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SLICE MONOGENIC FUNCTIONS OF A CLIFFORD VARIABLE

VIA THE S-FUNCTIONAL CALCULUS

FABRIZIO COLOMBO, DAVID P. KIMSEY, STEFANO PINTON, AND IRENE SABADINI

(Communicated by Javad Mashreghi)

Abstract. In this paper we define a new function theory of slice monogenic
functions of a Clifford variable using the S-functional calculus for Clifford num-
bers. Previous attempts of such a function theory were obstructed by the fact
that Clifford algebras, of sufficiently high order, have zero divisors. The fact
that Clifford algebras have zero divisors does not pose any difficulty whatso-
ever with respect to our approach. The new class of functions introduced in

this paper will be called the class of slice monogenic Clifford functions to stress
the fact that they are defined on open sets of the Clifford algebra Rn. The
methodology can be generalized, for example, to handle the case of noncom-
muting matrix variables.

1. Introduction

This paper is inspired by recent advances in the spectral theory on the S-
spectrum for Clifford operators in [7], where fully Clifford operators play a crucial
role in the approach. These new developments in operator theory have deep conse-
quences on the function theory of slice monogenic functions because they highlight
properties and potentialities of the Cauchy formula of slice monogenic functions
that have impact on future researches.

In the literature, the various hyperholomorphic function theories for Clifford
algebra valued functions mainly consider smooth functions defined on an open set
U in the Euclidean space Rn+1 and not in the whole Clifford algebra Rn (we denote
by Rn the Clifford algebra over n imaginary units ei, e

2
i = −1).

When the hyperholomorphic functions with values in a Clifford algebra, or, more
in general, in an associative algebra were introduced, no restrictions were imposed
on the domain; see e.g. [27,32] and references therein. However, it was soon realized
that the presence of zero divisors in the domain could complicate the analysis of the
hyperholomorphic functions; see e.g. [31]. Thus, the problem of treating a function
theory on more general domains in the algebra remained unsolved, a part the case
of bicomplex numbers; see [29] and the references therein.

The more recent theory of slice hyperholomorphic functions started in the quater-
nionic case with the paper [20]. Then it was first generalized to the case of func-
tions with values in a Clifford algebra, see [11,13,14], which were further studied in
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[8,15,30], in the algebra of octonions [21], and also to the case of a real alternative
algebra [22], using however a different, although related, definition.

Later, other variations of the notion of slice hyperholomorphicity were intro-
duced; see [10, 18, 25, 26]; however all of them have in common the fact that the
domain of the functions can be expressed as the union of complex planes. In the
particular case of Clifford algebras, this means that one cannot consider a fully
Clifford variable as input of a function.

The function theory of slice hyperholomorphic functions was developed under
the need of providing all the necessary tools to develop the so-called S-functional
calculus for n-tuples of operators, see [2, 12, 16, 19] and [15], which was defined for
paravector operators and was based on the Cauchy formula for slice monogenic
functions and on the S-spectrum.

In 2020 the first and second authors proved the spectral theorem for fully Clifford
operators based on the S-spectrum in [7]. The fact that the spectral theorem exists
in such a general setting gives a strong motivation to consider the S-functional
calculus for fully Clifford operators and, more generally, also for operators acting
on a two-sided modules over more general algebras. In fact, in [6] it is shown that
S-functional calculus and its properties can be extended to fully Clifford operators
or more general operators. The fact the S-spectrum is defined for operators acting
on two sided modules over a real alternative algebra (which includes all Clifford
algebras of the form Rn) and that the basic properties remain intact (i.e., the S-
spectrum of a bounded operator is a non-empty compact set) was observed in [23]
and used for analysis of semigroups.

The main novelty of this paper is to use the spectral theory on the S-spectrum
to define slice monogenic functions of a Clifford variable. The strategy is general
and can be used in other cases that we shall discuss in the last section of the paper.
We point out that the idea of using operator theory to obtain results in function
theory is not new. In fact, several results for noncommuting variables are obtained
via the Taylor functional calculus; see the book [24] for further discussions.

To explain how the strategy based on the S-spectrum works, we first make some
observations on the Cauchy formulas of the theory of several complex variables and
of monogenic functions. Then we compare these two formulas with the Cauchy
formula of slice monogenic functions and we show the consequences on the function
theories.

We recall that the holomorphic Cauchy kernel

(λ1, . . . , λn) �→
n∏

j=1

(λj − zj)
−1

is defined in Cn\{(z1, . . . , zn)} and the Cauchy formula for holomorphic functions
in n complex variables z1, . . . , zn is given by

(1.1) f(z1, . . . , zn) =
1

(2πi)n

∫
C1

. . .

∫
Cn

n∏
j=1

(λj − zj)
−1f(λ1, . . . , λn)dλ,

where dλ = dλ1 · · · dλn and f is any holomorphic function in a neighbourhood of
the point (z1, . . . , zn) ∈ C

n. For each j = 1, . . . , n the simple closed contour Cj

surrounds zj and C1×. . .×Cn is contained in the domain of f in Cn. It is clear that
in this formula one can form functions of n-tuples operators Aj for j = 1, . . . , n, by
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replacing λj − zj by λjI −Aj . Since λj and zj are complex numbers, then Aj , for
j = 1, . . . , n, have to be complex operators.

Let us now consider another higher dimensional generalization, namely one of
hyperholomorphic functions. Let Rn be the real Clifford algebra over n imaginary
units e1, . . . , en satisfying the relations e�em + eme� = 0, � �= m, e2� = −1. If
U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be interpreted as
a function of the paravector x = x0 + e1x1 + . . . + enxn. The monogenic Cauchy
kernel, see [3, 17], is

Gs(x) :=
1

σn
( s− x )

( n∑
j=0

(sj − xj)
2
)−n+1

2

, x, s ∈ R
n+1, x �= s,

where σn := 2π
n+1
2 /Γ

(
n+1
2

)
is the volume of unit sphere in Rn+1. Let f be a left

monogenic function on an open set that contains U ; then the Cauchy formula

(1.2) f(x) =

∫
∂U

Gs(x)η(s)f(s)dS(s)

holds, for every x in U , where U is an open set in Rn+1 with smooth boundary
∂U , η(s) is the outer unit normal to ∂U and dS(s) is the scalar element of surface
area on ∂U . Also in this case, the Cauchy kernel contains the difference of the
coordinates sj−xj so to define a functional calculus, for consistency, the differences
sj −xj can be replaced by the operators sjI −Tj , where Tj are real operators with
real spectrum. It is unclear how to give a meaning to the monogenic Cauchy
formula (1.2) when we suppose to replace the variable x by a paravector operator
T = T0 + e1T1 + · · · + enTn or, more in general, by a fully Clifford operator. The
same problem occurs also with formula (1.1) which cannot work for such operators.

The Cauchy formula for slice monogenic function has a greater flexibility because
the paravector variables s and x, appearing in the slice monogenic Cauchy kernel,
play different roles. Consider the left slice monogenic Cauchy kernel

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s),

where x, s ∈ Rn+1, and x �∈ [s] (see Section 2 for the notations) are paravectors.
From a heuristic point of view, we see that the variable x appears with a different
role with respect to the variable s and this is clearly visible if one is willing to
replace x or s by an operator T . In the case of s, we have to give meaning to Re(s)
and to |s|2 in terms of the operator T . But with respect to x we only have to give
meaning to powers of T , in fact only the square of T . Any mathematical object
T whose powers have a meaning is a possible candidate for the replacement. In
the original version of the S-functional calculus the paravector x is replaced by a
paravector operator T = T0 + T1e1 + · · · + Tnen with not necessarily commuting
components Tj , j = 0, . . . , n.

The functional calculus for fully Clifford operators opens the way to define slice
monogenic functions of a Clifford variable x̂ ∈ Rn using the slice monogenic Cauchy
formula. To this end, we define the S-spectrum of the Clifford number x̂ as

σS(x̂) = {s ∈ R
n+1 : x̂2 − 2Re(s)x̂+ |s|2 is not invertible in Rn}.

Now let x̂ ∈ Rn and let U ⊂ R
n+1 be a bounded slice Cauchy domain that contains

σS(x̂) and for j ∈ S (S is the sphere of paravectors s with s0 = 0, s2 = −1) we
set dsj = ds(−j). Assume that f is a (left) slice monogenic function on a set that
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contains U and assume that U contains the S-spectrum of x̂. We define the (left)
slice monogenic function of the Clifford variable x̂ as

(1.3) f(x̂) :=
1

2π

∫
∂(U∩Cj)

S−1
L (s, x̂) dsj f(s).

The function f(x̂) is well defined because then the integral (1.3) depends neither on
U nor on the imaginary unit j ∈ S. Observe that in the case x̂ is a paravector then
the definition (1.3) becomes the Cauchy formula for slice monogenic functions.

When x̂ varies in a set W contained in Rn, the formula gives a function of x̂
since U is chosen sufficiently large such that it contains σS(x̂) for all x̂ ∈ W . A
similar definition holds in more general cases, for example, in the case of matrix
variables.

2. Preliminary results

In this section we collect the preliminary results which are needed in the sequel.
An element in the Clifford algebra Rn will be denoted by x̂ =

∑
A eAxA, with

xA ∈ R, where A = {�1 . . . �r} ∈ P{1, 2, . . . , n}, �1 < . . . < �r is a multi-index and
eA = e�1e�2 . . . e�r , e∅ = 1. An element (x0, x1, . . . , xn) ∈ R

n+1 will be identified
with the element x = x0+x = x0+

∑n
�=1 x�e� ∈ Rn and will be called a paravector

and the real part x0 of x will also be denoted by Re(x). The norm of x ∈ Rn+1

is defined as |x|2 = x2
0 + x2

1 + . . . + x2
n. More generally the norm of x̂ is given by

|x̂|2 =
∑

A |xA|2 and is called the Euclidean norm. The conjugate of x is defined
by x̄ = x0 − x = x0 −

∑n
�=1 x�e�. With a slight abuse of notation if x ∈ Rn is a

paravector, then we will write x ∈ Rn+1.
We denote by S the sphere

S = {x = e1x1 + . . .+ enxn : x2
1 + . . .+ x2

n = 1}.
Note that for j ∈ S we obviously have j2 = −1. Given an element x = x0+x ∈ Rn+1

let us set jx = x/|x| if x �= 0, and given an element x ∈ Rn+1, the set

[x] := {y ∈ R
n+1 : y = x0 + j|x|, j ∈ S}

is an (n− 1)-dimensional sphere in R
n+1. The vector space R+jR passing through

1 and j ∈ S will be denoted by Cj and an element belonging to Cj will be indicated
by u+ jv, for u, v ∈ R.

We recall the definition of slice monogenic functions which is slightly different
from the original one; this definition allows us to define functions on axially sym-
metric domains that do not necessarily intersect the real axis. The proofs are minor
modifications of the ones in [15].

Definition 2.1. Let U ⊆ Rn+1. We say that U is axially symmetric if [x] ∈ U for
every x ∈ U .

Definition 2.2 is nowadays systematically used in operator theory, see [4,5], and
also for vector-valued operator functions.

Definition 2.2 (Slice monogenic functions). Let U ⊆ R
n+1 be an axially symmetric

open set and let U = {(u, v) ∈ R2 | u+ Sv ⊆ U}. A function f : U → Rn is called
a left slice function, if it is of the form

f(x) = f0(u, v) + jf1(u, v) for x = u+ jv ∈ U
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with two functions f0, f1 : U → Rn that satisfy the compatibility conditions

(2.1) f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v).

If in addition f0 and f1 satisfy the Cauchy-Riemann-equations

∂

∂u
f0(u, v)−

∂

∂v
f1(u, v) = 0,(2.2)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0,(2.3)

then f is called left slice monogenic. A function f : U → Rn is called a right slice
function if it is of the form

f(x) = f0(u, v) + f1(u, v)j for x = u+ jv ∈ U

with two functions f0, f1 : U → Rn that satisfy (2.1). If in addition f0 and f1
satisfy the Cauchy-Riemann-equations, then f is called right slice monogenic.

Definition 2.3. If f is a left (or right) slice function such that f0 and f1 are
real-valued, then f is called intrinsic. We denote the sets of left and right slice
monogenic functions on U by SML(U) and SMR(U), respectively. The set of
intrinsic slice monogenic functions on U will be denoted by N (U).

Definition 2.4. Let x, s ∈ Rn+1 with x �∈ [s]. We define the left slice monogenic
Cauchy kernel S−1

L (s, x) as

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s),

and the right slice monogenic Cauchy kernel S−1
R (s, x) as

S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1.

The following results are well known.

Lemma 2.5. Let x, s ∈ Rn+1 with s /∈ [x]. The left slice hyperholomorphic Cauchy
kernel S−1

L (s, x) is left slice hyperholomorphic in x and right slice hyperholomor-

phic in s. The right slice hyperholomorphic Cauchy kernel S−1
R (s, x) is left slice

hyperholomorphic is s and right slice hyperholomorphic in x.

Definition 2.6 (Slice Cauchy domain). An axially symmetric open set U ⊂ Rn+1

is called a slice Cauchy domain if U ∩ Cj is a Cauchy domain in Cj for any j ∈ S.
More precisely, U is a slice Cauchy domain if, for any j ∈ S, the boundary ∂(U ∩ Cj)
of U ∩Cj is the union of a finite number of non-intersecting piecewise continuously
differentiable Jordan curves in Cj.

Theorem 2.7 (The Cauchy formulas). Let U ⊂ Rn+1 be a bounded slice Cauchy
domain, let j ∈ S and set dsj = ds(−j). If f is a (left) slice hyperholomorphic

function on a set that contains U then

(2.4) f(x) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, x) dsj f(s), for any x ∈ U.

If f is a right slice hyperholomorphic function on a set that contains U , then

(2.5) f(x) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, x), for any x ∈ U.

The integrals (2.4) and (2.5) depend neither on U nor on the imaginary unit j ∈ S.
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3. Slice monogenic functions of a Clifford variable

Using the results in the previous section, we can now define monogenic function of
a Clifford variable that is not necessarily a paravector. We start with some examples

considering a slice monogenic polynomial P (x) =
∑M

m=0 x
mam, am ∈ Rn of order

M . We can define the slice monogenic polynomial of the Clifford number x̂ ∈ Rn by

simply replacing the paravector x by x̂ and we get P (x̂) =
∑M

m=0 x̂
mam, am ∈ Rn.

In the case we consider a power series expansion of a slice monogenic function f
that converges in a suitable ball centered at the origin, replacing x by x̂ we get
f(x̂) =

∑+∞
m=0 x̂

mam, am ∈ Rn and f(x̂) is well defined for those Clifford numbers
x̂ such that the series is absolutely convergent. If x = x0 + x1e1 + · · ·+ xnen and
s = x0 + s1e1 + · · ·+ snen are paravectors, then the Cauchy kernels are expressed
in power series as

S−1
L (s, x) :=

+∞∑
m=0

xms−1−m, S−1
R (s, x) :=

+∞∑
m=0

s−1−mxm, |x| < |s|.

Below we shall make use of the norm |x̂|1 defined by

|x̂|1 =
∑
A

|xA|.

It is equivalent to the Euclidean norm |x̂| but more convenient in some circum-
stances. In fact, for the norm |x̂|1 we have that |x̂m|1 ≤ |x̂|m1 while for the Euclidean
norm there is a constant C ≥ 1 such that |x̂m| ≤ Cm|x̂|m. In order to avoid the
constant C we will use the norm | · |1, for fully Clifford numbers, and we write | · |
instead of | · |1 when no confusion arises.

Now observe that we can define the S-resolvent functions associated with the
Clifford number x̂ ∈ Rn as follows.

Definition 3.1. Let x̂ ∈ Rn and let s ∈ Rn+1. We define the left and the right
S-resolvent series associated with x̂ ∈ Rn as follows:

S−1
L (s, x̂) :=

+∞∑
m=0

x̂ms−1−m, S−1
R (s, x̂) :=

+∞∑
m=0

s−1−mx̂m.

Theorem 3.2. Let x̂ ∈ Rn and let s ∈ R
n+1 be such that |x̂|1 < |s|. Then the left

and the right S-resolvent series associated with x̂ ∈ Rn are absolutely convergent.

Proof. Observe that when b is a paravector and x̂ is a Clifford number, for the
Euclidean norm, we have

|x̂b| = |x̂||b|.
So we have that |x̂ms−1−m| = |x̂m||s|−1−m because the inverse of a paravector is
still a paravector. Finally, we get

|x̂ms−1−m| = |x̂m||s|−1−m ≤ C|x̂m|1|s|−1−m ≤ C|x̂|m1 |s|−1−m.

The proof follows from the convergence of the geometric series. �

Theorem 3.3. Let x̂ ∈ Rn and let s ∈ Rn+1 be such that |x̂|1 < |s|. Then we have

(x̂2 − 2s0x̂+ |s|2)−1 =
+∞∑
m=0

x̂m
m∑

k=0

(s)−k−1s−m+k−1.
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Proof. The proof follows standard techniques; see e.g. the proof of Theorem 3.1.5
in the book [5]. �

Theorem 3.4 shows that, when we replace the paravector x by the Clifford num-
ber x̂ in the Cauchy kernel expansion, the sum of the series is formally obtained by
replacing x by x̂ in the Cauchy kernel.

Theorem 3.4. Let x̂ ∈ Rn, s ∈ Rn+1. Then, for |x̂|1 < |s| we have

(3.1)
+∞∑
m=0

x̂ms−1−m = −(x̂2 − 2Re(s)x̂+ |s|2)−1(x̂− s),

and

(3.2)

+∞∑
m=0

s−1−mx̂m = −(x̂− s̄)(x̂2 − 2Re(s)x̂+ |s|2)−1.

Proof. We show just (3.1) since the other case follows with a similar argument,
which is the one used in [15]; in fact it is enough to show the identity

s − x̂ = (x̂2 − 2Re(s)x̂+ |s|2)
+∞∑
m=0

x̂ms−1−m

because x̂2 − 2Re(s)x̂ + |s|2 is invertible by Theorem 3.3. Since s is a paravector
the relations 2Re(s) = s+ s and |s|2 = s s = s s are real and hence they commute
with the Clifford number x̂, we get

(x̂2−2Re(s)x̂+ |s|2)
+∞∑
m=0

x̂ms−m−1

=

+∞∑
m=1

x̂m+1s−m −
+∞∑
n=0

x̂m+1s−m −
+∞∑
m=0

x̂m+1s−m−1s+

+∞∑
m=0

x̂ms−ms

= s − x̂.

�

It is now natural to define the S-spectrum and the S-resolvent set of a Clifford
number x̂ ∈ Rn (cf. [23]).

Definition 3.5. Let x̂ ∈ Rn, s ∈ Rn+1. We define the S-spectrum of the Clifford
number x̂ ∈ Rn as

σS(x̂) = {s ∈ R
n+1 : x̂2 − 2Re(s)x̂+ |s|2 is not invertible in Rn}

and the S-resolvent set as

ρS(x̂) = R
n+1\σS(x̂).

Example 3.6. Let us consider the Clifford algebra Rn: if x̂ = eA and e2A = 1
then we have that 1− 2Re(s)x̂+ |s|2 is not invertible if and only if s = ±1 and so
σS(eA) = {±1}. If e2A = −1, then −1− 2Re(s)x̂+ |s|2 is not invertible if and only
if Re(s) = 0 and |s| = 1 so that σS(eA) = S.

We now consider the case of R3. Setting ω± = 1
2 (1 ± e123) we have that any

element in the algebra can be written as x̂ = ω+q++ω−q− where q± are quaternions
belonging to the algebra H with generators e1, e2 and ω± are two idempotents such
that ω+ + ω− = 1. As it is well known and easily verified, the zero divisors are
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quaternionic multiples of ω+ or ω−. Thus ω2
± − 2Re(s)ω± + |s|2 is not invertible

for s = 0, 1 so σS(ω±) = {0, 1}.

In general, we have:

Theorem 3.7 (Structure of the S-spectrum). Let x̂ ∈ Rn. Then σS(x̂) and ρS(x̂)
are axially symmetric sets in Rn+1.

Proof. It is an immediate consequence of the definition. �

Definition 3.8 (S-resolvent functions of x̂). Let x̂ ∈ Rn and s ∈ ρS(x̂). We define
the left S-resolvent functions associated with the Clifford number x̂ as

S−1
L (s, x̂) := −(x̂2 − 2Re(s)x̂+ |s|2)−1(x̂− s)

and the right S-resolvent functions associated with the Clifford number x̂ as

S−1
R (s, x̂) := −(x̂− s̄)(x̂2 − 2Re(s)x̂+ |s|2)−1.

Observe that the S-resolvent functions are slice monogenic with respect to the
variable s for all s ∈ ρS(x̂), cfr. Lemma 2.5, but it is not slice monogenic in x̂.

Lemma 3.9. Let x̂ ∈ Rn. Then the left S-resolvent function S−1
L (s, x̂) is right slice

monogenic function of the variable s on ρS(x̂) and the right S-resolvent function
S−1
R (s, x̂) is a left slice monogenic function of the variable s on ρS(x̂).

Proof. The proof follows by direct computations. �

Theorem 3.10. Let s ∈ R
n+1, a ∈ Rn, � ∈ N∪{0} and consider the monomial s�a.

Let x̂ ∈ Rn and σS(x̂) ⊂ U ⊂ Rn+1 where U is a bounded slice Cauchy domain.
Then, for every choice of j ∈ S, we have

(3.3) x̂�a =
1

2π

∫
∂(U∩Cj)

S−1
L (s, x̂) dsj s

�a,

and

(3.4) a x̂� =
1

2π

∫
∂(U∩Cj)

a s�dsj S
−1
R (s, x̂).

Proof. We just consider (3.3) since (3.4) follows in a similar way. Let us consider
the power series expansion of the S-resolvent function S−1

L (s, x̂) and assume that
U is a ball Br(0) centered in the origin, with radius r > |x̂|1, so we have

(3.5)
1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, x̂) dsj s

�a =
1

2π

+∞∑
m=0

x̂m

∫
∂(Br(0)∩Cj)

s−1−m+� dsja.

Since

(3.6)

∫
∂(Br(0)∩Cj)

dsjs
−m−1+� = 2πδm,�,

where δm,� is the Kronecker delta, and, by the Cauchy theorem, the above integrals
are not affected if we replace Br(0) by U , for any j ∈ S, we have

1

2π

+∞∑
m=0

x̂m

∫
∂(Br(0)∩Cj)

s−1−m+� dsja =
1

2π

∑
m=0

x̂m

∫
∂(U∩Cj)

s−1−m+� dsja = x̂�a

and this completes the proof. �
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The following result is adapted for Clifford numbers from the functional calculus
for paravector operators.

Theorem 3.11 (Compactness of the S-spectrum). Let x̂ ∈ Rn. The S-spectrum

σS(x̂) of x̂ is a nonempty, compact set contained in the closed ball B|x̂|1(0) of radius
|x̂|1 and centered at the origin.

Proof. The series S−1
L (s, x̂) =

∑+∞
m=0 x̂

ms−m−1 converges uniformly on ∂Br(0) for
|x̂|1 < r. For any fixed j ∈ S, we have∫

∂(Br(0)∩Cj)

S−1
L (s, x̂) dsj =

+∞∑
m=0

x̂m

∫
∂(Br(0)∩Cj)

s−m−1 dsj = 2π,(3.7)

since it is clear that
∫
∂(Br(0)∩Ĉj)

s−m−1dsj equals 2π if m = 0 and 0 otherwise.

If Br(0) was a subset of ρS(x̂), then S−1
L (s, x̂) would be right slice monogenic

on Br(0) by Lemma 3.9. Cauchy’s integral theorem would then imply that the
integral in (3.7) vanishes. However, it is obviously not the case, so we deduce that

Br(0) �⊂ ρS(x̂) and in turn ∅ �= σS(x̂) ∩ Br(0). This fact implies that σS(x̂) is
not empty. Let us consider Rn as left (or right) module over itself and let L(Rn)
be the set of left (or right) linear operators from the Clifford algebra Rn to itself.
We consider L(Rn) as a real Banach algebra, where the multiplication of a linear
operator by a scalar is performed on R. The set Inv(L(Rn)) of invertible elements
of this real Banach algebra is open. Since τ : s �→ x̂2−2Re(s)x̂+ |s|2 is a continuous
function with values in L(Rn), we deduce that ρS(x̂) = τ−1(Inv(L(Rn))) is open
in Rn, so σS(x̂) is closed. Theorem 3.3 implies |s| ≤ |x̂|1 for any s ∈ σS(x̂) and so

σS(x̂) is a closed subset of the compact set B|x̂|1(0) and therefore it is compact. �

Theorem 3.12. The integrals (3.8) and (3.9) depend neither on U nor on the
imaginary unit j ∈ S.

Proof. The independence from the opens set is standard. We just consider (3.8);
the other case is similar. The major point in this proof is to show that fully Clifford
numbers are such that the integrals are independent of the imaginary unit j ∈ S.
We show just the crucial points in which we make clear that the replacement of the
paravector x by the Clifford number x̂ does not invalidate the proof that holds for
bounded linear paravector operators.

In order to show the independence of the imaginary unit, we choose two units
i, j ∈ S and two slice Cauchy domains Uq, Us ⊂ dom(f) with σS(x̂) ⊂ Uq and

Uq ⊂ Us. (The subscripts q and s are chosen in order to indicate the respective
variable of integration in the following computation.) The set Uc

q := R
n+1\Uq is

then an unbounded axially symmetric Cauchy domain with Uc
q ⊂ ρS(x̂). The left

S-resolvent function is right slice hyperholomorphic on ρS(x̂) and also at infinity
because

lim
s→∞

S−1
L (s, x̂) = lim

s→∞

+∞∑
n=0

x̂ns−n−1 = 0.

The right slice hyperholomorphic Cauchy formula implies therefore

S−1
L (s, x̂) =

1

2π

∫
∂(Uc

q∩Ci)

S−1
L (q, x̂) dqi S

−1
R (q, s)
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for any s ∈ Us. As ∂(Uc
q ∩ Cj) = −∂(Uq ∩ Cj) and S−1

R (q, s) = −S−1
L (s, q), we

therefore find

f(x̂) =
1

2π

∫
∂(Us∩Cj)

S−1
L (s, x̂) dsj f(s)

=
1

(2π)2

∫
∂(Us∩Cj)

(∫
∂(Uc

q∩Ci)

S−1
L (q, x̂) dqi S

−1
R (q, s)

)
dsj f(s)

=
1

(2π)2

∫
∂(Uq∩Ci)

S−1
L (q, x̂) dqi

(∫
∂(Us∩Cj)

S−1
L (s, q) dsj f(s)

)

=
1

2π

∫
∂(Uq∩Ci)

S−1
L (q, x̂) dqif(q),

where the last identity follows again from the slice hyperholomorphic Cauchy for-
mula because we chose Uq ⊂ Us. �

Thanks to Theorem 3.12 Definition 3.13 is well posed.

Definition 3.13 (Slice monogenic functions of a Clifford variable). Let W ⊂ Rn be
a bounded set and let U ⊂ Rn+1 be a bounded slice Cauchy domain that contains
σS(x̂) for all x̂ ∈ W . For j ∈ S we set dsj = ds(−j).

(I) Assume that f is a (left) slice monogenic function on a set that contains U .
We define the (left) slice monogenic function of the Clifford variable x̂ as

(3.8) f(x̂) :=
1

2π

∫
∂(U∩Cj)

S−1
L (s, x̂) dsj f(s).

(II) Assume that f is a right slice monogenic function on a set that contains U .
We define the (right) slice monogenic function of the Clifford variable x̂ as

(3.9) f(x̂) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, x̂).

The next result shows that Definition 3.13 is consistent with polynomials and
powers series expansions of slice monogenic functions where we formally replace the
paravector variable x by the Clifford variable x̂.

Lemma 3.14. Let x̂ ∈ Rn. Let us consider the left slice monogenic function
f(s) =

∑+∞
m=0 s

mpm where pm ∈ Rn converging on U and such that σS(x̂) ⊂ U .
Then we have

f(x̂) =

+∞∑
m=0

x̂mpm.

If the function f is right slice monogenic, i.e., f(s) =
∑+∞

m=0 pmsm where pm ∈ Rn

then we have

f(x̂) =

+∞∑
m=0

pmx̂m.

Proof. Consider the case of left slice monogenic functions. For a suitable R > 0
the series

∑+∞
m=0 s

mpm converges in a ball B(0, R) that contains σS(x̂). So we can
choose another ball

Bε := { s ∈ R
n+1 : |s| ≤ |x̂|1 + ε },
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for sufficiently small ε > 0, such that Bε ⊂ B(0, R). Since the series converges
uniformly on ∂Bε we have

f(x̂) =
1

2π

∫
∂(Bε∩Cj)

S−1
L (s, x̂) dsj

+∞∑
m=0

smpm

=
1

2π

+∞∑
m=0

∫
∂(Bε∩Cj)

S−1
L (s, x̂) dsj s

mpm

=
1

2π

+∞∑
m=0

∫
∂(Bε∩Cj)

+∞∑
k=0

x̂ks−1−k dsj s
m pm =

+∞∑
m=0

x̂m pm.

(3.10)

The case of right slice monogenic functions is the same with the obvious changes. �

Remark 3.15. We point out that in the definition of slice monogenic functions of a
Clifford variable we made two choices: we fixed a Clifford algebra Rn and we used
slice monogenic functions defined on an open set in the Euclidean space Rn+1. The
S-spectrum of x̂ ∈ Rn is a subset of Rn+1 and so it depends on the latter choice.
We could have defined the S-spectrum as subset of Rm+1, with m ≤ n, and used
slice monogenic functions defined on open sets in Rm+1 (see [9]). The choice m = n
corresponds to the maximal Euclidean space that can be used as domain of slice
monogenic functions.

Since slice monogenic functions of a Clifford variable are defined via a functional
calculus the product of two of such functions is well defined when we have the
product rule for the functional calculus. In order to do this we recall that the S-
resolvent functions satisfy the S-resolvent equation, as it can be checked by a direct
computation. We have the following results.

Theorem 3.16. Let x̂ ∈ Rn and let s ∈ ρS(x̂). The left S-resolvent function
satisfies the left S-resolvent equation

(3.11) S−1
L (s, x̂)s− x̂S−1

L (s, x̂) = 1

and the right S-resolvent function satisfies the right S-resolvent equation

(3.12) sS−1
R (s, x̂)− S−1

R (s, x̂)x̂ = 1.

The left and the right S-resolvent equations cannot be considered the general-
ization of the classical resolvent equation. The S-resolvent equation entangles the
S-resolvent functions and the slice monogenic Cauchy kernel in the following way.

Theorem 3.17 (The S-resolvent equation [1]). Let x̂ ∈ Rn and let s, q ∈ ρS(x̂)
with q /∈ [s]. Then the equation

(3.13) S−1
R (s, x̂)S−1

L (q, x̂) =
[(
S−1
R (s, x̂)− S−1

L (q, x̂)
)
q

−s
(
S−1
R (s, x̂)− S−1

L (q, x̂)
)]

(q2 − 2Re(s)q + |s|2)−1

holds true. Equivalently, it can also be written as

(3.14) S−1
R (s, x̂)S−1

L (q, x̂) = (s2 − 2Re(q)s+ |q|2)−1

·
[(
S−1
L (q, x̂)− S−1

R (s, x̂)
)
q − s

(
S−1
L (q, x̂)− S−1

R (s, x̂)
)]

.

As a consequence of the S-resolvent equation we obtain the product rule.
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Theorem 3.18 (Product rule). Let x̂ ∈ Rn and let f ∈ N (σS(x̂)) and g ∈
SML(σS(x̂)) or let f ∈ SMR(σS(x̂)) and g ∈ N (σS(x̂)). Then

(fg)(x̂) = f(x̂)g(x̂).

Proof. It is a consequence of the S-resolvent equation and of the relation

1

2π

∫
∂(U∩Cj)

f(s) dsj (sx̂− x̂q)(q2 − 2Re(s)q + |s|2)−1 = x̂f(q)

that holds true if f is an intrinsic slice hyperholomorphic function and U is a
bounded slice Cauchy domain with U ⊂ dom(f) for any q ∈ U and any j ∈ S. �

Theorem 3.19 can be proved following the proof in the case of paravector oper-
ators and so we omit the proof.

Theorem 3.19. The following facts hold.
(I) (The spectral mapping theorem) Let x̂ ∈ Rn and let f ∈ N (σS(x̂)). Then

σS(f(x̂)) = f(σS(x̂)) = {f(s) : s ∈ σS(x̂)}.
(II) (Spectral radius theorem) Let x̂ ∈ Rn; then the S-spectral radius of x̂ is

defined to be the nonnegative real number

rS(x̂) := sup{|s| : s ∈ σS(x̂)}.
Then for x̂ ∈ Rn, we have

rS(x̂) = lim
m→+∞

|x̂m|
1
m
1 .

(III) (Composition rule) Let x̂∈Rn and let f ∈N (σS(x̂)). If g∈SML(σS(f(x̂))
then g ◦ f ∈ SML(σS(x̂)) and if g ∈ SMR(f(σS(x̂))) then g ◦ f ∈ SHR(σS(x̂)). In
both cases

g(f(x̂)) = (g ◦ f)(x̂).

4. Further consequences of the S-functional calculus

In the preceding sections, we discussed how the use of operator theory allows
to extend the definition of slice monogenic functions from paravectors to all the
elements in a Clifford algebra. But this may go beyond Clifford numbers. We
now give further examples to illustrate the advantages of our method based on the
S-functional calculus.

4.1. Composition of slice monogenic functions with monogenic functions.
The definition of slice monogenic functions of a Clifford variable has important
implications in the function theory of monogenic functions because it allows to
define the composition of a slice monogenic function with a monogenic function.
This composition is otherwise undefined between these functions. In fact, let U0 be

an open set and let f̆ : U0 ⊆ Rn+1 → Rn be a monogenic function. We determine

the S-spectrum of f̆(x)

σS(f̆(x)) = {s ∈ R
n+1 : f̆2(x)− 2Re(s)f̆(x) + |s|2 is not invertible in Rn}

and, given the slice monogenic function f defined on an axially symmetric domain

U which contains σS(f̆(x)), we define the composition f(f̆)(x) as

(4.1) f(f̆)(x) :=
1

2π

∫
∂(U∩Cj)

S−1
L (s, f̆(x)) dsj f(s).
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One has to pay attention also on the dependence on x in the definition of the
S-spectrum. This fact has many profound consequences on the function theory.

4.2. Slice monogenic functions of an octonionic variable. Let O be the non-
commutative and nonassociative division algebra of octonions. We define the S-
spectrum associated with an octonionic number as follows:

Definition 4.1 (The S-spectrum of an octonion). Let Q ∈ O; we can define various
notions of spectrum, according to the choice of a set S: We define the S-spectrum
of the octonionic number Q ∈ O as

σS(Q) = {s ∈ S : Q2 − 2Re(s)Q+ |s|2 is not invertible in O}.

We can obviously choose S = O but other cases are possible. With S = H, we
have a quaternionic spectrum of an octonion and we can consider the functional
calculus for slice hyperholomorphic functions of a quaternionic variable and with
quaternionic values, thus obtaining that f(Q) is a function with values in OH :=
O⊗H,

In principle, we could also consider the algebraic tensor product O ⊗ Rn over
the reals of O with the Clifford algebra Rn and we set On := O ⊗ Rn. Using the
S-functional calculus we can now define slice monogenic functions (with coefficients
in Rn) of an octonionic variable and with values in On.

We use the S-resolvent functions and the S-functional calculus defined for slice
hyperholomorphic functions (with quaternionic coefficients) of an octonionic vari-
able.

It would be interesting to investigate possible extensions of the results in [26,28]
according to this new definitions. We will not pursue this here.

4.3. Noncommuting matrix variables. As another example, we consider the
case of (n + 1) noncommuting matrices. Precisely let Xj ∈ Rd×d, for d ∈ N, and
fix a Clifford algebra Rn. We make the identification

(X0, X1, . . . , Xn) → X =
n∑

j=0

Xjej ,

to identify (n + 1)-tuples of d × d real matrices with a d × d matrix with par-
avector entries. The S-spectrum of the (n + 1)-tuple of noncommuting matrices
(X0, X1, . . . , Xn) is defined as:

Definition 4.2. Let X =
∑n

j=1 Xjej , and take s ∈ Rn+1. We define the S-

spectrum of the X ∈ Rd×d as

σS(X) = {s ∈ R
n+1 : X2 − 2Re(s)X+ |s|2Id×d is not invertible in R

d×d}

and the S-resolvent set as

ρS(X) = R
n+1\σS(X).

Note that we can consider 2n-tuples of matrices identified withX=
∑n

|A|=0XAeA
whose S-spectrum σS(X) is given above. This approach may give more useful
properties on the operator X. Moreover, the S-resolvent functions keep the same
form:
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Definition 4.3. Let X ∈ Cd×d⊗Rn . For s ∈ ρS(X), we define the left S-resolvent
function as

S−1
L (s,X) = −(X2 − 2Re(s)X+ |s|2Id×d)

−1(X− sId×d),

and the right S-resolvent function as

S−1
R (s,X) = −(X− sId×d)(X

2 − 2Re(s)X+ |s|2Id×d)
−1.

Via the S-functional calculus we can define slice monogenic functions (with coef-
ficients in Rn) of the noncommuting matrices X. In particular the case of intrinsic
functions contains all special functions that have power series expansion like the
exponential, sine, cosine, Bessel, more in general hypergeometric functions to name
a few.
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