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Abstract. In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–
99] we showed that a Tychonoff space X is a Δ-space (in the sense of R. W.
Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45–60], G. M. Reed [Fund.
Math. 110 (1980), pp. 145–152]) if and only if the locally convex space Cp(X)
is distinguished. Continuing this research, we investigate whether the class Δ
of Δ-spaces is invariant under the basic topological operations.

We prove that if X ∈ Δ and ϕ : X → Y is a continuous surjection such
that ϕ(F ) is an Fσ-set in Y for every closed set F ⊂ X, then also Y ∈ Δ.
As a consequence, if X is a countable union of closed subspaces Xi such that
each Xi ∈ Δ, then also X ∈ Δ. In particular, σ-product of any family of
scattered Eberlein compact spaces is a Δ-space and the product of a Δ-space
with a countable space is a Δ-space. Our results give answers to several open
problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99].

Let T : Cp(X) −→ Cp(Y ) be a continuous linear surjection. We observe

that T admits an extension to a linear continuous operator ̂T from RX onto
RY and deduce that Y is a Δ-space whenever X is. Similarly, assuming that
X and Y are metrizable spaces, we show that Y is a Q-set whenever X is.

Making use of obtained results, we provide a very short proof for the claim
that every compact Δ-space has countable tightness. As a consequence, under

Proper Forcing Axiom every compact Δ-space is sequential.
In the article we pose a dozen open questions.

1. Introduction

Throughout the article, all topological spaces are assumed to be Tychonoff. By
Cp(X) we mean the space of all real-valued continuous functions on a Tychonoff
space X endowed with the topology of pointwise convergence.

Definition 1.1 ([18], [20]). A topological space X is said to be a Δ-space if for
every decreasing sequence {Dn : n ∈ ω} of subsets of X with empty intersection,
there is a decreasing sequence {Vn : n ∈ ω} consisting of open subsets of X, also
with empty intersection, and such that Dn ⊂ Vn for every n ∈ ω.

The class of all Δ-spaces is denoted by Δ. Let us point out that the original
definition of a Δ-set X ⊂ R, where R denotes the real line, is due to G. M. Reed
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and E. K. van Douwen (see [29]). Δ-sets of reals have been used and investigated
thoroughly in the study of two of the most basic and central constructions in general
topology: the Moore–Nemytskii plane and the Pixley-Roy topology. Denote by
M(X) the subspace of the Moore–Nemytskii plane, which is obtained by using
only a subset X ⊂ R of the x-axis. G. M. Reed observed that M(X) is countably
paracompact if and only if X is a Δ-set [29].

For a separable metrizable space M , denote by F(M) the hyperspace of finite
subsets of M endowed with the Pixley-Roy topology. D. J. Lutzer proved that if
M is a strong Δ-set, i.e. every finite power Mn is a Δ-set, then F(M) is countably
paracompact [25]. H. Tanaka proved the converse statement: if F(M) is countably
paracompact, then M is a strong Δ-set [30]. Also, the work [30] deals with the
analogous questions for general (not necessarily separable) metrizable spaces.

A set of reals X is called a Q-set if each subset of X is Fσ, or, equivalently,
each subset of X is Gδ in X. The existence of uncountable Q-sets is independent
of ZFC. Every Q-set is a Δ-set, but consistently the converse is not true (see [20]).
More details about Q-sets and Δ-sets can be found in [13], [20]. Of course, there
are plenty of nonmetrizable Δ-spaces with non-Gδ subsets, in ZFC [18].

We could not find a single paper devoted to investigation of the general topolog-
ical Δ-spaces. Quite recently the authors have shown that the notion of Δ-spaces
plays a key role in the study of distinguished Cp-spaces [18].

Theorem 1.2 ([18]). For a Tychonoff space X, the following conditions are equiv-
alent:

(1) Cp(X) is distinguished.
(2) Any countable disjoint collection of subsets of X admits a point-finite open

expansion in X.
(3) X is a Δ-space.

We should mention that independently and simultaneously an analogous de-
scription of distinguished Cp-spaces (but formulated in different terms) appeared
in [11].

By a bounded set in a topological vector space we understand any set which is
absorbed by every 0-neighbourhood. Following J. Dieudonné and L. Schwartz [8] a
locally convex space (lcs) E is called distinguished if every bounded subset of the
bidual of E in the weak∗-topology is contained in the closure of the weak∗-topology
of some bounded subset of E. Equivalently, a lcs E is distinguished if and only if the
strong dual of E (i.e. the topological dual of E endowed with the strong topology)
is barrelled. A. Grothendieck [16] proved that a metrizable lcs E is distinguished if
and only if its strong dual is bornological. Recall that the strong topology on E′ is
the topology of uniform convergence on bounded subsets of E.

Denote by Lp(X) the dual of Cp(X), i.e. the linear space of all continuous
linear functionals on Cp(X), endowed with the topology of pointwise convergence.
Basic properties of Lp(X) are described thoroughly in [1]. By Lβ(X) we denote
the strong dual of Cp(X), i.e. the space Lp(X) endowed with the strong topology
βX = β(Lp(X), Cp(X)). Note also that for a vector space E the finest locally convex
topology ξ of E is generated by the family of all absolutely convex and absorbing
subsets of E which form a base of neighbourhoods of zero for the topology ξ.

The following main characterization theorem has been proved to be instrumental
in the study of distinguished lcs Cp(X).
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Theorem 1.3 ([12], [10]). For a Tychonoff space X the following assertions are
equivalent:

(1) Cp(X) is distinguished, i.e. its strong dual Lβ(X) is a barrelled space.
(2) For each f ∈ RX there is a bounded B ⊂ Cp(X) with f ∈ clRX (B).
(3) The strong topology βX of the strong dual of Cp(X) is the finest locally

convex topology on Lp(X).

Naturally, aforementioned crucial Theorem 1.2 has been proved in [18] with the
help of Theorem 1.3. In this paper, Theorem 1.3 has been applied effectively again
for the proof of Theorem 3.1, the main result of Section 3.

Our aim is to continue the research about topological Δ-spaces originated in our
paper [18]. We obtain results in two directions. First, in Section 2 we investigate
whether the class Δ is invariant under the basic topological operations, including
continuous images, closed continuous images, countable unions and finite products.
What do we know about continuous images of Δ-spaces?

Proposition 1.4 ([18]). There exists in ZFC a MAD family A on N such that the
corresponding Isbell–Mrówka space Ψ(A) admits a continuous mapping onto the
closed interval [0, 1].

Thus, the class Δ is not invariant under continuous images even for first-countable
separable locally compact pseudocompact spaces. The following result has been
proved in our paper [18].

Proposition 1.5 ([18]). Let X be any Δ-space and ϕ : X → Y be a closed contin-
uous surjection with finite fibers. Then Y is also a Δ-space.

Shortly after the paper [18] was published, V. Tkachuk [31] observed that the
proof of Proposition 1.5 in fact does not use the last restriction about finiteness of
fibers. So, Proposition 1.5 is valid without unnecessary assumption of finiteness of
fibers and the class Δ is invariant under closed continuous images. As an immediate
consequence, V. Tkachuk [31] noticed that we have a positive answer to Problem
5.3 posed in [18]: any continuous image of a compact Δ-space is also a Δ-space.

In this paper we generalize Proposition 1.5 as follows: Let X be any Δ-space and
ϕ : X → Y be a continuous surjection such that ϕ(F ) is an Fσ-set in Y for every
closed set F ⊂ X; then Y is also a Δ-space (Theorem 2.1). It is interesting to note
that the proof of Theorem 2.1 is obtained by absolutely elementary arguments.

We say that a topological space X is σ-closed discrete if X =
⋃

n∈ω Xn, where
each Xn is a closed and discrete subset of X. It is easy to see that every σ-closed
discrete space is in Δ. A straightforward application of Theorem 2.1 gives a far-
reaching generalization of this fact: Assume that X is a countable union of closed
subsets Xn, where each Xn ∈ Δ; then also X ∈ Δ (Proposition 2.2). As a corollary
we solve in the affirmative Problem 5.8 posed in [18]: a countable union of compact
Δ-spaces is also a Δ-space. In particular, σ-product of any family consisting of
scattered Eberlein compact spaces is a Δ-space. Another consequence says that
the product of a Δ-space with a σ-closed discrete space (in particular, a countable
space) is a Δ-space. Remark that the general question whether the class Δ is
invariant under finite products remains open. It is worthwhile mentioning that
we do need an assumption on finite fibers for the following “reverse” version of
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Proposition 1.5: Let ϕ : X → Y be a continuous surjection with finite fibers; then
Y ∈ Δ implies that also X ∈ Δ (Proposition 2.12).

Following A. V. Arkhangel’skii [2], we say that a space Y is l-dominated (u-
dominated, t-dominated) by a space X if Cp(X) can be mapped linearly and con-
tinuously (uniformly continuously, continuously, respectively) onto Cp(Y ). There
are many topological properties which are invariant under defined above relations,
and there are many which are not. The main goal of Section 3 is to study the follow-
ing question: Which topological properties related to being a Δ-space are preserved
by the relation of l-dominance?

We show that the class of Tychonoff spaces Δ is invariant under the relation of
l-dominance, equivalently, the class of distinguished Cp-spaces is invariant under
the operation of taking continuous linear images (Theorem 3.1). For the reader’s
benefit, aiming to emphasize a big potential in this research area, we present two
different proofs of Theorem 3.1. The first proof is based on item (2) of Theorem
1.3 and invokes a new observation about extensions of linear continuous surjections
between Cp-spaces. The second proof uses the language of dualities and is based
on item (3) of Theorem 1.3. As an easy consequence of our approach, we obtain
that inside the class of subsets of R, Q-sets are invariant under the relation of l-
dominance (Corollary 3.5). What makes the proof of Corollary 3.5 surprising is the
fact that it does not depend on the question whether the square of a Q-set remains
a Q-set. We prove also that such topological properties as σ-scattered, σ-discrete,
Eberlein compact, scattered Eberlein compact are preserved by the relation of l-
dominance.

The last Section 4 is devoted to the study of compact/countably compact Δ-
spaces. It has been shown in [23] that every compact Δ-space has countable tight-
ness. Relying on Proposition 1.5, we provide a very short proof of this assertion.
As a consequence, under Proper Forcing Axiom (PFA) every compact Δ-space is
sequential. In [18] we proved that every compact Δ-space X is scattered, i.e. every
subset A of X has an isolated (in A) point. Making use of Proposition 1.5 again,
in Theorem 4.7 we generalize this result for countably compact Δ-spaces, in ZFC.

In order to better understand the boundaries of the class Δ one should search for
new examples and counter-examples. Another recent relevant paper [23] is devoted
to the following question: under what conditions (1) tree topologies; (2) Ψ-spaces
built on maximal almost disjoint families of countable sets; (3) ladder system spaces
do belong to the class Δ? Note that there are compact scattered spaces X /∈ Δ (for
example, the compact space [0, ω1]) [18]. A stronger result has been obtained in
[23]: there exists a compact scattered space X such that the scattered height of X
is finite, and yet X /∈ Δ. Thus, Problem 5.11 from [18] has been solved negatively
in [23].

Our notations are standard, the reader is advised to consult with the monographs
[1] and [9] for the notions which are not explicitly defined in the text. In the article
we pose a dozen open questions.

2. Continuous images, unions and products of Δ-spaces

Theorem 2.1. Let X be a Δ-space and ϕ : X → Y be a continuous surjection
such that ϕ(F ) is an Fσ-set in Y for every closed set F ⊂ X. Then Y is also a
Δ-space.
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Proof. Assume that {Dn : n ∈ ω} is any decreasing sequence of subsets of Y with
empty intersection. Then {ϕ−1(Dn) : n ∈ ω} is a decreasing sequence of subsets of
X and

⋂
n∈ω ϕ−1(Dn) = ϕ−1(

⋂
n∈ω Dn) = ∅. By assumption, there is a decreasing

sequence of open sets {Un : n ∈ ω} such that ϕ−1(Dn) ⊂ Un for each n ∈ ω and⋂
n∈ω Un = ∅. Define Hn = Y \ ϕ(X \ Un) for each n ∈ ω. We have that Dn ⊂ Hn

for each n ∈ ω. Indeed, ϕ−1(y) ⊂ Un for every y ∈ Dn; hence y /∈ ϕ(X \Un) which
means that y ∈ Hn. Note that ϕ−1(Hn) ⊂ Un; therefore

⋂
n∈ω Hn = ∅ because

ϕ−1(
⋂
n∈ω

Hn) =
⋂
n∈ω

ϕ−1(Hn) ⊂
⋂
n∈ω

Un = ∅.

Clearly, the sets X \ Un are closed, the sets ϕ(X \ Un) are Fσ in Y ; hence the sets
Hn are Gδ in Y .

It appears that we can refine the sets Hn further and construct another decreas-
ing sequence consisting of open sets {Vn : n ∈ ω} such that Hn ⊂ Vn for each n ∈ ω
and

⋂
n∈ω Vn = ∅. This claim in fact should be attributed to E. K. van Douwen

(see [29, page 150]). Because the real argument has not been provided in [29], for
the sake of completeness we include the proof. Denote by Hk

n open subsets of Y
such that Hk

n+1 ⊂ Hk
n and

⋂
n∈ω Hk

n = Hk for every n, k ∈ ω. Since the sequence
{Hk : k ∈ ω} is decreasing, by induction over upper index k without loss of gen-
erality we may assume also that Hk+1

n ⊂ Hk
n for every n, k ∈ ω. We declare now

that Vn = Hn
n , n ∈ ω. It is clear that Dn ⊂ Vn and each Vn is an open set. We

show that the intersection of all sets Vn is empty. Indeed, let y be any element of
Y . There exists k ∈ ω such that y /∈ Hk; hence there exists n(k) ∈ ω such that
y /∈ Hk

n(k). Fix any m ≥ max{k, n(k)}. Then Hm
m ⊂ Hk

m ⊂ Hk
n(k) which implies

that y /∈ Hm
m . Finally,

⋂
n∈ω Vn = ∅ and the proof is complete. �

Proposition 2.2. Assume that X is a countable union of closed subsets Xn, where
each Xn belongs to the class Δ. Then X also belongs to Δ. In particular, a
countable union of compact Δ-spaces is also a Δ-space.

Proof. Denote by Z the free topological union of the spaces Xn, n ∈ ω. It is easy
to see that Z ∈ Δ, by Theorem 1.2. The space Z admits a natural continuous
mapping ϕ onto X. Since ϕ(F ) is an Fσ-set in X for every closed set F ⊂ Z, we
deduce that X ∈ Δ, by Theorem 2.1. �

Thus, we have a positive solution of Problem 5.8 posed in [18].

Corollary 2.3. Let X be a σ-compact Δ-space and Y be a continuous image of X.
Then Y also is a Δ-space.

Thus, we have a positive solution of Problem 5.3 posed in [18].

Corollary 2.4. σ-Product of any family consisting of scattered Eberlein compact
spaces is a Δ-space.

Proof. σ-Product is a countable union of σn-products, where σn-product includes
elements of the product whose support consists of at most n points, n ∈ ω . Ev-
ery σn-product of scattered Eberlein compact spaces is again a scattered Eberlein
compact; therefore it is a Δ-space [12]. It remains to apply Proposition 2.2. �
Corollary 2.5. Let X be a Lindelöf subspace of a σ-product of any family consisting
of scattered Eberlein compact spaces and Y be a continuous image of X. Then Y
also is a Δ-space.
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Proof. X is equal to the countable union of its closed subspaces Xn, where Xn

is the intersection of X with σn-product. Every Lindelöf subspace of a scattered
Eberlein compact is necessarily σ-compact, by a recent result of V. Tkachuk [35].
Finally, Y is a Δ-space by Corollary 2.3. �

Corollary 2.6. Let X be a Lindelöf Čech-complete Δ-space and Y be a continuous
image of X. Then Y also is a Δ-space.

Proof. Any Cech-complete Δ-space is scattered [18]. Now we use the well-known
fact stating that every Lindelöf Čech-complete scattered space is σ-compact (see
[3, Theorem 4.5]) and we finish the proof again by Corollary 2.3. �

We don’t know answers to the following problems.

Problem 2.7. Let X be any Lindelöf subspace of a compact Δ-space. Is X a
σ-compact space?

In the case that the answer to Problem 2.7 is negative we can ask

Problem 2.8. Let X be any Lindelöf subspace of a compact Δ-space and Y be a
continuous image of X. Is Y a Δ-space?

We have a partial positive result for products of Δ-spaces.

Corollary 2.9. Let Z be the product of a Δ-space X with a σ-closed discrete space
(in particular, a countable space) Y . Then Z also is a Δ-space.

Proof. Let Y =
⋃

n∈ω Yn, where each Yn is a closed and discrete subset of Y .
Denote by Zn = X×Yn. It is clear that each Zn is closed in Z and Zn ∈ Δ. We get
that Z is a countable union of closed Δ-spaces Zn, so Proposition 2.2 applies. �

Next statement formally is more general than Proposition 2.2.

Proposition 2.10. Assume that X is covered by a σ-locally finite family of closed
subsets {Xα : α ∈ A}, where every Xα belongs to Δ. Then X also belongs to Δ.

Proof. The union of a locally finite family of closed subsets of X is closed in X [9].
Now remind the following fact [7, Theorem 2.7]. Suppose that P is a topological
property preserved under closed mappings and {Xα : α ∈ A} is a locally finite
closed cover of X with each Xα satisfying P. If the free topological sum satisfies P
then so does X. It suffices to say that X satisfies property P if X ∈ Δ and apply
Proposition 2.2. �

Remark 2.11. Proposition 2.2 is not valid without assuming that all pieces Xn in
the union are closed. Let M be the Michael line which is the refinement of the real
line R obtained by isolating all irrational points. Clearly, M can be represented
as a countable disjoint union of singletons (rationals) and an open discrete set.
Nevertheless, the Michael line M is not in Δ [12].

Now we consider a question of “reversing” of Proposition 1.5. It is evident that if
ϕ : X → Y is a continuous one-to-one mapping from X onto Y and Y is a Δ-space,
then X is also a Δ-space. The following more general result has been conjectured
by V. Tkachuk [31] and below we provide a straightforward argument.

Proposition 2.12. Let ϕ : X → Y be a continuous finite-to-one surjective map-
ping. If Y is a Δ-space, then X is also a Δ-space.
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Proof. Let {Bn : n ∈ ω} be any decreasing sequence of subsets of X with empty
intersection. Denote by Dn = ϕ(Bn). Then {Dn : n ∈ ω} is a decreasing sequence
of subsets of Y with empty intersection. Indeed, for every y ∈ Y the fiber ϕ−1(y)
is finite; hence there is n ∈ ω such that ϕ−1(y)∩Bn = ∅ which means that y /∈ Dn.
By assumption, there is a decreasing sequence of open sets in Y , {Un : n ∈ ω}
such that Dn ⊂ Un for each n ∈ ω and

⋂
n∈ω Un = ∅. Define Vn = ϕ−1(Un) for

each n ∈ ω. Clearly, a decreasing sequence of open in X sets, {Un : n ∈ ω} is as
required. �

We don’t know under which conditions the latter Proposition 2.12 can be gen-
eralized for the mappings with countable fibers.

3. Δ-spaces vs. properties of spaces Cp(X)

Our main goal here is to study the following question: Which topological prop-
erties related to being a Δ-space are preserved by the relation of l-dominance?

The class of all distinguished lcs does not preserve continuous linear images. To
see this it suffices to consider the identical mapping from the Banach space C[0, 1]
onto Cp[0, 1]. Below we show that the class of Tychonoff spaces Δ is invariant
under the relation of l-dominance; equivalently, the class of distinguished Cp-spaces
is invariant under the operation of taking continuous linear images.

Theorem 3.1. Assume that Y is l-dominated by X. If X is a Δ-space, then Y
also is a Δ-space.

For the reader’s benefit, we present two different proofs of Theorem 3.1: topo-
logical and analytical ones. In order to present the first proof, we start with the
following simple lemma. Surprisingly, we were unable to find its formulation in any
monograph cited in the references. By this reason we include its complete proof
which relies on several extreme properties of the Tychonoff product RX .

Lemma 3.2. Let X and Y be two sets and let E ⊂ RX and F ⊂ RY be dense vector
subspaces of RX and RY , respectively. Assume that T : E −→ F is a continuous
linear surjection between lcs E and F . Then T admits a continuous linear surjective

(unique) extension T̂ : RX −→ RY .

Proof. Let us list all well-known properties of RX we are going to use.

Property 1. Every closed vector subspace H of RX is complemented in RX and
the quotient RX/H is linearly homeomorphic to the product RZ for some set Z
[28, Corollary 2.6.5, Theorem 2.6.4].

Property 2. The product topology on RX is minimal, i.e. RX does not admit a
weaker Hausdorff locally convex topology [28, Corollary 2.6.5(i)].

Property 3. RY fulfills the extension property, i.e. if M is a vector subspace of
a lcs L, then every continuous linear mapping T : M −→ RY admits a continuous

linear extension T̂ : L −→ RY [27, Theorem 10.1.2 (a)].

By Property 3, there exists a continuous linear extension T̂ : RX −→ RY of

T such that F ⊂ T̂ (RX). We prove that T̂ is a surjective mapping. Denote
by ϕ : RX/ ker(T ) −→ RY the injective mapping associated with the quotient

mapping Q : RX −→ RX/ ker(T̂ ), where ker(T̂ ) is the kernel of T̂ and ϕ ◦ Q = T̂ .
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By Property 1, the space RX/ ker(T ) is linearly homeomorphic to the product RZ

for some set Z. So we may assume that ϕ is a continuous linear bijection from RZ

onto a dense subspace T̂ (RX) of RY . This implies that on T̂ (RX) there exists a

stronger locally convex topology ξ such that (T̂ (RX), ξ) is linearly homeomorphic
with RZ . However, by Property 2, RZ does not admit a weaker Hausdorff locally

convex topology; hence T̂ (RX) is isomorphic to the complete lcs RZ . Finally, T̂ (RX)

is closed in RY and then T̂ is a surjection. �

First Proof. Let T : Cp(X) −→ Cp(Y ) be a continuous linear surjection. Denote

by T̂ : RX −→ RY the extension of T which is supplied by Lemma 3.2. By
Theorem 1.2, Cp(X) is distinguished and we can apply item (2) of Theorem 1.3.

Take arbitrary f ∈ RY . There exists g ∈ RX with T̂ (g) = f . Then there exists a
bounded set B ⊂ Cp(X) such that g ∈ clRX (B). We define A = T (B). It is easy to
see that A is bounded and f ∈ clRY (A) which means that Cp(Y ) is distinguished;
equivalently, Y is a Δ-space, by Theorem 1.2. �

Second Proof. If T : Cp(X) −→ Cp(Y ) is a continuous linear surjection, then by
[26, Proposition 23.30, Lemma 23.31], the adjoint mapping T ∗ : (Lp(Y ), βY ) −→
(Lp(X), βX) is continuous and injective, where βX and βY are the strong topologies
on the duals Lp(X) and Lp(Y ), respectively. Denote by Z = T ∗(Lp(Y )). Endow
Z with the induced topology βX �Z . Since T ∗ : (Lp(Y ), βY ) → (Z, βX |Z) is a
continuous linear bijection, the sets T ∗(U), where U run over all absolutely convex
neighbourhoods of zero in (Lp(Y ), βY ), form a base of absolutely convex neigh-
bourhoods of zero for a locally convex topology ξ on X such that βX �Z≤ ξ and
T ∗ : (Lp(Y ), βY ) −→ (Z, ξ) is a linear homeomorphism. Since Cp(X) is distin-
guished by Theorem 1.2, the topology βX is the finest locally convex topology, by
item (3) of Theorem 1.3. The property of having the finest locally convex topology
is inherited by vector subspaces, so the induced topology βX �Z is the finest locally
convex one. Then βX �Z= ξ is the finest locally convex topology, so βY is of the
same type on Lp(Y ). Hence Cp(Y ) is distinguished, by Theorem 1.3; equivalently,
Y is a Δ-space, by Theorem 1.2. �

If Cp(X) is homeomorphic to a retract of Rκ for some cardinal κ, then X is
discrete [33, Problem 500]. Nevertheless, there exists a continuous mapping from
Rω onto Cp[0, 1] [33, Problem 486]. Several open problems have been posed in
the following direction: Suppose that a dense subspace of Cp(X) is a “nice” (not
necessarily linear) continuous image of Rκ, for some cardinal κ; must X be discrete
[32, Section 4.2]? Lemma 3.2 implies immediately.

Corollary 3.3. Let a dense subspace of Cp(X) be a continuous linear image of Rκ,
for some cardinal κ. Then X is discrete.

For simplicity, a topological space X is called a Q-space if each subset of X is
Fσ, or, equivalently, each subset of X is Gδ in X.

Theorem 3.4. Let X and Y be normal spaces and assume that Y is l-dominated
by X. If X is a Q-space, then Y also is a Q-space.

Proof. Normal X is a Q-space if and only X is strongly splittable, i.e. for every
f ∈ RX there exists a sequence S = {fn : n ∈ ω} ⊂ Cp(X) such that fn → f in
RX , by [34, Problems 445, 447]. Let T : Cp(X) −→ Cp(Y ) be a continuous linear
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surjection. Denote by T̂ : RX −→ RY the extension of T which is supplied by

Lemma 3.2. Take arbitrary f ∈ RY . There exists g ∈ RX with T̂ (g) = f . Then
there exists a sequence B ⊂ Cp(X) converging to g in RX . We define A = T (B).
It is easy to see that A ⊂ Cp(Y ) converges to f in RY . �

Corollary 3.5. Let X and Y be metrizable spaces (in particular, subsets of R) and
assume that Y is l-dominated by X. If X is a Q-set, then Y also is a Q-set.

Remark 3.6. Note that Theorems 3.1 and 3.4, and Corollary 3.5 are valid under a
weaker assumption that a dense subspace of Cp(Y ) is a continuous linear image of
Cp(X).

A space X =
⋃

n∈ω Xn is called σ-scattered (σ-discrete) if every Xn is scattered
(discrete, respectively).

Proposition 3.7. Assume that Y is l-dominated by X. If X is σ-scattered (σ-
discrete), then Y also is σ-scattered (σ-discrete, respectively).

Proof. Our argument is a modification of the proof of [22, Theorem 3.4] and is
based on an analysis of the dual spaces (see also [19, Proposition 2.1]). Recall
that for a Tychonoff space X, Lp(X) denotes the dual space, that is, the space of
all continuous linear functionals on Cp(X) endowed with the pointwise convergence
topology. For each natural n ∈ N consider the subspace An(X) of Lp(X) formed by
all words of the reduced length precisely n. It is known that An(X) is homeomorphic
to a subspace of the Tychonoff product (R∗)n × Xn, where R∗ = R \ {0}. Let
T : Cp(X) −→ Cp(Y ) be a continuous linear surjection. The adjoint mapping T ∗

embeds Lp(Y ) into Lp(X). Therefore, Y can be represented as a countable union of
subspaces Yi, i ∈ N, such that each Yi is homeomorphic to a subspace of (R∗)n×Xn

for some n = n(i).
Consider the projection pi of each of the above pieces Yi ⊂ (R∗)n × Xn to the

second factor Xn. The surjectivity of the linear mapping T implies that pi : Yi −→
Xn is a finite-to-one mapping. Evidently, Xn is scattered/discrete provided X is.
Since pi is continuous, for every isolated point z ∈ Xn its finite fiber p−1

i (z) consists
of points isolated in Yi and the claim follows. �

The following question remained open.

Problem 3.8. Let Y be l-dominated by a scattered spaceX. Must Y be scattered?

Below we answer Problem 3.8 positively in several particularly interesting cases
with the help of the properties of Δ-spaces.

Proposition 3.9. Let X and Y be metrizable spaces and assume that Y is l-
dominated by X. If X is scattered, then Y also is scattered.

Proof. If X is metrizable and scattered, then X is a Δ-space by [18, Proposition
4.1]. Hence by Theorem 3.1 the space Y is a Δ-space. From another hand, every
metrizable and scattered space is completely metrizable, by [14, Corollary 2.2]. A
metrizable space Y is l-dominated by a completely metrizable space X; therefore
Y is completely metrizable by the main result of [4]. Finally, Y is a Čech-complete
Δ-space, and Y is scattered applying [18, Theorem 3.4]. �

If X and Y both are compact spaces and there is a continuous mapping from
Cp(X) onto Cp(Y ), then Y is Eberlein whenever X is (see [1, Theorem IV.1.7]),
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and Y is Corson whenever X is (see [1, Theorem IV.3.1]). Our next statement is a
combination of a few known results, while we apply Theorem 3.1 in order to obtain
the scatteredness of a target space.

Proposition 3.10. Assume that Y is l-dominated by X.

(1) If X is an Eberlein compact, then Y also is an Eberlein compact.
(2) If X is a scattered Eberlein compact, then Y also is a scattered Eberlein

compact.

Proof. (1) The space Cp(X) contains a dense σ-compact subspace, by [1, Theorem
IV.1.7]; hence Cp(Y ) satisfies the same property and consequently, Cp(Y ) contains
a compact subset K which separates points of Y . On the other hand, Y is pseudo-
compact by the result of V. Uspenskii (see [2]). By means of evaluation mapping
we define a continuous injective mapping ϕ : Y −→ Cp(K). Denote by B = ϕ(Y ).
Then B is a pseudocompact subspace of Cp(K). Applying [1, Theorem IV.5.5]
we get that B is an Eberlein compact. We showed that the pseudocompact space
Y is mapped by a continuous injective mapping ϕ onto the Eberlein compact B.
However, the mapping ϕ must be a homeomorphism, by [1, Theorem IV.5.11], and
the result follows.

(2) Every scattered Eberlein compact is a Δ-space, by [18, Theorem 3.7]. Hence
by Theorem 3.1, Y is a Δ-space. We conclude that Y is scattered, by [18, Theorem
3.4]. �

Remark 3.11. Proposition 3.10(1) is not valid for Corson compact spaces. E.
Reznichenko showed that there exists a compact space X with the following prop-
erties (see [1], [34, Problem 222]):

(i) Cp(X) is a K-analytic space, i.e. X is a Talagrand (hence, Corson) com-
pact;

(ii) there is x ∈ X such that Y = X \ {x} is pseudocompact and X is the
Stone-Čech compactification of Y .

Evidently, the restriction mapping projects continuously Cp(X) onto Cp(Y ).

Remark 3.12. The assumption of linearity of continuous surjection between function
spaces, even for compact spaces X and Y , cannot be dropped in the main Theorem
3.1 and its corollaries above. Let Y be any non-scattered metrizable compact, for
instance Y = [0, 1]. Denote by S the convergent sequence. Using the argument pre-
sented in [21, Proposition 5.4], one can construct a continuous surjective mapping
from Cp(S) onto Cp(Y ) (see also [19, Remark 3.4]).

Problem 3.13. Assume that Y is u-dominated by X. Is it true that Y is a Δ-space
provided X is a Δ-space?

Theorem 3.1 may suggest also the following questions. Below Ck(X) stands for
the space of all real-valued continuous functions on a Tychonoff space X endowed
with the compact-open topology.

Problem 3.14. Assume that X and Y are Tychonoff spaces and there exists a
continuous linear surjection from Ck(X) onto Ck(Y ). Is it true that Y is a Δ-space
provided X is a Δ-space?
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In case when the answer to Problem 3.14 is negative one can pose the following

Problem 3.15. Find scattered compact spaces X and Y such that X ∈ Δ but
Y /∈ Δ and there exists a continuous linear surjection from the Banach space C(X)
onto the Banach space C(Y ).

Surely, for such X and Y a continuous linear surjection from Cp(X) onto Cp(Y )
does not exist, by Theorem 3.1. Notice also that X in Problem 3.15 cannot be an
Eberlein compact, since otherwise Y would be a scattered Eberlein compact; hence
Y would be in the class Δ.

Proposition 3.16. Let X be a Čech-complete Lindelöf space. Then the following
assertions are equivalent.

(1) X is scattered.
(2) X is σ-scattered.
(3) Cp(X) is a Fréchet-Urysohn space.

Proof. The implication (2) −→ (1) follows from the well-known fact that every
closed subspace of X satisfies Baire category theorem. The equivalence (1) ←→ (3)
has been proved already in [15, Corollary 2.12]. �

Corollary 3.17. Let X be a Čech-complete Lindelöf space. If X ∈ Δ, then Cp(X)
is a Fréchet-Urysohn space.

Let us call a lcs E hereditarily distinguished if every closed linear subspace of E
is distinguished. It is known that even a Fréchet distinguished lcs can contain a
closed non-distinguished subspace. The only hereditarily distinguished Cp-spaces
we are aware of are the products of reals Rκ. Note that if ϕ is a continuous mapping
from a compact Δ-space X onto Y , then the adjoint mapping ϕ∗ identifies Cp(Y )
with a closed linear subspace of Cp(X), and this closed copy of Cp(Y ) is again
distinguished. Our last problem is inspired by this observation.

Problem 3.18. Does there exist an infinite compact space X such that Cp(X) is
hereditarily distinguished? More specifically, let X be the one-point compactifica-
tion of an infinite discrete space. Is Cp(X) hereditarily distinguished?

4. Compact Δ-spaces and PFA

A topological space X has countable tightness if for each A ⊂ X and for each
x ∈ cl(A), there is a countable B ⊂ A such that x ∈ cl(B). A topological space
X is a sequential space if A ⊂ X is a sequentially closed set implying that A is
closed. The set A is a sequentially closed set if a countable sequence (xn) ∈ A
converges to x ∈ X implying that x ∈ A. Every sequential space is countably tight.
A topological space X is called ω-bounded if the closure of every countable subset
of X is compact. X is called pseudocompact if every continuous function defined
on X is bounded. Evidently, every ω-bounded space is countably compact, and
every countably compact space is pseudocompact. The space of countable ordinals
[0, ω1) is an example of an ω-bounded space which is not compact. A continuous
mapping f : X −→ Y is called perfect if it is closed and f−1(y) is compact for each
y ∈ Y .
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Theorem 4.1. Every ω-bounded Δ-space is compact.

Proof. Assume that X is a counter-example to the claim. Then, by a result of
D. Burke and G. Gruenhage [17, Lemma 1], X contains a subset Z which is a
perfect preimage of the ordinal space [0, ω1). We conclude that a Δ-space Z can
be mapped by a continuous closed mapping onto [0, ω1). By our Proposition 1.5
this would mean that [0, ω1) ∈ Δ; however, the opposite is true [18]. The obtained
contradiction finishes the proof. �

It has been shown in [23] that every compact Δ-space has countable tightness.
Essentially the same argument as in Theorem 4.1 provides a very short proof of
this assertion.

Theorem 4.2 ([23]). Every compact Δ-space has countable tightness.

Proof. A compact space has countable tightness if and only if it does not contain
a perfect preimage of [0, ω1) (see [5]). We argue again that every Δ-space satisfies
this property. �

A very natural question arises whether Theorems 4.1 and 4.2 can be generalized
for countably compact spaces. A positive answer follows from the Proper Forcing
Axiom (PFA), due to the celebrated results of Z. Balogh [5] (see also [6]).

Theorem 4.3 (PFA).

(1) Every countably compact Δ-space is compact.
(2) Every countably compact Δ-space has countable tightness.
(3) Every countably compact Δ-space (hence, every compact Δ-space) is se-

quential.

Problem 4.4. Is it possible to obtain the results of Theorem 4.3 in ZFC alone?

Note that all known examples of compact Δ-spaces are σ-discrete. However, we
don’t know if it is always the case.

Problem 4.5. Let X be a compact Δ-space. Is X a σ-discrete space?

A closely related question to the last problem is the following one: When is a Δ-
space scattered? As we have been mentioned earlier every Čech-complete Δ-space
(in particular, every compact Δ-space) is scattered [18].

Example 4.6. There exists a Baire countable space which is not scattered. Fix in
the real line R a countable dense subset B consisting of irrationals. Let X be the
union of the rationals Q with B. Equip X with the topology inherited from the
Michael line M . Then X is a countable space containing a copy of Q; therefore X
is a non-scattered Δ-space. X is Baire since it contains a dense discrete subspace.

Despite Problem 4.4 the following result does not require extra set-theoretic
assumptions.

Theorem 4.7. Every countably compact Δ-space is scattered.

Proof. On the contrary, assume that a countably compact space X is not scattered.
Every countably compact space X is pseudocompact; therefore there exists a closed
subset K ⊂ X and a continuous surjective mapping ϕ from K onto the closed
interval [0, 1], by [24, Proposition 5.5]. Every closed subset F of K is a countably
compact space, its continuous image ϕ(F ) is a countably compact subset of [0, 1];
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therefore ϕ(F ) is compact. We conclude that ϕ �K is a closed continuous mapping
from K onto [0, 1]. This evidently contradicts Theorem 2.1, since [0, 1] /∈ Δ. �

The proof above fails if we assume only that X is a pseudocompact (and non-
normal) space, in view of Proposition 1.4.

Problem 4.8. Let X be a pseudocompact Δ-space. Is it true that X is scattered?

Note that a positive answer to Problem 4.8 would imply that a Tychonoff space
is scattered provided it is l-dominated by a compact Δ-space.
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