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CONNECTING A DIRECT AND A GALERKIN APPROACH TO

SLOW MANIFOLDS IN INFINITE DIMENSIONS
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(Communicated by Wenxian Shen)

Abstract. In this paper, we study slow manifolds for infinite-dimensional
evolution equations. We compare two approaches: an abstract evolution equa-
tion framework and a finite-dimensional spectral Galerkin approximation. We
prove that the slow manifolds constructed within each approach are asymp-
totically close under suitable conditions. The proof is based upon Lyapunov-
Perron methods and a comparison of the local graphs for the slow manifolds in

scales of Banach spaces. In summary, our main result allows us to change be-
tween different characterizations of slow invariant manifolds, depending upon
the technical challenges posed by particular fast-slow systems.

1. Introduction

The perturbation theory of normally hyperbolic invariant manifolds introduced
by Fenichel [4,9] has proved to be a useful tool in the theory of dynamical systems.
One important consequence of Fenichel’s works is that they provide a suitable
framework for the treatment of fast-slow systems [5, 7] of the form

ε∂tu
ε = Auε + f(uε, vε),

∂tv
ε = Bvε + g(uε, vε),

(1.1)

where 0 ≤ ε � 1 is a small parameter, A,B are matrices, and f, g are differentiable
nonlinearities. The unknown functions uε and vε are called fast and slow variable,
respectively. System (1.1) is already written in a variant of (local) Fenichel normal
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form [5, 7] separating matrices A,B and the nonlinearities f, g, which is also a
quite natural form in the PDE context to be considered below. For the classical
finite-dimensional case, Fenichel’s techniques are also known as geometric singular
perturbation theory. The main result is that – under suitable assumptions – for
all ε > 0 small enough there is a manifold Sε which is locally invariant under the
flow generated by (1.1) and which can be written as a graph over the slow variable.
More precisely, one may write

Sε := {(hε(v), v) : v ∈ Y },
where X and Y are the finite-dimensional vector spaces uε and vε, respectively,
take values in, and hε : Y → X is a Lipschitz continuous function. These manifolds,
which are called slow manifolds, are ε-close over compact subsets in Y to the critical
manifold

S0 := {(h0(v), v) : v ∈ Y },
where h0(v) denotes the unique solution of

0 = Ah0(v) + f(h0(v), v).

Moreover, the flow on Sε converges to the slow flow on S0 which is defined to be
the flow which is generated by the singular limit of (1.1) as ε → 0, that is

0 = Au0 + f(u0, v0),

∂tv
0 = Bv0 + g(u0, v0).

(1.2)

The existence of such slow manifolds is usually taken as a formal justification for
the intuitive idea, that after a short initial time the dynamics of (1.1) only evolve
on the slow time scale and are described well by the slow subsystem (1.2). Since

0 = Au+ f(u, v)

is supposed to have the unique solution u = h0(v), one may rewrite (1.2) as

∂tv
0 = Bv0 + g(h0(v0), v0), u0 = h0(v0).(1.3)

Altogether, we can then reduce (1.1) to (1.3). The advantage of (1.3) is that the
fast variable is now uniquely determined by the slow variable, i.e., the dimension
of the dynamical problem (1.1) has been reduced.

It has been an open problem for a few decades, how to generalize Fenichel the-
ory to the infinite-dimensional setting, with fast-slow systems of partial differential
equations as an important application. Even though persistence of normally hyper-
bolic invariant manifolds in Banach spaces was derived by Bates, Lu and Zeng in
[2] for bounded semiflow perturbations, the existence of slow manifolds for PDEs,
involving spatial differential operators in the slow variable equations, had only been
shown in very special cases such as for the Maxwell-Bloch equations [8]. Recently,
there have been two new attempts to provide techniques for a geometric singular
perturbation theory in infinite dimensions. In [3], slow manifolds in infinite dimen-
sions were approximated by finite-dimensional slow manifolds within a Galerkin
procedure, paving the way for an extension of geometric blow-up from ODEs to
PDEs. A more direct approach was taken in [6], where a two-parameter family Sε,ζ

of slow manifolds was constructed via a Lyapunov-Perron argument. The main in-

gredient of the latter procedure is a splitting of the slow variable space Y = Y ζ
F ⊕Y ζ

S

into a quickly decaying part and a part on which the linear dynamics are invertible.
We will introduce both approaches in Section 2 and provide a precise comparison
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result in Section 3, relating the two types of slow manifolds to each other via esti-
mates for their distance and its decay in ε, ζ. Finally, in Section 4, we exemplify this
main result at the hand of a slow-fast PDE with fast reaction-diffusion dynamics,
also discussing intricacies of the Galerkin limits.

2. The two approaches

2.1. Assumptions. In the following, we discuss in detail the assumptions for
the subsequent statements. It is, in fact, one of the main difficulties in infinite-
dimensional geometric singular perturbation theory to find conditions, which allow
for the construction of slow manifolds and are, at the same time, satisfied in many
important applications. Although the list of assumptions we impose is quite long,
it has already been demonstrated in [6] that the conditions are satisfied for a large
class of PDEs, e.g. reaction-diffusion systems; in comparison to [6], we add a few
assumptions which allow us to trade regularity for better estimates. Moreover, we
also add a splitting in the fast variable space so that we can define an appropriate
Galerkin approximation.

For the formulation of the assumptions, we use the notion of an interpolation-
extrapolation scale, for which we refer the reader to [1, Chapter V]. In the following,
let n ∈ N.

2.1.1. Assumption (An). We consider the fast-slow system (1.1) on Banach spaces
X and Y , supplemented by the initial conditions

uε(0) = u0 ∈ Xn, vε(0) = v0 ∈ Yn,(2.1)

whereXn, Yn are elements of the interpolation-extrapolation scales introduced here-
after (see also [1, Chapter V]) and we have 0 = Au0 + f(u0, v0) for ε = 0. As-
sume further that the nonlinearities satisfy f(0, 0) = 0 and g(0, 0) = 0. Then the
following conditions ensure that (1.1) together with (2.1) has a unique solution
(uε, vε) ∈ C1([0,∞);Xn−1 × Yn−1) ∩ C([0,∞);Xn × Yn) which is approximated
well by the slow flow in a sense which we will make precise later.

(i) Generation of semigroups: the closed linear operator A : X ⊃ D(A) →
X generates an exponentially stable C0-semigroup (etA)t≥0 ⊂ B(X) on the
Banach space X. The closed linear operator B : Y ⊃ D(B) → Y is the
generator of a C0-semigroup (etB)t≥0 ⊂ B(Y ) on the Banach space Y .

(ii) Generation of Banach scales: the interpolation-extrapolation scales
generated by (X,A) and (Y,B) (see [1, Chapter V]) are – up to uniform
equivalence of norms for each fixed α0 ∈ [−1,∞) and all α ∈ [−1, α0] –
given by (Xα)α∈[−1,∞) and (Yα)α∈[−1,∞). If 0 /∈ ρ(B), then (Yα)α∈[−1,∞)

shall be equivalent to the interpolation-extrapolation scale generated by
B − λ for some λ ∈ ρ(B).

(iii) Bounded Fréchet derivatives: let γX ∈ (0, 1] if (etA)t≥0 ⊂ B(X) is holo-
morphic and γX = 1 otherwise. In addition, we choose δX ∈ [1 − γX , 1].
Let further δY ∈ (0, 1] if (etB)t≥0 ⊂ B(Y ) is holomorphic and δY = 1 other-
wise. The nonlinearities f : Xn−1+δX × Yn−δX → Xn−1 and g : Xn × Yn →
Yn−1+δY are continuously differentiable and there are constants Lf , Lg > 0
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(which may depend on n) such that

‖Df(x, y)‖B(Xn×Yn,Xn−1+γX
) < Lf (x ∈ Xn, y ∈ Yn),

‖Df(x, y)‖B(Xn−1+δX
×Yn−1,Xn−2+δX

) < Lf (x ∈ XXn−1+δX
, y ∈ Yn−1),

‖Dg(x, y)‖B(Xn×Yn,Yn−1+δY
) < Lg (x ∈ Xn, y ∈ Yn).

(iv) Bounds for semigroups: we choose constants MA,MB, CA, CB > 0
(which may depend on n) as well as ωA < 0 and ωB ∈ R (which do not
depend on n) such that for all t > 0

‖etA‖B(Xn) ≤MAe
ωAt, ‖etA‖B(Xn−1+γX

,Xn) ≤ CAt
γX−1eωAt,

‖etA‖B(Xn−1+δX
,Xn) ≤ CAt

δX−1eωAt

and

‖etB‖B(Yn) ≤ MBe
ωBt, ‖etB‖B(Yn−1+δY

,Yn) ≤ CBt
δY −1eωBt.

(v) Relation of constants: we define ωf := ωA + (2CALf )
1

γX ( 1
γX

)
1−γX
γX if

γX ∈ (0, 1) and take ωf > ωA + CALf if γX = 1. Moreover, we assume

ωf < 0,

Lf max{‖A−1‖B(XγX
,X1), ‖A−1‖B(XδX−1,XδX

)} < 1.

Remark 2.1. The conditions of Assumption (An) are almost identical to the ones in
[6, Section 4]. Here they are slightly simplified in the sense that the differentiability
of the nonlinearities, which is assumed here, is not necessary for all results in [6].

2.1.2. Assumption (Bn). This assumption is sufficient for obtaining a two-
parameter family of slow manifolds Sε,ζ [6], in particular specifying the role of
the second parameter ζ: we assume that for each small ζ > 0 there is a splitting

Y = Y ζ
F ⊕ Y ζ

S , independently from n, into a fast part Y ζ
F and a slow part Y ζ

S such
that the projections prY ζ

F
and prY ζ

S
commute with B on Yn.

The crucial characterization of the fast part is that Y ζ
F ∩ Yn−1+δY contains the

parts of Yn−1+δY that decay under the semigroup (etB)t≥0 almost as fast as the

space Xn under (eζ
−1tA)t≥0; analogously, the slow space Y ζ

S ∩Yn contains the parts
of Yn which do not decay or which only decay slowly under the semigroup (etB)t≥0

compared to Xn under (eζ
−1tA)t≥0. This idea is expressed in point (v) of the

following assumptions:

(i) Closed subspaces: the spaces Y ζ
F ∩ Yβ and Y ζ

S ∩ Yβ are closed in Yβ for
all β ≥ 0 and will be endowed with the norms ‖ · ‖Yβ

.
(ii) Lipschitz bound: using the notation f(x, yF , yS) := f(x, yF + yS) and

g(x, yF , yS) := g(x, yF + yS), the nonlinearity g satisfies

‖ prY ζ
S
g(x− x̃, yF − ỹF , yS − ỹS)‖Yn

≤ Lgζ
δY −1

(
‖x− x̃‖Xn

+ ‖yF − ỹF ‖Yn
+ ‖yS − ỹS‖Yn

)
.

(iii) Group in slow subspace: the realization of B in Y ζ
S ∩ Yn−1, i.e.

BY ζ
S ∩Yn−1

: Y ζ
S ∩ Yn−1 ⊃ D(BY ζ

S ∩Yn−1
) → Y ζ

S ∩ Yn−1, v → Bv

with

D(BY ζ
S ∩Yn−1

) := {v0 ∈ Y ζ
S ∩ Yn : Bv0 ∈ Y ζ

S ∩ Yn−1}
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generates a C0-group (e
tB

Y
ζ
S

∩Yn−1 )t∈R ⊂ B((Y ζ
S ∩ Yn−1, ‖ · ‖Yn−1

)) which

satisfies e
tB

Y
ζ
S

∩Yn−1 = etB on Y ζ
S ∩Yn−1 for t ≥ 0. For the sake of readability,

we will still write B instead of BY ζ
S ∩Yn−1

.

(iv) Invertability in fast subspace: the realization of B in Y ζ
F ∩ Yn−1, i.e.

BY ζ
F ∩Yn−1

: Y ζ
F ∩ Yn−1 ⊃ D(BY ζ

F∩Yn
) → Y ζ

F ∩ Yn−1, v → Bv

with

D(BY ζ
F
) := {v0 ∈ Y ζ

F ∩ Yn : Bv0 ∈ Y ζ
F ∩ Yn−1}

has 0 in its resolvent set. For the sake of readability, we will still write B
instead of BY ζ

F ∩Yn−1
.

(v) Speed of decay in Y ζ
F and Y ζ

S : there are constants CB,MB > 0 such that

for all ζ > 0 small enough there are constants 0 ≤ Nζ
F < Nζ

S < −ζ−1ωA

such that for all t > 0, yF ∈ Y ζ
F ∩ Yn−1+δY and yS ∈ Y ζ

S ∩ Yn we have the
estimates

‖etByF ‖Yn
≤ CBt

δY −1e(N
ζ
F+ζ−1ωA)t‖yF ‖Yn−1+δY

,

‖e−tByS‖Yn
≤ MBe

−(Nζ
S+ζ−1ωA)t‖yS‖Yn

.

(vi) Estimate for contraction property in Lyapunov-Perron argument:
the parameters and constants introduced above satisfy

2γXLfCAΓ(γX)(
2(εζ−1 − 1)ωA + ε(Nζ

S +Nζ
F )
)γX

+
2δY LgCBΓ(δY )

(Nζ
S −Nζ

F )
δY

+
2ζδY −1LgMB

Nζ
S −Nζ

F

< 1,(2.2)

where Γ denotes the gamma function.

Remark 2.2. Assumption (Bn) is identical to the conditions in [6, Section 5] except
for the fact that in [6, Section 5] it is only assumed for n = 1. Here, we make use of
additional regularity in certain estimates and therefore formulate the assumption
for n ∈ N.

2.1.3. Assumption (Cn). If we want to use a Galerkin approximation in both the
slow and the fast variable, then it is useful to also impose similar conditions on

X, i.e. that there is a splitting X = Xζ
F ⊕Xζ

S such that the conditions (i)–(v) in
Assumption (Bn) hold with Y and B being replaced by X and A, respectively.

2.1.4. Assumption (D). This assumption will enable us to trade regularity for ad-
ditional decay behavior. We assume that for 0 ≤ α ≤ β there is a constant Cα,β

such that, for all x ∈ Xζ
F ∩Xβ, y ∈ Y ζ

F ∩ Yβ , we have the estimates

‖y‖Yα
≤ Cα,βζ

β−α‖y‖Yβ
, ‖x‖Xα

≤ Cα,βζ
β−α‖x‖Xβ

.(2.3)

Remark 2.3. Let us give an example of a situation in which Assumption (D) is
satisfied. We define the Bessel potential space on the torus T by

Hs(T) :=

{
u ∈ D ′(T) :

∑
l∈Z

(1 + |l|2)s/2〈u, el〉L2(T)el ∈ L2(T)

}
,

where el = [x → e2πilx], and endow the space with the norm

‖u‖Hs(T) := ‖((1 + |l|2)s/2〈u, el〉L2(T))l∈Z‖
2(Z).
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Consider for example X = Y = L2(T) and A = B = Δ − 1 with domain D(A) =
D(B) = Y1 = X1 = H2(T). The interpolation-extrapolation scales are then given

by Yα = Xα = H2α(T). Y ζ
F and Xζ

F will be the subspaces of L2(T) such that the
l-th Fourier coefficients with |l|2 < ζ−1 are equal to 0. With this choice we obtain

for y ∈ Y ζ
F ∩ Yβ

‖y‖Yα
= ‖y‖H2α(T) =

⎛
⎝ ∑

l∈Z, |l|2≥ζ−1

(1 + |l|2)2α〈y, el〉2L2(T)

⎞
⎠

1/2

≤ (1 + ζ−1)α−β

⎛
⎝ ∑

l∈Z, |l|2≥ζ−1

(1 + |l|2)2β〈y, el〉2L2(T)

⎞
⎠

1/2

� ζβ−α‖y‖Yβ
,

and the same for x ∈ Xζ
F ∩Xβ. This is estimate (2.3) with Cα,β = 1.

2.2. The direct approach. Let us now briefly collect the main results of [6, Sec-
tion 5]. Under the assumptions (An) and (Bn), one can rewrite (1.1) together with
(2.1) as

ε∂tu
ε(t) = Auε(t) + f(uε(t), vεF (t), v

ε
S(t)),

∂tv
ε
F (t) = BvεF (t) + prY ζ

F
g(uε(t), vεF (t), v

ε
S(t)),

∂tv
ε
S(t) = BvεS(t) + prY ζ

S
g(uε(t), vεF (t), v

ε
S(t)),

uε(0) = u0, vεF (0) = prY ζ
F
v0, vεS(0) = prY ζ

S
v0.

(2.4)

For this equation, we can formulate Theorem 2.4, which is a collection of the results
in [6, Section 5].

Theorem 2.4. Let n ∈ N and suppose that Assumption (An) and Assumption
(Bn) hold true. Fix c ∈ (0, 1) and let 0 < ε < c

ωf

ωA
ζ. Then there is a family of sets

Sε,ζ given as graphs

Sε,ζ := {(hε,ζ
X (v0,S), h

ε,ζ

Y ζ
F

(v0,S), v0,S) | v0,S ∈ Y ζ
S ∩ Yn},

where (hε,ζ
X , hε,ζ

Y ζ
F

) : Y ζ
S ∩Yn → Xn×(Y ζ

F ∩Yn) is differentiable such that the following

assertions hold:

(a) Invariance: the set Sε,ζ is invariant under the semiflow generated by
(2.4).

(b) Distance between Sε,ζ and critical manifold: there is a constant C >

0, which is independent of ε and ζ, such that for all v0,S ∈ Y ζ
S ∩Yn we have∥∥∥∥∥

(
hε,ζ
Xn

(v0,S)− h0(v0,S)

hε,ζ

Y ζ
F

(v0,S)

)∥∥∥∥∥
Xn×Yn

≤ C

(
ε+

1

(Nζ
S −Nζ

F )
δy

)
‖v0,S‖Yn

.

(c) Exponentially fast convergence to Sε,ζ : there are ε0, ζ0 > 0 and con-
stants C, c > 0 independent of T such that for all ε ∈ (0, ε0], ζ ∈ (0, ζ0]

with 0 < ε < c
ωf

ωA
ζ, all t ∈ [0, T ] and all v0,S ∈ Y ζ

S ∩ Yn we have∥∥∥∥∥
(
uε(t)− hε,ζ

Xn
(vεS(t))

vεF (t)− hε,ζ

Y ζ
F

(vεS(t))

)∥∥∥∥∥
Xn×Yn

≤ Ce−ct

∥∥∥∥∥
(

u0 − hε,ζ
Xn

(v0,S)

v0,F − hε,ζ

Y ζ
F

(v0,S)

)∥∥∥∥∥
Xn×Yn

.
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(d) Approximation by slow subsystem: the reduced slow subsystem given
by

0 = Au0
ζ(t) + f(u0

ζ(t), v
0
ζ (t)),

0 = prY ζ
F
v0ζ (t),

∂tv
0
ζ (t) = Bv0ζ (t) + prY ζ

S
g(u0

ζ(t), v
0
ζ (t)),

v0ζ (0) = prY ζ
S
v0

(2.5)

has a unique solution (u0
ζ , v

0
ζ ) ∈ C1([0, T ];Xn−1×Yn−1)∩C([0, T ];Xn×Yn)

which approximates the solution of the full fast-slow system.
More precisely, there are a constant C > 0 which may depend on T ,

some suitably chosen ωg ∈ R and ε0, ζ0 > 0 such that for all ε ∈ (0, ε0],
ζ ∈ (0, ζ0] with 0 < ε < c

ωf

ωA
ζ, all t ∈ [0, T ] and all v0 ∈ Yn we have

∥∥∥∥
(
uε(t)− h0(v0ζ (t))

vε(t)− v0ζ (t)

)∥∥∥∥
Yn

≤ C

(
‖ prY ζ

F
v0‖Yn

+
(
ε+ 1

(ωg−ζ−1ωA−Nζ
F )δY

)
‖v0‖Yn

+ (εδY + eε
−1ωf t)‖u0 − h0(v0)‖Xn

)
.

If even (u0, prY ζ
F
v0, prY ζ

S
v0) ∈ Sε,ζ , then it holds that

∥∥∥∥
(
uε(t)− h0(v0ζ (t))

vε(t)− v0ζ (t)

)∥∥∥∥
Xn×Yn

≤ C
(
ε+ 1

(ωg−ζ−1ωA−Nζ
F )δY

+ 1

(Nζ
S−Nζ

F )δY

)
‖v0‖Yn

.

2.3. The Galerkin approach. Assuming conditions (An), (Bn) and (Cn), we
may additionally consider the projection of (1.1) and (2.1) to the slow part in both
variables, i.e.

ε∂tu
ε
G = Auε

G + prXζ
S
f(uε

G, v
ε
G),

∂tv
ε
G = BvεG + prY ζ

S
g(uε

G, v
ε
G),

uε
G(0) = prXζ

S
u0, vεG(0) = prY ζ

S
u0.

(2.6)

Note that, in general, this is not necessarily a finite-dimensional evolution equation.

If A and B generate C0-groups, one may even have Xζ
S = X and Y ζ

S = Y . However,
if A and B have eigenvalue expansions with only a finite number of eigenvalues in

each vertical stripe of bounded width within the complex plane, the spaces Xζ
S and

Y ζ
S are finite-dimensional. This is the situation of many applications such as the

Laplacian Δ on the torus T. In such a case (2.6) indeed coincides with a Galerkin

approximation of (1.1) and (2.1). The spaces Xζ
S and Y ζ

S are given as the linear
span of the eigenfunctions associated with the NA,ζ and NB,ζ eigenvalues, including

multiplicities, of A and B, respectively, in {z ∈ C : ζ−1ωA +Nζ
S ≤ �(z)}.

For example, for A = B = Δ on X = Y = L2(T) with eigenvalues λk = −4π2k2,
k ∈ Z, and eigenfunctions (ek)k∈Z, the expansions

uε(x, t) =
∑
k∈Z

uε
k(t)ek(x), vε(x, t) =

∑
k∈Z

vεk(t)ek(x)
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give, upon taking the inner product of (1.1) with each ek, the system of Galerkin
ODEs

ε∂tu
ε
k = λku

ε
k + 〈f(uε, vε), ek〉

∂tv
ε
k = λkv

ε
k + 〈g(uε, vε), ek〉.

(2.7)

A truncation at |k| ≤ k0 = NΔ,ζ , for ε and ζ given as before, yields the described
correspondence to system (2.6). Such a Galerkin approach is very insightful in
situations of dynamical interest such as dynamic bifurcations in reaction-diffusion
systems where geometric techniques can be applied to the finite-dimensional ap-
proximation and then be extended to the infinite-dimensional limit (see e.g. [3]).

Generally, the existence of such an infinite-dimensional limit raises questions: if
we fix ζ and let ε > 0 be small enough, then (2.6) has a family of slow manifolds
Gε,ζ given by

Gε,ζ = {(hε,ζ
G (v), v) : v ∈ Y ζ

S ∩ Yn}
for certain mappings hε,ζ

G : Y ζ
S ∩Yn → Xζ

S ∩Xn. If Y
ζ
S ∩Yn and Xζ

S ∩Xn are finite-
dimensional, then this can be derived by classical finite-dimensional Fenichel theory.
If they are infinite-dimensional, then one can still use the results from [6]. It is now
of particular interest to study the behavior of Gε,ζ – or a similar object related to
it – as ζ → 0, which corresponds with NA,ζ , NB,ζ → ∞ in the situation described
above. Under a suitable notion of convergence, the potential limiting object Gε,0

may be considered as a type of slow manifold. The main difficulty for such an
approach is that the existence of Gε,ζ for fixed ε becomes unclear when ζ gets too
small. In [3], such a procedure was carried out for a particular example, by using

an explicit approximation of the parametrization hε,ζ
G whose limit for ζ → 0 could

be obtained directly. Generally, one has to be careful about changing the order of
quantifiers for ε and ζ and the dynamical interpretation of the different objects, as
we will demonstrate in Example 4.1. Hence, it becomes particularly important to
understand the relation between Gε,ζ and Sε,ζ in order to measure the quality of
the Galerkin approximation for infinite-dimensional fast-slow systems.

3. The main result

In this section, we fix m,n ∈ N, m ≤ n. For our main result we suppose that –
as it was derived in [6] – the slow manifolds have been constructed via a Lyapunov-
Perron approach. Therefore, we have that(

hε,ζ
X (v0,S)

hε,ζ

Y ζ
F

(v0,S)

)
=

( ∫ 0
−∞ e−ε−1sAf(ū(s), v̄F (s), v̄S(s)) ds∫ 0

−∞ e−sB prY ζ
F
g(ū(s), v̄F (s), v̄S(s)) ds

)
,

where v0,S ∈ Y ζ
S ∩ Yn and where (ū, v̄F , v̄S) denotes the unique fixed point of the

operator

Lv0,S ,ε,ζ : Cη,n → Cη,n,⎛
⎝ u
vF
vS

⎞
⎠ →

⎡
⎢⎣t →

⎛
⎜⎝

ε−1
∫ t
−∞ eε

−1(t−s)Af(u(s), vF (s), vS(s)) ds∫ t
−∞ e(t−s)B prY ζ

F
g(u(s), vF (s), vS(s)) ds

etBv0,S +
∫ t
0
e(t−s)B prY ζ

S
g(u(s), vF (s), vS(s)) ds

⎞
⎟⎠
⎤
⎥⎦ .(3.1)

Here, the space Cη,n with

η := ζ−1ωA +
Nζ

S +Nζ
F

2
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consists of all (u, vF , vS) ∈ C((−∞, 0];X × (Y ζ
F ∩ Yn)× (Y ζ

S ∩ Yn)) such that

‖(u, vF , vS)‖Cη,n
:= sup

t≤0
e−ηt
(
‖u(t)‖Xn

+ ‖vF (t)‖Yn
+ ‖vS(t)‖Yn

)
< ∞.

The fixed point (ū, v̄F , v̄S) has been shown to exist in [6, Proposition 5.1]. Likewise,
we may write

hη,ζ
G (v0,S) = ε−1

∫ 0

−∞
e−ε−1sA prXζ

S
f(ūG(s), v̄G(s)) ds,(3.2)

where (ūG, v̄G) denotes the unique fixed point of the operator

L G
v0,S ,ε,ζ : CG

η,n → CG
η,n,(

uG

vG

)
→
[
t →
(
ε−1
∫ t
−∞ eε

−1(t−s)A prXζ
S
f(uG(s), vG(s)) ds

etBv0,S +
∫ t
0
e(t−s)B prY ζ

S
g(uG(s), vG(s)) ds

)]
.

(3.3)

Analogously to before, CG
η,n denotes the space of all (uG, vG) ∈ C((−∞, 0]; (Xζ

S ∩
Xn)× (Y ζ

S ∩ Yn)) such that

‖(uG, vG)‖CG
η,n

:= sup
t≤0

e−ηt
(
‖uG(t)‖Xn

+ ‖vG(t)‖Yn

)
< ∞.

With this terminology at hand, we can now formulate our main theorem:

Theorem 3.1. We fix m,n ∈ N, m ≤ n and c ∈ (0, 1). Suppose that the assump-
tions (Am), (Bm) and (Cm) as well as (An), (Bn), (Cn) and (D) are satisfied. Then
there is a constant C > 0 such that for all ε, ζ > 0 small enough with c

ωf

ωA
ζ > ε

and all v0,S ∈ Y ζ
S ∩ Yn, we have

‖hε,ζ
X (v0,S)− hε,ζ

G (v0,S)‖Xm
+ ‖hε,ζ

Y ζ
F

(v0,S)‖Ym

≤ C

(
ζn−m

(Nζ
S −Nζ

F )
δY

+ ζn−m+γX

)
‖v0,S‖Yn

.
(3.4)

Proof. As above, let (ū, v̄F , v̄S) be the unique fixed point of Lv0,S ,ε,ζ from (3.1)

and (ūG, v̄G) the one of L G
v0,S ,ε,ζ from (3.3). Then, using assumptions (An),
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(iii) and (iv), and (D), we have

e−ηt(‖hε,ζ
X (v̄S(t))− hε,ζ

G (v̄G(t))‖Xm
)

≤ e−ηt

∥∥∥∥ε−1

∫ t

−∞
e−ε−1(t−s)A prXζ

F
f(ū(s), v̄F (s), v̄S(s)) ds

∥∥∥∥
Xm

+ e−ηt

∥∥∥∥ε−1

∫ t

−∞
e−ε−1(t−s)A prXζ

S

[
f(ū(s), v̄F (s), v̄S(s))− f(ūG(s), v̄G(s))

]
ds

∥∥∥∥
Xm

≤ Cm,nζ
n−me−ηt

∥∥∥∥ε−1

∫ t

−∞
e−ε−1(t−s)A prXζ

F
f(ū(s), v̄F (s), v̄S(s)) ds

∥∥∥∥
Xn

+ e−ηt

∥∥∥∥ε−1

∫ t

−∞
e−ε−1(t−s)A prXζ

S

[
f(ū(s), v̄F (s), v̄S(s))− f(ūG(s), v̄G(s))

]
ds

∥∥∥∥
Xm

≤ LfCACm,nζ
n−m

∫ t

−∞

e(ε
−1ζ−1ωA−η)(t−s)

εγX (t− s)1−γX
ds‖(ū, v̄F , v̄S)‖Cη,n

+ LfCA

∫ t

−∞

e(ε
−1ωA−η)(t−s)

εγX (t− s)1−γX
ds‖(ū− ūG, v̄F , v̄S − v̄G)‖Cη,m

.

It was shown in the proof of [6, Proposition 5.2] that the mapping

Y ζ
S ∩ Yk → Cη,k, v0,S → (ū, v̄F , v̄S)

is Lipschitz continuous. Let L > 0 be the Lipschitz constant. Moreover, [6, Lemma
2.2] shows that ∫ t

−∞

e(ε
−1ωA−η)(t−s)

εγX (t− s)1−γX
ds ≤ Γ(γX)

(εη − ωA)γX
.

Hence, we obtain that

e−ηt(‖hε,ζ
X (v̄S(t))− hε,ζ

G (v̄G(t))‖Xm
)

≤ LLfCACm,nΓ(γX)

(εη − ζ−1ωA)γX
ζn−m‖v0,S‖Yn

+
LfCAΓ(γX)

(εη − ωA)γX
‖(ū− ūG, v̄F , v̄S − v̄G)‖Cη,m

.

(3.5)

Furthermore, combining [6, (5-3)] with Assumption (D) yields

e−ηt‖hε,ζ

Y ζ
F

(v̄S(t))‖Ym
≤ Cm,nζ

n−me−ηt‖hε,ζ

Y ζ
F

(v̄S(t))‖Yn

≤ 2δY Cm,nLLgCBΓ(δY )

(Nζ
S −Nζ

F )
δY

ζn−m‖v0,S‖Yn
.

(3.6)

Concerning v̄S − v̄G, we observe with (Bn), (ii) and (v), that

e−ηt‖v̄S(t)− v̄G(t)‖Ym

= e−ηt

∥∥∥∥
∫ 0

t

e(t−s)B prY ζ
S

[
g(ū(s), v̄F (s), v̄S(s))− g(ūG(s), v̄G(s))

]
ds

∥∥∥∥
Ym

≤ LgCB

∫ 0

t

ζδY −1e(t−s)(ζ−1ωA−η) ds‖(ū− ūG, v̄F , v̄S − v̄G)‖Cη,m

≤ LgCBζ
δY −1

Nζ
S −Nζ

F

‖(ū− ūG, v̄F , v̄S − v̄G)‖Cη,m
.

(3.7)
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Summing up (3.5), (3.6) and (3.7) yields

e−ηt
[
‖hε,ζ

X (v̄S(t))− hε,ζ
G (v̄G(t))‖Xm

+ ‖hε,ζ

Y ζ
F

(v̄S(t))‖Ym
+ ‖v̄S(t)− v̄G(t)‖Ym

]
≤ Cm,n

(
2δY LLgCBΓ(δY )

(Nζ
S −Nζ

F )
δY

+
LLfCAΓ(γX)

(εη − ωA)γX

)
ζn−m‖v0,S‖Yn

+

(
LfCAΓ(γX)

(εη − ωA)γX
+

LgCBζ
δY −1

Nζ
S −Nζ

F

)
‖(hε,ζ

X (v̄S)− hε,ζ
G (v̄G), h

ε,ζ

Y ζ
F

(v̄S), v̄S − v̄G)‖Cη,m
.

Therefore, if we write

L̃ :=

(
LfCAΓ(γX)

(ωA − εη)γX
+

LgCBζ
δY −1

Nζ
S −Nζ

F

)
,

which is strictly smaller than 1 by Assumption (Bm), we obtain

‖(hε,ζ
X (v̄S)− hε,ζ

G (v̄G), h
ε,ζ

Y ζ
F

(v̄S), v̄S − v̄G)‖Cη,m

≤ Cm,n

1− L̃

(
2δY LLgCBΓ(δY )

(Nζ
S −Nζ

F )
δY

+
LLfCAΓ(γX)

(ζ−1ωA − εη)γX

)
ζn−m‖v0,S‖Yn

.

The fact that

‖hε,ζ
X (v0,S)− hε,ζ

G (v0,S)‖Xm
+ ‖hε,ζ

Y ζ
F

(v0,S)‖Ym

≤ ‖(hε,ζ
X (v̄S)− hε,ζ

G (v̄G), h
ε,ζ

Y ζ
F

(v̄S), v̄S − v̄G)‖Cη,m

finally yields the assertion. �

4. Case study of an explicit reaction-diffusion problem

As discussed in Section 2.3, in certain situations of interest the spaces Xζ
S and

Y ζ
S are NA,ζ -dimensional and NB,ζ -dimensional with NA,ζ and NB,ζ being the

number of eigenvalues including multiplicities of A and B, respectively, in {z ∈
C : ζ−1ωA + Nζ

S ≤ �(z)}. In a Galerkin approach, one usually studies the limit
NA,ζ , NB,ζ → ∞ which corresponds to ζ → 0. However, when we fix ε > 0, the
condition (c ωf/ωA)ζ > ε for some c ∈ (0, 1), as posed in Theorem 3.1, will not be
satisfied in the limit ζ → 0. In such a situation, the existence of slow manifolds
in the sense of [6] is unclear. Moreover, in the limit ζ → 0 the interpretation of
(2.6) as a classical finite-dimensional fast-slow system will be lost, since the lower
order modes in the fast variable might evolve at a slower time scale than the higher
order modes in the slow variable. Therefore, one may ask whether slow manifolds
for (2.6) still exist in a suitable sense if ζ ∈ (0, ε ωA/(c ωf )).

In a general setting, it is not clear whether this holds true or not. However,
in certain situations it is possible to explicitly derive invariant manifolds for (2.6)
which resemble slow manifolds from the classical finite-dimensional theory. Using
such a computation, we discuss the intricacies of the limit ζ → 0 at the hand of an
example, also providing an explicit estimate of the form (3.4).
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Example 4.1.
(i) Explicit computation of slow manifolds: consider the following fast-slow

system

ε∂tu
ε = Δuε − uε + (vε)2,

∂tv
ε = Δvε − vε,

(4.1)

on the torus T. A natural approach for a Galerkin approximation is to truncate to
a certain number of Fourier modes. Writing

uε
k(t) :=

∫
T

uε(t, x)e−2πikx dx, vεk(t) :=

∫
T

vε(t, x)e−2πikx dx (k ∈ Z),

we can expand

uε(t, x) =
∑
k∈Z

uε
k(t)e

2πikx, vε(t, x) =
∑
k∈Z

vεk(t)e
2πikx.

Applying 〈·, e2πikx〉L2(T) to both sides of (4.1) yields

ε∂tu
ε
k = −(1 + 4π2k2)uε

k +
∑

j,l∈Z,j+l=k

vεjv
ε
l ,

∂tv
ε
k = −(1 + 4π2k2)vεk

(4.2)

for all k ∈ Z. Truncating at a certain k0 ∈ N, we obtain

ε∂tu
ε
k = −(1 + 4π2k2)uε

k +
∑

j,l∈Z, |j|,|l|≤k0,
j+l=k

vεjv
ε
l ,

∂tv
ε
k = −(1 + 4π2k2)vεk,

(4.3)

which is a finite-dimensional fast-slow ODE for sufficiently small ε > 0. We can
directly solve the slow equation by

vεk(t) = e−(1+4π2k2)tvεk(0),

and, if [ε−1(1 + 4π2k2)− 2− 4π2(j2 + l2)] �= 0, the fast equation is solved by

uε
k(t)− e−ε−1(1+4π2k2)tuε

k(0)

=
∑

j,l∈Z, |j|,|l|≤k0,
j+l=k

ε−1

∫ t

0

e−ε−1(1+4π2k2)(t−s)vεj (s)v
ε
l (s) ds

=
∑

j,l∈Z, |j|,|l|≤k0,
j+l=k

ε−1e−ε−1(1+4π2k2)t

∫ t

0

e[ε
−1(1+4π2k2)−2−4π2(j2+l2)]svεj (0)v

ε
l (0) ds

=
∑

j,l∈Z, |j|,|l|≤k0,
j+l=k

ε−1 e−2−4π2(j2+l2)]t − e−ε−1(1+4π2k2)t

ε−1(1 + 4π2k2)− 2− 4π2(j2 + l2)
vεj (0)v

ε
l (0).

The essential property of a slow manifold is to eliminate the fast dynamics. In fact,
cancelling out the terms with the ε−1 in the exponent, we obtain

uε
k(0) =

∑
j,l∈Z, |j|,|l|≤k0,

j+l=k

vεj (0)v
ε
l (0)

1 + 4π2k2 − ε[2 + 4π2(j2 + l2)]
,(4.4)
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which could be seen as a formula for the slow manifold. The critical manifold in
turn would be given by

u0
k(0) =

∑
j,l∈Z, |j|,|l|≤k0,

j+l=k

v0j (0)v
0
l (0)

1 + 4π2k2
.(4.5)

LetMk0
be the set of all ε ∈ (0, 1) such that there are (j, l) ∈ Z2 with max{|j|, |l|} ≤

k0 and k ∈ Z, |k| ≤ k0 with

ε−1(1 + 4π2k2)− 2− 4π2(j2 + l2) = 0, and j + l = k,(4.6)

i.e., Mk0
contains all ε ∈ (0, 1) for which there may be singularities in (4.4). This

set is special since the above procedure of cancelling out the terms with an ε−1 in
the exponent is not possible for such ε; note that a similar situation occurs in many
dynamical systems in the context of resonances and the small divisor problem [10].
Although the existence of invariant manifolds is not clear for ε ∈ Mk0

, we observe
that Mk0

is finite if k0 ∈ N and countable with an accumulation point at 0 if
k0 = ∞. This shows two things: firstly, for all but countably many ε ∈ (0, 1) there
exists an invariant manifold as a graph over the whole slow variable space for (4.1).
Secondly, it seems like there is no ε0 such that such an invariant manifold exists for
all ε ∈ (0, ε0]. Instead, one has to restrict to a subset of the slow variable space, as
also suggested by the direct approach. In this example, one has to impose∑

(j,k)∈Lk0,k

vεj (0)v
ε
l (0) = 0,

where Lk0,k denotes the set of all pairs (j, l) ∈ Z2 with j + l = k and |j|, |l| ≤ k0
such that the denominator in (4.4) is equal 0.

Even though an invariant manifold for (4.1) exists for all but countably many
ε ∈ (0, 1), these manifolds can be far away from the critical manifold. In fact, this
distance tends to ∞ as dist(ε,Mk0

) → 0, as can be seen directly from (4.4) and
(4.5). However, it is easy to see from equation (4.6) that there are no singularities
in (4.4) if ε < 1/(2+ 8π2k20). In this case, the slow manifold from the Galerkin ap-
proximation is close to the slow manifold obtained by the direct approach. This can
be checked by computing the slow manifold for (4.1) from the Fourier coefficients
as above. In our abstract framework, we obtain the following precise estimate.

(ii) Exemplification of abstract framework: one can choose X = L2(T) and
Y = H2(T) as underlying spaces and A = Δ − 1 and B = Δ − 1 on the domains
D(A) = H2(T) and D(B) = H4(T), respectively. Then, we have Xα = H2α(T)
and Yα = H2+2α(T). As nonlinearities, we choose f(x, y) := y2 and g(x, y) = 0
with γX = δX = δY = 1. If n ≥ 1, then

f : Xn × Yn−1 → Xn, (x, y) → y2

is a well-defined and smooth nonlinearity, since H2+2α(T) is a Banach algebra for
α > − 3

4 . However, the bounds on the derivatives of f from Assumption (An) are
only satisfied locally and the Lipschitz constant only gets small in a neighborhood
around 0 in Yn. Formally, one would have to use cutoff techniques as for example
in [6, Section 6] in order to apply our methods. But since global stability issues are
not our primary concern, we omit the details here. Instead, we just keep in mind
that we have to restrict to a certain neighborhood around 0 in Yn so that Lf is
small enough for (2.2) to hold.
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For Assumption (Bn) we need to introduce a splitting of the slow variable space.
Let ωA ∈ (−1, 0) be close to −1. For ζ > 0 and k ∈ N0 with

−4π2(|k0|+ 2)2 < ζ−1ωA + 1 ≤ −4π2(|k0|+ 1)2,

we take

Xζ
S = Y ζ

S := span{[x → ei2πkx] : k ∈ Z, |k| ≤ |k0|},
Y ζ
F := clH2(T)

(
span{[x → ei2πkx] : k ∈ Z, |k| ≥ |k0|+ 1}

)
,

Xζ
F := clL2(T)

(
span{[x → ei2πkx] : k ∈ Z, |k| ≥ |k0|+ 1}

)
,

where clT M denotes the closure of a set A ⊂ T in a topological space T . Note that

the projection to Xζ
S and Y ζ

S coincides with the projection to the first k0 Fourier
modes. Thus, our abstract Galerkin equation (2.6) is consistent with the explicit
example (4.3). Now it is straightforward to check that the assumptions (Bn), (Cn)

and (D) are satisfied. Nevertheless, let us specify the choice of Nζ
F and Nζ

S . Note
that we have

etBf = et(Δ−1)f =

[
x →

∑
k∈Z

e−(4π2k2+1)tf̂(k)ei2πkx

]
.

Thus, for yS ∈ Y ζ
S and t ≥ 0, Plancherel’s Theorem gives

‖e−tByS‖H2+2n(T) ≤ e(4π
2|k0|2+1)t‖yS‖H2+2n(T),

so that we may take

Nζ
S := −ζ−1ωA − 4π2|k0|2 − 1.

Since −4π2(|k0| + 2)2 < ζ−1ωA + 1 ≤ −4π2(|k0| + 1)2, it follows that Nζ
S > 0.

Similarly, we can take

Nζ
F := −ζ−1ωA − 4π2(|k0|+ 1)2 − 1.

With these choices, we observe that formula (4.4) defines the slow manifold which
one also obtains from a Lyapunov-Perron approach. Indeed, the solution of equation
(4.3), with initial conditions given by (4.4), reads

uε
k(t) =

∑
j,l∈Z, |j|,|l|≤k0,

j+l=k

e−[2−4π2(j2+l2)]t
vεj (0)v

ε
l (0)

1 + 4π2k2 − ε[2 + 4π2(j2 + l2)]
,

vεk(t) = e−(1+4π2k2)tvεk(0),

also for t ∈ (−∞, 0]. Moreover, this solution is an element of CG
η,n and hence, (4.4)

defines the slow manifold given as the graph of hε,ζ
G from the abstract setting. In

particular, Theorem 3.1 shows that the distance of the Galerkin slow manifold we
computed for (4.3) to the actual slow manifold for (4.1) is small if ζ, ε > 0 with
c
ωf

ωA
ζ > ε are small enough. More precisely, if we fix m,n ∈ N, m ≤ n and c ∈ (0, 1),

then Theorem 3.1 tells us that there is a constant C > 0 such that for all ε > 0

small enough and all k0 ∈ N such that k0 <

√
−(1+cωfε−1)

4π2 − 2 it holds that

‖hε,ζ
X (v0,S)− hε,ζ

G (v0,S)‖H2m(T) < Ck
−2(n−m)−1
0 ‖v0,S‖H2n+2(T).

Here, hε,ζ
X denotes the mapping describing the slow manifold for (4.1) from the

direct approach and hε,ζ
G denotes the slow manifold from the Galerkin approach
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defined by (4.4). If k0 is chosen close enough to

√
−(1+cωfε−1)

4π2 − 2 then we also

obtain the estimate

‖hε,ζ
X (v0,S)− hε,ζ

G (v0,S)‖H2m(T) � εn−m+ 1
2 ‖v0,S‖H2n+2(T).

In particular, the last estimate provides an illustration of the relevance of our main
result: in situations where a Galerkin approximation may be the procedure of
choice due to the need of using ODE techniques or for numerical reasons, we know
that for sufficiently small ε and suitably chosen k0 the finite-dimensional Galerkin
manifolds are good approximations of the invariant slow manifolds for the PDE, if
the appropriate norms are taken.
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György Haller and Igor Mezić, DOI 10.1007/978-1-4612-4312-0. MR1278264

[10] Jean-Christophe Yoccoz, An introduction to small divisors problems, From number theory to
physics (Les Houches, 1989), Springer, Berlin, 1992, pp. 659–679. MR1221113

Department of Mathematics and Computer Science, Freie Universität Berlin, Arni-

mallee 6, 14195 Berlin, Germany

Email address: maximilian.engel@fu-berlin.de

Faculty of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748

Garching bei München, Germany

Email address: hummel@ma.tum.de

Faculty of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748

Garching bei München, Germany

Email address: ckuehn@ma.tum.de

https://www.ams.org/mathscinet-getitem?mr=1345385
https://www.ams.org/mathscinet-getitem?mr=1445489
https://arxiv.org/abs/2007.09973
https://www.ams.org/mathscinet-getitem?mr=287106
https://www.ams.org/mathscinet-getitem?mr=524817
https://arxiv.org/abs/2008.10700
https://www.ams.org/mathscinet-getitem?mr=1374108
https://www.ams.org/mathscinet-getitem?mr=1857973
https://www.ams.org/mathscinet-getitem?mr=1278264
https://www.ams.org/mathscinet-getitem?mr=1221113

	1. Introduction
	2. The two approaches
	2.1. Assumptions
	2.2. The direct approach
	2.3. The Galerkin approach

	3. The main result
	4. Case study of an explicit reaction-diffusion problem
	References

