[f + g] ≤ Gen[f ] +Gen[g]

(1.3) Gen[fg] ≤ Gen[f ]Gen[g]

(1.4) Gen[∇xf ] = ∂zGen[f ], ∂tGen[f ] ≤ Gen[∂tf ],

for all z ≥ 0.

Proof. Let fα and gα be the Fourier transform of f and g, respectively. It follows
that

(fg)α = fα �α gα

for α ∈ Z
d. For z ≥ 0, we compute

Gen[fg](z) =
∑
α∈Zd

ez|α||fα �α gα| ≤
∑
α∈Zd

∑
β∈Zd

ez|β|ez|α−β||fβ ||gα−β |

≤ Gen[f ]Gen[g]

which is the second inequality. The first and third identities follow directly from
the definition. The last inequality is a direct consequence of ∂t|fα| ≤ |∂tfα|. �

The use of generator functions are not limited to polynomial operations. Namely,
we have

Lemma 1.2. Let F, F̃ be analytic functions

F (z) =
∑
n≥0

anz
n, F̃ (z) =

∑
n≥0

|an|zn.

with some convergence radius ρ. Then, for any function f(x), provided ‖f‖L∞ < ρ,
there holds

(1.5) Gen[F (f)] ≤ F̃ (Gen[f ]).

Proof. First, using the algebra (1.3), we have

Gen[anf
n] ≤ |an|Gen[f ]n.

Multiplying the inequality by zn and summing over n give the lemma. �
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2. An analyticity framework

In this section, we present our analyticity framework to construct analytic solu-
tions via generator functions defined as in (1.1). The main point of the approach
is that if u(t, x) satisfies a non linear partial differential equation then Gen[u](t, z)
satisfies a transport differential inequality; see (2.7). This inequality describes in
an acute way how the radius of analyticity shrinks as time goes on, and allows to
get analytic bounds on u, and in particular to bound all its derivatives at the same
time.

To precise the framework, we consider the following general system of evolution
equations

(2.1) ∂tu = A(u,∇xu)

for a vector valued function u = u(x, t), with x ∈ T
d, d ≥ 1, and t ≥ 0. We assume

that the function A(·, ·) satisfies

(2.2) Gen[A(u,∇xu)] ≤ C0F (Gen[u])
(
1 + ∂zGen[u]

)

for some constant C0 and some analytic functions F . For instance, A may be a
quadratic polynomial in u and ∇u, in which case F = Id, or more generally, A may

be of the form G(u) · ∇xu, for which F = G̃ (see Lemma 1.2). Note that we do not
make any assumption on the hyperbolicity of the system (2.1).

We shall construct solutions in the function space Xρ defined by

(2.3) Xρ :=
{
u : Gen[u](ρ) < ∞

}
.

Theorem 2.1. Let ρ > 0 and u0 be in Xρ. Then the Cauchy problem (2.1) with
initial data u0 has a unique solution u(t) in Xρ(t) for positive times t as long as
ρ(t) = ρ − C1t remains positive, C1 being some large positive constant depending
on u0.

Proof. We shall construct solutions via the standard approximation. First, we let
PN be the projection of the first N Fourier modes; namely

(2.4) PN (f)(x) =
∑

α∈Zd,|α|≤N

eiαxfα.

Let uN (t) be a solution to the following regularized equations

(2.5) ∂tuN = PNA(PN(uN ),∇xPN (uN ))

with initial data uN (0, x) = PNu0(x) for all N . As the right hand side consists of
only a finite number of Fourier modes, this equation is in fact an ordinary differential
equation. Hence there exists a unique solution uN (t), defined for t small enough. It
suffices to prove that uN (t) is a Cauchy sequence in Xρ(t), as long as ρ(t) remains
positive.

The Fourier coefficients of the solution to (2.1) satisfy

∂tuN,α = PN,αA(PNuN ,∇xPNuN )
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where PN,αf denotes the Fourier coefficient fα if |α| ≤ N , and zero, if otherwise.
We therefore get∑

|α|≤N

∂t|uN,α|ez|α| ≤
∑

|α|≤N

|∂tuN,α|ez|α|

≤
∑

|α|≤N

|PN,αA(PNuN ,∇xPNuN )|ez|α|.

By definition, we note that

(2.6) Gen[PN (f)] ≤ Gen[f ].

Thus, using the assumption (2.2), we obtain the following Hopf-type differential
inequality

(2.7) ∂tGen[uN ] ≤ C0F (Gen[uN ])
(
1 + ∂zGen[uN ]

)
,

in which C0 is independent of N . For convenience, we set

GN (t, z) = Gen[uN (t)](z).

The previous inequality yields

(2.8) ∂tGN ≤ C0F (GN )(1 + ∂zGN ),

which is a differential inequality that we will now exploit in order to bound uN and
all its derivatives. Note that GN is a finite sum and is therefore defined for all z.
As N goes to +∞, GN (0, z) converges to Gen[u0](z), which is defined for |z| ≤ ρ.

As usual with analytic solutions, the domain of analyticity shrinks with time,
hence we introduce

FN (t, z) = GN (t, θ(t)z)

for t, z ≥ 0, where θ(·) will be determined later. It follows that FN satisfies

(2.9) ∂tFN ≤ C0F (FN ) + C0(F (FN ) + θ′(t)z)∂zFN .

Note that FN is defined for any z. In the limit N → +∞ we focus on 0 ≤ z ≤ ρ.
We will choose θ(t) in such a way that the characteristics of (2.9) are outgoing

on [0, ρ], namely such that at z = 0, F (FN ) > 0 (which is always satisfied) and
such that at z = ρ, F (FN ) + θ′(t)ρ < 0. At t = 0, we choose θ(0) = 1 and thus

FN (0, z) = GN (0, z) = Gen[PNu0](z) ≤ Gen[u0](z),

which is well-defined on [0, ρ]. Set

M0 = sup
0≤z≤ρ

Gen[u0](z).

We will focus on times 0 ≤ t ≤ TN such that FN (t, z) ≤ 2M0 for 0 ≤ t ≤ TN and
0 ≤ z ≤ ρ. We choose

θ(t) = 1− F (3M0)ρ
−1t.

Observe that on 0 ≤ t ≤ TN , as long as θ(t) > 0, F (FN ) + θ′(t)ρ < 0. On such a
time interval, (2.9) is a nonlinear transport equation with a source term and with
outgoing characteristics at 0 and ρ. As a consequence, we have

∂t sup
0≤z≤1

FN (t, z) ≤ C0 sup
0≤z≤1

F (FN (t, z)) ≤ C0F (2M0),

hence

FN (t, z) ≤ M0 + C0tF (2M0).
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Classical arguments then lead to the fact that TN is bounded away from 0, namely
there exists some T > 0 such that TN ≥ T for any N , and such that ρ(t) > 0 for
any t ≤ T . This implies that

FN (t, z) ≤ C(FN (0, z)) ≤ C(M0)

for any 0 ≤ z ≤ ρ and any 0 ≤ t ≤ T . Thus uN (t) is uniformly bounded in Xρ(t)

for all N . As a consequence, uN and all its derivatives of all orders are uniformly
bounded in L∞. Up to the extraction of a subsequence, uN and all its derivatives
converge uniformly, towards some function u, solution of (2.1). Moreover, classical
arguments show that u(t) ∈ Xρ(t) for any 0 ≤ t ≤ T , which ends the proof of the
theorem. �

3. Euler equations

In this section, we apply the previous framework to construct analytic solutions
to incompressible Euler equations on T

d or Rd, d ≥ 2. Namely, we consider

(3.1)
∂tu+ u · ∇u+∇p = 0

∇ · u = 0

on T
d (the case Rd is treated similarly). Again, the existence result is classical (see,

for instance, [3, 4, 12, 13]). The function space Xρ is defined in (2.3). We have

Theorem 3.1. Let ρ > 0 and u0 be a divergence-free vector field in Xρ. Then the
Cauchy problem (3.1) with initial data u0 has a solution u(t) in Xρ(t) for positive
times t as long as ρ(t) = ρ − C1t remains positive, C1 being a constant depending
on u0.

Proof. Introduce the Leray projector P, projection onto the divergence-free L2 vec-
tor space. In Fourier coefficients, Pα is an d× d matrix with entries

(Pα)jk = δjk −
αjαk

|α|2 .

In particular, |Pα| is bounded, uniformly in α ∈ Z
d. Taking the Leray projection

of (3.1), we obtain

(3.2) ∂tu = −P(u · ∇u),

which falls into the previous abstract framework. It remains to check the assump-
tion (2.2). Indeed, using (1.2) and the uniform boundedness of |Pα| in α, we
compute

Gen[P(u · ∇u)] ≤ Gen[u · ∇u] ≤ Gen[u]Gen[∇u] ≤ Gen[u]∂zGen[u].

Note that the divergence-free condition is invariant under (3.2). Thus, applying the
abstract framework introduced in the previous section to the evolution equation
(3.2), we obtain Theorem 3.1. �

Remark 3.2. Note that there is no hyperbolicity assumption made in the first order
evolution equation (2.1), which may in particular be illposed in Sobolev spaces.
The abstract framework can also be applied to a variety of other physical relevant
models (e.g., [7,11]) that arise in a singular limit of Euler equations, Navier-Stokes
equations, and Vlasov-Poisson systems.
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4. Comments on other applications

In this section, we briefly highlight two recent applications to the use of generator
functions to capture the instability of boundary layers [8] and prove the nonlinear
Landau damping [9, 10], both of which have a different flavor from the previous
short time existence theory. These applications [8–10] are a version of the large
time Cauchy-Kovalevskaya theorem. The use of generator functions allows us to
control all the derivatives uniformly in the small viscosity limit or in the large time
limit. In particular, the work [9] provides an elementary proof of the nonlinear
Landau damping that was first obtained by Mouhot and Villani [15] for analytic
data and by Bedrossian, Masmoudi, and Mouhot [5] for Gevrey data.
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